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Abstract

This article is a tutorial overview of a sample of central issues in visual cognition
, focusing on the recognition of shapes and the representation of objects

and spatial relations in perception and imagery . Brief reviews of the state of

the art are presented , followed by more extensive presentations of contemporary

theories , findings , and open issues . I discuss various theories of shape recognition
, such as template , feature , Fourier , structural description , Marr - Nishi -

hara , and massively parallel models , and issues such as the reference frames ,

primitives , top -down processing , and computational architectures used in spatial 

cognition . This is followed by a discussion of mental imagery , including

conceptual issues in imagery research , theories of imagery , imagery and perception
, image transformations , computational complexities of image processing

, neuropsychological issues , and possible functions of imagery . Connections 
between theories of recognition and of imagery , and the relevance of the

papers contained in this issue to the topics discussed , are emphasized throughout
.

Recognizing and reasoning about the visual environment is something that

people do extraordinarily well ; it is often said that in these abilities an average

three -year old makes the most sophisticated computer vision system look

embarrassingly inept . Our hominid ancestors fabricated and used tools for

millions of years before our species emerged , and the selection pressures

brought about by tool use may have resulted in the development of sophisticated 
faculties allowing us to recognize objects and their physical properties ,

to bring complex knowledge to bear on familiar objects and scenes , to
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negotiate environments skillfully , and to reason about the possible physical
interactions among objects present and absent . Thus visual cognition , no less
than language or logic , may be a talent that is central to our understanding
of hum ~n intelligence (Jackendoff , 1983; Johnson -Laird , 1983; Shepard and
Cooper , 1982) .

Within the last 10 years there has been a great increase in our understanding 
of visual cognitive abilities . We have seen not only new empirical demonstrations

, but also genuinely new theoretical proposals and a new degree
of explicitness and sophistication brought about by the use of computational
modeling of visual and memory process es. Visual cognition , however , occupies 

a curious place within cognitive psychology and within the cognitive

psychology curriculum . Virtually without exception , the material on shape
recognition found in introductory textbooks in cognitive psychology would
be entirely familiar to a researcher or graduate student of 20 or 25 years ago.
Moreover , the theoretical discussions of visual imagery are cast in the same
loose metaphorical vocabulary that had earned the concept a bad name in
psychology and philosophy for much of this century . I also have the impression 

that much of the writing pertaining to visual cognition among researchers

who are not directly in this area , for example , in neuropsychology , individual
differences research , developmental psychology , psychophysics , and information 

processing psychology , is informed by the somewhat antiquated and
imprecise discussions of visual cognition found in the textbooks .

The purpose of this special issue of Cognition is to highlight a sample of
theoretical and empirical work that is on the cutting edge of research on
visual cognition . The papers in this issue, though by no means a representative 

sample , illustrate some of the questions , techniques , and types of theory
that characterize the modern study of visual cognition . The purpose of this
introductory paper is to introduce students and researchers in neighboring
disciplines to a selection of issues and theories in the study of visual cognition
that provide a backdrop to the particular papers contained herein . It is meant
to bridge the gap between the discussions of visual cognition found in
textbooks and the level of discussion found in contemporary work .

Visual cognition can be conveniently divided into two subtopics . The first
is the representation of information concerning the visual world currently

. before a person . When we behave in certain ways or change our knowledge
about the world in response to visual input , what guides our behavior or
thought is rarely some simple physical property of the input such as overall
brightness or contrast . Rather , vision guides us because it lets us know that
we are in the presence of a particular configuration of three -dimensional
shapes and particular objects and scenes that we know to have predictable
properties . 'Visual re cognition ' is the process that allows us to determine on
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the basis of retinal input that particular shapes, configurations of shapes,
objects , scenes, and their properties are before us.

The second subtopic is the process of remembering or reasoning about
shapes or 9bjects that are not currently before us but must be retrieved from
memory or constructed from a description . This is usually associated with the
topic of 'visual imagery ' . This tutorial paper is divided into two major sections

, devoted to the representation and recognition of shape, and to visual
imagery . Each section is in turn subdivided into sections discussing the
background to each topic , some theories on the relevant process es, and some
of the more important open issues that will be foci of research during the
comIng years .

Visual

Shape recognition is a difficult problem because the immediate input to the
visual system (the spatial distribution of intensity and wavelength across the
retinas - hereafter , the " retinal array " ) is related to particular objects in
highly variable ways . The retinal image projected by an object - say, a
notebook - is displaced , dilated or contracted , or rotated on the retina when
we move our eyes, ourselves , or the book ; if the motion has a component in
depth , then the retinal shape of the image changes and parts disappear and
emerge as well . If we are not focusing on the book or looking directly at it ,
the edges of the retinal image become blurred and many of its finer details
are lost . If the book is in a complex visual context , parts may be occluded ,
and the edges of the book may not be physically distinguishable from the
edges and surface details of surrounding objects , nor from the scratch es,
surface markings , shadows , and reflections on the book itself .

Most theories of shape recognition deal with the indirect and ambiguous
mapping between object and retinal image in the following way . In long -term
memory there is a set of representations of objects that have associated with
them information about their shapes. The information does not consist of a
replica of a pattern of retinal stimulation , but a canonical representation of
the object 's shape that captures some invariant properties of the object in all
its guises. During recognition , the retinal image is converted into the same
format as is used in long -term memory , and the memory representation that
matches the input the closest is selected . Different theories of shape recognition 

make different assumptions about the long -term memory representations
involved , in particular , how many representations a single object will have ,
which class of objects will be mapped onto a single representation , and what
the format of the representation is (i .e. which primitive symbols can be found



Template matching
This is the simplest class of models for pattern recognition . The long term

memory representation of a shape is a replica of a pattern of retinal stimulation 
projected by that shape. The input array would be simultaneously

superimposed with all the templates in memory , and the one with the closest
above-threshold match (e.g. , the largest ratio of matching to nonmatching
points in corresponding locations in the input array ) would indicate the pattern 

that is present .

Usually this model is presented not as a serious theory of shape recognition
, but as a straw man whose destruction illustrates the inherent difficulty

of the shape recognition process . The problems are legion : partial matches
could yield false alarms (e.g., a 'P' in an 'R ' template ) ; changes in distance ,
location , and orientation of a familiar object will cause this model to fail to
detect it , as will occlusion of part of the pattern , a depiction of it with wiggly
or cross-hatched lines instead of straight ones, strong shadows , and many
other distortions that we as perceivers take in stride .

There are , nonetheless , ways of patching template models . For example ,
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in a representation , and what kinds of relations among them can be
specified ) . They will differ in regards to which sports of preprocessing are
done to the retinal image (e.g., filtering , contrast enhancement , detection of
edges) prior to matching , and in terms of how the retinal input or memory
representations are transformed to bring them into closer correspondence .
And they differ in terms of the metric of goodness of fit that determines
which memory representation fits the input best when none of them fits it
exactly .

