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Abstract

The sensorimotor integration system can be viewed as an
observer attempting to estimate its own state and the state of
the environment by integrating multiple sources of information.
We describe a computational framework capturing this notion,
and some specific models of integration and adaptation that re-
sult from it. Psychophysical results from two sensorimotor sys-
tems, subserving the integration and adaptation of visuo-auditory
maps, and estimation of the state of the hand during arm move-
ments, are presented and analyzed within this framework. These
results suggest that: (1) Spatial information from visual and au-
ditory systems is integrated so as to reduce the variance in local-
ization. (2) The effects of a remapping in the relation between
visual and auditory space can be predicted from a simple learning
rule. (3) The temporal propagation of errors in estimating the
hand’s state is captured by a linear dynamic observer, providing
evidence for the existence of an internal model which simulates

the dynamic behavior of the arm.

1 Introduction

All higher organisms are able to integrate information from multiple
sensory modalities and use this information to select and guide move-
ments. At the outset, this problem seems formidable. Information

*Department of Computer Science, University of Toronto, Toronto, ON M5S
1A4, Canada. 'Sobell Department of Neurophysiology, Institute of Neurology, Queen
Square, London WC1N 3BG, United Kingdom. {Department of Brain and Cognitive
Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.



Ghahramani et al. Sensorimotor Integration 2

arriving into each sense codes for quite different aspects of the envi-
ronment: Audition senses changes in pressure on the eardrum; vision
detects photons on the retina; the sense of smell recognizes molecules in
the olfactory bulb. The central nervous system accomplishes the task
of extracting the commonalities in this information, and integrating
these into unified percepts. This seemless integration of information
not only underlies perception but also the production of movement.
A single reaching movement, for example, may require convergence of
information from the visual, proprioceptive, and motor systems.

The goal of this chapter is to outline a computational theory of
sensorimotor integration. While each sensory modality and motor sub-
system is distinct in its functioning, there are common elements to the
problem of integrating multiple sources of information which can be
captured within a computational framework. As in other areas of neu-
roscience, we appeal to the formal analyses of this problem that have
been made within statistics, computer science, and engineering. Thus,
in the tradition of Marr (1982), we seek to understand sensorimotor
integration by asking: (1) what is the problem from a computational
point of view, (2) how can this problem be solved, and (3) how would
such a solution be implemented in the brain.

Of course, no theory is useful if it does not make predictions; one
advantage of computational theories is that they often make quite pre-
cise quantitative predictions. After we have outlined several models of
sensorimotor integration, we present recent data which allows us to as-
sess these models critically. These data were obtained from behavioral
experiments dealing with (1) the multisensory integration system which
spatially localizes visual and auditory targets, and (2) the sensorimotor
integration system which estimates the location of the hand during arm
movements. By examining the behavioral data in light of the model
predictions we narrow the search for theories of visuo-auditory integra-
tion and adaptation, and posit the existence of an internal model for
sensorimotor integration.
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1.1 The Need for Integration

While it may be clear that the central nervous system (CNS) needs to
integrate information from different senses, it is nonetheless useful to
examine the possible specific advantages this integration may provide.
The study of robotics suggests the following advantages may be gained
by a system which combines multiple information sources (Durrant-

Whyte 1988; Abidi & Gonzalez 1992):

e Multiple sensors provide redundancy, which can both reduce the
overall uncertainty of sensory estimates and increase the reliabil-
ity in the case of sensor failure.

e Complementary information may be gained from the different
senses. By integrating information across sensors, it may be pos-
sible to derive information that is impossible to derive using each
individual sensor (e.g. stereo vision is only possible by using in-
formation from both eyes).

e More timely information may be obtained through parallelism, as
each sensor may have a different latency. For example, the early
stages of visual information processing can take around 150 ms,
as compared to 30 ms for auditory information. Such differences
in latency may be traded-off with differences in accuracy in order
to obtain a rapid but crude sensory estimate early on, which is
later refined by inputs from other sensors.

By translating the intuitive notion of the advantage gained from
integration into a quantitative measure, or cost function, it becomes
possible to formulate a computational theory of sensorimotor integra-
tion. For example, the above sources of advantage could be quantified
through costs based on “uncertainty in sensor estimate”, “probability
of failure”, or “latency of response”. Such a theory is useful both for de-
sign and modeling purposes. Given a cost function, one can define what
is meant by an optimalintegration of several information sources, an ap-
proach that is commonplace in engineering. To understand the central
nervous system we will make use of a reverse-engineering approach: We
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use the behavior of the system to infer a cost function whose minimiza-
tion would reproduce this behavior. In this regard our approach is very
similar to the optimization framework that has been used extensively
in the study of movement planning (Nelson 1983, Hogan 1984, Flash
& Hogan 1985, Uno et al. 1989, Wolpert et al. 1995a).

