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Abstract

How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this
question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to
determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that
slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed
using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as
syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy.
Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be
critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words
directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of
speech acoustic parameters in higher order human auditory cortex.

Citation: Pasley BN, David SV, Mesgarani N, Flinker A, Shamma SA, et al. (2012) Reconstructing Speech from Human Auditory Cortex. PLoS Biol 10(1): e1001251.
doi:10.1371/journal.pbio.1001251

Academic Editor: Robert Zatorre, McGill University, Canada

Received June 24, 2011; Accepted December 13, 2011; Published January 31, 2012

Copyright: � 2012 Pasley et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by NS21135 (RTK), PO4813 (RTK), NS40596 (NEC), and K99NS065120 (EFC). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: A1, primary auditory cortex; STG, superior temporal gyrus; STRF, spectro-temporal receptive field

* E-mail: bpasley@berkeley.edu

Introduction

The early auditory system decomposes speech and other

complex sounds into elementary time-frequency representations

prior to higher level phonetic and lexical processing [1–5]. This

early auditory analysis, proceeding from the cochlea to the

primary auditory cortex (A1) [1–3,6], yields a faithful represen-

tation of the spectro-temporal properties of the sound waveform,

including those acoustic cues relevant for speech perception, such

as formants, formant transitions, and syllable rate [7]. However,

relatively little is known about what specific features of natural

speech are represented in intermediate and higher order human

auditory cortex. In particular, the posterior superior temporal

gyrus (pSTG), part of classical Wernicke’s area [8], is thought to

play a critical role in the transformation of acoustic information

into phonetic and pre-lexical representations [4,5,9,10]. PSTG is

believed to participate in an ‘‘intermediate’’ stage of processing

that extracts spectro-temporal features essential for auditory object

recognition and discards nonessential acoustic features [4,5,9–11].

To investigate the nature of this auditory representation, we

directly quantified how well different stimulus representations

account for observed neural responses in nonprimary human

auditory cortex, including areas along the lateral surface of STG.

One approach, referred to as stimulus reconstruction [12–15], is to

measure population neural responses to various stimuli and then

evaluate how accurately the original stimulus can be reconstructed

from the measured responses. Comparison of the original and

reconstructed stimulus representation provides a quantitative

description of the specific features that can be encoded by the

neural population. Furthermore, different stimulus representa-

tions, referred to as encoding models, can be directly compared to

test hypotheses about how the neural population represents

auditory function [16].

In this study, we focus on whether important spectro-temporal

auditory features of spoken words and continuous sentences can be

reconstructed from population neural responses. Because signifi-

cant information may be transformed or lost in the course of

higher order auditory processing, an exact reconstruction of the

physical stimulus is not expected. However, analysis of stimulus

reconstruction can reveal the key auditory features that are

preserved in the temporal cortex representation of speech. To

investigate this, we analyzed multichannel electrode recordings

obtained from the surface of human auditory cortex and examined

the extent to which these population neural signals could be used

for reconstruction of different auditory representations of speech

sounds.

Results

Words and sentences from different English speakers were

presented aurally to 15 patients undergoing neurosurgical

procedures for epilepsy or brain tumor. All patients in this study

had normal language capacity as determined by neurological

exam. Cortical surface field potentials were recorded from non-
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penetrating multi-electrode arrays placed over the lateral temporal

cortex (Figure 1, red circles), including the pSTG. We investigated

the nature of auditory information contained in temporal cortex

neural responses using a stimulus reconstruction approach (see

Materials and Methods) [12–15]. The reconstruction procedure is

a multi-input, multi-output predictive model that is fit to stimulus-

response data. It constitutes a mapping from neural responses to a

multi-dimensional stimulus representation (Figures 1 and 2). This

mapping can be estimated using a variety of different learning

algorithms [17]. In this study a regularized linear regression

algorithm was used to minimize the mean-square error between

the original and reconstructed stimulus (see Materials and

Methods). Once the model was fit to a training set, it could then

be used to predict the spectro-temporal content of any arbitrary

sound, including novel speech not used in training.

The key component in the reconstruction algorithm is the

choice of stimulus representation, as this choice encapsulates a

hypothesis about the neural coding strategy under study. Previous

applications of stimulus reconstruction in non-human auditory

systems [14,15] have focused primarily on linear models to

reconstruct the auditory spectrogram. The spectrogram is a time-

varying representation of the amplitude envelope at each acoustic

frequency (Figure 1, bottom left) [18]. The spectrogram envelope

of natural sounds is not static but rather fluctuates across both

frequency and time [19–21]. Envelope fluctuations in the

spectrogram are referred to as modulations [18–22] and play an

important role in the intelligibility of speech [19,21]. Temporal

modulations occur at different temporal rates and spectral

modulations occur at different spectral scales. For example, slow

and intermediate temporal modulation rates (,4 Hz) are asso-

ciated with syllable rate, while fast modulation rates (.16 Hz)

correspond to syllable onsets and offsets. Similarly, broad spectral

modulations relate to vowel formants while narrow spectral

structure characterizes harmonics. In the linear spectrogram

model, modulations are represented implicitly as the fluctuations

of the spectrogram envelope. Furthermore, neural responses are

assumed to be linearly related to the spectrogram envelope.

For stimulus reconstruction, we first applied the linear

spectrogram model to human pSTG responses using a stimulus

set of isolated words from an individual speaker. We used a leave-

one-out cross-validation fitting procedure in which the recon-

struction model was trained on stimulus-response data from

isolated words and evaluated by directly comparing the original

and reconstructed spectrograms of the out-of-sample word.

Reconstruction accuracy is quantified as the correlation coefficient

(Pearson’s r) between the original and reconstructed stimulus. The

reconstruction procedure is illustrated in Figure 2 for one

participant with a high-density (4 mm) electrode grid placed over

posterior temporal cortex. For different words, the linear model

yielded accurate spectrogram reconstructions at the level of single

trial stimulus presentations (Figure 2A and B; see Figure S7 and

Supporting Audio File S1 for example audio reconstructions). The

reconstructions captured major spectro-temporal features such as

energy concentration at vowel harmonics (Figure 2A, purple bars)

and high frequency components during fricative consonants

(Figure 2A, [z] and [s], green bars). The anatomical distribution

of weights in the fitted reconstruction model revealed that the most

informative electrode sites within temporal cortex were largely

confined to pSTG (Figure 2C).

Across the sample of participants (N = 15), cross-validated

reconstruction accuracy for single trials was significantly greater

than zero in all individual participants (p,0.001, randomization

test, Figure 3A). At the population level, mean accuracy averaged

over all participants and stimulus sets (including different word sets

and continuous sentences from different speakers) was highly

significant (mean accuracy r = 0.28, p,1025, one-sample t test,

df = 14). As a function of acoustic frequency, mean accuracy

ranged from r = ,0.2–0.3 (Figure 3B).