Traditional theories of shape recognition

Cognitive psychology textbooks almost invariably describe the same three or
so models in their chapters on pattern recognition . Each of these models is
fundamentally inadequate . However , they are not always inadequate in the
ways the textbooks describe , and at times they are inadequate in ways that
the textbooks do not point out . An excellent introduction to three of these
models - templates , features , and structural descriptions - can be found in
Lindsay and Norman ( 1977) ; introductions to Fourier analysis in vision , which
forms the basis of the fourth model , can be found in Cornsweet ( 1980) and
Weisstein ( 1980) . In this section I will review these models extremely briefly ,
and concentrate on exactly why they do not work , because a catalogue of
their deficits sets the stage for a discussion of contemporary theories and
issues in shape recognition .
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multiple templates of a pattern , corresponding to each of its possible displacements
, rotations , sizes, and combinations thereof , could be stored . Or , the

input pattern could be rotated , displaced , and scaled to a canonical set of
values before matching against the templates . The textbooks usually dismiss
these poss.ibilities : it is said that the product of all combinations of transformations 

and shapes would require more templates than the brain could store ,

and that in advance of recognizing a pattern , one cannot in general determine
which transformations should be applied to the input . However , it is easy to
show that these dismissals are made too quickly . For example , Arnold Trehub
( 1977) has devised a neural model of recognition and imagery , based on
templates , that address es these problems (this is an example of a 'massively
parallel ' model of recognition , a class of models I will return to later ) . Contour 

extraction preprocess es feed the matching process with an array of symbols 

indicating the presence of edges, rather than with a raw array of intensity
levels . Each template could be stored in a single cell , rather than in a space-
consuming replica of the entire retina : such a cell would synapse with many
retinal inputs , and the shape would be encoded in the pattern of strengths of
those synapses. The input could be matched in parallel against all the stored
memory templates , which would mutually inhibit one another so that partial
matches such as 'P' for 'R ' would be eliminated by being inhibited by better
matches . Simple neural networks could center the input pattern and quickly
generate rotated and scaled versions of it at a variety of sizes and orientations ,
or at a canonicalsize and orientation (e.g., with the shape's axis of elongation
vertical ) ; these transformed patterns could be matched in parallel against the
stored templates .

Nonetheless , there are reasons to doubt that even the most sophisticated
versions of template models would work when faced with realistic visual
inputs . First , it is unlikely that template models can deal adequately with the
third dimension . Rotations about any axis other than the line of sight cause
distortions in the projected shape of an object that cannot be inverted by any
simple operation on retina -like arrays . For example , an arbitrary edge might
move a large or a small amount across the array depending on the axis and
phase of rotation and the depth from the viewer . 3-D rotation causes some
surfaces to disappear entirely and new ones to come into view . These problems 

occur even if one assumes that the arrays are constructed subsequent to

stereopsis and hence are three -dimensional (for example , rear surfaces are
still not represented , there are a bewildering number of possible directions
of translation and axes of rotation , each requiring a different type of retinal
transformation ) .

Second , template models work only for isolated objects , such as a letter
presented at the center of a blank piece of paper : the process would get
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nowhere if it operated , say, on three -fifths of a book plus a bit of the edge
of the table that it is lying on plus the bookmark in the book plus the end of
the pencil near it , or other collections of contours that might be found in a
circums .cribed region of the retina . One could posit some figure - ground
segregation preprocess occurring before template matching , but this has problems 

of its own . Not only would such a process be highly complex (for example
, it would have to distinguish intensity changes in the image resulting from

differences in depth and material from those resulting from differences in
orientation , pigmentation , shadows , surface scratch es, and specular (glossy)
reflections ) , but it probably interacts with the recognition procesis and hence
could not precede it . For example , the figure - ground segregation process
involves carving up a set of surfaces into parts , each of which can then be
matched against stored templates . This process is unlikely to be distinct from
the process of carving up a single object into its parts . But as Hoffman and
Richards ( 1984) argue in this issue, a representation of how an object is
decomposed into its parts may be the first representation used in accessing
memory during recognition , and the subsequent matching of particular parts ,
template -style or not , may be less important in determining how to classify
a shape.

Feature models

This class of models is based on the early " Pandemonium " model of shape
recognition (Selfridge , 1959; Selfridge and Neisser , 1960) . In these models ,
there are no templates for entire shapes; rather , there are mini -templates or
' feature detectors ' for simple geometric features such as vertical and horizontal 

lines , curves , angles, 'T '-junctions , etc . There are detectors for every
feature at every location in the input array . and these detectors send out a

graded signal encoding the degree of match between the target feature and
the part of the input array they are ' looking at ' . For every feature (e.g. , an
open curve ) , the levels of activation of all its detectors across the input array
are summed , or the number of occurrences of the feature are counted (see
e.g., Lindsay and Norman , 1977) , so the output of this first stage is a set of
numbers , one for each feature .

The stored representation of a shape consists of a list of the features com-
o posing the shape, in the form of a vector of weights for the different features ,

a list of how many tokens of each feature are present in the shape, or both .
For example , the representation of the shape of the letter ' A ' might specify
high weights for ( 1) a horizontal segment , (2) right -leaning diagonal segment ,
(3) a left -leaning diagonal segment , (4) an upward -pointing acute angle , and
so on , and low or negative weights for curved and vertical segments . The
intent is to use feature weights or counts to give each shape a characterization



that is invariant across transformations of it . For example , since the features
are all independent of location , any feature specification will be invariant
across translations and scale changes; and if features referring to orientation
(e.g. " left -)eaning diagonal segment " ) are eliminated , and only features distinguishing 

straight segments from curves from angles are retained , then the
description will be invariant across frontal plane rotations .

The match between input and memory would consist of some comparison
of the levels of activation of feature detectors in the input with the weights
of the corresponding features in each of the stored shape representations , for
example , the product of those two vectors , or the number of matching features 

minus the number of mismatching features . The shape that exhibits the

highest degree of match to the input is the shape recognized .
The principal problem with feature analysis models of recognition is that

no one has ever been able to show how a natural shape can be defined in
terms of a vector of feature weights . Consider how one would define the
shape of a horse . Naturally , one could define it by giving high weights to
features like 'mane ' , ' hooves ' , 'horse 's head ' , and so on , but then detecting
these features would be no less difficult than detecting the horse itself . Or ,
one could try to define the shape in terms of easily detected features such as
vertical lines and curved segments , but horses and other natural shapes are
composed of so many vertical lines and curved segments (just think of the
nose alone , or the patterns in the horse 's hide ) that it is hard to believe that
there is a feature vector for a horse 's shape that would consistently beat out
feature vectors for other shapes across different views of the horse . One
could propose that there is a hierarchy of features , intermediate ones like
'eye' being built out of lower ones like ' line segment ' or 'circle ' , and higher
ones like 'head ' being built out of intermediate ones like 'eye' and 'ear '
(Selfridge , for example , posited " computational demons " that detect Boolean
combinations of features ) , but no one has shown how this can be done for
complex natural shapes.

Another , equally serious problem is that in the original feature models the
spatial relationships among features - how they are located and oriented with
respect to one another - are generally not specified ; only which ones are
present in a shape and perhaps how many times . This raises serious problems
in distinguishing among shapes consisting of the same features arranged in
different ways, such as an asymmetrical letter and its mirror image . For the
same reason , simple feature models can turn reading into an anagram problem

, and can be shown formally to be incapable of detecting certain pattern
distinctions such as that between open and closed curves (see Minsky and
Papert , 1972) .