Although all the above uses of integration may play an important
role for the organism, we will focus on only one: reducing the un-
certainty in sensor estimates. We view the perceptuomotor system
from the point of view of an observer attempting to estimate some
relevant attribute of the environment such as the location of a tar-
get (Gibson 1961, Richards 1988, Bennett et al. 1989). We test the hy-
pothesis that the observer is integrating multiple information sources
so as to minimize the uncertainty in this estimate. There are several
ways in which this cost can be defined, which we will explore in sec-
tion 2. We also explore the relation between sensorimotor integration
and adaptation. Given a particular cost for integration, one can derive
a learning rule for adaptation consistent with that cost. We expand on
this in section 2.3 and report on some experiments in section 3.

The observer approach has been often used in the study of purely
perceptual systems (e.g. Nakayama & Shimojo 1992).  One differ-
ence between perceptual and sensorimotor systems is that, in the lat-
ter, the observer may also need to dynamically integrate reafferent
sensory signals and copies of motor efference that arise during move-
ment (Wolpert, Ghahramani & Jordan 1995b). We explore this from a
computational perspective in section 2.2.1 and report on one relevant
experiment in section 4.

2 The Computational Model

The presence of information common to multiple sensory modalities
poses two challenging computational problems for the CNS. First, the
signals from different modalities must be converted into a common rep-
resentation appropriate for fusion. Second, using some sensible com-
bination rule, signals in this common representation must be fused.
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Although these two problems need not be solved sequentially, or by
separate neural processes, the distinction appears to be useful from
a computational perspective. Furthermore, the existence of multi-
ple aligned sensory maps in sensorimotor areas such as the superior
colliculus suggests that this distinction is also relevant at the neural
level (Wickelgren 1971, Harris et al. 1980, Knudsen & Knudsen 1989a,
Stein & Meredith 1993). Our focus will be on the latter problem,
which we refer to as the integration problem, although we will also dis-
cuss briefly the former problem, which we refer to as the coordinate
transformation problem.

2.1 The Coordinate Transformation Problem

Consider a system which receives inputs from two sources, X and Y,
which could correspond for example to two sensory modalities. In order
to transform these sources into a common representation, the system
must first filter information that is common to both modalities, while
rejecting that which is not. For example, the location of activity on
the retina and an auditory interaural time difference both reflect spatial
attributes of a visuo-auditory stimulus. In this case, the system would
need to extract this commonality and suppress other attributes, such
as color and pitch, in order to generate a map registering both visual
and auditory space. While it is plausible that the separation of these
sources may be largely driven by innate wiring of the CNS, we will ask
to what extent a computational theory based on activity-dependent
changes could account for it.

The idea of extracting common information from different sensory
modalities can be phrased succinctly in the language of information
theory. Information is defined as the capacity for a signal to reduce a
system’s uncertainty (Cover & Thomas 1991). The information content
of a source X is defined as (Shannon 1948):

H(X) = =3 P(X = 1)) log P(X = 1), (1)

J=1

where P(X = ;) is the probability of receiving input z;. (For contin-



Ghahramani et al. Sensorimotor Integration 6

uous signals, a limiting argument is used to convert this sum into an
integral.) The information common to two transformed signals f(X)
and ¢(Y), known as the mutual information, is defined as:

(f(X),9(Y)) = H(f(X))+ H(g(Y)) = H(f(X),9(Y)). (2)

Thus, a natural goal for a multisensory system with two coordinate
transformations f and g is to maximize I(f(X), g(Y)).

Building on a large literature on information-maximizing models
of perceptual processing (Attneave 1954, Barlow 1961, Linsker 1986),
Becker & Hinton (1992) proposed utilizing mutual information as the
basis for an optimization algorithm that extracts information from mul-
tiple input streams. They showed that a model based on maximizing
mutual information could discover stereo disparity from a random-dot
stereogram, capturing interesting structure that is not present in any
single input source.

Unfortunately, the idea of maximizing mutual information cannot
capture one of the fundamental properties of coordinate transforma-
tions in the CNS: topographic organization. Any one-to-one trans-
formation of f or g will not affect I(f(X),g(Y)), while potentially
making the coordinate transformation between f(X) and ¢(Y) arbi-
trarily complex. Fortunately, it is possible to augment the mutual
information cost function with a term incorporating topographic or-
der (Ghahramani 1995; Chapter 5). Simulations indicate that using
this augmented cost function, two mutually-aligned topographic maps
can arise through activity-dependent learning. This suggests that the
combination of information-theoretic principles with topographic orga-
nization may provide a basis for solving the coordinate transformation
problem. In the remainder of this chapter, we will focus on the problem
of integrating signals once they have been transformed into a common
coordinate frame.

