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1. Introduction 
In calculus and engineering mathematics, there are 

many methods to solve the integral problems including 
change of variables method, integration by parts method, 
partial fractions method, trigonometric substitution 
method, etc. In this paper, we study the following two 
types of definite integrals which are not easy to obtain 
their answers using the methods mentioned above.  
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where , ,r s φ  are real numbers, s r< , and m  is a 
positive integer. We can obtain the closed forms of these 
definite integrals using Poisson integral formula; these are 
the major results of this paper (i.e., Theorem A). Adams et 
al. [1], Nyblom [2], and Oster [3] provided some 
techniques to solve the integral problems. Yu [4-29], Yu 
and B. -H. Chen [30], Yu and Sheu [31,32,33], and T. -J. 
Chen and Yu [34,35,36] used some methods including 
complex power series method, integration term by term 
theorem, differentiation with respect to a parameter, 
Parseval’s theorem, area mean value theorem, and 
generalized Cauchy integral formula to solve some types 
of integrals. In this article, some examples are used to 
demonstrate the proposed calculations, and the manual 
calculations are verified using Maple. 

2. Main Results 
Some notations and formulas used in this paper are 

introduced below. 

2.1. Notations 

2.1.1. Let t  be a real number, the largest integer less 
than or equal to t is denoted as t   . 

2.1.2. Suppose that a  is a real number, then 
( ) ( 1) ( 1)pa a a a p= − ⋅⋅⋅ − +  for positive integers p a≤ ; 

0( ) 1a = . 

2.2. Formulas 

2.2.1. Euler’s formula 

xixeix sincos += , where 1i = − , and x is any 
real number. 

2.2.2. DeMoivre’s formula: 

(cos sin ) cos sinmx i x mx i mx+ = + , where m  is any 
integer, and x  is any real number. 

2.2.3. cos( ) cos cos sin sinα β α β α β+ = − , where ,α β  
are real numbers. 

An important formula used in this study is introduced 
below, which can be found in [[37], p 145]. 

2.2.4. Poisson integral formula: 

Suppose that ,r s are real numbers, and s r< . If f is 

defined and continuous on the closed disc { }z C z r∈ ≤  

and is analytic on the open disc { }z C z r∈ < , then: 
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2.2.5. Binomial Theorem 
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numbers, and n  is a positive integer. 
Before deriving the major results in this study, two 

lemmas are needed. 
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Lemma 1 Suppose that θ  is a real number, and m  is a 
positive integer. Then: 
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On the other hand, 
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Lemma 2 Assume that , ,r s φ  are real numbers, s r< , 
and k is a non-negative integer. Then: 
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Proof Because ( ) kf z z= is analytic on the whole 
complex plane. Using Poisson integral formula yields:  
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By Euler’s formula and DeMoivre’s formula, we have: 
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By the equality of real parts of both sides of Eq. (9), we 
obtain Eq. (5). The equality of imaginary parts of both 
sides of Eq. (9) yields Eq. (6) holds.  

In the following, we determine the closed forms of the 
definite integrals (1) and (2). 

Theorem A If , ,r s φ  are real numbers, s r< , and m  
is a positive integer, then the definite integrals:  
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and 
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Proof  
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3. Examples 
In the following, for the two types of definite integrals 

in this study, we provide some examples and use Theorem 
A to determine their closed forms. In addition, Maple is 
used to calculate the approximations of these definite 
integrals and their solutions for verifying our answers. 

3.1. Example In Eq. (10), if 4, 3, / 3r s φ π= = = , and 
5m = , then the definite integral: 
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Next, we use Maple to verify the correctness of Eq. (12). 
>evalf(int((cos(theta))^5/(25-24*cos(theta-Pi/3)), 

theta=0..2*Pi),18); 
0.0986952281919993812 
>evalf(3603*Pi/114688,18); 
0.0986952281919993812 
On the other hand, let 6, 5, / 4r s φ π= = = , and 4m =  

in Eq. (10), then we obtain: 
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We also use Maple to verify the correctness of Eq. (13). 
>evalf(int((cos(theta))^4/(61-60*cos(theta-Pi/4)), 

theta=0..2*Pi),18); 
0.179766709256865449 
>evalf(3263*Pi/57024,18); 
0.179766709256865449 
3.2. Example In Eq. (11), if 3, 2, / 6r s φ π= − = = − , 

and 3m = , then the definite integral: 
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Using Maple to verify the correctness of Eq. (14) as 
follows: 

>evalf(int((sin(theta))^3/(13+12*cos(theta+Pi/6)),theta
=0..2*Pi),18); 

0.221075038585948413 
>evalf(19*Pi/270,18); 
0.221075038585948413 
In addition, let 4, 3, 3 / 4r s φ π= = − = , and 8m =  in 

Eq. (11), then: 

 
82

0
sin 1719713

25 24cos( 3 / 4) 29360128
d

π θ πθ
θ π

=
+ −∫ . (15) 

>evalf(int((sin(theta))^8/(25+24*cos(theta-3*Pi/4)), 
theta=0..2*Pi),18); 

0.184012744327370238 
>evalf(1719713*Pi/29360128,18); 
0.184012744327370238 

4. Conclusion 
In this paper, we use Poisson integral formula to solve 

two types of definite integrals. In fact, the applications of 
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this formula are extensive, and can be used to easily solve 
many difficult problems; we endeavor to conduct further 
studies on related applications. On the other hand, Maple 
also plays a vital assistive role in problem-solving. In the 
future, we will extend the research topic to other calculus 
and engineering mathematics problems and use Maple to 
verify our answers.  
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