One of the reasons that these problems are not often raised against feature

Visual cognition 7
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models is that the models are almost always illustrated and referred to in

connection with recognizing letters of the alphabet or schematic line drawings

. This can lead to misleading conclusions because the computational problems 

p . osed by the recognition of two - dimensional stimuli composed of a

small number of one - dimensional segments may be different in kind from the

problems posed by the recognition of three - dimensional stimuli composed of

a large number of two - dimensional surfaces ( e . g . , the latter involves compensating 

for perspective and occlusion across changes in the viewer ' s vantage

point and describing the complex geometry of curved surfaces ) . Furthermore ,

when shapes are chosen from a small finite set , it is possible to choose a

feature inventory that exploits the minimal contrasts among the particular

members of the set and hence success  fully discriminates among those members ,

but that could be fooled by the addition of new members to the set . Finally ,

letters or line drawings consisting of dark figures presented against a blank

background with no other objects occluding or touching them avoids the

many difficult problems concerning the effects on edge detection of occlusion ,

illumination , shadows , and so on .

Fourier models

Kabrisky ( 1966 ) , Ginsburg ( 1971 , 1973 ) , and Persoon and Fu ( 1974 ; see

also Ballard and Brown , 1982 ) have proposed a class of pattern recognition

models that that many researchers in psychophysics and visual physiology

adopt implicitly as the most likely candidate for shape recognition in humans .

In these models , the two - dimensional input intensity array is subjected to a

spatial trigonometric Fourier analysis . In such an analysis , the array is decomposed 

into a set of components , each component specific to a sinusoidal

change in intensity along a single orientation at a specific spatial frequency .

That is , one component might specify the degree to which the image gets

brighter and darker and brighter and darker , etc . , at intervals of 30 of visual

angle going from top right to bottom left in the image ( averaging over changes

in brightness along the orthogonal direction ) . Each component can be conceived 

of as a grid consisting of parallel black - and - white stripes of a particular

width oriented in a particular direction , with the black and white stripes

fading gradually into one another . In a full set of such grating - like components

, there is one component for each stripe width or spatial frequency ( in

cycles per degree ) at each orientation ( more precisely , there would be a

continuum of components across frequencies and orientations ) .

A Fourier transform of the intensity array would consist of two numbers

for each of these components . The first number would specify the degree of

contrast in the image corresponding to that frequency at that orientation

( that is , the degree of difference in brightness between the bright areas and
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the dark areas of that image for that frequency in that orientation ) , or ,
roughly , the degree to which the image ' contains ' that set of stripes . The full
set of these numbers is the amplitude spectrum corresponding to the image .
The second number would specify where in the image the peaks and troughs
of the intensity change defined by that component lie . The full set of these
numbers of the phase spectrum corresponding to the image . The amplitude
spectrum and the phase spectrum together define the Fourier transform of
the image , and the transform contains all the information in the original
image . (This is a very crude introduction to the complex subject of Fourier
analysis . See Weisstein ( 1980 ) and Cornsweet ( 1970 ) for excellent nontechnical 

tutorials ) .
One can then imagine pattern recognition working as follows . In long -term

memory , each shape would be stored in terms of its Fourier transform . The
Fourier transform of the image would be matched against the long -term
memory transforms , and the memory transform with the best fit to the image
transform would specify the shape that is recognized .}

How does matching transforms differ from matching templates in the original 
space domain ? When there is an exact match between the image and one

of the stored templates , there are neither advantages nor disadvantages to
doing the match in the transform domain , because no information is lost in
the transformation . But when there is no exact match , it is possible to define
metrics of goodness of fit in the transform domain that might capture some
of the invariances in the family of retinal images corresponding to a shape .

For example , to a first approximation the amplitude spectrum corresponding
to a shape is the same regardless of where in the visual field the object is
located . Therefore if the matching process could focus on the amplitude
spectra of shape and input , ignoring the phase spectrum , then a shape could
be recognized across all its possible translations . Furthermore , a shape and
its mirror image have the same amplitude spectrum , affording recognition of
a shape across reflections of it . Changes in orientation and scale of an object
result in corresponding changes in orientation and scale in the transform , but
in some models the transform can easily be normalized so that it is invariant
with rotation and scaling . Periodic patterns and textures , such as a brick wall ,
are easily recognized because they give rise to peaks in their transforms
corresponding to the period of repetition of the pattern . But most important ,
the Fourier transform segregates information about sharp edges and small

- -

I In Persoon and Fu's model (1974), it is not the transform of brightness as a function of visual field position
that is computed and matched, but the transform of the tangent angle of the boundary of an object as a
function of position along the boundary. This model shares many of the advantages and disadvantages of
Fourier analysis of brightness in shape recognition.
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details from information about gross overall shape. The latter is specified
primarily by the lower spatial-frequency components of the transform (i .e.,
fat gratings) , the former , by the higher spatial-frequency components (i .e.
thin gratings) . Thus if the pattern matcher could selectively ignore the higher
end of the amplitude spectrum when comparing input and memory transforms,
a shape could be recognized even if its boundaries are blurred , encrusted with
junk , or defined by wiggly lines, dots or dashes, thick bands, and so on.
Another advantage of Fourier transforms is that, given certain assumptions
about neural hardware, they can be extracted quickly and matched in parallel
against all the stored templates (see e.g., Pribram, 1971) .

Upon closer examination, however, matching in the transform domain
begins to lose some of its appeal. The chief problem is that the invariances
listed above hold only for entire scenes. or for objects presented in isolation.
In a scene with more than one object , minor rearrangements such as moving
an object from one end of a desk to another, adding a new object to the desk
top , removing a part , or bending the object , can cause drastic changes in the
transform. Furthermore the transform cannot be partitioned or selectively
processed in such a way that one part of the transform corresponds to one
object in the scene, and another part to another object, nor can this be done
within the transform of a single object to pick out its parts (see Hoffman and
Richards (1984) for arguments that shape representations must explicitly define 

the decomposition of an object into its parts). The result of these facts
is that it is difficult or impossible to recognize familiar objects in novel scenes
or backgrounds by matching transforms of the input against transforms of
the familiar objects. Furthermore, there is no straightforward way of linking
the shape information implicit in the amplitude spectrum with the position
information implicit in the phase spectrum so that the perceiver can tell
where objects are as well as what they are. Third , changes in the three-dimesional 

orientation of an object do not result in any simple cancelable change
in its transform, even it we assume that the visual system computes three-dimensional 

transforms (e.g., using components specific to periodic changes in
binocular disparity) .

The appeal of Fourier analysis in discussions of shape recognition comes
in part from the body of elegant psychophysical research (e.g., Campbell and
Robson, 1968) suggesting that the visual system partitions the information in
the retinal image into a set of channels each specific to a certain range of
spatial frequencies (this is equivalent to sending the retinal information
through a set of bandpass filters and keeping the outputs of those filters
separate). This gives the impression that early visual processing passes on to
the shape recognition process not the original array but something like a
Fourier transform of the array. However, filtering the image according to its

10
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spatial frequency components is not the same as transforming the image into

its spectra . The psychophysical evidence for channels is consistent with the

notion that the recognition system operates in the space domain , but rather

than proce ~ sing a single array , it process  es a - family of arrays , each one containing 

information about intensity changes over a different scale ( or ,

roughly , each one bandpass - filtered at a different center frequency ) . By processing 

several bandpass - filtered images separately , one obtains some of the

advantages of Fourier analysis ( segregation of gross shape from fine detail )

without the disadvantages of processing the Fourier transform itself ( i . e . the

utter lack of correspondence between the parts of the representation and the

parts of the scene ) .

