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ABSTRACT: Experts seem to find routes in complex environments by finding a con-
nection from the source to a “skeleton” of major paths, then moving within the skele-
ton to the neighborhood of the destination, making a final connection to the
destination. The authors present a computational hypothesis that describes the skele-
ton as emerging from the interaction of three factors: (a) The topological map is repre-
sented as a bipartite graph of places and paths, where a path is a one-dimensional
ordered set of places; (b) a traveler incrementally accumulates topological relation-
ships, including the relation of a place to a path serving as a dividing boundary sepa-
rating two regions; and (c) the wayfinding algorithm prefers paths rich in boundary
relations so they are likely to acquire more boundary relations. This positive-feedback
loop leads to an oligarchy of paths rich in boundary relations. The authors present
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preliminary computational and empirical tests for this hypothesis, and provide initial
results.

A THEORY TO EXPLAIN THE SKELETON

Expert wayfinders in a complex large-scale environment use a “skeleton”
of important paths and places to guide their problem solving (Chase, 1982;
Lynch, 1960; Pailhous as cited in Chase, 1982). How is this skeleton repre-
sented? How is it acquired? And how does it help in wayfinding?

In this article, we describe a preliminary computational hypothesis to
explain the phenomenon of the skeleton based on the concepts in the Spatial
Semantic Hierarchy (Kuipers, 2000) (which extends the TOUR model;
Kuipers, 1978, 1982). We also describe a set of computational and empirical
tests that can be applied to this hypothesis. Our preliminary results suggest
directions for further investigation.

THE SKELETON

Researchers who have studied expert wayfinders such as experienced taxi
drivers (Chase, 1982; Golledge, 1999; Pailhous as cited in Chase, 1982;
Timpf, Volta, Pollock, & Egenhofer, 1992) have observed a common strat-
egy. Such an expert knows a large number of places and paths, but much of
their travel occurs within a small subset of “major” paths, which is sometimes
called the skeleton (Figure 1). When given a wayfinding problem, the expert
first finds a route from the initial point to the nearest point on the skeleton,
then finds a route within the skeleton to a point near the destination, and
finally finds a route from that point to the destination itself.

This sketch raises several questions. How are the paths and places in the
skeleton selected from the larger set the expert knows about? Is there a quali-
tative difference between the skeleton and the rest of the map, or is the role of
the skeleton an emergent behavior of some uniform mechanism applied to the
entire cognitive map?

The hypothesis presented here is that the skeleton is an emergent phenom-
enon arising from the interaction between:

1. the topological representation for places and paths;
2. the incremental, opportunistic learning of “boundary relations” during travel;
and

3. the use of boundary relations to provide subgoals during wayfinding.
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Figure 1: A Large-Scale Cognitive Map Has a Skeleton of Major Paths; the
Graphical Conventions for Emphasizing Major Streets and Highways
on a Printed Map Are Related but Not Identical to the Skeleton in the
Cognitive Map

THE TOPOLOGICAL MAP

Itis widely accepted (Lynch, 1960; Siegel & White, 1975) that the “cogni-
tive map” includes a topological level of description, in which places (0-D),
paths (1-D), and regions (2-D) are symbolically described and linked by rela-
tions such as connectivity, order, and containment. Metrical relationships
such as distance and direction may also be associated with the topological
map, but there is typically no single global frame of reference, and metrical
errors in a variety of tasks are much more common than topological errors.

The Spatial Semantic Hierarchy (SSH) (Kuipers, 2000) is a computational
model of knowledge of large-scale space, consisting of a lattice of different
but related representations for space. The control level consists of knowledge
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Figure 2: The Rectangular Block Environment (Left) Is Described in the Topo-
logical Map (Right) as a Bipartite Graph of Places and Paths

of control laws for taking the agent from one “distinctive state” within the
environment to another. A state (position plus orientation) is distinctive if itis
the stable point of a local “hill-climbing” control law that eliminates moder-
ate amounts of accumulated error by bringing the agent to a particular state
from anywhere in its local neighborhood. The causal level of the SSH
abstracts the control laws to actions and represents behavior in the environ-
ment as a set of discrete causal schemas (S, A, §’), describing the relation
between a state, an action, and the resulting state. The topological level posits
places, paths, and regions to account for the experienced regularities in the
causal description. Local pieces of metrical information can be used through-
out the other levels, but a global metrical model with a single frame of refer-
ence can only be created after all the other descriptions exist. The TOUR
model (Kuipers, 1978, 1982) has been incorporated into the causal and topo-
logical levels of the SSH.

In the SSH topological map, a path describes an extended one-dimensional
structure such as a street. The topological map is a bipartite graph (Figure 2),
with nodes corresponding to places and paths, and arcs corresponding to the
assertion that a particular place is on a particular path. Other relations included
in the topological map but not represented explicitly by the bipartite graph
include (a) the linear ordering of places along a path, (b) the circular ordering
of paths intersecting at a place, and (c) the boundary relations discussed in the
following. The benefit of the bipartite graph of places and paths is that physi-
cally distant places on the same path may be close in the topological map,
making wayfinding easier.
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Figure 3: Boundary Relations. A path serves as a boundary separating places
on the left from those on the right. Boundary relations can be inferred
from local travel patterns.