We observed that overall reconstruction quality was influenced

by a number of anatomical and functional factors as described

Figure 1. Experiment paradigm. Participants listened to words
(acoustic waveform, top left), while neural signals were recorded from
cortical surface electrode arrays (top right, red circles) implanted over
superior and middle temporal gyrus (STG, MTG). Speech-induced
cortical field potentials (bottom right, gray curves) recorded at multiple
electrode sites were used to fit multi-input, multi-output models for
offline decoding. The models take as input time-varying neural signals
at multiple electrodes and output a spectrogram consisting of time-
varying spectral power across a range of acoustic frequencies (180–
7,000 Hz, bottom left). To assess decoding accuracy, the reconstructed
spectrogram is compared to the spectrogram of the original acoustic
waveform.
doi:10.1371/journal.pbio.1001251.g001

Author Summary

Spoken language is a uniquely human trait. The human
brain has evolved computational mechanisms that decode
highly variable acoustic inputs into meaningful elements
of language such as phonemes and words. Unraveling
these decoding mechanisms in humans has proven
difficult, because invasive recording of cortical activity is
usually not possible. In this study, we take advantage of
rare neurosurgical procedures for the treatment of
epilepsy, in which neural activity is measured directly from
the cortical surface and therefore provides a unique
opportunity for characterizing how the human brain
performs speech recognition. Using these recordings, we
asked what aspects of speech sounds could be recon-
structed, or decoded, from higher order brain areas in the
human auditory system. We found that continuous
auditory representations, for example the speech spectro-
gram, could be accurately reconstructed from measured
neural signals. Reconstruction quality was highest for
sound features most critical to speech intelligibility and
allowed decoding of individual spoken words. The results
provide insights into higher order neural speech process-
ing and suggest it may be possible to readout intended
speech directly from brain activity.

Neural Decoding of Speech Sounds
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below. First, informative temporal electrodes were primarily

localized to pSTG. To quantify this, we defined ‘‘informative’’

electrodes as those associated with parameters with high signal-to-

noise ratio in the reconstruction models (t ratio.2.5, p,0.05, false

discovery rate (FDR) correction) Figure 4A shows the anatomical

distribution of informative electrodes pooled across participants

and plotted in standardized anatomical coordinates (Montreal

Neurological Institute, MNI) [23]). The distribution was centered

in the pSTG (x = 270, y = 229, z = 12, MNI coordinates;

Brodmann area 42), and was dispersed along the anterior-

posterior axis.

Second, significant predictive power (r.0) was largely confined to

neural responses in the high gamma band (,70–170 Hz; Figure 4B;

p,0.01, one-sample t tests, df = 14, Bonferroni correction).

Predictive power for the high gamma band (,70–170 Hz) was

significantly better compared to other neural frequency bands

(p,0.05, Bonferroni adjusted pair-wise comparisons between

frequency bands, following significant one-way repeated measures

analysis of variance (ANOVA), F(30,420) = 128.7, p,10210). This is

consistent with robust speech-induced high gamma responses

reported in previous intracranial studies [24–29] and with observed

correlations between high gamma power and local spike rate [30].

Third, increasing the number of electrodes used in the reconstruc-

tion improved overall reconstruction accuracy (Figure 4C). Overall

prediction quality was relatively low for participants with five or fewer

responsive STG electrodes (mean accuracy r = 0.19, N = 6 partici-

pants) and was robust for cases with high density grids (mean accuracy

r = 0.43, N = 4, mean of 37 responsive STG electrodes per

participant).

What neural response properties allow the linear model to find

an effective mapping to the stimulus spectrogram? There are two

major requirements as described in the following paragraphs.

First, individual recording sites must exhibit reliable frequency

selectivity (e.g., Figure 2B, right column; Figures S1B, S2). An

absence of frequency selectivity (i.e., equal neural response

amplitudes to all stimulus frequencies) would imply that neural

responses do not encode frequency and could not be used to

differentiate stimulus frequencies. To quantify frequency tuning at

Figure 2. Spectrogram reconstruction. (A) Top: spectrogram of six isolated words (deep, jazz, cause) and pseudowords (fook, ors, nim) presented
aurally to an individual participant. Bottom: spectrogram-based reconstruction of the same speech segment, linearly decoded from a set of
electrodes. Purple and green bars denote vowels and fricative consonants, respectively, and the spectrogram is normalized within each frequency
channel for display. (B) Single trial high gamma band power (70–150 Hz, gray curves) induced by the speech segment in (A). Recordings are from four
different STG sites used in the reconstruction. The high gamma response at each site is z-scored and plotted in standard deviation (SD) units. Right
panel: frequency tuning curves (dark black) for each of the four electrode sites, sorted by peak frequency and normalized by maximum amplitude.
Red bars overlay each peak frequency and indicate SEM of the parameter estimate. Frequency tuning was computed from spectro-temporal receptive
fields (STRFs) measured at each individual electrode site. Tuning curves exhibit a range of functional forms including multiple frequency peaks
(Figures S1B and S2B). (C) The anatomical distribution of fitted weights in the reconstruction model. Dashed box denotes the extent of the electrode
grid (shown in Figure 1). Weight magnitudes are averaged over all time lags and spectrogram frequencies and spatially smoothed for display.
Nonzero weights are largely focal to STG electrode sites. Scale bar is 10 mm.
doi:10.1371/journal.pbio.1001251.g002
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individual electrodes, we used estimates of standard spectro-

temporal receptive fields (STRFs) (see Materials and Methods).

The STRF is a forward modeling approach commonly used to

estimate neural tuning to a wide variety of stimulus parameters in

different sensory systems [16]. We found that different electrodes

were sensitive to different acoustic frequencies important for speech

sounds, ranging from low (,200 Hz) to high (,7,000 Hz). The

majority of individual sites exhibited a complex tuning profile with

multiple peaks (e.g., Figure 2B, rows 2 and 3; Figure S2B). The full

range of the acoustic speech spectrum was encoded by responses

from multiple electrodes in the ensemble, although coverage of the

spectrum varied by participant (Figure 4D). Across participants, total

reconstruction accuracy was positively correlated with the propor-

tion of spectrum coverage (r = 0.78, p,0.001, df = 13; Figure 4D).

A second key requirement of the linear model is that the neural

response must rise and fall reliably with fluctuations in the stimulus

spectrogram envelope. This is because the linear model assumes a

linear mapping between the response and the spectrogram

envelope. This requirement for ‘‘envelope-locking’’ reveals a

major limitation of the linear model, which is most evident at fast

temporal modulation rates. This limitation is illustrated in

Figure 5A (blue curve), which plots reconstruction accuracy as a

function of modulation rate. A one-way repeated measures

ANOVA (F(5,70) = 13.99, p,1028) indicated that accuracy was

significantly higher for slow modulation rates (#4 Hz) compared

to faster modulation rates (.8 Hz) (p,0.05, post hoc pair-wise

comparisons, Bonferroni correction). Accuracy for slow and

intermediate modulation rates (#8 Hz) was significantly greater

than zero (r = ,0.15 to 0.42; one-sample paired t tests, p,0.0005,

df = 14, Bonferroni correction) indicating that the high gamma

response faithfully tracks the spectrogram envelope at these rates

[26]. However, accuracy levels were not significantly greater than

zero at fast modulation rates (.8 Hz; r = ,0.10; one-sample

paired t tests, p.0.05, df = 14, Bonferroni correction), indicating a

lack of reliable envelope-locking to rapid temporal fluctuations

[31].