Structural descriptions

A fourth class of theories about the format in which visual input is matched

against memory holds that shapes are represented symbolically , as structural

descriptions ( see Minsky , 1975 ; Palmer , 1975a ; Winston , 1975 ) . A structural

description is a data structure that can be thought of as a list of propositions

whose arguments correspond to parts and whose predicates correspond to

properties of the parts and to spatial relationships among them . Often these

propositions are depicted as a graph whose nodes correspond to the parts or

to properties , and whose edges linking the nodes correspond to the spatial

relations ( an example of a structural description can be found in the upper

left portion of Fig . 6 ) . The explicit representation of spatial relations is one

aspect of these models that distinguish  es them from feature models and allows

them to escape from some of the problems pointed out by Minsky and Papert

( 1972 ) .

One of the chief advantages of structural descriptions is that they can

factor apart the information in a scene without necessarily losing information

in it . It is not sufficient for the recognition system simply to supply a list of

labels for the objects that are recognized , for we need to know not only what

things are but also how they are oriented and where they are with respect to

us and each other , for example , when we are reaching for an object or

driving . We also need to know about the visibility of objects : whether we

should get closer , turn up the lights , or remove intervening objects in order

to recognize an object with more confidence . Thus the recognition process

in general must not boil away or destroy the information that is not diagnostic

of particular objects ( location , size , orientation , visibility , and surface properties

) until it ends up with a residue of invariant information ; it must factor

apart or decouple this information from information about shape , so that

different cognitive process  es ( e . g . , shape recognition versus reaching ) can

access the information relevant to their particular tasks without becoming
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overloaded , distracted , or misled by the irrelevant information that the retina
conflates with the relevant information . Thus one of the advantages of a
structural description is that the shape of an object can be specified by one
set of propositions , and its location in the visual field , orientation , size, and
relation to other objects can be specified in different propositions , each bearing 

labels that processing operations can use for selective access to the information 
relevant to them .

Among the other advantages of structural descriptions are the following .
By representing the different parts of an object as separate elements in the
representation , these models break up the recognition process into simpler
sub process es, and more important , are well -suited to model our visual sys-
tem 's reliance on decomposition into parts during recognition and its ability
to recognize novel rearrangements of parts such as the various configurations
of a hand (see Hoffman and Richards ( 1984 . Second , by mixing logical and
spatial relational terms in a representation , structural descriptions can differentiate 

among parts that must be present in a shape (e.g. , the tail of the
letter 'Q ') , parts that may be present with various probabilities (e.g., the
horizontal cap on the letter ' J') , and parts that must not be present (e.g. , a
tail on the letter '0 ') (see Winston , 1975) . Third . structural descri Dtions

represent information in a form that is useful for subsequent visual reasoning ,
since the units in the representation correspond to objects , parts of objects ,
and spatial relations among them . Nonvisual information about objects or
parts (e.g., categories they belong to , their uses, the situations that they are
typically found in ) can easily be associated with parts of structural descriptions

, especially since many theories hold that nonvisual knowledge is stored

in a propositional format that is similar to structural descriptions (e.g.,
Minsky , 1975; Norman and Rumelhart , 1975) . Thus visual recognition can
easily invoke knowledge about what is recognized that may be relevant to
visual cognition in general , and that knowledge in turn can be used to aid in
the recognition process (see the discussion of top -down approach es to recognition 

below ) .
The main problem with the structural description theory is that it is not

really a full theory of shape recognition . It specifies the format of the representation 
used in matching the visual input against memory , but by itself it

does not specify what types of entities and relations each of the units belonging 
to a structural description corresponds to (e.g., ' line ' versus 'eye' versus

'sphere ' ; 'next -to ' versus ' to -the-right -of ' versus '37-degrees-with -respect -to ') ,
nor how the units are created in response to the appropriate patterns of
retinal stimulation (see the discussion of feature models above ) . Although
most researchers in shape recognition would not disagree with the claim that
the matching process deals with something like structural descriptions , a
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genuine theory of shape recognition based on structural descriptions must
specify these components and justify why they are appropiate. In the next
section, I discuss a theory proposed by David Marr and H . Keith Nishihara
which makes specific proposals about each of these aspects of structural descriptions

.

Two fundamental problems with the traditional approach es

There are two things wrong with the textbook approach es to visual representation 
and recognition . First , none of the theories specifies where perception

ends and where cognition begins . This is a problem because there is a natural
factoring part of the process that extracts information about the geometry of
the visible world and the process that recognizes familiar objects . Take the
recognition of a square . We can recognize a square whether its contours are
defined by straight black lines printed on a white page, by smooth rows and
columns of arbitrary small objects (Kohler , 1947; Koffka , 1935) , by differences 

in lightness or in hue between the square and its background , by differences 
in binocular disparity (in a random -dot stereo gram ) , by differences in

the orientation or size of randomly scattered elements defining visual textures
(Julesz , 1971) , by differences in the directions of motion of randomly placed
dots (Ullman , 1982; Marr , 1982) , and so on . The square can be recognized
as being a square regardless of how the boundaries are found ; for example ,
we do not have to learn the shape of a square separately for boundaries
defined by disparity in random -dot stereograms , by strings of asterisks , etc . ,
nor must we learn the shapes of other figures separately for each type of edge
once we have learned how to do so for a square . Conversely , it can be
demonstrated that the ultimate recognition of the shape is not necessary for
any of these process es to find the boundaries (the boundaries can be seen
even if the shape they define is an unfamiliar blob , and expecting to see a
square is neither necessary nor sufficient for the perceiver to see the boundaries

; see Gibson , 1966; Marr , 1982; Julesz , 1971) . Thus the process that
recognizes a shape does not care about how its boundaries were found , and
the process es that find the boundaries do not care how they will be used. It
makes sense to separate the process of finding boundaries , degree of curvature

, depth , and so on , from the process of recognizing particular shapes (and
from other process es such as reasoning that can take their input from vision ) .

A failure to separate these process es has tripped up the traditional ap-
proaches in the following ways . First , any theory that derives canonical shape
representations directly from the retinal arrays (e.g., templates , features ) will
have to solve all the problems associated with finding edges (see the previous
paragraph ) at the same time as solving the problem of recognizing particular
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shapes - an unlikely prospect . On the other hand , any theory that simply
assumes that there is some perceptual processing done before the shape
match but does not specify what it is is in danger of explaining very little since
the putative preprocessing could solve the most important part of the recognition 

process that the theory is supposed to address (e .g . , a claim that a

feature like 'head ' is supplied to the recognition process ) . When assumptions
about perceptual preprocessing are explicit , but are also incorrect or unmotivated

, the claims of the recognition theory itself could be seriously undermined
: the theory could require that some property of the world is supplied

to the recognition process when there is no physical basis for the perceptual
system to extract that property (e .g . , Marr ( 1982 ) has argued that it is impossible 

for early visual process es to segment a scene into objects ) .