BOUNDARY RELATIONS

The SSH topological map can represent more than connectivity and order.
A path is a one-dimensional subset of the environment, with a direction
implied by the order on its places. A directed path is described by (Pa, dir),
where dir is either pos or neg, and —dir is the other one. If a directed path
extends to infinity, it divides the places in the environment into three subsets:
those on the path, those on the right, and those on the left. Note that right and
left are used here as topological terms. If the path curves, a place that is topo-
logically to the right may occasionally be visible to the traveler’s egocentric
left.!

The assertion that a place B lies to the right of a directed path (Pa, dir) is
called a boundary relation: right of(Pa, dir, B). (See Figure 3, left.) We define
left of similarly and provide the axiom

right of(Pa, dir, P) = left.of(Pa, —dir, P).

Boundary relations can be acquired incrementally during travel by simple
local rules. For example (Figure 3, right):

If the traveler moves along a path (Pal, dirl) from place A to place B
and takes a right turn at B onto (Pa2, dir2) and

travels along (Pa2, dir2) to reach place C,

then we can conclude right of(Pal, dirl, C).
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We call this the (AB)C rule. Under the same conditions,

We can also conclude that right of(tPa2, dir2, A).

This is called the (BC)A rule.

We are making some relatively weak and plausible assumptions. We
assume that the finite length of the boundary Pal does not lead us astray. We
assume that path Pa2 does not intersect or cross Pal except at B. These infer-
ences are implemented as default rules, so that if there is contrary evidence,
no conclusion is drawn (Remolina & Kuipers, 1998). The aforementioned
rule applies only when there is a direct connection from Pal to C, but it is
straightforward to handle more complex connections. Meanwhile, we are not
assuming that Pal or Pa2 are straight. We are not assuming that a right turn is
a 90-degree turn. We are not assuming that C is close to Pal, as the path Pa2
can be quite extended.

Using local rules such as the ones mentioned earlier, any experience trav-
eling through the environment will lead the topological map to accumulate
boundary relations among places and paths experienced during travel. This is
the first link in a positive-feedback system to ensure that paths that are used
frequently tend to be used more frequently.

WAYFINDING USING THE BOUNDARY HEURISTIC

Wayfinding is the process of finding a route from an initial place to a desti-
nation place. At the SSH topological level, a route is an alternating sequence
of places and paths, each connected to its neighbors. Once a topological route
is found, it can be refined for execution, first to an alternating sequence of
states and actions at the causal level and finally as a sequence of control laws
at the control level.

There are a number of graph search algorithms that can find paths in a top-
ological map (Elliot & Lesk, 1982). Metrical information such as estimates
of path segment lengths can be used to guide heuristic search in the A* and
Dijkstra algorithms. However, the boundary relation can be used as the basis
for a purely qualitative heuristic to guide wayfinding search (Figure 3).

If we are searching for a route from place A to place B, and
if there is a path Pa such that left of(Pa, dir, A) and right of(Pa, dir, B),
then consider Pa a subgoal and search for routes from A to Pa and from Pa to B.

When places A and B are on opposite sides of path Pa, the route connecting
them must necessarily cross the boundary. The heuristic can also be useful in
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Figure 4: Wayfinding Using Boundary Relations

case both places are on the same side of the boundary, although of course the
route could be inefficient. Unfortunately, we cannot in general expect the
same boundary to be related to both endpoints of the desired route. A more
general form of the boundary heuristic is (Figure 4):

If we are searching for a route from place A to place B, and

if there are paths Pal and Pa2 such that A shares a boundary relation with Pal and
B with Pa2,

then propose the subgoal of finding a connection from Pal to Pa2.

In the simplest case, Pal and Pa2 can be connected by sharing a place
(Figure 4, left). Because paths are extended 1-D subsets of the environment,
this will not be uncommon. In more complex cases (Figure 4, right), we can
search for a connection from Pal to Pa2 using the same heuristics.

Itis possible to extend the concept of boundary relation to describe “topo-
logical grids,” building on the relation between “topologically parallel” paths
(Kuipers, 1978, 2001). These larger-scale structures can be very useful for
wayfinding.

Two places A and B may have multiple boundary relations with different
paths. If there are several possible boundaries, order them according to the
number of boundary relations they have with other places. This will
increase the probability of finding a useful connection earlier in the search.
It is the second link in the positive-feedback cycle that leads to the emer-
gence of the skeleton.

A POSITIVE-FEEDBACK CYCLE

There is a positive-feedback cycle between the inference of boundary
relations and the effect of boundary heuristics on wayfinding search.
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e Travel along a path Pa makes it likely that a boundary relation, say left of(Pa,
dir, A), will be observed and inferred.

e The existence of a boundary relation left of(Pa, dir, A) increases the probabil-
ity that path Pa will be used in the solution to a wayfinding problem even if
place A is not involved in the route but of course more so if it is.

e Following the newly found route, travel along the path Pa increases the proba-
bility that a new boundary relation, say right of(Pa, dir, B) will be observed
and inferred.