2.2 The Integration Problem

Consider n signals originating from separate sources which have al-
ready been converted into a common representation. 'The simplest
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observer operates under the assumption that each of these signals is a
noisy measurement of some underlying quantity that is to be estimated,
such as the location or motion vector of an object. The measurements
z;, 1={1,...,n}, can be modeled by assuming that the underlying
quantity z has been corrupted by adding noise ¢;:

ri =1+ €. (3)

Which estimate of z is optimal depends on the cost function used. The
statistical theory of maximum likelihood estimation suggests using as
a cost the probability of the measurements given the estimate:

P(xlam27-"7xn|x)' (4)

Assuming, for now, that each of the noise processes ¢; is independent,
the likelihood can be factored:

n

Py, 29, ..., z0|7) = [ Plzi]z). (5)
=1
This expression makes it clear that to obtain a maximum likelihood
estimate (MLE) of z, the system must have a statistical model of the
process generating the data P(z;|z). If each noise source has a zero-
mean Gaussian distribution of differing variance o2, the MLE of z is
given by

n —

T = w; T, 6
ZIZJ 10- Z ()

where w; = a7%/ (Zj 105 ) This integration rule states that the op-
timal estimate linearly comblnes the signals, weighted by their inverse
variances.

Integration rule (6) can also be obtained if we assume that all we
know about each signal is its variance or uncertainty, and we wish to
combine them linearly so as to minimize the variance of our estimate.
The variance of this estimate is

oi=0_ o)™ (7)



Ghahramani et al. Sensorimotor Integration 8

which is smaller than the variance of each of the signals and of any
other unbiased estimator.

Finally, (6) can also be motivated from an information-theoretic
framework by noting that the information content of a Gaussian is
inversely related to its variance. Equation (6) therefore defines the
unbiased linear estimate with maximal information content under a
Gaussian noise model.

Keeping in mind these alternative interpretations, we refer to the
estimate given by (6) as the minimum variance estimate (MVE). Exten-
sions to non-independent noise, multivariate measurements, and other
distributions can be readily obtained. We now focus on an extension
of the MVE that is particularly relevant to sensorimotor integration.

2.2.1 The Kalman filter. A particularly useful and general form
of estimator resulting from the minimum variance integration princi-
ple is the Kalman filter (Kalman & Bucy 1961). This extends the
framework we have described in two ways. First, the value we wish to
estimate, known as the state, is not constant in time but depends on
the previous state through a linear dynamical equation:

Xi41 = Axy + Buy 4 wy, (8)

where u; is some input or control signal that the system can observe at
time ¢, and wy is zero mean noise. Second, the measurements observed,
denoted by y;, are related to the state through another linear equation:

yt = Cx¢ + vy, (9)

where v; is again zero mean noise. The basic idea of the Kalman filter
is that an optimal estimate of the state, X;,41, can be obtained by fusing
the input w;, the observations y;, and the previous state estimate X;
using a model of the dynamical system. Based solely on the previous
state, that is, before having observed y;, the best estimate of X4 is
clearly given by A%X; + Bu;. Upon observing y; this estimate is cor-
rected via a term proportional to the error in the predicted observation,
resulting in the following update rule:

)A(H_] = A)A(f + B'llt + Kt[}’t - Cif] (10)
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The matrix K; is the Kalman gain, which weights the previous state
estimate and the new input in proportion to their inverse variances.

The optimality of Kalman filters can also be stated in several ways.
If the noise is Gaussian, the filter provides the maximum likelihood
estimator in the sense previously described. However, if the noise is
not Gaussian, the Kalman filter still provides the minimum variance
linear estimator for the state (Goodwin & Sin 1984).

From the point of view of neuroscience, an interesting aspect of the
Kalman filter is that it incorporates an internal model of the dynamics
of the system being modeled. Based on computational principles alone,
it has been proposed that the CNS uses an internal model in motor
planning, control and learning (Ito 1984, Kawato et al. 1987, Jordan &
Rumelhart 1992, Miall et al. 1993). Using a Kalman filter to model the
propagation of state estimation errors during movement, it is possible
to test empirical hypotheses concerning the existence and use of an
internal model by the CNS. This is the topic of section 4.

2.3 From Integration to Adaptation

When the sensory inputs to an integration process are in disagreement,
it is possible that one of them is miscalibrated. The optimal strategy for
the nervous system in this case may involve adapting the interpretation
of one of the sources, changing the relative weights of the sources, or
both. Viewed in this way, the convergence of signals at the locus of
integration provides a tool for recalibrating each of the sensory inputs.
Thus, it would seem that the mechanisms underlying integration should
be closely related to those underlying intersensory adaptation.