The second problem with traditional approach  es is that they do not pay
serious attention to what in general the shape recognition process has to do ,
or , put another way , what problem it is designed to solve (see Marr , 1982 ) .
This requires examining the input and desired output of the recognition process 

c:lrefully : on the one hand , how the laws of optics , projective geometry ,

materials science , and so on , relate the retinal image to the external world ,
and on the other , what the recognition process must supply the rest of cognition 

with . Ignoring either of these questions results in descriptions of recognition 
mechanisms that are unrealizable , useless , or both .

The Marr - Nishihara theory

The work of David Marr represents the most concerted effort to examine the
nature of the recognition problem , to separate early vision from recognition
and visual cognition in general , and to outline an explicit theory of three -dimensional 

shape recognition built on such foundations . In this section , I
will briefly describe Marr 's theory . Though Marr ' s shape recognition model
is not without its difficulties , there is a consensus that it address es the most

important problems facing this class of theories , and that its shortcomings
define many of the chief issues that researchers in shape recognition must
face .

The 21h -D sketch

The core of Marr 's theory is a claim about the interface between perception
and cognition , about what early , bottom -up visual process es supply to the
recognition process and to visual cognition in general . Marr , in collaboration
with H . Keith Nishihara , proposed that early visual processing culminates in
the construction of a representation called the 21/2-D sketch . The 21h-D sketch
is an array of cells , each cell dedicated to a particular line of sight from the
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viewer 's vantage point . Each cell in the array is filled with a set of symbols
indicating the depth of the local patch of surface lying on that line of sight ,
the orientation of that patch in terms of the degree and direction in which it
dips away from the viewer in depth , and whether an edge (specifically , a
discontinuity in depth ) or a ridge (specifically , a discontinuity in orientation )
is present at that line of sight (see Fig . 1) . In other words , it is a representation
of the surfaces that are visible when looking in a particular direction from a
single vantage point . The 21/2-0 sketch is intended to gather together in one
representation the richest information that early visual process es can deliver .
Marr claims that no top -down processing goes into the construction of the
21/2-0 sketch , and that it does not contain any global information about shape
(e.g., angles between lines , types of shapes, object or part boundaries ) , only
depths and orientations of local pieces of surface .

The division between the early visual process es that culminate in the 21/2-0
sketch and visual recognition has an expository as well as a theoretical advantage

: sinc~ the early process es are said not to be a part of visual cognition

Figure 1 Schematic drawing of Marr and Nishihara 's 2//2-D sketch . Arrows represent
surface orientation of patches relative to the viewer (the heavy dots are
foreshortened arrows) . The dotted line represents locations where orientation 

changes discontinuously (ridges) . The solid line represents locations
where depth changes discontinuously (edges) . The depths of patches relative
to the viewer are also specified in the 2//2-D sketch but are not shown in this
figure . From Marr (1982) .
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(i .e., not affected by a person 's knowledge or intentions ) , I will discuss them
only in bare outline , referring the reader to Marr (1982) and Poggio ( 1984)
for details . The 21/2-0 sketch arises from a chain of processing that begins
with mechanisms that convert the intensity array into a representation in
which the locations of edges and other surface details are made explicit . In
this 'primal sketch ' , array cells contain symbols that indicate the presence of
edges, corners , bars , and blobs of various sizes and orientations at that location

. Many of these elements can remain invariant over changes in overall

illumination , contrast , and focus , and will tend to coincide in a relatively
stable manner with patches of a single surface in the world . Thus they are
useful in subsequent process es that must examine similarities and differences
among neighboring parts of a surface , such as gradients of density , size, or
shape of texture elements , or (possibly ) 'process es that look for corresponding
parts of the world in two images , such as stereopsis and the use of motion to
reconstruct shape.

A c;rucial property of this representation is that the edges and other features 
are extracted separately at a variety of scales. This is done by looking

for points where intensity changes most rapidly across the image using detec-
tors of different sizes that , in effect , look at replicas of the image filtered at
different ranges of spatial frequencies . By comparing the locations of intensity
changes in each of the (roughly ) bandpass-filtered images , one can create
families of edge symbols in the primal sketch , some indicating the boundaries
of the larger blobs in the image , others indicating the boundaries of finer
details . This segregation of edge symbols into classes specific to different
scales preserves some of the advantages of the Fourier models discussed
above : Sir Jpes can be represented in an invariant manner across changes in
image clarity and surface detail (e.g. , a person wearing tweeds versus polyester

) .

The primal sketch is still two -dimensional , however , and the next stage of
processing in the Marr and Nishihara model adds the third dimension to
arrive at the 21h-D sketch . The process es involved at this stage compute the
depths and orientations .of local patches of surfaces using the binocular disparity 

of corresponding features in the retinal images from the two eyes (e.g. ,

Marr and Poggio , 1977) , the relative degrees of movement of features in
successive views (e.gUllman , 1979) , changes in shading (e.g., Horn , 1975) ,
the size and shape of texture elements across the retina (Cutting and Millard ,
1984; Stevens, 1981) , the shapes of surface contours , and so on . These proces -
ses cannot indicate explicitly the overall three -dimensional shape of an object ,
such as whether it is a sphere or a cylinder ; their immediate output is simply
a set of values for each patch of a surface indicating its relative distance from
the viewer , orientation with respect to the line of sight , and whether either
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depth or orientation changes discontinuously at that patch (i .e., whether an
edge or ridge is present ) .

The 21/2-0 sketch itself is ill -suited to matching inputs against stored shape
representations for several reasons. First , only the visible surfaces of shapes
are represented ; for obvious reasons, bottom -up processing of the visual input
can provide no information about the back sides of opaque objects . Second ,
the 21/2-0 sketch is viewpoint -specific ; the distances and orientations of
patches of surfaces are specified with respect to the perceiver 's viewing position 

and viewing direction , that is, in part of aspherical coordinate system

centered on the viewer 's vantage point . That means that as the viewer or the
object moves with respect to one another , the internal representation of the
object in the 21/2-0 sketch changes and hence does not allow a successful
match against any single stored replica of a past 21/2-0 representation of the
object (see Fig . 2a) . Furthermore , objects and their parts are not explicitly
demarcated .

Figure 2. The orientation of a hand with respect to the retinal vertical V (a viewer -centered 
reference frame ) , the axis of the body B (a global object -centered

reference frame ) , and the axis of the lower arm A (a local object -centered
reference frame ) . The retinal angle of the hand changes with rotation of the
whole body (middle panel ) ,. its angle with respect to the body changes with
movement of the elbow and shoulder (right panel ) . Only its angle with
respect to the arm remains constant across these transformations .



Shape recognition and 3-D models
Marr and Nishihara ( 1978) have proposed that the shape recognition process 

(a) defines a coordinate system that is centered on the as-yet unrecognized
. object , (b) characterizes the arrangement of the object 's parts with

respect to that coordinate system , and (c) matches such characterizations
against canonical characterizations of objects ' shapes stored in a similar format 

in memory . The object os described with respect to a coordinate system

that is centered on the object (e.g. , its origin lies on some standard point on
the object and one or more of its axes are aligned with standard parts of the
object ) , rather than with respect to the viewer -centered coordinate system of
the 21h-D sketch , because even though the locations of the object 's parts with
respect to the viewer change as the object as a whole is moved , the locations
of its parts with respect to the object itself do not change (see Fig . 2b) . A
structural description representing an object 's shape in terms of the arrangement 

of its parts , using parameters whose meaning is determined by a coor -

dina ~e system centered upon that object , is called the 3-D model description
in Marr and Nishihara 's theory .

