SNEL: A SWITCH-LEVEL SIMULATOR USING MULTIPLE LEVELS OF FUNCTIONAL ABSTRACTION *

D. T. Blaauw, R. B. Mueller-Thuns, D. G. Saab, P. Banerjee

Center for Reliable an High Performance Computing
University of Illinois at Urbana-Champaign
Urbana, IL 61801, U.S.A.

ABSTRACT:

Switch-level simulation has become a common means for
accurate modeling of MOS circuit behavior. The SNEL simula-
tor is a novel switch-level simulator which uses functional
abstraction in a preprocessing step. Its functional abstraction
algorithms use static circuit analysis to determine the overall cir-
cuit operation. This way, the operation of the circuit, rather than
the full functionality of each individual circuit component is
modeled during the simulation. A more abstract and high-level
model of the circuit is therefore used, which greatly increases the
simulation speed. Since the full switch-level behavior is captured
by the functional abstraction, the accuracy of the simulation is
maintained. The functional abstraction is performed at four cir-
cuit grain sizes or levels: individual circuit nodes, individual
transistors, single dc-connected components, and multiple dc-
connected components. At the highest level, the abstraction algo-
rithm generates high-level software models for arbitrarily large
circuit blocks. The proposed algorithms were implemented and
tested for commercial circuits. By using all levels of abstraction,
the simulation speed was increased by an order of magnitude.

1. Introduction

Switch-level simulation has become a widely accepted
means for the logic verification of MOS circuits [1]. This popu-
larity is largely due to the switch model’s ability to accurately
model MOS circuit phenomena, such as bidirectional signal flow,
charge sharing, charge storage, the modeling of unknown signal
values, and contention handling. In contrast to circuit simulation,
the switch model is sufficiently simple to allow simulation of
large designs with extensive test sequences. However, with the
advance of circuit integration technology, the size and complexity
of circuit designs has greatly increased. This has led to a new
need for accelerated switch-level simulators.

In this paper, we present the SNEL simulator. SNEL is an
event-driven switch-level simulator, based on the evaluation algo-
rithms used in the SLS simulator [2]. The novelty of SNEL is its
use of extensive circuit preprocessing to abstract the behavior of
the circuit prior to simulation. This functional abstraction deter-
mines the set of switch-level phenomena occurring in individual
or clusters of circuit elements. In practice, most switch-level
phenomena, such as bidirectional signal flow and charge sharing
occur relatively infrequently in a design. Functional abstraction
determines which of these phenomena affect the circuit operation.
This way, switch-level phenomena are only modeled where they
are necessary for the accurate simulation of the circuit. Using
functional abstraction, circuit evaluation is performed at a higher

T This research was supported in part by Semiconductor Research
Corporation Contract 90-DP-142, and in part by Motorola, Inc. Austin,
TX.

CH2924-9/90/0000/0066$01.00 © 1990 IEEE

J. A. Abraham
Computer Engineering Research Center
University of Texas at Austin
Austin, TX 78758, U.S.A.

and more abstract level and is faster. Since the switch-level func-
tionality of the circuit is captured in the abstraction, the simula-
tion preserves its switch-level accuracy. Functional abstraction in
the SNEL simulator is performed automatically and is completely
transparent to the user. Since the abstraction algorithms use static
analysis and are performed as a preprocessing step, their over-
head is incurred only once for an entire simulation. Therefore,
the functional abstraction overhead is easily offset by the result-
ing simulation speedup.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a definition and overview of functional abstrac-
tion. Section 3 surveys related work. Section 4 presents the
developed functional abstraction algorithms. Section 5 contains
the obtained performance results and offers concluding remarks.

2. Overview of Functional Abstraction

Each circuit element in a switch-level circuit description
(transistor or circuit node) can display the full range of switch-
level phenomena. For instance, all circuit nodes can potentially
store a charge, and all transistors are potentially bidirectional.
We call the possible operation of an element its functional
domain. When a circuit element is considered as part of the
overall circuit, however, its actual operation is only a subset of
this functional domain, which we call its functional application.
In an actual circuit, for instance, most transistors operate only
unidirectionally.

