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Abstract — A novel multi-target tracking (MTT) method is 

developed in this paper, which is specifically designed to track 

microbubbles in vitro.  The microbubbles, which frequently 

overlap and move erratically, are accurately tracked by a 

tailored multi-assignment (MA) algorithm combined with the 

interacting multiple model (IMM) estimator.  The superiority of 

the proposed modified multi-assignment interacting multiple 

model (MA-IMM) tracking algorithm is demonstrated by way of 

a comparison to three other approaches. 

 
I. INTRODUCTION 

 
Molecular imaging is involved in a number of disease states 

and is of great interest in various biomedical research areas 

[1-2].  Molecular imaging is based on the detection of 

molecular markers for the disease in blood vessels, usually 

with a contrast agent that is targeted to the markers.  An 

ultrasound contrast agent, known as microbubbles, are tiny gas 

filled bubbles coated by targeting substance, which can be 

safely injected to blood vessels to enhance the ultrasound 

image by increasing the backscatter signal.  The adhesion of 

targeted microbubbles has been assessed in vitro to determine 

whether a particular targeting substance could improve the 

adhesion.  Accurately measuring the efficiency of adhesion 

requires tracking of all the observable microbubbles. 

This paper puts forth a novel adaptation of a general 

multi-target tracking (MTT) method.  There are two major 

challenges that the tracker must overcome in this application: 

1) the fast-moving microbubbles frequently overlap the 

slow-moving ones as shown in Fig. 1, and 2) some 

microbubbles move intermittently, where a microbubble 

moves at a relatively high speed for some time before or after 

stopping, i.e., the velocity of the microbubble changes 

dramatically. The intermittent movement of microbubbles and 

frequent overlapping make tracking them correctly extremely 

difficult.  Our proposed MTT method is specifically adapted 

to robustly account for these problems. 

 

II. SUMMARY OF TRACKING SOLUTION 

 

A detailed description of all aspects of a general target 

tracking system can be found in [3].  The two key 

interrelated problems of MTT are data association and state 

estimation.  

Data association is the decision process of determining 

which of the multiple measurements is chosen to update each 

track.  Track refers to a symbolic representation of a target, 

which is the state estimate in the target tracking system.  

Measurement refers to the data or information obtained from 

the sensor.  Many algorithms exist to address the competition 

among tracks for measurements [3-4], including multiple 

hypothesis tracking (MHT), joint probability data association 

(JPDA), and assignment algorithm.  The multi-assignment 

(MA) algorithm, which provides superior performance than 

one-to-one (1-1) assignment for closely spaced objects [6], has 

been modified to improve the tracking performance. 

State estimation is the process of evaluating the target state 

given the association result and measurement.  The state 

contains all relevant information required to describe the 

system, usually including kinematic quantities and descriptive 

quantities in tracking problems.  Typical state estimation 

techniques include the Kalman filter (KF), the interacting 

multiple model (IMM) estimator [7], and particle filters.  The 

IMM estimator is selected as the estimator to cooperate with 

MA, as it is generally considered to provide better tracking 

performance than Kalman filter for the tracking of 

maneuvering targets [4]. 

Fig. 2 is the flow diagram of the proposed MTT algorithm.  

An explicit explanation of our implementation of the proposed 

multi-assignment interacting multiple model (MA-IMM) 

method will now be given [5].  A system with Markovian 

switching models is described by one of r hypothesized 

models { }1 2, ,..., rM M M  with a set of switching 

probabilities between the models [7].  Let j

k
M  denote the 

event that model j
M  is in effect at time k.  The model 

switching is described by a finite state Markov chain with 

probabilities 
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which means the model switch from i
M  at time 1k −  to 

j
M

 
at time k.  The r

2
 switching probabilities ijp  are 

assumed to be known a priori.  For a linear system, the 

motion equation for j

k
M  is given as 

 

Fig. 1. Image of microbubbles, where overlapping cases are circled. 