The goal of this section is to make explicit the connection between
integration and adaptation by describing a method for deriving learn-
ing rules which are consistent with a particular integration rule. For
example, in minimum variance integration the learning rule adapts each
modality in proportion to the weighting of the other modalities. That
is, for two modalities, the less dominant one will adapt more than the
more dominant one. In the limit of complete adaptation, both modal-
ities will converge to the minimum variance estimate.
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Consider two signals, z; and zo with variances o7 and o3. The

minimum variance estimator is given by
T = wTy + wyry,
where )
_ %
2 2
o] + 03

and wy = 1 —wy. If the two signals disagree, for example by a constant

wy =

offset or bias, how much should each modality adapt to incorporate this
bias? Perhaps the simplest supervised learning rule, known in various
literatures as the delta rule, the Widrow-Hoff rule, or the LMS rule,
and derivable as a maximum likelihood estimate under a Gaussian noise
assumption, states that if a true target value is known, then each input
should be adapted in the direction of this target (Widrow & Hoff 1960,
Rumelhart & McClelland 1986, Hertz et al. 1991). Denoting the target
value by z*, and letting 7 be a small constant of proportionality—the
learning rate—then the delta rule can be written

Az = n(z” — 21),

where Az defines the change applied to z.

By assumption, the multisensory observer does not have access to
an explicit teaching signal or true target—access to such a target would
make perception trivial. However, by replacing the target with the
minimum variance estimate of z we obtain the following interesting
form of the delta rule:

Az = (3 — )
= n(wizr + wazz — 1)
= nwy(ze — x1). (11)
We will call the learning rule given by (11) the weighted delta rule
(WDR). It states that each modality should adapt in the direction of
the other by an amount proportional to the weighting assigned to the

other modality. For example, if the two modalities are vision and audi-
tion, then the WDR predicts that the auditory map should adapt more
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where the visual input is more dominant, where the visual dominance
may be a function of spatial location or experimental conditions.

An alternative form of the weighted delta rule can be derived simply
by stating that each modality adapts in proportion to how variable it
is. This rule,

Azy = noi(zg — 21) (12)

which we will call the variance-weighted delta rule (VWDR), can be
derived from the maximum likelihood framework if each modality as-
sumes that the other is its target.

It is easy to show that both the WDR and VWDR maintain the
minimum variance estimate invariant over time, and converge with the
mean estimate given by each modality equal to the minimum variance
estimator (Ghahramani 1995). In the case of two modalities, the only
difference between the WDR, and the VWDR is that the normalization
constant in the weights in the WDR has been absorbed into the learning
rate of the VWDR. However, as will be shown later in this chapter,
this difference can cause markedly differing predictions regarding the
pattern of adaptation.

2.4 Other Models of Integration and Adaptation

2.4.1 Competitive integration. The principles presented so far
could be termed cooperative, in the sense that an estimate is obtained
by combining the contributions of all the sensory inputs. In contrast
competitive, or winner-take-all, principles capture the notion that in
the presence of disagreement, one of the senses may dominate and the
others be ignored. Thus, for example, the competitive integration rule
based on smallest variance can be stated as

t=uz; iff Ufgaf

V5. (13)

As before, paralleling this integration rule is a competitive adaptation
rule. Letting i index the dominant input (e.g. the input with the small-
est variance) the learning rule can be written

Azj=n(@; — ), (14)
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which is exactly the delta rule; the dominant modality acts as a target
for the non-dominant ones. In the case of vision and audition, for ex-
ample, if we assume that vision is dominant, the integration rule (13)
predicts that in the presence of a visuo-auditory discrepancy complete
visual capture will occur (e.g. the “ventriloquism” effect; Howard &
Templeton 1966). Furthermore, (14) predicts that a persistent dis-
crepancy will induce auditory adaptation, but no visual adaptation.

2.4.2 Stochastic integration. A different form of competitive in-
tegration occurs if the CNS selects between discrepant signals proba-
bilistically. For example, simultaneous visual and auditory stimuli may
cause a saccade to either of the two stimuli rather than to a location in
between. This form of integration, which we will call stochastic inte-
gration, can also be based on a measure of variance or reliability. If the
probability of choosing signal 7 is inversely proportional to its variance,

2

p; < o7 °, we obtain

xy  with prob. p;

=
Il

: (15)
x, with prob. p,.

Note that the probabilities, when normalized, are exactly equal to the
weights wq, ..., w, in the MVE, making this a stochastic version of the
minimum variance estimator. The mean of this estimator is the MVE,
however, its variance is guaranteed to be at least n times higher than
the variance of the MVE. A testable prediction made by this rule is
that the distribution of the estimates (i.e. responses) when two sensory
modalities are stimulated will be bimodal, with the modes predictable
from the responses to unisensory stimuli. The adaptation rule consis-
tent with this integration rule uses the randomly selected signal as the
target for the other signals. This has the interesting effect that all the
modalities will also converge on the MVE.
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3 Integration and Adaptation of Visual and
Auditory Maps

The models proposed in the previous section make precise quantitative
predictions both regarding how signals from several sensory modali-
ties will be combined in order to produce a motor response, and the
patterns of sensorimotor adaptation that will arise from an intersen-
sory discrepancy. Using a psychophysical paradigm in humans, we have
tested some of these predictions for the system involved in localizing vi-
sual and auditory targets (Ghahramani 1995, Ghahramani et al. 1995).