Given the failure of the linear spectrogram model to reconstruct

fast modulation rates, we evaluated competing models of auditory

neural encoding. We investigated an alternative, nonlinear model

based on modulation (described in detail in [18]). Speech sounds

are characterized by both slow and fast temporal modulations

(e.g., syllable rate versus onsets) as well as narrow and broad

spectral modulations (e.g., harmonics versus formants) [7]. The

modulation model represents these multi-resolution features

explicitly through a complex wavelet analysis of the auditory

spectrogram. Computationally, the modulation representation is

generated by a population of modulation-selective filters that

analyze the two-dimensional spectrogram and extract modulation

energy (a nonlinear operation) at different temporal rates and

spectral scales (Figure 6A) [18]. Conceptually, this transformation

is similar to the modulus of a 2-D Fourier transform of the

spectrogram, localized at each acoustic frequency [18]. The

modulation model and applications to speech processing are

described in detail in [18] and [7].

The nonlinear component of the model is phase invariance to

the spectrogram envelope (Figure 6B). A fundamental difference

with the linear spectrogram model is that phase invariance permits

a nonlinear temporal coding scheme, whereby envelope fluctua-

tions are encoded by amplitude rather than envelope-locking

(Figure 6B). Such amplitude-based coding schemes are broadly

referred to as ‘‘energy models’’ [32,33]. The modulation model

therefore represents an auditory analog to the classical energy

model of complex cells in the visual system [32–36], which are

invariant to the spatial phase of visual stimuli.

Reconstructing the modulation representation proceeds simi-

larly to the spectrogram, except that individual reconstructed

stimulus components now correspond to modulation energy at

different rates and scales instead of spectral energy at different

acoustic frequencies (see Materials and Methods, Stimulus

Reconstruction). We next compared reconstruction accuracy

using the nonlinear modulation model to that of the linear

spectrogram model (Figure 5A; Figure S3). In the group data, the

nonlinear model yielded significantly higher accuracy compared to

the linear model (two-way repeated measures ANOVA; main

effect of model type, F(1,14) = 33.36, p,1024). This included

significantly better accuracy for fast temporal modulation rates

compared to the linear spectrogram model (4–32 Hz; Figure 5A,

red versus blue curves; model type by modulation rate interaction

Figure 3. Individual participant and group average reconstruc-
tion accuracy. (A) Overall reconstruction accuracy for each participant
using the linear spectrogram model. Error bars denote resampling SEM.
Overall accuracy is reported as the mean over all acoustic frequencies.
Participants are grouped by grid density (low or high) and stimulus set
(isolated words or sentences). Statistical significance of the correlation
coefficient for each individual participant was computed using a
randomization test. Reconstructed trials were randomly shuffled 1,000
times and the correlation coefficient was computed for each shuffle to
create a null distribution of coefficients. The p value was calculated as
the proportion of elements greater than the observed correlation. (B)
Reconstruction accuracy as a function of acoustic frequency averaged
over all participants (N = 15) using the linear spectrogram model.
Shaded region denotes SEM over participants.
doi:10.1371/journal.pbio.1001251.g003
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effect, F(5,70) = 3.33, p,0.01; post hoc pair-wise comparisons,

p,1024, Bonferroni correction).

The improved performance of the modulation model suggested

that this representation provided better neural sensitivity to fast

modulation rates compared to the linear spectrogram. To further

investigate this possibility, we estimated modulation rate tuning

curves at individual STG electrode sites (n = 195) using linear and

nonlinear STRFs, which are based on the spectrogram and

modulation representations, respectively (Figure S4). Consistent

with prior recordings from lateral temporal human cortex [31],

average envelope-locked responses exhibit prominent tuning to

low rates (1–8 Hz) with a gradual loss of sensitivity at higher rates

(.8 Hz) (Figure 5B and C). In contrast, the average modulation-

based tuning curves preserve sensitivity to much higher rates

approaching 32 Hz (Figure 5B and C).

Sensitivity to fast modulation rates at single STG electrodes is

illustrated for one participant in Figure 7A. In this example (the

word ‘‘waldo’’), the spectrogram envelope (blue curve, top)

fluctuates rapidly between the two syllables (‘‘wal’’ and ‘‘do,’’

,300 ms). The linear model assumes that neural responses (high

gamma power, black curves, left) are envelope-locked and directly

track this rapid change. However, robust tracking of such rapid

envelope changes was not generally observed, in violation of linear

model assumptions. This is illustrated for several individual

electrodes in Figure 7A (compare black curves, left, with blue

curve, top). In contrast, the modulation representation encodes

this fluctuation nonlinearly as an increase in energy at fast rates

(.8 Hz, dashed red curves, ,300 ms, bottom two rows). This

allows the model to capture energy-based modulation information

in the neural response. Modulation energy encoding at these sites

is quantified by the corresponding nonlinear rate tuning curves

(Figure 7A, right column). These tuning curves show neural

sensitivity to a range of temporal modulations with a single peak

rate. For illustrative purposes, Figure 7A (left) compares modula-

tion energy at the peak temporal rate (dashed red curves) with the

neural responses (black curves) at each individual site. This

illustrates the ability of the modulation model to account for a

rapid decrease in the spectrogram envelope without a correspond-

ing decrease in the neural response.

The effect of sensitivity to fast modulation rates can also be

observed when the modulation reconstruction is viewed in the

spectrogram domain (Figure 7B, middle, see Material and

Methods, Reconstruction Accuracy). The result is that dynamic

spectral information (such as the upward frequency sweep at

,400–500 ms, Figure 7B, top) is better resolved compared to the

linear spectrogram-based reconstruction (Figure 7B, bottom).

Figure 4. Factors influencing reconstruction quality. (A) Group average t value map of informative electrodes, which are predominantly
localized to posterior STG. For each participant, informative electrodes are defined as those associated with significant weights (p,0.05, FDR
correction) in the fitted reconstruction model. To plot electrodes in a common anatomical space, spatial coordinates of significant electrodes are
normalized to the MNI (Montreal Neurological Institute) brain template (Yale BioImage Suite, www.bioimagesuite.org). The dashed white line denotes
the extent of electrode coverage pooled over participants. (B) Reconstruction accuracy is significantly greater than zero when using neural responses
within the high gamma band (,70–170 Hz; p,0.05, one sample t tests, df = 14, Bonferroni correction). Accuracy was computed separately in 10 Hz
bands from 1–300 Hz and averaged across all participants (N = 15). (C) Mean reconstruction accuracy improves with increasing number of electrodes
used in the reconstruction algorithm. Error bars indicate SEM over 20 cross-validated data sets of four participants with 4 mm high density grids. (D)
Accuracy across participants is strongly correlated (r = 0.78, p,0.001, df = 13) with tuning spread (which varied by participant depending on grid
placement and electrode density). Tuning spread was quantified as the fraction of frequency bins that included one or more peaks, ranging from 0
(no peaks) to 1 (at least one peak in all frequency bins, ranging from 180–7,000 Hz).
doi:10.1371/journal.pbio.1001251.g004

Neural Decoding of Speech Sounds

PLoS Biology | www.plosbiology.org 5 January 2012 | Volume 10 | Issue 1 | e1001251



These combined results support the idea of an emergent

population-level representation of temporal modulation energy

in primate auditory cortex [37]. In support of this notion,

subpopulations of neurons have been found that exhibit both

envelope and energy-based response properties in primary

auditory cortex of non-human primates [37–39]. This has led to

the suggestion of a dual coding scheme in which slow fluctuations

are encoded by synchronized (envelope-locked) neurons, while fast

fluctuations are encoded by non-synchronized (energy-based)

neurons [37].