Centering a coordinate system on the object to be represented solves only
some of the problems inherent in shape recognition . A single object -centered
description of a shape would still fail to match an input object when the
object bends at its joints (see Fig . 2c) , when it bears extra small parts (e.g. ,
a horse with a bump on its back ) , or when there is a range of variation among
objects within a class. Marr and Nishihara address this stability problem by
proposing that information about the shape of an object is stored not in a
single model with a global coordinate system but in a hierarchy of models
each representing parts of different sizes and each with its own coordinate
system . Each of these local coordinate systems is centered on a part of the
shape represented in the model , aligned with its axis of elongation , symmetry ,
or (for movable parts ) rotation .

For example , to represent the shape of a horse , there would be a top -level
model with a coordinate system centered on the horse 's torso . That coordinate 

system would be used to specify the locations , lengths , and angles of the
main parts of the horse : the head , limbs , and tail . Then subordinate models
are defined for each of those parts : one for the head , one for the front right
leg , etc . Each of those models would contain a coordinate system centered
on the part that the model as a whole represents , or on a part subordinate
to that part (e.g., the thigh for the leg subsystem) . The coordinate system for
that model would be used to specify the positions , orientations , and lengths
of the subordinate parts that comprise the part in question . Thus , within the
head model , there would be a specification of the locations and angles of the
neck axis and of the head axis , probably with respect to a coordinate system

18 S. Pinker



centered on the neck axis. Each of these parts would in turn get its own
model, also consisting of a coordinate axis centered on a part , plus a charac-
terization of the parts subordinate to it . An example of a 3-D model for a
human shape is shown in Fig. 3.

Employing a hierarchy of corrdinate systems solves the stability problems
alluded to above, because even though the position and orientation of the
hand relative to the torso can change wildly and unsystematically as a person
bends the arm, the position of the hand relative to the arm does not change
(except possibly by rotating within the range of angles permit ted by bending
of the wrist) . Therefore the description of the shape of the arm remains
constant only when the arrangement of its parts is specified in terms of
angles and positions relative to the arm axis, not relative to the object as a
whole (see Fig. 2) . For this to work , of course, positions, lengths, and angles
must be specified in terms of ranges (see Fig. 3d) rather than by precise
values, so as to accommodate the changes resulting from movement or individual 

variation among exemplars of a shape. Note also that the hierarchical
arrangement of 3-D models compensates for individual variation in a second
way: a horse with a swollen or broken knee, for example, will match the 3-D
model defining the positions of a horse's head, torso, limbs, and tail relative
to the torso axis, even if the subordinate limb model itself does not match
the input limb .

Organization and accessing of shape information in memory
Marr and Nishihara point out that using the 3-D model format , it is possible 

to define a set of values at each level of the hierarchy of coordinate

systems that correspond to a central tendency among the members of well -defined 
classes of shapes organized around a single 'plan ' . For example , at the

top level of the hierarchy defining limbs with respect to the torso , one can
define one set of values that most quadruped shapes cluster around , and a
different set of values that most bird shapes cluster around . At the next level
down one can define values for subclass es of shapes such as songbirds versus
long -legged waders .

This modular organization of shape descriptions , factoring apart the arrangement 
of parts of a given size from the internal structure of those parts ,

and factoring apart shape of an individual type from the shape of the class
of objects it belongs to , allows input descriptions to be matched against memory 

in a number of ways . Coarse information about a shape specified in a

top -level coordinate system can be matched against models for general classes
(e:g. , quadupeds ) first , constraining the class of shapes that are checked the
next level down , and so on . Thus when recognizing the shape of a person ,

there is no need ~o match it against shape descriptions of particular types of

Visual cognition 19
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Figure 3. Marr and Nishishara 's 3-D model description for a human shape. A shows
how the whole shape is decomposed into a hierarchy of models , each enclosed 

by a rectangle . B shows the information contained in the model
description : the subordinate models contained in each superordinate , and
the location and orientation of the defining axis of each subordinate with
respect to a coordinate system centered on a part of the superordinate . The
meanings of the symbols used in the model are illustrated in C and D : the
endpoint of a subordinate axis is defined by three parameters in a cylindrical
coordinate system centered on a superordinate part (left panel of C) ,. the
orientation and length of the subordinate axis are defined by three parameters 

in aspherical coordinate system centered on the endpoint and aligned

with the superordinate part (right panel of C) . Angles and lengths are
specified by ranges rather than by exact values ( D) . From Marr and Nishih -
ara (1978 ) .

guppies, parakeets, or beetles once it has been concluded that the gross shape
is that of a primate. (Another advantage of using this scheme is that if a shape
is success fully matched at a higher level but not at any of the lower levels, it
can still be classified as failing into a general class or pattern, such as being
a bird , even if one has never encountered that type of bird before) . An
alternative way of searching shape memory is to allow the successful recognition 

of a shape in a high-level model to trigger the matching of its subordinate
part-models against as-yet unrecognized parts in the input , or to allow the
successful recognition of individual parts to trigger the matching of their
superordinate models against the as-yet unrecognized whole object in the
input containing that part . (For empirical studies on the order in which shape
representations are matched against inputs, see Jolicoeur et at. 1984a; Rosch
et at. 1976; Smith et at. 1978. These studies suggest that the first index into
shape memory may be at a 'basic object' level, rather than the most abstract
level, at least for prototypical exemplars of a shape.)

Representing shapes of parts
Once the decomposition of a shape into its component axes is accomplished

, the shapes of the components that are centered on each axis
must be specified as well . Marr and Nishihara conjecture that shapes of parts
may be described in terms of generalized cones (Binford , 1971). Just as a cone
can be defined as the surface traced out when a circle is moved along a
straight line perpendicular to the circle while its diameter steadily shrinks, a
generalized cone can be defined as the surface traced out when any planar
closed shape is moved along any smooth line with its size smoothly changing
in any way. Thus to specify a particular generalized cone, one must specify
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the shape of the axis ( i .e., how it bends , if at all ) , the two -dimensional shape
of the generalized cone's cross-section , and the gradient defining how its area
changes as a function of position along the axis. (Marr and Nishihara point
out that shapes formed by biological growth tend to be well -modeled by
generalized cones, making them good candidates for internal representations
of the shapes of such parts .) In addition , surface primitives such as rectangular

, circular , or bloblike markings can also be specified in terms of their
positions with respect to the axis model .

Deriving 3-D descriptions from the 2'h -D sketch
Unfortunately , this is an aspect of the Marr and Nishihara model that has

not been developed in much detail . Marr and Nishihara did outline a limited
process for deriving 3-D descriptions from the two -dimensional silhouette of
the object . The process first carves the silhouette into parts at extrema of
curvature , using a scheme related to the one proposed by Hoffman and
Richards (1984) . Each part is given an axis coinciding with its direction of
elong Oation, and lines are created joining endpoints to neighboring axes. The
angles between axes and lines are measured and recorded , the resulting description 

is matched against top -level models in memory , and the best-

matched model is chosen . At that point , constraints on how a part is situated
and oriented with respect to the superordinate axis in that model can be used
to identify the viewer -relative orientation of the part axis in the 21/2-0 sketch .
That would be necessary if the orientation of that part cannot be determined
by an examination of the sketch itself , such as when its axis is pointing toward
the viewer and hence is foreshortened . Once the angle of an axis is specified
more precisely , it can be used in selecting subordinate 3-D models for subsequent 

matching .
The Marr and Nishihara model is the most influential contemporary model

of three -dimensional shape recognition , and it is not afflicted by many of the
problems that afflict the textbook models of shape representation summarized 

earlier . Nonetheless , the model does have a number of problems ,

which largely define the central issues to be addressed in current research on
shape recognition . In the next section , I summarize some of these problems
briefly .