The basic experimental procedure consisted of measuring the biases
(constant errors) and variances in localization of visual (V), auditory
(A), and visuo-auditory (VA) stimuli. Subjects were presented with
one of the three types of stimuli, randomly interleaved, and their goal
was to point to the location of the stimulus as accurately as possi-
ble (Figure 1). Each of the models in the previous section predicts a
different pattern of localization variances for the VA stimuli based on
the subject’s responses to the V and A stimuli separately.

The first observation to note is that visual localization is much less
variable than auditory localization (Figure 2a). For both vision and
audition, localization is best straight-ahead and increases in variability
towards the periphery—a finding that is consistent with the existing
literature (Mills 1958, Middlebrooks & Green 1991). The relative vari-
ances of visual and auditory localization suggest that vision provides
much more reliable spatial information than audition throughout the
azimuth. Indeed, when simultaneous visual and auditory stimuli are
presented the variance in localization is not significantly different from
the variance for visual stimuli alone (Figure 2a triangles). This find-
ing is statistically consistent with the predictions of both the minimum
variance integration rule (which would give vision a weighting of 0.9;
Figure 2b), and the competitive integration rule (which would use only
vision). This data is, however, inconsistent with the stochastic integra-
tion rule, which predicts that VA variance will be more than twice the
visual variance.
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Figure 1: a) Experimental setup. Subjects are seated at a table with an
Optotrak infrared marker mounted on their right index finger, which
was used to record the pointing responses. Visual stimuli (5 mm white
squares) were projected onto a screen on the table using an LCD pro-
jector. Auditory stimuli were presented using a small speaker (300-500
Hz, 75 dB tone at 20cm) directly below the screen, whose position
was controlled by a stepper motor. b) Experimental paradigm. Trials
started with fixation on the cross straight-ahead (0°). The cross dis-
appeared and after 100 ms either a visual, auditory, or simultaneous
visuo-auditory stimulus was presented for 100 ms. The subject then

pointed to the perceived stimulus location.
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Figure 2: a) Variance of localzation as a function of angle of azimuth
for the three types of stimuli: visual (white squares), auditory (filled
circles), visuo-auditory (filled triangles). b) Optimal mixing weights
as a function of azimuth for vision, as predicted by minimum variance
integration. Note that vision dominates the most straight-ahead.

To investigate the pattern of adaptation arising from a discrepancy
between the visual and auditory senses, we imposed a constant spatial
shift of 15° between the visual and auditory stimuli during VA trials.
Only one third of the trials were VA; the V and A trials throughout
the experiment could therefore be used to assess adaptation. Whereas
pointing in visual-alone trials did not shift significantly as a result of
the perturbation, pointing in auditory-alone trials shifted by about 40%
in the direction of the displacement (Figure 3). This suggests that, as
predicted by both the minimum variance and competitive integration
models, the more reliable sense (vision) acts as the teaching signal for
the less reliable one (audition). The minimum variance integration
model predicts that vision should also adapt in the direction of audi-
tion. However, the amount of this predicted adaptation—about 10%
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Figure 3: Adaptation as a function of trial number for a) visual and
b) auditory localization. The perturbation was absent for the first
105 trials, was introduced gradually, increasing linearly, during trials
105-140, and was present in full for the remainder of the session. A
baseline localization bias was computed from trials 1-105 and plotted
as a dashed fine. The mean 4 1 standard error bias is plotted for the
group in which audition was shifted to the left (solid circles) and right

(hollow circles) of vision.

the auditory adaptation—is within the margin of error of the experi-
mental paradigm.

Taking the view that integration and adaptation are both related
to the reliability of the sensory inputs, the finding that visual and
auditory localization variance changes considerably as a function of
angle of azimuth (Figure 2a) suggests that the amount of auditory
adaptation may also vary as a function of azimuth. In fact, the three
models of adaptation we have presented make quite distinct predictions
regarding the spatial pattern of auditory adaptation:

e The delta rule (14) predicts that the amount of adaptation will
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simply be proportional to the magnitude of the displacement in-
troduced and the duration (number of trials) of the exposure to
this displacement. As both the magnitude and duration of expo-
sure are constant throughout the azimuth, the delta rule predicts
that adaptation will also be constant as a function of azimuth.

e The weighted delta rule (11) predicts that, along with magnitude
and duration, the amount of auditory adaptation will also be
proportional to the weighting of the visual modality. Since the
data suggests that vision is weighted most heavily straight-ahead
(Figure 2b), under this hypothesis auditory adaptation will be
greatest straight-ahead.

e The variance-weighted delta rule (12) predicts that the amount of
auditory adaptation will be proportional to the variance of audi-
tory localization. Therefore, given the data (Figure 2a), auditory
adaptation will be least straight-ahead.