While these results indicate that a nonlinear model is required to

reliably reconstruct fast modulation rates, psychoacoustic studies

have shown that slow and intermediate modulation rates (,1–

8 Hz) are most critical for speech intelligibility [19,21]. These slow

temporal fluctuations carry essential phonological information

such as formant transitions and syllable rate [7,19,21]. The linear

spectrogram model, which also yielded good performance within

this range (Figure 5A; Figure S3), therefore appears sufficient to

reconstruct the essential range of temporal modulations. To

examine this issue, we further assessed reconstruction quality by

evaluating the ability to identify isolated words using the linear

spectrogram reconstructions. We analyzed a participant implanted

with a high-density electrode grid (4 mm spacing), the density of

which provided a large set of pSTG electrodes. Compared to

Figure 5. Comparison of linear and nonlinear coding of
temporal fluctuations. (A) Mean reconstruction accuracy (r) as a
function of temporal modulation rate, averaged over all participants
(N = 15). Modulation-based decoding accuracy (red curve) is higher
compared to spectrogram-based decoding (blue curve) for temporal
rates $4 Hz. In addition, spectrogram-based decoding accuracy is
significantly greater than zero for lower modulation rates (#8 Hz),
supporting the possibility of a dual modulation and envelope-based
coding scheme for slow modulation rates. Shaded gray regions indicate
SEM over participants. (B) Mean ensemble rate tuning curve across all
predictive electrode sites (n = 195). Error bars indicate SEM. Overlaid
histograms indicate proportion of sites with peak tuning at each rate.
(C) Within-site differences between modulation and spectrogram-based
tuning. Arrow indicates the mean difference across sites. Within-site,
nonlinear modulation models are tuned to higher temporal modulation
rates than the corresponding linear spectrogram models (p,1027, two
sample paired t test, df = 194).
doi:10.1371/journal.pbio.1001251.g005

Figure 6. Schematic of nonlinear modulation model. (A) The
input spectrogram (top left) is transformed by a linear modulation filter
bank (right) followed by a nonlinear magnitude operation (not shown).
This nonlinear operation extracts the modulation energy of the
incoming spectrogram and generates phase invariance to local
fluctuations in the spectrogram envelope. The input representation is
the two-dimensional spectrogram S(f,t) across frequency f and time t.
The output (bottom left) is the four-dimensional modulation energy
representation M(s,r,f,t) across spectral modulation scale s, temporal
modulation rate r, frequency f, and time t. In the full modulation
representation [18], negative rates by convention correspond to
upward frequency sweeps, while positive rates correspond to
downward frequency sweeps. Accuracy for positive and negative rates
was averaged unless otherwise shown. See Materials and Methods. (B)
Schematic of linear (spectrogram envelope) and nonlinear (modulation
energy) temporal coding. Left: acoustic waveform (black curve) and
spectrogram of a temporally modulated tone. The linear spectrogram
model (top) assumes that neural responses are a linear function of the
spectrogram envelope (plotted for the tone center frequency channel,
top right). In this case, the instantaneous output may be high or low
and does not directly indicate the modulation rate of the envelope. The
nonlinear modulation model (bottom) assumes that neural responses
are a linear function of modulation energy. This is an amplitude-based
coding scheme (plotted for the peak modulation channel, bottom
right). The nonlinear modulation model explicitly estimates the
modulation rate by taking on a constant value for a constant rate [32].
doi:10.1371/journal.pbio.1001251.g006
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lower density grid cases, data for this participant included

ensemble frequency tuning that covered the majority of the

(speech-related) acoustic spectrum (180–7,000 Hz), a factor which

we found was critical for accurate reconstruction (Figure 4D).

Spectrogram reconstructions were generated for each of 47 words,

using neural responses either from single trials or averaged over 3–

5 trials per word (same word set and cross-validated fitting

procedure as described in Figure 2). To identify individual words

from the reconstructions, a simple speech recognition algorithm

based on dynamic time warping was used to temporally align

words of variable duration [40]. For a target word, a similarity

score (correlation coefficient) was then computed between the

target reconstruction and the actual spectrograms of each of the 47

words in the candidate set. The 47 similarity scores were sorted

and word identification rank was quantified as the percentile rank

of the correct word. (1.0 indicates the target reconstruction

matched the correct word out of all candidate words; 0.0 indicates

the target was least similar to the correct word among all other

candidates.) The expected mean of the distribution of identifica-

tion ranks is 0.5 at chance level.

Word identification using averaged trials was substantially

higher than chance (Figure 8A and B, median identification

rank = 0.89, p,0.0001; randomization test), with correctly

identified words exhibiting accurate reconstructions and poorly

identified words exhibiting inaccurate reconstructions

(Figure 8C). For single trials, identification performance declined

slightly but remained significant (median = 0.76, p,0.0001;

randomization test). In addition, for each possible word pair,

we computed the similarity between the two original spectro-

grams and compared this to the similarity between the

reconstructed and actual spectrograms (using averaged trials;

Figure 8D; Figure S5). Acoustic and reconstruction word

similarities were correlated (r = 0.41, p,10210, df = 45), suggest-

ing that acoustic similarity of the candidate words is likely to

influence identification performance (i.e., identification is more

difficult when the word set contains many acoustically similar

sounds).

Discussion

These findings demonstrate that key features in continuous and

novel speech signals can be accurately reconstructed from STG

neural responses using both spectrogram and modulation-based

auditory representations, with the latter yielding better predictions

at fast temporal modulation rates. For both representations,

regions of good prediction performance included the range of

spectro-temporal modulations most critical to speech intelligibility

[19,21].

Figure 7. Example of nonlinear modulation coding and reconstruction. (A) Top: the spectrogram of an isolated word (‘‘waldo’’) presented
aurally to one participant. Blue curve plots the spectrogram envelope, summed over all frequencies. Left panels: induced high gamma responses
(black curves, trial averaged) at four different STG sites. Temporal modulation energy of the stimulus (dashed red curves) is overlaid (computed from
2, 4, 8, and 16 Hz modulation filters and normalized to maximum value). Dashed black lines indicate baseline response level. Right panels: nonlinear
modulation rate tuning curves for each site (estimated from nonlinear STRFs). Shaded regions and error bars indicate SEM. (B) Original spectrogram
(top), modulation-based reconstruction (middle), and spectrogram-based reconstruction (bottom), linearly decoded from a fixed set of STG
electrodes. The modulation reconstruction is projected into the spectrogram domain using an iterative projection algorithm and an overcomplete set
of modulation filters [18]. The displayed spectrogram is averaged over 100 random initializations of the algorithm.
doi:10.1371/journal.pbio.1001251.g007
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The primary difference between the linear spectrogram and

nonlinear modulation models was evident in the predictive

accuracy for fast temporal modulations (Figure 5). To understand

why the nonlinear modulation model performed better at fast

modulation rates, it is useful to consider how the linear and

nonlinear models make different assumptions about neural coding.