The functional application of a circuit element depends
both on its functional domain as well as the circuitry surrounding
the circuit element. Functional abstraction is the process of deter-
mining the functional application of a circuit element from its
functional domain. It must be performed such that the operation
of the circuit as a whole is unaltered. Functional abstraction
applies not only to individual circuit elements, but also to clusters
of elements, such as dc-connect components and groups of dc-
connected components. The functional domain of a group of cir-
cuit elements is the union of the functional domains of its com-
ponents. Again, the functional application of a group of circuit
elements is a subset of the functional domain of the group. For
instance, the functional domain of the static gate implementation
would include bidirectional signal propagation through each of its
transistors, charge sharing effects between its nodes, and charge
storage at each node. However, due to the complementary rela-
tionship of the pull-up and pull-down paths in the gate, most of
these phenomena are eliminated. The functional application con-
sists solely of its logic state, which is a Boolean function of the
gate inputs, and its driving strength.

For accurate simulation, only the the functional applica-
tion, rather than the entire functional domain must be modeled.
The functional application is usually significantly smaller than the
functional domain. Therefore, a large amount of unnecessary

evaluation is avoided by obtaining the functional application
before simulating the circuit and restricting the modeling to it.
Since the behavior of circuit elements is data dependent, their
exact functional application can only be determined dynamically
during the simulation. However, by using static preprocessing
algorithms, an approximation is obtained. This approximation is
conservative, meaning it always includes too much functionality
rather than too little. However, by extensively analyze the rela-
tionships of control signals and electrical circuit properties, they
produce significant simplifications in the circuit model.

3. Related Work

Early work in functional abstraction for gate-level simula-
tion is presented in [3]. Methods were developed to hand gen-
erate behavioral models from gate-level circuit descriptions. For
MOS circuits, however, hand generation of functional models is
both error prone and time consuming. Switch-level abstraction
must be performed automatically. More recently, programs were
developed to translate switch-level circuits into RTL models [4],
into gate-level descriptions [5], or to verify switch-level circuits
with a high-level description by proof of correctness [6]. In both
cases, a high-level description is automatically abstracted from a
switch-level description. However, the abstraction process makes
many simplifying assumptions that compromise the switch-level
model. Since the switch-level accuracy is not maintained, the
used algorithms are not directly applicable to functional abstrac-
tion for switch-level simulation.

Algorithms to generate accurate evaluation code for dc-
connected components were presented in [7, 8] and the COSMOS
simulator [9]. They use so-called path tracing algorithms to
translate all possible paths in a dc-connected component into a set
of Boolean equations. Although the Boolean equations accu-
rately evaluate the switch-level behavior, little functional abstrac-
tion is performed. The functionality of nodes and transistors is
not analyzed and the full functional domain is modeled. Neither
are CMOS logic gates detected, or is functional abstraction per-
formed for multiple dc-connected components. These methods
have the added disadvantage that their effectiveness is decreased
for large dc-connected components. Barrel-shifters and other
large dc-connected components are, therefore, difficult to model
with these algorithms.

4. Abstraction Algorithms

To obtain significant simulation speedup, functional
abstraction is performed at four grain sizes. The grain sizes or
levels are, in sequence of increasing size: individual circuit nodes,
individual transistors, dc-connected components, and clusters of
dc-connected components. Information obtained from lower lev-
els of abstraction is used at the higher levels. This way, the
highest level of abstraction incorporates information obtained at
all levels of abstraction. The presented algorithms are by no
means exhaustive and can be easily extended. However, even
with the most common simplifications in the circuit behavior, a
significant increase in simulation speed was obtained. The indivi-
dual levels of abstraction are presented in some detail below. The
first two levels of abstraction have been presented in previous
papers and are only treated briefly. For the two highest levels of
abstraction, new research is presented.

4.1. Circuit Nodes: Abstraction of Temporary Nodes

Every node in a circuit has a finite parasitic capacitance
and, therefore, carries a signal value from one evaluation to the

67

next. This memory quality of a node greatly complicates the
evaluation of the circuit. Each circuit node can potentially affect
future evaluations and must be explicitly evaluated and stored.
However, if the stored signal charge is immediately overridden
by a different signal in the circuit, the stored signal is lost. If itis
shown that this occurs for all possible circuit states, the retained
signal is always destroyed and cannot affect the circuit operation.
The memory quality of such a node is thus inconsequential to the
circuit operation, and is removed from its functional application.
The node is therefore classified as a temporary node. In [10], a
new heuristic procedure for identification of temporary nodes is
presented. The identification of temporary nodes is performed by
tracing all possible paths from a node to permanent signal
sources. Permanent signal sources are power nodes, and outputs
of static gates, identified by automatic gate extraction. If it is
shown for a node that there exists path to a permanent signal
source for all possible circuit states, the node classifies as a tem-
porary node.