Current problems in shape recognition research

Choice of shape primitives to represent parts
The shape primitives posited by Marr and Nishihara - generalized cones

centered on axes of elongation or symmetry - have two advantages : they can



easily characterize certain important classes of objects , such as living things ,
and they can easily be derived from their silhouettes . But Hoffman and

Richards ( 1984) point out that many classes of shapes cannot be easily described 
in this scheme, such as faces, shoes, clouds , and trees . Hoffman and

Richards take a slightly different approach to the representation of parts in
a shape description. They suggest that the problem of describing parts (i .e.,
assigning them to categories ) be separated from the problem ofjinding parts
(i .e. , determining how to carve an object into parts ) . If parts are only found
by looking for instances of certain part categories (e.g. , generalized cones)
then parts that do not belong to any of those categories would never be
found . Hoffman and Richards argue that , on the contrary , there is a
psychologically plausible scheme for finding part boundaries that is ignorant
of the nature of the parts it defines. The parts delineated by these boundaries
at each scale can be categorized in terms of a taxonomy of lobes and blobs
based on the patterns of inflections and extrema of curvature of the lobe 's

surface . (~ offman ( 1983) has worked out a taxonomy for primitive shape
descriptors , called 'codons ' , for two -dimensional plane curves) . They argue
not only that the decomposition of objects into parts is more basic for the
purposes of recognition than the description of each part , but that the derivation 

of part boundaries and the classification of parts into sequences of codon -

like descriptors might present fewer problems than the derivation of axis-
based descriptions , because the projective geometry of extrema and inflections 

of curvature allows certain reliable indicators of these extrema in the

image to be used as a basis for identifying them (see Hoffman , 1983) .
Another alphabet of shape primitives that has proven useful in computer

vision consists of a set of canonical volumetric shapes such as spheres ,
parallelopipeds , pyramids , cones, and cylinders , with parameterized sizes and
(possibly ) aspect ratios , joined together in various ways to define the shape
of an object (see e.g., Hollerbach , 1975; Badier and Bajcsy , 1978) . It is
unlikely that a single class of primitives will be sufficient to characterize all
shapes, from clothes lying in a pile to faces to animals to furniture . That
means that the derivation process must be capable of determining prior to
describing and recognizing a shape which type of primitives are appropriate
tq it . There are several general schemes for doing this . A shape could be
described in parallel in terms of all the admissible representational schemes,
and descriptions in inappropriate schemes could be rejected because they are
unstable over small changes in viewing position or movement , or because no
single description within a scheme can be chosen over a large set of others
within that scheme . Or there could be a process that uses several coarse

properties of an object , such as its movement , surface texture and color ,
dimensionality , o~ sound to give it an initial classification into broad cate-

Visual cognition 23
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gories such as animal versus plant versus artifact each with its own scheme of
primitives and their organization (e.g., see Richards (1979, 1982) on " playing
20 que~tions " with the perceptual input ) .

Assigning frames of reference to a shape
In a shape representation , size, location , and orientation cannot be

specified in absolute terms but only with respect to some frame of reference .
It is convenient to think of a frame of reference as a coordinate system

centered on or aligned with the reference object , and transformations within
or between reference frames as being effected by an analogue of matrix
multiplication taking the source coordinates as input and deriving the destination 

coordinates as output . However , (;l reference frame need not literally be

a coordinate system. For example , it could be an array of arbitrarily la belled
cells , where each cell represents a fixed position relative to a reference object .
In that case , transformations within or between such reference frames could

be effected by fixed connections among corresponding source and destination
cells (e.g., a network of connections linking each cell with its neighbor to the
immediate right could effect translation when activated iteratively ; see e.g.,
Trehub , 1977) .

If a shape is represented for the purpose of recognition in terms of a
coordinate system or frame of reference centered on the object itself , the
shape recognition system must have a way of determining what the object -
centered frame of reference is prior to recognizing the object . Marr and
Nishihara conjecture that a coordinate system used in recognition may be
aligned with an object 's axes of elongation , bilateral symmetry , radial symmetry 

(for objects that are radially symmetrical in one plane and extended
in an orthogonal direction ) , rotation (for jointed objects ) , and possibly linear
movement . Each of these is suitable for aligning a coordinate system with an
object because each is derivable prior to object recognition and each is fairly
invariant for a ty?e of object across changes in viewing position .

This still leaves many problems unsolved . For starters , these methods only
fix the orientation of one axis of the cylindrical coordinate system. The direction 

of the cylindrical coordinate system for that axis ( i .e., which end is zero ) ,
the orientation of the zero point of its radial scale, and the handedness of the
radial scale (i .e. , whether increasing angle corresponds togoing clockwise or
counterclockwise around the scale) are left unspecified , as is the direction of
one of the scales used in the spherical coordinate system specified within the
cylindrical one (assuming its axes are aligned with the axis of the cylindrical
system and the line joining it to the cylindrical system) (see Fig . 3c) . Furthermore

, even the choice of the orientation of the principal axis will be difficult
when an object is not elongated or symmetrical , or when the principal axis
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is occluded , foreshortened , or physically compressed . For example , if the
top -level description of a cow shape describes the dispositions of its parts with
respect to the cow 's torso , then when the cow faces the viewer the torso is
not visible , so there is no way for the visual system to describe , say, the
orientations of the leg and head axes relative to its axis .

There is evidence that our assignment of certain aspects of frames of reference 
to an object is done independently of its intrinsic geometry . The positive

- negative direction of an intrinsic axis , or the assignment of an axis to an
object when there is no elongation or symmetry , may be done by computing
a global up- down direction . Rock ( 1973, 1983) presents extensive evidence
showing that objects ' shapes are represented relative to an up- down direction

. For example , a square is ordinarily ~described ' internally as having a

horizontal edge at the top and bottom ; when the square is tilted 45 , it is
described as having vertices at the top and bottom and hence is perceived as
a different shape, namely , a diamond . The top of an object is not , however ,
necessarily the topmost part of the object 's projection on the retina : Rock
has shown that when subjects tilt their heads and view a pattern that , unknown 

to them , is tilted by the same amount (so that it projects the same

retinal image ) , they often fail to recognize it . In general , the up- down direction 
seems to be assigned by various compromises among the gravitational

upright , the retinal upright , and the prevailing directions of parallelism ,
pointing , and bilateral symmetry among the various features in the environment 

of the object (Attneave , 1968; Palmer and Bucher , 1981; Rock , 1973) .
In certain circumstances , the front - back direction relative to the viewer may
also be used as a frame of reference relative to which the shape is described ;
Rock et al . (1981) found that subjects would fail to recognize apreviously -
learned asymmetrical wire form when it was rotated 90  about the vertical axis.