The linear and nonlinear models are specified by different

choices of stimulus representation. The linear model assumes a

linear mapping between neural responses and the auditory

spectrogram. The nonlinear model assumes a linear mapping

between neural responses and the modulation representation.

The modulation representation itself is a nonlinear transforma-

tion of the spectrogram and is based on emergent tuning

properties that have been identified in the auditory cortex [18].

Choosing a nonlinear stimulus representation effectively linear-

izes the stimulus-response mapping and allows one to fit linear

models to the new space of transformed stimulus features

[17,35]. If the nonlinear stimulus representation is a more

accurate description of neural responses, its predictive accuracy

will be higher. In this approach, the choice of stimulus

representation for reconstruction encapsulates hypotheses about

the coding strategies under study. For example, Rieke et al. [41]

reconstructed the sound pressure waveform using neural

responses from the bullfrog auditory periphery, where neural

responses phase-lock to fluctuations in the raw stimulus

waveform [2]. In the central auditory pathway, phase-locking

to the stimulus waveform is rare [2], and waveform reconstruc-

tion would be expected to fail. Instead, many neurons phase-lock

to the spectrogram envelope (a nonlinear transformation of the

stimulus waveform) [2]. Consistent with these response proper-

ties, spectrogram reconstruction has been demonstrated using

neural responses from mammalian primary auditory cortex [14]

or the avian midbrain [15]. Beyond primary auditory areas,

further processing in intermediate and higher-order auditory

cortex likely results in additional stimulus transformations [5]. In

this study, we examined human STG, a nonprimary auditory

area, and found that a nonlinear modulation representation

yielded the best overall reconstruction accuracy, particularly at

fast modulation rates ($4 Hz). This suggests that phase-locking

to the amplitude envelope is less robust at higher temporal rates

and may instead be coded by an energy-based scheme [37].

Although additional studies are needed, this is consistent with a

number of results suggesting that the capacity for envelope-

locking decreases along the auditory pathway, extending from

the inferior colliculus (32–256 Hz), medial geniculate body

(16 Hz), primary auditory cortex (8 Hz), to nonprimary auditory

areas (4–8 Hz) [2,6,26,31,42].

Fidelity of the reconstructions was sufficient to identify

individual words using a rudimentary speech recognition algo-

rithm. However, reconstruction quality at present is not clearly

Figure 8. Word identification. Word identification based on the reconstructed spectrograms was assessed using a set of 47 individual words and
pseudowords from a single speaker in a high density 4 mm grid experiment. The speech recognition algorithm is described in the text. (A)
Distribution of identification rank for all 47 words in the set. Median identification rank is 0.89 (black arrow), which is higher than 0.50 chance level
(dashed line; p,0.0001; randomization test). Statistical significance was assessed by a randomization test in which a null distribution of the median
was constructed by randomly shuffling the word pairs 10,000 times, computing median identification rank for each shuffle, and calculating the
percentile rank of the true median in the null distribution. Best performance was achieved after smoothing the spectrograms with a 2-D box filter
(500 ms, 2 octaves). (B) Receiver operating characteristic (ROC) plot of identification performance (red curve). Diagonal black line indicates no
predictive power. (C) Examples of accurately (right) and inaccurately (left) identified words. Left: reconstruction of pseudoword ‘‘heef’’ is poor and
leads to a low identification rank (0.13). Right: reconstruction of pseudoword ‘‘thack’’ is accurate and best matches the correct word out of 46 other
candidate words (identification rank = 1.0). (D) Actual and reconstructed word similarity is correlated (r = 0.41). Pair-wise similarity between the
original spectrograms of individual words is correlated with pair-wise similarity between the reconstructed and original spectrograms. Plotted values
are computed prior to spectrogram smoothing used in the identification algorithm. Gray points denote the similarity between identical words.
doi:10.1371/journal.pbio.1001251.g008

Neural Decoding of Speech Sounds

PLoS Biology | www.plosbiology.org 8 January 2012 | Volume 10 | Issue 1 | e1001251



intelligible to a human listener (Figure S7 and Supporting Audio

File S1). It is possible that a better signal-to-noise ratio or more

comprehensive (higher density) recordings in STG could produce

intelligible speech reconstructions. Alternatively, the true features

represented by STG may not be readily inverted back to an

intelligible acoustic waveform. For speech comprehension, it is

hypothesized that intermediate and higher-order auditory areas

extract or construct information-rich features of speech, while

discarding nonessential low-level acoustic information [4,5,9,

10,43]. In the case that STG applies a highly nonlinear stimulus

transformation, an exact reconstruction of the acoustic signal from

STG responses would not be possible. Instead, speech reconstruc-

tion provides an important tool to investigate the critical features

that are faithfully represented at different stages of the auditory

system. For example, we found that low spectro-temporal

modulations (temporal modulations ,8 Hz, spectral modulations

,4 cycles/octave, Figure S3) are accurately reconstructed from

spectrogram or modulation-based models. Modulations within this

range correspond to important structural features of natural

speech, including formants and syllable rate [19,21]. Although

more work is needed to characterize the neural representation in

the STG, this suggests that such key features are preserved at this

stage in auditory processing. Our results are therefore consistent

with the idea of pSTG as an intermediate stage in a hierarchy of

auditory object processing [5,9,10,44].

Hierarchical auditory object processing has been hypothesized

to follow a ventral ‘‘what’’ pathway, with an antero-lateral

gradient along the superior temporal region [5,9,10,11] where

stimulus selectivity increases from pure tones in primary auditory

cortex to words and sentences in anterior STG [5]. How can

hypotheses about the ventral pathway be tested within the stimulus

reconstruction framework? In this framework, encoding models

must be developed that encapsulate hypothesized neural mecha-

nisms. These hypotheses are then tested by comparing predictive

accuracies of the competing models [16]. For example, in the

current work we compared reconstruction accuracy of linear and

nonlinear auditory models. An important future direction is to

compare performance of these auditory models to higher level

models that implement more complex stimulus selectivity.

Previous work suggests that categorical representations are an

important organizational principle in STG [9,45–47]. These

studies found evidence of neural selectivity for entire speech

categories, such as vowels or syllables. Unlike the auditory

representations studied here, these neural responses were relatively

insensitive to acoustic variation. At a more abstract level of

representation, a recent functional imaging study also demon-

strated that the semantic content of nouns could be used as an

effective encoding model across multiple cortical regions [48].

An important application of this approach has also been

demonstrated in the study of visual object recognition in the

primate visual system [36,49,50]. These studies found that

structural encoding models, based on spatio-temporal visual

features, yielded good performance in primary and intermediate

visual areas, including visual areas V1, V2, and V3, whereas a

high level encoding model based on semantic features was

required to achieve good performance in higher level areas such

as V4 and lateral occipital cortex [50]. Our results suggest that a

similar approach may be usefully applied to the auditory cortex,

where structural auditory models may partially account for

responses in primary and intermediate areas (e.g., A1 and

pSTG), but development of higher level encoding models could

be required to describe more anterior areas in the ventral

auditory pathway. As understanding of cortical speech repre-

sentation improves, future research into speech reconstruction

may also be useful for development of neural interfaces for

communication, for example by revealing the content of inner

speech imagery.