This is a self-reinforcing, “rich-get-richer” process, leading to an oligar-
chy of paths (the skeleton) rich in boundary relations. The skeleton perpetu-
ates itself because wayfinding most easily finds routes using paths within that
subset. Note that there is no qualitative distinction between paths within the
skeleton and those outside. There is simply a distribution of boundary rela-
tions among the paths in the cognitive map.

The boundary relation hypothesis is:

Hypothesis 1: The empirical phenomenon of the skeleton—that expert wayfinders
in an environment preferentially use a small set of important paths—is ex-
plained computationally by the positive-feedback cycle between inference of
boundary relations during travel and the use of the boundary heuristic during
wayfinding.

RESEARCH QUESTIONS

The boundary relation hypothesis suggests a number of computational
experiments that can be carried out on a simulated model of a real or artificial
urban street network.

Implement a simulated agent that travels from place to place in the simu-
lated environment model. As it travels, it builds its own topological map of
the environment, including both connectivity relations between places and
paths and boundary relations. The route followed by the agent as it explores
the environment can be determined in a number of different ways.

e The agent could explore randomly.

e The agent could follow a route specified by an “oracle” (e.g., the
experimenter).

e The agent could attempt to plan a path to a given destination, calling the oracle
or exploring randomly when planning fails. Over time, as the cognitive map
improves, planning should succeed more and more often.

e The oracle could be the observed behavior of a human participant in a related
experiment in the same environment.
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Once the agent has learned a cognitive map, we can test for the presence of
a skeleton by measuring the frequencies of use of different paths. If there is a
highly skewed frequency distribution, with a small set of paths used much
more frequently than others, then we conclude that this small set is the
skeleton.

A first testable prediction of the boundary relation hypothesis is that paths
with larger numbers of boundary relations will be more frequently used in
routes. In the following, we present the results of computational and empiri-
cal tests of this prediction.

A second more detailed type of prediction is that when faced with a deci-
sion among alternate routes, the agent’s selection can be predicted from the
distribution of boundary relations in the cognitive map. We present a prelimi-
nary assessment of this type in the following section.

Another question that can be explored by these methods is the dependence
of the structure of the skeleton on the specific geographical properties of the
environment (e.g., lengths of streets, density of destination places, presence
of bottleneck places that many paths must pass through, etc.) and on the dis-
tribution of destinations that determine the agent’s experience.

COMPUTATIONAL TEST OF THE HYPOTHESIS

INTRODUCTION

In this section we describe the evaluation of the boundary relation hypoth-
esis from a computational perspective. We report on the results obtained per-
forming the computational experiments suggested in the previous section.

We have implemented the wayfinding algorithm that uses the boundary
heuristic and tested it on a virtual environment. We have performed two kinds
of experiments; in one we test how well the usage frequency correlates with
the number of boundary relations for each path, and in the other we test the
model prediction accuracy of how humans find their way in the same
environment.

METHOD

To test the boundary relation hypothesis, we have implemented a
wayfinding algorithm that can drive a simulated agent through a virtual envi-
ronment. The wayfinding algorithm uses the boundary heuristic, presented in
the previous section. It is given a pair of locations—source and target—and
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outputs a route’ through the environment that takes the agent to the target
location. While executing this travel, the agent builds a cognitive map of the
environment based on the Spatial Semantic Hierarchy (Kuipers, 2000).

The algorithm’s performance at the wayfinding task clearly depends on
how well it knows the environment, therefore we have adopted a train-and-
test approach, with alternating train and test sessions. During a training ses-
sion, the agent travels through the environment building its cognitive map,
while during a testing session, it first tries to build a route from source to tar-
get, and after it finds one, it follows it.

Environment and Data Sets. All experiments were conducted in virtual
grid-like environments (see Figure 9) that consist of a set of intersections
connected by corridors. In a complete cognitive map of these environments,
each intersection would correspond to an SSH place and each corridor to a
path. From the point of view of the simulated robot, every such place has four
views, facing north, east, south, and west.’ Data were collected by observing
the way humans navigate in the same environments.*

Experiments. In the first experiment the robot follows the human partici-
pant while he or she is randomly exploring the environment. When he or she
is presented with a target, the robot tries to find a route from the current posi-
tion to the destination and follows that route. If none is found, the robot jumps
to the next trial. For this experiment, we collect statistics that relate the num-
ber of boundary relations per path to their usage frequency in routes that the
robot finds from source to target locations.

In the second experiment, the simulated robot takes the passenger’s seat.
As before, it follows the human in his or her random explorations, but during
atest session (i.e., when presented with a target), the robot computes its move
corresponding to the first action in a route from the current position to the
given target and compares it to what the human does. No matter what its move
is, the robot executes the move the human makes. In this way, at every step
during the wayfinding task, we are able to measure how well the boundary
relation algorithm can predict the human’s next move. We also collect data
concerning null moves (the algorithm did not find a way to the target).