4.2. Transistors: Abstraction of Unidirectional Transistors

The identification of unidirectional transistors reduces the
complexity of the circuit model. However, the directional
analysis algorithm can only restrict signal flow when it does not
affect the circuit operation. A transistor is restricted to unidirec-
tional signal flow for one of two reasons: either signal flow
through the transistor in one direction does not occur at all or sig-
nal flow in that direction occurs, but does not affect the circuit
operation. The directional analysis uses the electrical properties
of the circuit such as the transistor and node sizes. These circuit
properties are propagated along a graph representation of the cir-
cuit. This way, each transistor is aware of its surrounding circui-
try. The graph is then examined locally at each transistor to
detect those transistors that are unidirectional. For a more
detailed description of the algorithm the reader is referred to [11].

4.3. DC-Connected Components: Abstraction of Static Gates

For most circuit designs, a large percentage of all circuitry
consists of logic gate implementations. An algorithm was
developed to detect static logic gate implementations in the
switch-leve] description and substitutes them with so-called gate
descriptors. A gate descriptor contains both the logic function
and the strength information of the gate. Evaluation of the gate
descriptor is straightforward and does not involve most switch-
level phenomena. Therefore, the gate descriptor evaluates much
faster than its corresponding transistor implementation, while the
simulation maintains its switch-level accuracy.

A static CMOS gate is characterized by pull-up and pull-
down functions that are duals of each others. This means that, for
all possible gate inputs, there is always a conducting path from
the gate output to either power or ground. Furthermore, for all
possible true input values (logic 0 or logic 1), there is either a
path to power or ground, but not simultaneously to both. Because
of these characteristics, the functional application of a logic gate
is greatly simplified. Below, the switch-level phenomena that
occur in the functional domain of a static logic gate, but not in its
functional application, are treated.

1 - Charge Sharing and Charge Storage
Charge sharing occurs when two or more nodes, isolated from
power and ground, become connected through a conducting
path. Since in logic gates there is always a conducting path
from power or ground to the gate output, stored charge on the
gate output is overridden. Therefore, neither charge sharing
nor charge storage affect the gate output.

2 - Bidirectional Signal Flow
In a logic gate, only the new value of the gate output is deter-
mined. This gate output is always connected to power or
ground through one or more paths. Along these paths, signals
propagate only in the direction toward the gate output.
Bidirectional signal flow is, therefore, eliminated.

3 - Conflicting Signal Resolution

Signal resolution is necessary when two or more signals with
different logic states attempt to drive the same node. When
true-values (logic 0 or logic 1) are applied to a logic gate,
simultaneous paths to vdd and gnd do not occur. In this case,
signal resolution is, therefore, not needed. In the case that
unknowns are applied to the gate, simultaneous paths to vdd
and gnd can occur. Both of these paths will, however, contain
at least one transistor with an unknown signal controlling its
gate. Since both paths contain a transistor in an unknown
state, the output always evaluates to unknown. Resolution of
conflicting signals is, therefore, not needed.

Modeling a logic gate is further simplified by the fact that
its inputs all drive transistor gates. Only the logic state of the
inputs is needed and their strength can be ignored. The only
feature of switch-level simulation that remains in the functional
application of a logic gate is the strength of the pull-up or pull-
down path of the gate output. Gate extraction for switch-level
simulation consists of three phases. The first phase obtains the
logic pull-up and pull-down functions and determines whether
they are duals of each other. The second phase analyzes the
strength of the pull-up and pull-down paths for logically valid
gates. The third phase generates the gate descriptors and evalua-
tion routines.

4.4. Circuit Blocks: Generation of High-Level Models

For the highest level of abstraction, a2 model generator was
developed to translate circuit blocks of multiple dc-connected
components into high-level software models. The models are
generated in executable C-code and fully capture the switch-level
behavior of the circuit block. The SNEL simulator then links in
these software models and executes them in an event-driven
fashion. The partition size effectively represents the event size.
Therefore, this abstraction level has the added advantage of being
able to control and optimize the event size. The partition size is
unrestrained and can range from a single dc-connected com-
ponent to the entire circuit description.

Prior to model generation, directional analysis, gate extrac-
tion, and temporary node detection is performed. The logic
behavior of a circuit block is modeled by the generator as a finite
state machine derived directly from the circuit description. For
each of the identified memory (state) nodes and output nodes, a
set of next state evaluation statements is generated. Usually, one
set of executions of these statements is sufficient to evaluated the
circuit. However, in the presence of feedback loops internal to
the circuit block, several such evaluations might be necessary
before the circuit converges to a steady state. The model genera-
tor detects and breaks internal feedback loops and marks the
breaking points as so-called convergence nodes. The generated
model will then iterate on the evaluation statements until all con-
vergence nodes attain a steady state.