The experimentally-obtained spatial pattern of auditory adaptation
shows a pronounced reduction straight-ahead (Figure 4). These re-
sults support the variance-weighted delta rule, in which each modality
adapts in proportion to its variance, in favor of the other two learning
rules. Some asymmetry in adaptation is also observed, which is per-
haps related to asymmetries resulting from pointing responses being
made using only the right hand (Ghahramani 1995).

While these results are suggestive, further experiments are needed
to further elucidate the processes of visuo-auditory integration and
adaptation. So far, our results strongly argue against models in which
senses are integrated stochastically. The pattern of adaptation is con-
sistent with the variance-weighted delta rule, which in turn can be
derived from minimum variance integration. These data suggest an
important role for a signal coding for reliability of an input, both as a
weight for multisensory integration, and as a modulator for intersen-
sory adaptation. In the next section we examine the predictions of a
Kalman filter, the dynamical extension of minimum variance integra-
tion, in the context of sensorimotor integration during arm movements.
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standard error curves.
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4 Sensorimotor Integration and Internal
Models

When we move our arm in the absence of visual feedback, there are
three basic methods whereby the motor control system can obtain
an estimate of the current state (e.g. position and velocity) of the
hand. The system can make use of sensory inflow (reafference), it
can make use of integrated motor outflow (dead reckoning), or it can
combine these two sources of information. In order to combine sensory
and motor information sources, the two problems we outlined in sec-
tion 2—coordinate transformation and integration—have to be solved
by the central nervous system. In section 2.2.1 we presented a sim-
ple model—the Kalman filter—which addresses both these problems
in the context of linear dynamical control systems. We first outline
how these problems are addressed in the Kalman filter model, before
reviewing some recent results testing this model’s predictions regard-
ing the temporal propagation of errors in localizing the hand during a
movement (Wolpert, Ghahramani & Jordan 1995b).

For the sensorimotor system, one key aspect of the coordinate trans-
formation problem is that, whereas sensory signals may directly cue the
location of the hand, motor outflow (“efference copy”) generally does
not. Knowing the sequence of torques applied to an arm, for example,
does not determine its final configuration; in order to convert motor
outflow into an estimate of the state of the arm, the system must make
use of an internal model of the arm’s dynamics. Specifically, there are
two varieties of internal models—*“forward models,” which mimic the
causal flow of a process by predicting its next state given the current
state and the motor command, and “inverse models,” which are anti-
causal, estimating the motor command that causes a particular state
transition (Jordan 1995). The Kalman filter makes use of a forward
model in order to predict the state of the arm. This motor prediction is
then combined with sensory inputs according to the minimum variance
integration principle (Goodwin & Sin 1984).

To examine the possibility that an internal model is indeed used in
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sensorimotor integration, we carried out an experiment in which sub-
jects made arm movements in the dark (Wolpert et al. 1995b). Three
experimental conditions were studied, involving the use of null, assis-
tive and resistive force fields. Subjects gripped a planar two degree-of-
freedom torque-motor-driven manipulandum (Faye 1986), while view-
ing virtual visual feedback projected into the plane of movement. The
manipulandum was used to accurately measure the position of the sub-
ject’s thumb and also, using the torque motors, to apply forces to the
hand. The hand was constrained to move along a straight line passing
transversely in front of the subject. Each trial started with the subject
visually placing his thumb at a target square projected randomly on the
movement line. The arm was then illuminated for two seconds, thereby
allowing the subject to visually perceive his initial arm configuration.
The light was then extinguished and the subject moved his hand left
or right, as indicated by an arrow, in the absence of visual feedback.
The subjects’ internal estimate of hand location was assessed by asking
them to localize visually the position of their hand at the end of the
movement. The discrepancy between the actual and visual estimate
of thumb location was recorded as a measure of the state estimation
error.

The bias of the estimated location of the hand, plotted as a func-
tion of movement duration showed a consistent overestimation of the
distance moved (Figure 5). This bias demonstrated two distinct phases
as a function of movement duration, an initial increase reaching a peak
of 0.9 cm after one second followed by a sharp transition to a region
of gradual decline. The variance of the estimate also showed an initial
increase during the first second of movement after which it plateaus
at about 2 ecm?. External forces had distinct effects on the bias and
variance propagation. Whereas the bias was increased by the assistive
force and decreased by the resistive force, the variance was unaffected.