We have performed the two experiments on four data sets, corresponding
to the four human participants in the experiments described in the next
section.
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Figure 5: Frequency of Use of Paths in Routes Selected by the Simulated Agent
as a Function of the Number of Boundary Relations Acquired by Each
Path During Each Participant’s Training Phase (Compare With Figure
10 in Which the Routes Are Selected by the Human Participant)

RESULTS

The graphs in Figure 5 draw the usage frequency of paths in travels from
source to destination versus their number of boundary relations. The straight
line was obtained by fitting a first-degree polynomial in a least squares sense
to the data. We trained the robot on the human data obtained while he or she
randomly explored the environment and tested on the set of targets provided
to the human.

In Figure 6, we draw the accuracy of the model in predicting the partici-
pant’s next move. At each step of the travel, the model computes a route that
would take the agent from the current location to the target location and com-
pares its action to the one the human made. The algorithm has several choices
for its actions depending on the particular location the robot is at. There are
two classes of actions: translations—move forward one or several steps—
and rotations—right, left, and around.
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Figure 6: Model Prediction Accuracy of Human Behavior (Computed on Partici-
pants BJS, MRM, RAL, and SGO Data Sets)

NOTE: The accuracy of the model prediction as well as the performance of the model at the

wayfinding task improves as the number of moves and implicitly the number of boundary relations in-

creases. The dotted line represents the average probability that the model predicts the right move by

chance.

The graph has a curve for each of the three possible outcomes: the model
predicted the correct move, the model predicted a wrong move, or the model
did not predict any move at all.’

The dotted line is the average probability that a move chosen randomly by
the model is the correct one. This number was computed taking into account
all possible states (location in the environment and orientation) and consider-
ing the number of correct moves versus the number of possible moves from
that state. For the first environment (Figure 9, left) on which the Participant
BJS and Participant MRM data sets were collected, this probability is
40.21%, whereas for the second environment (Figure 9, right), used in col-
lecting data for the Participant RAL and Participant SGO data sets, it is
34.75%. This number depends on the complexity of the environment, one
factor that directly influences it being the number of +—junctions.
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The x-axis represents the number of moves the human/agent made up to
that point, whereas the y-axis represents the percentage of the last 100 moves
that were correct, respectively, wrong and null. One such measurement is
made every 100 moves.

The prediction accuracy is a conservative estimate of the model’s real pre-
diction power, as a move suggested by the algorithm is only considered cor-
rect if it totally agrees with the move the human made. For example, if from
some location and orientation the model suggests a three-step translation’ but
the human decides to do a two-step translation, this is still considered an
incorrect prediction.

DISCUSSION

In the computational experiments described here, there are fewer points
than in the similar experiments performed on humans (e.g., 10 vs. 13 for the
BJS data set and 9 vs. 13 for the MRM data set) (Figure 10). This is due to the
fact that the simulated agent did not acquire all the paths that were present in
the environment.

For all data sets, there seems to be strong evidence for the fact that there is
a positive correlation between the frequency of usage and number of bound-
ary relations for path in the environment.

For the BJS, RAL, and SGO data sets, the accuracy of the model’s predic-
tion improves with the number of moves the agent makes through the envi-
ronment, reaching a 65% to 70% plateau. After 1,500 actions, the level of
accuracy is well above the random chance level.

For all four data sets, the performance of the wayfinding algorithm using
boundary relation heuristic improves with the number of moves/boundary
relations acquired, quickly reaching a 95% to 100% level. In all cases, except
the MRM data set, the jump in both prediction accuracy and performance
seems to happen between 500 and 1,500 moves.® We attribute this behavior to
the fact that between these points a lot of random explorations of the environ-
ment happen, therefore a lot of boundary relations are acquired and unknown
parts of the environment are discovered.

For the MRM data set, the improvement in both prediction accuracy and
performance seems to rise much more slowly, and although the performance
reaches 95%, the accuracy stays at around 40%. The low accuracy is not the
result of null predictions, as this number converges to 5%, but to the genera-
tion of predictions that disagree with the participant’s moves. This can be
attributed to the fact that this participant rarely selected the topologically
shortest routes (only 15% of the times).
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EMPIRICAL TEST OF THE HYPOTHESIS

INTRODUCTION

Humans provide an important existence proof for the ability to navigate
robustly through large-scale spaces. We are able to navigate under a number
of different conditions and in a variety of environments. We are also able to
learn about a novel environment and easily navigate through that environ-
ment at a later time.

An important goal for developing an autonomous robot is to provide an
algorithm that allows for robust navigation through a familiar environment
along with an algorithm for acquiring useful knowledge about a novel envi-
ronment. In Section 1, we described a specific theory of how a system might
acquire knowledge about a novel environment in addition to how this infor-
mation may be used for robust navigation. In Section 2, we implemented a
computational interpretation of this model to better understand some of the
predictions made by this theory. As evidenced in Figure 5, one of the predic-
tions made by this theory is that paths with more relations are going to be
selected over paths that have fewer relations.