Materials and Methods

Participants and Neural Recordings
Electrocorticographic (ECoG) recordings were obtained using

subdural electrode arrays implanted in 15 patients undergoing

neurosurgical procedures for epilepsy or brain tumor. All parti-

cipants volunteered and gave their informed consent before

testing. The experimental protocol was approved by the Johns

Hopkins Hospital, Columbia University Medical Center, Univer-

sity of California, San Francisco and Berkeley Institutional Review

Boards and Committees on Human Research. Electrode grids had

center-to-center distance of either 4 mm (N = 4 participants) [46]

or 10 mm (N = 11) [24,25]. Grid placement was determined

entirely by clinical criteria and covered left or right fronto-

temporal regions in all patients. Localization and coregistration of

electrodes with the structural MRI is described in detail in [51].

Multi-channel ECoG data were amplified and digitally recorded

with sampling rate = 1,000 Hz (N = 6 participants) [24], 2,003 Hz

(N = 5) [25], or 3,052 Hz (N = 4) [46]. All ECoG signals were

remontaged to a common average reference [24] after removal of

channels with artifacts or excessive noise (including electromag-

netic noise from hospital equipment and poor contact with the

cortical surface). Time-varying high gamma band power (70–

150 Hz) was extracted from the multi-channel ECoG signal using

the Hilbert-Huang transform [25], converted to standardized

z-scores, and used for all analyses (except Figure 4B in which the

ECoG signal was filtered into 30 bands of width 10 Hz, ranging

from 1–300 Hz, in order to calculate band-specific prediction

accuracy). Data from a variety of language tasks were analyzed.

Tasks included passive listening (N = 5 participants), target word

detection (N = 5), and word/sentence repetition (N = 5).

Speech Stimuli
Speech stimuli consisted of isolated words from a single speaker

(N = 10 participants) or sentences from a variety of male and

female speakers (N = 5). Isolated words included nouns, verbs,

proper names, and pseudowords and were recorded by a native

English female speaker (0.3–1 s duration, 16 kHz sample rate).

Sentences were phonetically transcribed stimuli from the Texas

Instruments/Massachusetts Institute of Technology (TIMIT)

database (2–4 s, 16 kHz) [52]. Stimuli were presented aurally at

the patient’s bedside using either external free-field loudspeakers

or calibrated ear inserts (Etymotic ER-5A) at approximately 70–

80 dB.

The spectrogram representation (linear model) was generated

from the speech waveform using a 128 channel auditory filter bank

mimicking the auditory periphery [18,53]. Filters had logarithmi-

cally spaced center frequencies ranging from 180–7,000 Hz and

bandwidth of approximately 1/12th octave. The spectrogram was

subsequently downsampled to 32 frequency channels.

The modulation representation (nonlinear model) was obtained

by a 2-D complex wavelet transform of the 128 channel auditory

spectrogram [18], implemented by a bank of causal modulation-

selective filters spanning a range of spectral scales (0.5–8 cyc/oct)

and temporal rates (1–32 Hz). The modulation selective filters are

idealized spectro-temporal receptive fields similar to those

measured in mammalian primary auditory cortex (Figure 6).

The filter bank output constitutes a complex-valued time-varying

multi-dimensional speech representation (downsampled to 32

acoustic frequency612 rate65 scale = 1,920 total stimulus chan-
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nels) [18]. The modulation representation is obtained by taking

the magnitude of this complex-valued output. In specific analyses

(stated in the text), reduced modulation representations were used

to reduce dimensionality and to achieve an acceptable computa-

tional load, as well as to verify that tuning estimates were not

affected by regularization, given the large number of fitted

parameters in the full model. Reduced modulation representations

included (1) rate-scale (60 total channels) and (2) rate only (six total

channels). The rate-scale representation was obtained by averag-

ing along the irrelevant dimension (frequency) prior to the

nonlinear magnitude operation. The rate only representation

was obtained by filtering the spectrogram with pure temporal

modulation filters (described in detail in Chi et al. [18]). Note that

spectro-temporal filtering of the spectrogram is directional and

captures upward and downward frequency sweeps, which by

convention are denoted as positive and negative rates, respectively.

Pure temporal filtering in the rate-only representation is not

directional and results in half the total number of rate channels.

These operations are described in detail in Chi et al. [18]. Figure

S6 summarizes the stimulus correlations present in the linear and

nonlinear representations.

Stimulus Reconstruction
The stimulus reconstruction model is the linear mapping

between the responses at a set of electrodes and the original

stimulus representation (e.g., modulation or spectrogram repre-

sentation) [12,14]. For a set of N electrodes, we represent the

response of electrode n at time t = 1 … T as R(t, n). The

reconstruction model, g(t, f, n), is a function that maps R(t, n) to

stimulus S(t, f) as follows:

ŜS(t,f )~
X

n

X

t

g(t,f ,n) R(t{t,n), ð1Þ

where ŜS denotes the estimated stimulus representation. Equation 1

implies that the reconstruction of each channel in the stimulus

representation, Sf (t), from the neural population is independent of

the other channels (estimated using a separate set of gf (t, n)). If we

consider the reconstruction of one such channel, it can be written

as:

ŜSf (t)~
X

n

X

t

gf (t,n)R(t{t,n): ð2Þ

The entire reconstruction function is then described as the

collection of functions for each stimulus feature:

G~ g1,g2, . . . gFf g: ð3Þ

For the spectrogram, time-varying spectral energy in 32 individual

frequency channels was reconstructed. For the modulation

representation, unless otherwise stated we reconstructed the

reduced rate-scale representation, which consists of time-varying

modulation energy in 60 rate-scale channels (defined in Speech

Stimuli). We used t= 100 temporal lags, discretized at 10 ms.

Model Fitting
Prior to model fitting, stimuli and neural response data were

synchronized, downsampled to 100 Hz, and standardized to zero

mean and unit standard deviation. Model parameters (G in Eqn. 3)

were fit to a training set of stimulus-response data (ranging from

2.5–17.5 min for different participants) using coordinate gradient

descent with early stopping regularization, an iterative linear

regression algorithm [16,36,49]. Each data set was divided into

training (80%), validation (10%), and test sets (10%). Overfitting

was minimized by monitoring prediction accuracy on the

validation set and terminating the algorithm after a series of 50

iterations failed to improve performance (an indication that

overfitting was beginning to occur). Reconstruction accuracy was

then evaluated on the independent test set. Coordinate descent

produces a sparse solution in the weight vector (i.e., most weight

values set to zero) and essentially performs variable selection

simultaneously with model fitting [17]. Consequently, there is no

requirement to preselect electrodes for the reconstruction model.

For grid sizes studied here, inclusion of all electrodes in the

reconstruction model can be advantageous because the algorithm

encourages irrelevant parameters to maintain zero weight, while

allowing the model to capture additional variance using electrodes

potentially excluded by feature selection approaches. Equal

numbers of parameters are used to estimate each stimulus channel

in both linear and nonlinear models. For each stimulus channel,

the number of parameters in the corresponding reconstruction

filter is N electrodes6100 time lags (the number of electrodes for

each participant was determined by clinical criteria and therefore

N varied by participant).