These experimental results were fully accounted for using a Kalman
filter model which integrates the efferent outflow and the reafferent
sensory inflow. The system dynamics of the hand was approximated
by a damped (coefficient 3) point mass, m, moving in one dimension
acted on by a force u, combining both internal motor commands and
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Figure 5: Theraw localization bias against movement duration is shown
in a) for all 8 subjects (300 trials each). There are few data points
for short movement durations due to the reaction time of stopping
in response to the tone—all graphs are therefore plotted from 0.5 s.
b—e) show the main effect fits of a generalized additive model to the
data (Hastie & Tibshirani 1990). The propagation of the (b) bias
and (c) variance of the state estimate is shown, with outer standard
error lines, against movement duration. The differential effects on (d)
bias and (e) variance of the external force, assistive (dotted fines) and
resistive (solid lines), are also shown relative to zero (dashed line). A
positive bias represents an overestimation of the distance moved. The
difference in variance propagation between the resistive and assistive
fields was not dgnificant over the movement; the dfference in bias
was significant at the p = 0.05 level. Repinted with permission from

Wolpert, Ghahramani and Jordan (1995b).
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external forces. Representing the state of the hand at time ¢ as x(¢) (a
2 x 1 vector of position and velocity), the system dynamic equations
can be written in the general form of x(¢) = Ax(t)+ Bu(t)+w(t) where

A= 0 ! , B= 0 and the vector w(t) represents the
0 —3/m 1/m

process of white noise. The system has an observable output, y(?),
representing the proprioceptive signals (e.g. from muscle spindles and
joint receptors), which is linked to the actual hidden state x(t) by
y(t) = Cx(t) + v(t) where the vector v(t) represents the output white
noise. We assume that this system is fully observable and choose C' to
be the identity matrix. At time ¢ = 0 the subject was given full view
of his arm and, therefore, started with an estimate x(0) = x(0) with
zero bias and variance—i.e. vision calibrated the system. At this time
the light was extinguished and the subject had to rely on the inputs
and outputs to estimate the system’s state. The Kalman filter, using a
model of the system A, B and C, provides an optimal linear estimator
of the state given by

k(1) = A%() + Bu(t) + K()ly (1) - C%(1)]

Forward model  Sensory correction

where K (t) is the recursively updated Kalman gain matrix (Figure 6a).
This state estimate combines an estimate from the internal model of the
system dynamics together with a sensory correction. The relative con-
tributions of the internal simulation and sensory correction processes
to the final estimate are modulated by the Kalman gain matrix so as to
provide minimum variance state estimates. We use this state update
equation to model the bias and variance propagation and the effects of
the external force. The parameters in the simulation, 8, m and u were
chosen based on the mass of the arm and the observed relationship
between time and distance traveled.

By making particular choices for the parameters of the Kalman
filter, we are able to simulate dead reckoning, sensory inflow-based
estimation, and forward model-based sensorimotor integration. More-
over, to accommodate the observation that subjects generally tend to
overestimate the distance that their arm has moved, we set the gain
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that couples force to state estimates to a value that is larger than its
veridical value. This setting is consistent with independent data that
subjects tend to under-reach in pointing tasks, suggesting an overes-
timation of distance traveled (Soechting & Flanders 1989). All other
components of the internal model were set to their veridical values.

Simulations of the Kalman filter demonstrated the two distinct
phases of bias propagation observed (Figure 6). By overestimating the
force acting on the arm the forward model overestimates the distance
traveled, an integrative process eventually balanced by the sensory cor-
rection. The model also captured the differential effects on bias of the
externally imposed forces. By overestimating an increased force un-
der the assistive condition, the bias in the forward model accrues more
rapidly and is balanced by the sensory feedback at a higher level. The
converse applies to the resistive force. The pattern of variance propa-
gation was also captured by the model. During the early part of the
movement, because of the initial visual calibration the current state
estimate resulting from the forward model is accurate, and therefore
the sensorimotor integration process weights it more heavily. However,
in the later stages of the movement, when the current state estimate is
less accurate, the sensory feedback must be relied upon to correct for
inaccuracies in the forward model. In the Kalman filter, the relative
weighting shifts from the forward model towards sensory feedback over
the first second of movement and then remains approximately constant
resulting in the asymptote of the variance propagation. In accord with
the experimental results the model predicts no change in variance under
the two force conditions.