In the current section we test whether human observers show this same
pattern of effects as demonstrated by the computational model. Specifically,
we will investigate whether there is a positive correlation between the num-
ber of times that an observer travels along a path and the number of boundary
relations for that path. In addition, we will investigate whether there is a bias
toward taking a route that contains paths with more boundary relations over
those with fewer boundary relations. This bias is a strong prediction made by
the theory and computational model.’

The current study used desktop virtual reality to train and test our observ-
ers in a novel indoor environment. Observers navigated through the environ-
ment by making key presses. Three different keys were used. One
corresponded to translating the participant one hallway forward, and the
other two rotated the participant by 90° clockwise or counterclockwise.

The study was conducted using a training-and-test procedure. The train-
ing procedure was designed to allow the participants to explore the environ-
ment without any goals or expectations. During a training session,
participants were allowed to navigate freely through the environment. While
navigating, observers heard an auditory signal informing them that they were
at a particular target position (e.g., “Position 4”). During the testing session,
participants moved from one target location to another. To do this, partici-
pants were instructed with an auditory signal about which target to move to
(e.g., “Go to Position 3”’). When they arrived at the goal location they were
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Figure 7: A Sample View of a Hallway.

NOTE: In addition to the two walls and a ceiling in each hallway, there was also a “railing” and “ceiling
lights” to give the observer perspective. On the left and right wall of each hallway was a picture. The
figure on the left shows an intact image during spatial navigation. During the experiment, the partici-
pants were queried about the specific properties of the environment. This query consisted of cover-
ing up either the pictures (center) or the hallways at the next intersection (right).
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informed of this (e.g.,”Position 3”’) and then given a new goal location (e.g.,
“Go to Position 17). Using the data from the training and testing sessions, we
computed an estimated cognitive map including a set of boundary relations
for each participant. We also calculated how often the participant chose a par-
ticular path when traveling from one target location to another.

METHODS

Participants. Two male and two female participants volunteered for this
experiment. Participant BJS is a 34-year-old man who is an author on the cur-
rent article.'” MRM is a 22-year-old male, and SGO and RAL are both 22-
year-old female students at the University of Texas. All participants had nor-
mal or corrected-to-normal vision. Participant SGO was paid $8/hour for her
participation.

Materials. The study was conducted on a Dell Presario computer with an
Intel IV 2.0 GHz processor. The display was a Dell P1130 21-inch CRT mon-
itor with a NVIDIA GeForce MX video graphics card that had 32 MB of
memory.

The environments were specified using virtual reality modeling language
(VRML). These environments were rendered using Vizard software
(WorldViz). Participants viewed the environments from a first-person per-
spective (see Figure 7) and moved through the environment using key
presses. Each hallway segment contained two pictures, one on each hallway
wall. The left panel of Figure 7 shows a sample rendering of the environment
from the observer’s perspective. Although there were 80 pictures within the
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Figure 8: An lllustration of a Hallway Segment, Hallway Node, and Node Wall
NOTE: Each hallway and node in the environment used these positions and sizes.

environment (2 pictures per hallway x 40 hallways), there were only two
unique photos used. Each picture was either a picture of a fish or of an apple.

Each hallway in the environment was composed of intersecting hallway
segments and hallway nodes. With the exception of the pictures on the walls,
each hallway segment was identical to all of the other hallway segments. The
hallway nodes were used to combine multiple intersecting hallway segments.
The specification of the hallway segments, hallway nodes, and node wall can
be seen in Figure 8.

The configuration of hallway segments in the environment was generated
by the computer using a random-layout generating program. This program
produces layouts with hallways that are at right angles to one another. To gen-
erate an environment, the program uses three parameters: the number of hall-
way segments and the maximum extent of the environment in the X and Z
dimensions. The environment used in the current study was constrained to 40
hallway segments, the maximum X extent was 25 hallways, and the maxi-
mum Z extent was 25 hallways.

To generate the environment, the program used the following algorithm:

Select a random hallway from the 25 x 25 grid.
Calculate the set of potential hallways that can connect to the initial hallway.
Randomly select one of these potential hallways.

bl

Compute the set of hallways that can connect with the previously selected
hallway. Add these hallways to the potential hallway list (each hallway is
listed only once).

5. Continue with Steps 3 and 4 until the number of hallways selected is 40.
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Figure 9: The Study Used Two Environments Shown Here.
NOTE: The circles indicate the target locations in each environment. The participants started each
session from the same start state indicated by the start state symbol.

The maps used for the current study using this algorithm are shown in
Figure 9.

Seven target locations were selected by the experimenters. These loca-
tions were selected using the following general principles: (a) The set of tar-
get locations were reasonably distributed throughout the environment, and
(b) the target places would have at least one T-junction, one dead end, and one
+—junction. The layout and the location of the seven target locations are
shown in Figure 9 as circles.

Each target location was assigned a number from 1 to 7. The participant
received an auditory signal by the computer when they walked over any of the
target locations (e.g.,”Position 57). There were no visual cues indicating
which positions were the target locations and which were nontarget loca-
tions. The auditory signal provided a local cue for identifying the target
locations.