The model generation is performed in three phases. In the
first phase, the circuit block is partition such that there is no
bidirectional signal flow between partitions. In the second phase,
code is generated individually for each partition using a depth-
first, post-order traversal of the partition elements. During the

backward traversal of each circuit element, evaluation code for
that element is generated. Chains of bidirectional transistors are
handled in a manner similar to that in SLS [2]. Figure 1 shows an
example of a simple partition. Transistors T/ and 72 are uni-
directional, as indicated. Figure 2(a) shows the sequence of
evaluation statements generated in the traversal of the circuit. As
can be seen, little functional abstraction is obtained, since each
circuit element is explicitly evaluated. Therefore, several optimi-
zations steps are performed to obtain a higher level of functional
abstraction.

If the state of the transistor gate is logic 0, signal flow can-
not occur across the transistor. Therefore, the transistor and sub-
sequent circuitry do not need to be evaluated. For instance, if the
gate of TI in Figure 1 is logic 0, evaluation of circuit elements T1,
gl, g2, and g3 is not needed. Advantage of this is taken by simply
inserting an ‘if’ statement before each unidirectional transistor as
shown in Figure 2(b). The generated code is now further optim-
ized by detecting tree structures consisting entirely of gates; for
instance, the tree formed by gl, g2, and g3 in Figure 1. The
evaluation of individual gates in the sub-tree is replaced with a
single table lookup function. The code in Figure 2(c) shows the
generated code where this optimization is performed.

The last optimization detects simple inversion relation-
ships between control signals, such as signals i4 and n4 in Figure
1. The inversion relationship is incorporated in the ‘if’ statement
and eliminates the explicit evaluation of the inverter driving the
control signal. Furthermore, the two ‘if’ statements generated in
the code of Figure 2(c) are replaced with a single ‘switch’

o0
i3 ,l>gj‘ n3
Figure 1. Circuit partition.
eval(g 0) eval(g 0) eval(g 0) switch(stateOf(i4)
eval(g 1) if (n4) { if (n4) { case 0: n2 = table()
eval(g2) eval (gl) n2 = table() eval(T1)
eval(g3) eval (g2) eval(T1) break
eval(T'1) eval (g3) } case 1: eval (g4)
eval(g 4) eval (TI) if (i4) { eval (12)
eval(T2) } eval (g4) break
if (i) { eval (T2) case X: n2 = table()
eval (g4) } eval(TI)
eval (T2) eval (g4)
} eval (12)
(@) ®) ©) @

Figure 2. Initial and optimized code generated for circuit in Figure 1.

statement, as shown in Figure 2(d). The evaluation of inverter g0
is eliminated and the logic state of i4 is only tested once using the
switch statement. Furthermore, the code shown in Figure 2(d)
effectively captures the ‘decoder’ behavior of the circuit, while
accurately modeling the switch-level behavior of the circuit.
After the optimization steps are performed, the element evalua-
tion statements are replaced with code modeling the behavior of
their elements. In the last phase, the partitions are rank-ordered.
The evaluation code for the partitions is then concatenated
according to their ranking to form a comprehensive model of the
circuit block.

5. Performance Results and Conclusions

The SNEL simulator was implemented and tested on
several types of circuits, including a large commercial micropro-
cessor. For each circuit, the accuracy of the abstraction algo-
rithms was verified. The circuits were simulated both with and
without functional abstraction, and the resulting output signals
were compared. For all test cases, the output signals were identi-
cal in logic state and strength.

Several functional abstraction statistics are shown in Table
1. Commercial circuits of various sizes and types were tested.
The percentage of nodes that were temporary (temp nodes),
transistors that were unidirectional (unidir trans), and transistors
that were replaced with gate descriptors (gate descr) reflect the
effectiveness of, respectively, the first, second, and third levels of
abstraction.

All simulations were performed on a SUN SPARC work
station. Several of the SLS benchmark circuits were run on
SNEL to provide a reference for its simulation speed without
functional abstraction. The normalized simulation speed [2],
which is obtained by dividing the total simulation time by the
number of cycles and the number of transistors in the circuit, was
compared between SLS and SNEL for these benchmarks. When
account was taken for the difference between the speed of the
host machines, the simulation speed of SNEL, without the use of
functional abstraction, was within a factor of two of SLS. The
use of C++ and the lack of code optimizations in SNEL account
for this difference. It shows that even without the use of func-
tional abstraction, SNEL is an efficient simulator, comparable to
SLS. Table 1 shows the speedup obtained from functional

circuit functional abstraction sim
name num of temp unidir gate speedup
trans nodes trans descr