 

Fig. 2. The flow diagram of MA-IMM. 
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where 
k

x  is the state vector at time k, j

k
F  is a known matrix 

defining the linear motion model, and j

k
v  is an independent 

and identically distributed (i.i.d.) zero mean Gaussian noise 

sequence with covariance matrix j

k
Q .  The measurement 

equation is given as 

 j j

k k k k
= +z H x n  (3) 

where 
k

z  is the measurement vector, j

k
H  is a known matrix 

defining the measurement model, and j

k
n  is an i.i.d. zero 

mean Gaussian noise sequence with covariance matrix j

k
R . 

 

A. Detection 

The detection method used to determine the existence and 

location of the microbubbles within a frame is based on 

grayscale morphology.  After sequentially performing the 

grayscale morphological operations open and close on each 

frame of the video sequence, subtraction of the background 

yields microbubbles or unwanted artifacts.  The micro- 

bubbles are easily distinguished from the unwanted artifacts 

by computing the appropriate features such as size and shape.  

Fig. 3 shows the result of our detection algorithm applied to 

Fig. 1. 

 

B. Prediction 

The prediction step is responsible for predicting the state 

estimates and model probabilities for the next time instance.  

Given the model-conditioned posterior state estimates 
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Fig. 3. Detection result from Fig.1. 
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where { }0
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ˆ
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x  and { }0
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j

k k j− − =
P  are the interacted state 

estimates and the corresponding covariances, respectively 

[5, 7]. 

 

C. Gating & Likelihood  

  This step is responsible for preprocessing the data for 

MA to reduce the complexity.  Gating is a technique to 

remove highly unlikely association candidates.  The 

validation gate (VG) is the region in measurement space 

where the true measurement will lie with high probability, 

which is normally determined by the covariance of prior 

state estimate.  We modify VG for better tracking 

performance by considering the prior knowledge and 

physical constraints.  Since we know that the 

microbubbles move from left to right in horizontal 

direction, only the measurements which are on the right 

side of the target and are close to the target in vertical 

direction are most probably the measurement detected from 

the target.  As illustrated in Fig. 4, the modified VG 

increases the reliability of MA by excluding unnecessary 

measurements.  
The likelihood is the fundamental quantity for seeking the 

optimal assignment result.  Let the set of tracks from time 

1k −  is denoted by ( ){ } 1

1 1

kN

k n
n

−

− =
T , the set of measurements 

from time k  by ( ){ }
1

kM

k m
m

=
z .  Let ( ),

k
n mΛ  denote the 

combined likelihood of associating track ( )1k
n−T  to 

measurement ( )k
mz , which is given by  
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where ( ),j

k n mΛ  is the model-conditioned likelihood  of 

associating measurement ( )k
mz  with track ( )1k

n−T  
[4-5]. 

 

D. Multi-Assignment 

The data association is formulated as an optimization 

problem subject to certain constraints in multi-assignment 

(MA) algorithm.  The MA technique in our proposed method, 
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Fig. 4. The numbers indicate the prior estimate of different targets, while the 

dark objects are measurements.  The standard VG and modified VG are 

shown as dash lines and solid lines, respectively.  The modified VG of target 

62 contains only one measurement, while the standard VG contains two 

unnecessary measurements on the left. 

 
which is similar to the iterative one-to-one (1-1) assignment 

method in [6], only allows one measurement to be assigned to 

multiple tracks, while one track can only be assigned to one 

measurement.  This modification is based on the fact that the 

microbubbles do not split into two in reality.  The optimal 

association between the established tracks and the received 

measurements is obtained by minimizing the cost function 

proposed in [6], which could be solved by auction algorithm 

[8]. The cost function is highly related to all the likelihood 

calculated in the previous step.  