Participants navigated through the environment by making key presses.
The participant had three different actions to choose from: translate forward
one hallway segment, rotate clockwise 90°, and rotate counterclockwise 90°.
Both the rotation and translation produced the appropriate optic flow for the
action. All three actions took less than one second to complete.

Design and procedure. The study was conducted over multiple days. Par-
ticipants navigated through the environment by making key presses. Partici-
pants were instructed on how to navigate through the environment and were
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given a series of practice trials on another novel environment to familiarize
themselves with the procedure.

Before beginning the first session, the participants were told that the pur-
pose of the study was to understand how we acquire knowledge about an
environment and how that knowledge is retained over time. Participants were
informed that they were going to navigate through an unfamiliar virtual envi-
ronment and that there were seven target locations in the environment. The
participants were told to remember the positions of these target locations in
the environment because later they would be required to move to the different
target locations.

On the first day, participants engaged in 10 training sessions and 10 test
sessions. These sessions alternated starting with a training session.

During a training session, participants explored the environment freely.
The participants were instructed to learn the locations of the seven target
locations in the environment because later they would be expected to move
from one target location to another. The exploration session terminated after
the participant made 100 translations within the environment.

During the test phase, participants started at the start state (see Figure 9).
Standing at the start state, the computer gave an auditory signal indicating
which target location was the current goal (“Go to position X,” where X was a
randomly chosen number between 1 and 7). When the participant arrived at
the goal location they received an auditory signal indicating that they had
arrived at the location (“Position X”’) followed by an auditory signal indicat-
ing the next goal location (“Go to position Y,” where Y was a number from
one of the six other target locations). If the participant walked over one of the
other target locations on the way to the current goal location the computer
provided an auditory cue indicating that they were at that target location.

While traveling to the goal location, the computer queried the participant
about the hallway structure at the next intersection or the set of pictures in the
current hallway (see center and right panels in Figure 7). These queries
occurred randomly during the test sessions. The following things happened
when the participant was queried about the pictures or the hallway structure:

1. An auditory signal was given (the sound of a bell).

2. Either the pictures in the hallway or the next intersection was covered with a
virtual tarp (see the center and right panels of Figure 7).

3. Participants entered their response into the computer using the keyboard about
what they thought the pictures were under the tarps or the next intersection.

4.  After entering the response, the tarps were removed and the participant con-
tinued to the goal location.
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These queries were done to address an empirical question outside the
scope of the current article and will be published in the future.

The exploration phase terminated after 25 hallway and 25 picture queries
were completed.

RESULTS

One of the predictions made by the boundary relation hypothesis is that
participants should choose paths that have more boundary relations over
paths with fewer boundary relations. To test this prediction, we computed the
frequency that participants traveled a particular path as a function of the num-
ber of boundary relations that the path possessed.

Computing the boundary relations. Boundary relations are specified by a
set of three distinct places (A, B, and C). These three locations have distinct
roles in the boundary relation calculation. PlaceA is the starting location.
PlaceB is the decision point where a rotation occurred (in the current experi-
ment, this is a 90° rotation to the right or left). PlaceC is the end point.

The current analysis used this ABC function to define the set of boundary
relations for the two participants. The ABC relations were defined using the
following algorithm:

Consider all triples (A, B, C) of places visited by the participant, where the participant

started or made a 90-degree turn at A,

traveled from A to B with an unbroken sequence of translations,

made a 90-degree turn at B,

traveled from B to C with an unbroken sequence of translations,

made a 90-degree turn or terminated at C.

(AB)C rule: Store PlaceC with a boundary relation to Path AB.

If C had not already been stored, increment the number of boundary relations of
Path AB by 1.

(BC)A rule: Store PlaceA with a boundary relation to Path BC.

If A had not already been stored, increment the number of boundary relations of
Path BC by 1.

Figure 10 illustrates the percentage of times that each participant traveled
a path as a function of the number of boundary relations.'' This graph illus-
trates the basic effect that participants selected paths that had more boundary
relations over those with fewer boundary relations while traveling in these
environments. The results are very similar to those found in the computa-
tional modeling section of this article (see Figure 5).
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Figure 10: Frequency of Use of Paths in Routes Selected by the Human Partici-
pant as a Function of the Number of Boundary Relations Acquired by
Each Path During Each Participant’s Training Phase (Compare With
Figure 5 in Which the Routes Are Selected by the Simulated Agent)

Path selection bias. A strong prediction made by the boundary relation
hypothesis is that an observer should be biased toward selecting routes that
have paths with more boundary relations over those with fewer boundary
relations. To investigate this question, we started by computing the set of top-
ologically shortest routes between each of the target locations. For many of
these tasks (starting location to goal location), there were multiple routes that
were topologically shortest. The left side of Figure 11 shows the percentage
of times that each participant took one of the topologically shortest routes. '
For three of the observers, a significant proportion of the selected routes were
one of the topologically shortest routes (approximately 75% of the routes).
One participant (MRM), however, rarely selected a topologically shortest
route (only 15% of the time) and therefore will not be included in the follow-
ing analysis."