static latch 8 | 100% 100% 75.0% 4.85
exclusive-or 16 | 100% 100% 100% 532
alu func unit 20 | 100% 90.0% 60.0% 11.3
random logicl 28 70.5% 92.9% 42.9% 12.1
8 input mux 36 | 100% 88.9% 22.2% 12.3
random logic2 63 85.3% 96.8% 73.0% 12.9
bus control 82 82.2% | 100% 60.9% 13.0
inc register 186 89.2% | 100% 82.2% 15.3
register file 1,190 | 100% 100% 83.9% 9.6
shift register 1,228 97.0% 66.3% 38.1% 11.9
alu unit 2,422 78.8% 89.6% 55.4% 13.6
procl 20,177 92.1% 81.3% 59.7% 11.3

Table 1. Simulation results of SNEL.

abstraction (sim speedup) which ranges from 4.85 to 15.3.

The circuit labeled proc! is a commercial microprocessor
consisting of approximately 20,000 transistors. After functional
abstraction is performed, only 18% of all transistors remain
bidirectional, and 60% of all transistors are replaced with gate
descriptors. The processor contains a 32-bit barrel shifter, for
which functional abstraction has traditionally been difficult to
perform. In light of this, the number of remaining bidirectional
transistors is quite low. The processor was simulated with 10,000
test vectors.

In conclusion, a new switch-level simulator, called SNEL
was presented. The SNEL simulator preprocesses the circuit
description to abstract its functionality prior to simulation. Func-
tional abstraction was concisely defined in terms of the functional
domain and the functional application of circuit constructs.
SNEL uses four algorithms that operate on levels ranging from
single circuit elements to multiple dc-connected components.
Since the functional abstraction preserves the complete func-
tionality of the circuit, the accuracy of the simulation is main-
tained. However, SNEL models the circuit at a higher and more
abstract level, which increases its simulation speed. The
presented algorithms were implemented and tested on commer-
cial designs. Without functional abstraction, the simulation speed
of SNEL is competitive with current simulators. When functional
abstraction was used, the simulation speed increased by more
than an order of magnitude.

REFERENCES

[11 R.E. Bryant, **A Switch-Level Model and Simulator for MOS
Digital Systems,”* IEEE Trans. on Computers, pp. 160-177, 1984.

[2] 7. Barzilai, D. K. Beece, L. M. Huisman, V. S. Iyengar, and G. M.
Silberman, ‘‘SLS - A Fast Switch-Level Simulator,”” [EEE
Transactions on CAD, pp. 838-849, 1988.

[3]1 S. A. Szygenda and A. A. Lekkos, “Integrated Techniques for
Functional and Gate-Level Digital Logic Simulation,”’ Proc. IEEE
International Design Automation Conference, pp. 159-172,1973.

[4] A. Brish, R. Keinan, and Y. Ravid, ‘“‘A Smart System that
Compiles RTL Models from Schematics,”” VLSI System Design,
pp. 32-35, Feb. 1988.

51 M. Boehner, “LOGEX - An Automatic Logic Extractor from
Transistor to Gate Level for CMOS technology,’”” Proc. IEEE
International Design Automation Conference, pp. 517-522, 1988.

[6] V. E. Kelly and L. L Steinberg, ‘‘The Critter System: Analyzing
Digital Circuits by Propagating Behaviors and Specifications,”
Proc. Conference on Artificial Intelligence, pp. 284-289, 1982,

[71 LN Hajj and D.G. Saab, “‘Symbolic Logic Simulation of MOS
Circuits,'* Int. Symp. on Circuits and Systems, pp. 246-249, 1983,

[8]1 G. Ditlow, W. Donath, and A. Ruehli, ‘‘Logic equations for
MOSFET circuits,”” Proc. IEEE International Symposium on
Circuits and Systems, pp. 752-755, 1983.

[91 RE. Bryant, D. Beatty, K. Brace, K. Cho, and T. Scheffler,
“*COSMOS: A Compiled Simulator for MOS Circuits,”” Proc.
IEEE Int. Design Automation Conference, pp. 9-16, 1987.

[10] D. T. Blaauw, P. Banerjee, and J. A. Abraham, ‘‘Automatic
Classification of Node Types in Switch-Level Descriptions,”
Proc. IEEE International Conference on Computer Design , 1990.

[11] D. T. Blaauw, D. G. Saab, J. Long, and J. A. Abraham,

““Derivation of Signal Flow for Switch-Level Simulation,” Proc.
European Design Automation Conference, pp. 301-305, 1990.

69