Cross-Validation
Parameter estimation was performed by a cross-validation

procedure using repeated random subsampling [54], also referred

to as Monte Carlo cross-validation [55]. This has the advantage

over k-fold cross-validation in that the proportion of train/test

data is independent of the number of folds. Repeated random sub-

sampling is similar to a bootstrap procedure (without replacement)

that ensures there is no overlap between training and test data sets.

For each repeat, trials were randomly partitioned into training

(80% of trials), validation (10%), and test sets (10%); model fitting

was then performed using the training/validation data; and

reconstruction accuracy was evaluated on the test set. This

procedure is repeated multiple times (depending on computational

load) and the parameters and reconstruction accuracy measures

were averaged over all repeats. The forward encoding models

were estimated using 20 resamples; the spectrogram and

modulation reconstruction models were estimated using 10 and

3 resamples, respectively (due to increasing computational load).

Identical data partitions were used for comparing predictive power

for different reconstruction models (i.e., spectrogram versus

modulation) to ensure potential differences were not due to

different stimuli or noise levels in the evaluation data. To check

stability of the generalization error estimates, we verified that

estimated spectrogram reconstruction accuracy was stable as a

function of the number of resamples used in the estimation

(ranging from 3 to 10). The total duration of the test set equaled

the length of the concatenated resampled data sets (range of ,0.8–

17.5 min across participants). Standard error of individual

parameters was calculated as the standard deviation of the

resampled estimates [17]. Statistical significance of individual

parameters was assessed by the t-ratio (coefficient divided by its

resampled standard error estimate). Model fitting was performed

with the MATLAB toolbox STRFLab (http://strflab.berkeley.

edu).

Reconstruction Accuracy
Reconstruction accuracy was quantified separately for each

stimulus component by computing the correlation coefficient

(Pearson’s r) between the reconstructed and original stimulus

component. For each participant, this yielded 32 individual

correlation coefficients for the 32 channel spectrogram model
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and 60 correlation coefficients for the 60 channel rate-scale

modulation model (defined in Speech Stimuli). Overall recon-

struction accuracy is reported as the mean correlation over all

stimulus components.

To make a direct comparison of modulation and spectro-

gram-based accuracy, the reconstructions need to be compared

in the same stimulus space. The linear spectrogram reconstruc-

tion was therefore projected into the rate-scale modulation

space (using the modulation filterbank as described in Speech

Stimuli). This transformation provides an estimate of the

modulation content of the spectrogram reconstruction and

allows direct comparison with the modulation reconstruction.

The transformed reconstruction was then correlated with the 60

rate-scale components of the original stimulus. Accuracy as a

function of rate (Figure 5A) was calculated by averaging over the

scale dimension. Positive and negative rates were also averaged

unless otherwise shown. Comparison of reconstruction accuracy

for a subset of data in the full rate-scale-frequency modulation

space yielded similar results. To impose additivity and

approximate a normal sampling distribution of the correlation

coefficient statistic, Fisher’s z-transform was applied to correla-

tion coefficients prior to tests of statistical significance and prior

to averaging over stimulus channels and participants. The

inverse z-transform was then applied for all reported mean r

values.

To visualize the modulation-based reconstruction in the

spectrogram domain (Figure 7B), the 4-D modulation represen-

tation needs to be inverted [18]. If both magnitude and phase

responses are available, the 2-D spectrogram can be restored by

a linear inverse filtering operation [18]. Here, only the

magnitude response is reconstructed directly from neural

activity. In this case, the spectrogram can be recovered

approximately from the magnitude-only modulation representa-

tion using an iterative projection algorithm and an overcomplete

set of modulation filters as described in Chi et al. [18]. Figure 7B

displays the average of 100 random initializations of this

algorithm. This approach is subject to non-neural errors due

to the phase-retrieval problem (i.e., the algorithm does not

perfectly recover the spectrogram, even when applied to the

original stimulus) [18]. Therefore, quantitative comparisons with

the spectrogram-based reconstruction were performed in the

modulation space.

Reconstruction accuracy was cross-validated and the reported

correlation is the average over all resamples (see Cross-Validation)

[53]. Standard error is computed as the standard deviation of the

resampled distribution [17]. The reported correlations are not

corrected to account for the noise ceiling on prediction accuracy

[16], which limits the amount of potentially explainable variance.

An ideal model would not achieve perfect prediction accuracy of

r = 1.0 due to the presence of random noise that is unrelated to the

stimulus. With repeated trials of identical stimuli, it is possible to

estimate trial-to-trial variability to correct for the amount of

potentially explainable variance [56]. In the experiments reported

here, a sufficient number of trial repetitions (.5) was generally

unavailable for a robust estimate, and uncorrected values are

therefore reported.

STRF Encoding Models
Encoding models describe the linear mapping between the

stimulus representation and the neural response at individual sites.

For a stimulus representation s(x,t) and instantaneous neural

response r(t) sampled at times t = 1 … T, the encoding model is

defined as the linear mapping [14,56]:

r tð Þ~
XX ,U

x~1,
u~0

h x,uð Þs x,t{uð Þze tð Þ: ð4Þ

Each coefficient of h indicates the gain applied to stimulus feature x

at time lag u. Positive values indicate components of the stimulus

correlated with increased neural response, and negative values

indicate components correlated with decreased response. The

residual, e(t), represents components of the response (nonlinearities

and noise) that cannot be predicted by the encoding model.

Model fitting for the STRF models (h in Eqn. 4) proceeded

similarly to reconstruction except a standard gradient descent

algorithm (with early stopping regularization) was used that does

not impose a sparse solution [16,36,49]. The linear STRF model

included 32 frequency channels6100 time lags (3,200 parameters).

The full nonlinear modulation STRF model included 32

frequency65 scale612 rate6100 time lags (192,000 parameters)

and the reduced rate-time modulation model (Figure S4) included

6 rate6100 time lags (600 parameters). The STRF models were

cross-validated using 20 resampled data sets with no overlap

between training and test partitions within each resample. Data

partitions were identical across STRF model type (linear and

nonlinear). We did not enforce identical resampled data sets for

estimating STRF and reconstruction models, because the

predictive power of these two approaches is not comparable.

Tuning curves were estimated from STRFs as follows: Frequency

tuning was estimated from the linear STRF models by first setting

all inhibitory weights to zero and then summing across the time

dimension [53]. Nonlinear rate tuning was estimated from the

nonlinear STRF modulation model by the same procedure, using

the reduced rate-only representation. Linear rate tuning was

estimated from the linear STRF model by filtering the fitted STRF

with the modulation filterbank (see Speech Stimuli) and averaging

along the irrelevant dimensions. Linear rate tuning computed in

this way was similar to that computed from the modulation

transfer function (modulus of the 2-D Fourier transform) of the

fitted linear STRF [57]. For all tuning curves, standard error was

computed as the standard deviation of the resampled estimates

[17]. Frequency tuning curve peaks were identified as significant

parameters (t.2.0) separated by more than a half octave. To

calculate ensemble tuning curves (Figure 5B), the tuning curve for

each site was normalized by the maximum value and averaged

across sites. STG sites with forward prediction accuracy of r.0.1

were analyzed (n = 195).