For many of the source-to-goal tasks there were multiple routes that were
shortest and were topologically shortest. Typically these different routes dif-
fered by one path. We were interested in understanding whether participants
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Figure 11: Participants’ Route Choices

NOTE: The percentage of times that each participant chose the topologically shortest route between
two places and other routes is shown on the left. For many destinations there existed more than one
topologically shortest route. On the right is a graph illustrating when the participant selected the
route with the most boundary relations (A boundary relations path = 0) versus the routes with 1 less
than the maximum boundary relation path (A boundary relations = 1), up to 12 fewer than the maxi-
mum number of boundary relations.

(a) randomly selected one path over another or (b) were biased toward select-
ing paths with more boundary relations.

To answer this question we computed the set of boundary relations for
each path based on the participants’ experiences in the environment. For the
paths that possessed more than one topologically shortest route we found the
set of paths that differentiated these different routes (as mentioned before,
these different routes typically differed by one path). We then classified these
routes by the relative number of boundary relations that the differing paths
possessed. For each set of paths there was one path that had the maximum
number of boundary relations. This route was given a A value of 0. Some
paths differed from the maximum boundary relation path by 1. We assigned



102 ENVIRONMENT AND BEHAVIOR / January 2003

this route a A value of 1 (1 less than the maximum). We computed the A value
for each route from each source location to each target location that had more
than one topologically shortest route.

If participants are biased to routes that have paths with more boundary
relations we should find that participants choose the routes with a A value
of 0 (maximum number of boundary relations). The right side of Figure 11
provides an illustration of the data. Participants selected the route with the
maximal number of boundary relations most often (between 42% and 62%).
They selected the maximal route or a route with one fewer boundary relations
between 79% and 93% of the time. These data suggest that when participants
are faced with multiple routes of the same length (or cost), they will select
paths that have more boundary relations over those with fewer boundary
relations.

The results in Figures 10 and 11 show that participants are biased toward
selecting paths with more boundary relations over those with fewer boundary
relations. Figure 10 shows a positive correlation between the number of
boundary relations that a path possesses and the frequency that a participant
travels that path. Figure 11 shows that when there are multiple routes with an
equivalent cost associated with them, participants are biased toward selecting
routes that contain paths with more boundary relations over those with fewer
boundary relations. Both of these findings are consistent with the boundary
relation hypothesis.

DISCUSSION

The current empirical test evaluates an important prediction of the bound-
ary relations hypothesis. Namely, a human observer will be biased toward
selecting paths that have more boundary relations over those paths with fewer
boundary relations.

We tested this prediction by training 4 participants to navigate through a
simple virtual indoor environment. For each path in the environment we cal-
culated the set of boundary relations that the participant might have inferred
given their experience with the environment. We found that there was a posi-
tive correlation between the frequency with which a participant used a path
and the number of boundary relations that the participant could have inferred
about the path (see Figure 10).

These data support the use of boundary relations in selecting a path while
navigating through a large-scale space. However, it is possible that the routes
with the most boundary relations are also those routes that provide the best, or
most efficient, paths between the multiple goal states in the environment. To
evaluate whether participants were biased toward selecting paths with more
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boundary relations we evaluated trials in which there was more than one top-
ologically shortest path between a start state and a goal state. We hypothe-
sized that if participants are influenced by the number of boundary relations
that a path had, they should be biased toward selecting paths with more
boundary relations over paths with fewer boundary relations. We found that
participants selected the paths with the most boundary relations between
42% and 62% of the time.

GENERAL DISCUSSION

The boundary relation hypothesis says that the empirical phenomenon of
the skeleton—that expert wayfinders in an environment preferentially use a
small set of important paths—is explained computationally by a positive-
feedback cycle between inference of boundary relations during travel and the
use of the boundary heuristic during wayfinding. Basically, the rich get
richer: A path that is already rich in boundary relations is more likely to be
used in routes and will thus get richer by acquiring new boundary relations.

We can test this hypothesis computationally by building a simulated agent
to explore a simulated environment. Because we can examine its internal
state, we can inspect the cognitive map that it creates as a result of its explora-
tion, and we can count the number of boundary relations acquired by each
path. Then we can observe its behavior in response to wayfinding problems
and determine how the frequency of use of a particular path is related to the
number of boundary relations it has.

Applying the same analysis to human participants is more difficult
because we have limited ability to examine their internal state. We forge
ahead nonetheless, with a three-stage method:

1. Collectdata from human participants as they learn about and navigate through
a novel environment.

2. Use the participant’s sequence of actions to estimate the structure of the cogni-
tive map and the set of boundary relations learned by this individual participant.

3. Based on the estimated cognitive map and its set of boundary relations, pre-
dict individual wayfinding decisions as the participant travels to specified
places.