 

E. Update  

The assignment result and corresponding measurement 
k

z  

are used to update the model-conditioned prior estimates and 

model probabilities for each track to obtain the model- 

conditioned posterior estimates { }| 1
ˆ

r
j

k k j =
x  and the 

corresponding covariances { }| 1

r
j

k k j =
P , which are given by 

Kalman filter update equations 

 | 1

T
j j j j j

k k k k k k−
 = + S H P H R  (8) 

 
1

| 1

T
j j j j

k k k k k

−

−
   =    K P H S  (9) 

 ( )| | 1 | 1
ˆ ˆ ˆj j j j j

k k k k k k k k k− −= + −x x K z H x  (10) 

 | | 1 | 1

j j j j j

k k k k k k k k− −= −P P K H P  (11) 

where j

k
S  is the residual covariance, and 

j
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K  is the Kalman 

gain.  The posterior model probabilities { }| 1

r
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=
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calculated by  
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where c is the normalization factor  
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and j

k
Λ  denotes the likelihood of 

j

k
M  given measurement 

k
z , which can be computed as 
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Finally, by considering overall state estimates and model 

probabilities using (10)-(12), the combined posterior state 

estimate |
ˆ

k k
x  and the corresponding covariance |k k
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given by 
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III. RESULTS 

 

  Our experimental results show that the combination of MA 

and IMM, referred to as MA-IMM, provides a more accurate 

method to track microbubbles when compared to 1-1 

assignment with KF (1-1 KF), MA with KF (MA KF), and 1-1 

assignment with IMM (1-1 IMM).  A two-model IMM 

estimator with random walk and constant velocity motion 

models was employed in the experiment, while constant 

velocity motion model was used in the KF.  The switching 

probabilities for the IMM estimator were empirically set.  

The parameters used in the KF provided the best result from 

an extensive trial. 

  The six performance metrics we use to evaluate the four 

MTT algorithms are compiled in the following list with 

definitions and ideal values. 

1) Track breakage (TB) is the total number of tracks minus 

the total number of actual targets.  Ideally, the TB count 

would be zero. 

2) Miscorrelation (MC) is defined as the number of false 

data associations, i.e., a measurement is associated with a 

track that in the previous frame was updated by a 

measurement due to a different target.  Ideally, the MC 

count would be zero. 

3) A false positive (FP) is an incorrectly assigned 

measurement.  A FP is caused by either clutter or MC.  

Ideally, the FP count would be zero. 

4) A false negative (FN) occurs when an actual target is not 

assigned to a track.  This quantity is also presented as a 

percentage by dividing with the track life lengths of all 

the targets.  A FN is usually caused by missed 

measurement.  Ideally, the FN count would be zero. 

5) Total track life (TTL) of a target is the number of frames 

that the target is correctly tracked divided by the number 

of frames in which the target actually exists.  Ideally, the 

TTL value would be 100%. 

6) Relative complexity (RC) is the normalized computing 

time for each of the four MTT algorithms tested, which 

eliminates any hardware or system environment 

dependant issues.  In this case, the computational 

expense is taken relative to the MA KF case.  

Using a video sequence of 1826 frames of 125 microbubbles 

captured in vitro at a rate of 60 frames per second, the results 

of all six performance metrics from four MTT algorithms 

tested are given in Table I.  It is evident from the comparison 



given in Table I that the MA-IMM algorithm yields less TB, 

MC, FP, and FN, as well as higher TTL value, than the other 

three MTT algorithms.  The cost of these improvements is 

about 50% more computing time, reflected by the RC value.  

It should be noted that this is not a major drawback, since the 

MA-IMM algorithm can be easily implemented in a parallel 

processing environment. 

 

IV. CONCLUSION 

 

  The multi-target tracking algorithm for tracking 

microbubbles in vitro must account for the intermittent 

movement and the overlapping behavior of the microbubbles, 

must be robust to noise and clutter, and must provide an 

accurate position estimate of each microbubble from frame to 

frame.  In addition, the tracking method must be 

computationally feasible for practical implementation.  The 

novel multi-target tracking method MA-IMM proposed in this 

paper provides a resourceful trade off between computational 

complexity and tracking performance by combining MA with 

IMM.  The MA is accomplished by modifying the iterative 

1-1 assignment described in [6]. 

  This algorithm has been successfully employed for 

measuring the microbubble adhesion efficiency [9]. It can be 

easily extended to other applications in different research 

areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

TABLE I 

TRACKING RESULTS OF FOUR MTT ALGORITHMS 
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