These results show that the Kalman filter is able to reproduce the
propagation of the bias and variance of estimated position of the hand
as a function of both movement duration and external forces. The
model also simulates the interesting and novel empirical result that
while the variance asymptotes, the bias peaks after about one second
and then gradually declines. This behavior is a consequence of a trade
off between the inaccuracies accumulating in the internal simulation
of the arm’s dynamics and the feedback of actual sensory information.
Simple models which do not trade off the contributions of a forward
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Figure 6: a) The Kalman filter model comprises two processes. The
first (upper part) simulates the arm’s dynamics using the motor com-
mand and the current state estimate to predict the next state esti-
mate. The second process (lower part) uses the difference between ex-
pected and actual sensory feedback to correct the forward model state
estimate. The relative weighting of these two processes is mediated
through the Kalman gain. b—e) Simulated bias and variance propaga-
tion from the Kalman filter model of the sensorimotor integration pro-
cess, in the same representation and scale as Figure 5 (b—e). Reprinted
with permission from Wolpert, Ghahramani and Jordan (1995b).
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model with sensory feedback, such as those based purely on sensory in-
flow or on motor outflow, are unable to reproduce the observed pattern
of bias and variance propagation. The ability of the Kalman filter to
parsimoniously model this data suggests that the processes embodied in
the filter, namely internal simulation through a forward model together
with sensory correction, are likely to be embodied in the sensorimotor
integration process.

5 Relevance to Neurophysiology

One candidate for the neural system subserving both the integration of
visual and auditory inputs and the production of orienting movements
to such inputs is the superior colliculus (SC). The superior collicu-
lus, and its non-mammalian homologue, the optic tectum, is a layered
midbrain structure in which the superficial layers receive visual inputs
both directly from the retina and from visual cortex, and the deep
layers receive visual, somatosensory, auditory and motor-related in-
puts (Wickelgren 1971, Harris et al. 1980, Stein & Meredith 1993). Over
50% of neurons in the deep layer are multi-sensory, with visuo-auditory
being the most common combination (30% of total; Stein & Meredith
1993). It is important to note that multisensory convergence seems to
take place at the deep layer neuron itself, most of whose inputs are
unimodal (Wickelgren & Sterling 1969). The outputs of the superior
colliculus project to brain stem and spinal cord areas directly involved
in positioning the peripheral sense organs, playing an important role
in orienting the eyes, head, limbs and, in species that can move them,
ears and whiskers (Harris et al. 1980, Sparks & Nelson 1987, Dulac &
Knudsen 1990, Guitton & Munoz 1991, Stein & Meredith 1993).
Knudsen and colleagues have extensively studied adaptation to visuo-
motor and visuo-auditory displacements and their effects on the neural
representations of space in the optic tectum of the barn owl. Their
results have shown that prismatically perturbing visual inputs, while
barely modifying visual localization, induced significant adaptation of
auditory localization (Knudsen & Knudsen 1989a, Knudsen & Knudsen
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1989b). Furthermore, blind-reared owls developed highly abnormal
maps of auditory space in the optic tectum (Knudsen et al. 1991). Our
findings are consistent with these results, again suggesting that the reg-
istration of visual and auditory maps is largely determined by visual
experience. Recently, it has been found that adaptation of the audi-
tory map in the optic tectum can be attributed to changes in one of
its inputs, the inferior colliculus (Brainard & Knudsen 1993). Further
research needs to be done to determine the signal driving adaptation
in the inferior colliculus (cf. the model proposed by Pouget, Deffayet
& Sejnowski 1995).

Our computational models and experimental results suggest that
sensory inputs in an area such as SC may be weighted by a measure
of their reliability. The reliability of a sensory input must therefore
somehow be coded neurally, along with the input itself. One possi-
bility is that the firing rate of a neuron in the spatial map could be
proportional to that neuron’s “confidence” that there is a stimulus in
its receptive field. Under this hypothesis, there are two explanations for
the finding that animals often orient to a locus in between visual and
auditory stimuli presented simultaneously at different locations (Stein
et al. 1989). First, the two distinct loci of activity may merge into
one intermediate locus within the collicular map. Second, the actual
integration of signals may occur at a later motor stage, whose units
have large receptive fields in the collicular map. An alternative to this
explicit rate-coding hypothesis for reliability of sensory inputs is that
reliability is coded implicitly in the neural architecture. For example,
the size of receptive fields could be related both to the variance in lo-
calization and to the rate of plasticity. (Note also that receptive fields
are larger in the periphery, where we found greater adaptation.) More
detailed neurophysiologically-based models of the colliculus may pro-
vide links between the computational, psychological and neural levels
of understanding the problem of visuo-auditory integration.

Finally, the state estimation paradigm we used in the study of sen-
sorimotor integration during arm movements provides a framework to
study integration process in both normal and patient populations. For
example, the specific predictions of the sensorimotor integration model
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can be tested in both patients with sensory neuropathies, who lack pro-
prioceptive reafference, and in patients with damage to the cerebellum,
a proposed site for a forward model (Miall et al. 1993). Here again,
the computational model will hopefully provide a reference point for
interpreting new behavioral and neurological results.
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