Using this method, we can estimate each participant’s cognitive map,
including the set of boundary relations acquired during the experiment.
Based on this estimate of each participant’s cognitive map, the model pre-
dicts the participant’s behavior at each decision point when finding and
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following a route to a goal state. We then compare the predicted action with
the action the participant actually took in the environment. Random guessing
at each decision point would yield 35% to 40% accuracy overall, depending
on the specifics of each environment. The model was able to predict individ-
ual action decisions with 65% to 70% accuracy (Figure 6).

Itis important to note that the computational implementation we tested is a
relatively simple instance of the boundary relation hypothesis. For example,
the estimated cognitive map depends on a particularly simple model of learn-
ing of boundary relations. The model only draws inferences from ABC trip-
lets of adjacent decision points along a route. This restriction would tend to
underestimate the set of boundary relations in the cognitive map. On the other
hand, the model also assumes that every ABC triplet is stored in memory and
successfully retrieved when needed. Research on human memory clearly
shows that not every experience is stored in memory or accurately retrieved.
This suggests that the model will tend to overestimate the set of boundary
relations in the cognitive map. We expect that further investigation will
improve the quality of the estimate of the cognitive map and the set of bound-
ary relations.

Atthis stage of investigation, with plenty of opportunities to refine the ele-
ments of the model, we consider 65% to 70% accuracy at predicting individ-
ual decisions to be very promising.

PATH SELECTION BIAS

In addition to the rich-get-richer prediction of the boundary relations
hypothesis, there is a second important prediction: When a participant is
faced with multiple routes with the same travel cost, the routes including
paths with more boundary relations will be selected.

We can use the estimated cognitive map and set of boundary relations to
test this prediction. For each start and goal state in the environment, we com-
puted the set of topologically shortest routes. For some start/goal state pairs,
there existed multiple topologically shortest routes. According to the hypoth-
esis, participants should be biased toward those routes that have paths with
more boundary relations. We found that participants selected the routes that
had the maximal number of boundary relations 42% to 62% of the time, and
they selected the route with the maximum number of boundary relations or a
route that had one fewer than the maximum number of boundary relations
79% to 93% of the time (Figure 11). This supports the hypothesis that bound-
ary relations play an important role in influencing path choice during
wayfinding.
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SUMMARY AND CONCLUSIONS

Even our current simple model gives us a surprisingly good ability to pre-
dict individual decisions by human participants. We have provided strong
evidence for the use of boundary relations in spatial navigation by using a
computational model that estimates the cognitive map of a human participant
based on behavioral data and then uses the estimated map to predict behav-
ioral choices. We have also shown strong evidence for a bias during
wayfinding toward selecting paths with more boundary relations over those
with fewer boundary relations.

It still remains to be seen, through future work, whether the emergence of
the skeleton is explained by the rich-get-richer positive-feedback cycle
between boundary relation acquisition and the use of the boundary heuristic
in wayfinding or by some other mechanism.

We plan to extend the model with (a) boundary relation inference rules not
restricted to triplets of adjacent decision points; (b) a probabilistic model of
successful inference, storage, and retrieval; (c) an improved wayfinding
algorithm; and (d) explicit models of individual variation separate from vari-
ation among participants in training experience.

One contribution of this work is a computational model and preliminary
evaluation explaining the emergence of the skeleton in the cognitive map, a
significant phenomenon in spatial cognition. A second contribution is a dem-
onstration of a method for testing a fine-grained cognitive hypothesis against
human behavior by creating an estimated model of the cognitive state of each
individual participant. We believe that both contributions warrant further
investigation.

NOTES

1. Example: When traveling east along the Charles River separating Boston and Cam-
bridge, Boston is topologically to the right. However, because of the curve of the river, the highly
visible John Hancock Tower in Boston can sometimes be seen in the distance to the traveler’s
left. The Boston area is a treasure trove of spatial paradoxes for the cognitive map theorist.

2. Sequence of translations and rotations.

3. Evenif a place has only one, two, or three neighbors, it still has four views, some of them
possibly facing walls.

4. For a detailed description of the experiment involving human participants from which
data was collected, see the next section.

5. This happens when no route to the target was found.

6. The data points are not evenly spaced because these statistics are only collected during
testing (i.e., travels that have a target).
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7. Although in the experiment the participants were doing one-step translations, for the pur-
pose of this analysis, successive one-step translations were merged into one long translation.

8. This number is dependent on the data set and on the structure of the environment.

9. The data set used here is from an experiment investigating another issue that will be
described in another research article. However, after collecting the data we realized that we could
begin to address the use of boundary relations with this data set.

10. Although Participant BJS is an author on this study, he did not know the layout before
starting the study. A research assistant generated the environment and tested Participant BJS.

11. This graph shows this relationship using both the (AB)C rule and the (BC)A rules. There
was no significant difference between using just the (AB)C rule and combining the two rules.
The rest of the empirical data uses boundary relations using the (AB)C and (BC)A rules.

12. These were defined as the routes that would get the observer from the source state to the
goal state in the fewest number of translations and rotations

13. The reason for excluding Participant MRM from this analysis is because there were only
a small number of trials in which he took the topologically shortest route. With only a few data
points it is difficult to show support or refute the existence of a selection bias.
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