Supporting Information

Figure S1 Anatomical distribution of surface local field potential

(LFP) responses and linear STRFs in a low density grid participant

(10 mm electrode spacing). (A) Trial averaged spectral LFP

responses to English sentences (2–4 s duration) at individual

electrode sites. Consistent with previous intracranial language

studies [1–5], speech stimuli evoke increased high gamma power

(,70–150 Hz) sometimes accompanied by decreased power at

lower frequencies (,40 Hz) throughout sites in the temporal

auditory cortex. Black outline indicates temporal cortex sites with

high gamma responses (.0.5 SD from baseline). (B) Example

linear STRFs across all sites for one participant. All models are fit

to power in the high gamma band range (70–150 Hz). (C)

Anatomical location of subdural electrode grid (10 mm electrode

spacing). Yellow outline indicates sites as in (A) and (B).

(TIF)
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Figure S2 Frequency tuning. (A) Left panels: linear STRFs for

two example electrode sites. Right panels: pure tone frequency

tuning (black curves) matches frequency tuning derived from fitted

linear STRF models (red curves). For one participant, pure tones

(375–6,000 Hz, logarithmically spaced) were presented for 100 ms

at 80 dB. Pure tone tuning curves were calculated as the

amplitudes of the induced high gamma response across tone

frequencies. STRF-derived tuning curves were calculated by first

setting all inhibitory weights to zero and then summing across the

time dimension [6]. At these two sites, frequency tuning is

approximately high-pass (top) or low-pass (bottom). (B) Distribu-

tion of the number of frequency tuning peaks across significant

electrodes (N = 15 participants) estimated from linear STRF

models (32-channel). The majority of sites exhibit complex

frequency tuning patterns of 2–5 peaks. Peaks were identified as

significant parameters (t.2.0) separated by more than a half

octave.

(TIF)

Figure S3 Mean reconstruction accuracy for the joint rate-scale

space across all participants (N = 15). Top: modulation-based

(nonlinear) decoding accuracy is significantly higher compared to

frequency-based (linear) decoding (bottom) for all spectral scales at

temporal rates $16 Hz (p,0.05, post hoc pair-wise comparisons,

Bonferroni correction, following significant two-way repeated

measures ANOVA; model type by stimulus component interaction

effect, F(59,826) = 1.84, p,0.0005).

(TIF)

Figure S4 Modulation rate tuning was estimated from both

linear and nonlinear STRF models, based on the spectrogram or

modulation representation, respectively. Linear STRFs have a 2-D

parameter space (frequency6time). Modulation rate tuning for the

linear STRF was computed by filtering the fitted STRF model

with the modulation filterbank (see Materials and Methods) and

averaging along the irrelevant dimensions. Modulation rate tuning

computed in this way was similar to that computed from the

modulation transfer function (MTF) (modulus of the 2-D Fourier

transform of the fitted STRF [7]). Nonlinear STRFs have a 4-D

parameter space (rate6scale6frequency6time). Modulation-based

rate tuning curves were computed by summing across the three

irrelevant dimensions [8]. Modulation rate tuning was similar

whether this procedure was applied to a reduced dimension model

(rate6time only) or to the marginalized full model. Reported

estimates of modulation rate tuning were computed from the

reduced (rate6time) models. (A) Left: example linear STRF. The

linear STRF can be transformed into rate-scale space (the MTF,

right) by taking the modulus of the 2-D Fourier transform [7] or by

filtering the STRF with the modulation filter bank. The linear

modulation rate tuning curve (blue curve, top) is obtained after

averaging along the scale dimension. (B) Left: example nonlinear

STRF from the same site as in (A), fit in the rate-time parameter

space. Right: the corresponding modulation-based rate tuning

curve (red) is plotted against the spectrogram-based tuning curve

(blue) from (A) (only positive rates are shown).

(TIF)

Figure S5 Confusion matrix for word identification (Figure 8).

Left: pair-wise similarities (correlation coefficient) between actual

auditory spectrograms of each word pair. Right: pair-wise

similarities between reconstructed and actual spectrograms of

each word pair. Correlations were computed prior to any

spectrogram smoothing.

(TIF)

Figure S6 Stimulus correlations in linear and nonlinear stimulus

representations. Speech, like other natural sounds, has strong

stimulus correlations (illustrated for acoustic frequency, top panels,

and temporal modulation rate, bottom panels). Correlations were

estimated from 1,000 randomly selected TIMIT sentences at

different time lags (t = 0, 50, 250 ms; note the temporal

asymmetry due to the use of causal modulation filters). Under

an efficient coding hypothesis [9], these statistical redundancies

may be exploited by the brain during sensory processing. In this

study, we used an optimal linear estimator (Wiener filter) [10],

which is essentially a multivariate linear regression and does not

account for correlations among the output variables. Stimulus

reconstruction therefore reflects an upper bound on the stimulus

features that are encoded by the neural ensemble [10]. As

described in previous work [10,11], the effect of stimulus statistics

on reconstruction accuracy can be explored systematically using

different stimulus priors.

(TIF)

Figure S7 Audio playback of reconstructed speech. The audio

file contains a sequence of six isolated words that were

reconstructed from single trial neural activity. Single trial

reconstructions are generally not intelligible. However, coarse

features such as syllable structure may be discerned. In addition,

up and down frequency sweeps (corresponding to faster

temporal rates) are more evident in the modulation reconstruc-

tions compared to the spectrogram reconstructions. Perceptual

similarities between original and reconstructed words can be

more easily recognized after first listening to the original sound.

In the audio file, each word is presented as a sequence of the

original sound heard by the participant, followed by the

spectrogram (linear) reconstruction, followed by the modulation

(nonlinear) reconstruction. The figure shows the spectrograms of

the original and reconstructed words. For audio playback, the

spectrogram or modulation representations must be converted

to an acoustic waveform, a transformation that requires both

magnitude and phase information. Because the reconstructed

representations are magnitude-only, the phase must be estimat-

ed. In general, this is known as the phase retrieval problem [8].

To recover the acoustic waveform from the spectrogram, we

used an iterative projection algorithm to estimate the phase [8].

This step introduces additional acoustic artifacts that can distort

the auditory features reconstructed directly from neural

responses. Consequently, the audio file is an accurate but not

perfect reflection of the reconstructed speech representation. A

similar algorithm can be used to recover the spectrogram from

the modulation representation [8]. For the purposes of this

demo, we instead projected the spectrogram reconstruction into

the (complex) modulation domain, extracted the phase, and

then combined the extracted phase with the reconstructed

magnitude of the modulation representation. With both phase

and magnitude information, an invertible transformation can

then be used to convert the (complex) modulation representa-

tion back to the spectrogram [8]. Finally, to aid perceptual

inspection of the reconstructions, the sample rate of the audio

file is slightly slower (14 kHz) than that presented to participants

(16 kHz).

(TIF)

Text S1 Supporting Information references.

(PDF)

Audio File S1 Example audio of reconstructed speech.

(WAV)
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