What about the handedness of the angular scale in a cylindrical coordinate
system (e.g. , the () parameter in Fig . 3)? One might propose that the visual
system employs a single arbitrary direction of handedness for a radial scale
that is uniquely determined by the positive - negative direction of the long axis
orthogonal to the scale. For example , we could use something analogous to
the ' right hand rule ' taught to physics students in connection with the orientation 

of a magnetic field around a wire (align the extended thumb of your

right hand with the direction of the flow of current , and look which way your
fingers curl ) . There is evidence , however , that the visual system does not use
any such rule . Shepard and Hurwitz ( 1984, in this i~sue; see also Hinton and
Parsons, 1981; Metzler and Shepard , 1975) point out that we do not in general
determine how parts are situated or oriented with respect to the left - right
direction on the basis of the intrinsic geometry of the object (e.g., when we
are viewing left aind right hands) . Rather , we assign the object a left - right
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direction in terms of our own egocentric left and right sides. When an object 's
top and bottom do not correspond to an egocentric or gravitational top - bottom 

direction , we mentally rotate it into such an orientation , and when two
unfamiliar objects might differ in handedness , we rotate one into the orientation 

of the other (taking greater amounts of time for greater angles of rotation
. Mental rotation is discussed further later in this paper ) . Presumably this

failure to assign objects intrinsic left and right directions is an evolutionary
consequence of the fact that aside from human artifacts and body parts ,
virtually no class of ecologically significant shapes need be distinguished from
their enantiomorphs (Corballis and Beale , 1976; Gardner , 1967) .

To the extent that a shape is described with respect to a reference frame
that depends on how the object is orie ,nted with respect to the viewer or the
environment , shape recognition will fail when the object moves with respect
to the viewer or environment . In cases where we do succeed at recognizing
objects across its different dispositions and where object -centered frames
cannot be assigned, there are several possible reasons for such success. One
is that multiple shape descriptions , corresponding to views of the object with
different major axes occluded , are stored under a single label and corresponding 

parts in the different descriptions are linked . Another is that the representation 
of the object is rotated into a canonical orientation or until the description 

of the object relative to the frame matches a memorized shape description
; alternatively , the reference frame or canonical orientation could be

rotated into the orientation of the object . Interestingly , there is evidence
from Cooper and Shepard ( 1973) and Shepard and Hurwitz ( 1984) that the
latter option (rotating an empty reference frame ) is difficult or impossible for
humans to do : advance information about the orientation of an upcoming
visual stimulus does not spare the perceiver from having to rotate the stimulus
mentally when it does appear in order to judge its handedness .2 A third
nossihilitv stems from Hoffman and Richards 's ( 1984 ) suggestion that part
. .

segmentation may be independent of orientation , and that only the representations 
of spatial relations among parts are orientation -sensitive . If so, recognition 
of an isolated part can be used as an index to find the objects in

memory that contain that part . Finally , in some cases recognition might fail
outright with changes in orientation but the consequences might be innocu-

2 Hinton and Parsons ( 1981) have shown that when the various stimuli to be judged all conform to a single

shape schema (e.g. , alphanumeric characters with a vertical spine and strokes attached to the right side of the
spine , such as ' R ' , ' L ' , and ' F ) , advance information about orientation saves the subject from having to rotate
the stimulus. However, it is possible that in their experiment subjects rotated a concrete image of a vertical
spine plus a few ~trokes, rather than an empty reference frame.



ous . Because of the pervasiveness of gravity , many shapes will rarely be seen
in any position but the upright (e.g. , faces, trees) , and many of the differences
in precise shape among objects lacking axes of symmetry , movement , rotation

, or elongation are not ecologically significant enough for us to distinguish

among them in memory (e.g., differences among bits of gravel or crumpled
newspaper ) . Naturally , to the extent that any of the suggestions made in this
paragraph are true , the importance of Marr and Nishihara 's argument for
canonical object -centered descriptions lessens.3

Visual cognition 27

Frames of reference for the visual field

We not only represent the shapes of objects internally ; we also represent

the locations and orientations of objects and surfaces in the visual field . The

frames of reference that we use to represent this information will determine

the ease with which we can make various spatial judgments . The relevant

issues are the alignment of the frames of reference , and the form of the

frames of reference .

Early visual representations are in a viewer - centered and approximately

spherical frame of reference ; that is , our eyes give us information about the

world in terms of the azimuth and elevation of the line of sight at which the

features are found relative to the retina , and their distance from the viewing

position ( this is the coordinate system used for the 21 /2- 0 sketch ) . Naturally ,

this is a clumsy representation to use in perceiving invariant spatial relations ,

since the information will change with eye movements . The system can compensate 
for eye movements by superimposing a head - centered coordinate

system on top of the retinal system and moving the origin of that coordinate

system in conjunction with eye movement commands . Thus every cell in the

21/2- 0 sketch would be represented by the fixed ' address ' defined with respect

to the retina , and also by its coordinates with respect to the head , which

would be dynamically adjusted during eye movements so that fixed locations

in the world retain a constant coordinate address within the head - centered

system . A third coordinate system , defined over the same information , could

represent position with respect to the straight ahead direction of the body

�

3 Specifying the origin of the object -centered coordinate system presents a slightly different set of issues

than specifying the orientation of its axes. An origin for an object -centered frame can be determined by finding
its visual center of mass or by assigning it to one end of a principal axis . It is noteworthy that there are no

obvious cases where we fail to recognize an object when it is displaced , where we see a shape as ambiguous
by virtue of assigning different 'centers ' or ' reference lo cation s' to it (analogous to the diamond /tilted square
ambiguity ) , or where we have to mentally translate an object in order to recognize it or match it against a
comparison object . This indicates either that the procedure that assigns an origin to an object on the basis of
its intrinsic geometry always yields a unique solution for an object , or that , as Hinton ( 1979a) suggests , we
do not compute an origin at all in shape descriptions , only a set of significant directions .
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and it could be updated during head movements to represent the invariant
position .of surfaces across those movements . Other coordinate systems could
be defined over these visible surface representations as well , such as coordinate 

systems aligned with the gravitational upright and horizontal ground
(see Shepard and Hurwitz , 1984) , with fixed salient landmarks in the world ,
or with the prevailing directions of large surfaces (e.g. , the walls in a tilted
room ) . These coordinate systems for objects ' positions with respect to one 's
body or with respect to the environment could be similar to those used to
represent the parts of an object with respect to the object as a whole . Presum-
ably they are also like coordinate systems for objects ' shapes in being organized 

hierarchically , so that a paper clip might be represented by its position 
with respect to the desk tray it is . in , whose position is specified with

respect to the desk , whose position is specified with respect to the room .
Beyond the visual world , the origin and orientation of large frames of reference 

such as that for a room could be specified in a hierarchy of more schematic 
frames of reference for entities that cannot be seen in their entirety , such

as those for floor plans , buildings , streets , neighborhoods and so on (see e.g. ,
Kuipers , 1978; Lynch , 1960; McDermott , 1980) .

The possible influence of various frames of reference on shape perception
can be illustrated by an unpublished experiment by Laurence Parsons and
Geoff Hinton . They presented subjects with two Shepard- Metzler cube figures

, one situated 450 to the left of the subject , another at 450 to the right .
The task was to turn one of the objects (physically ) to whatever orientation
best allowed the subject to judge whether the two were identical or whether
one was a mirror -reversed version of the other (subjects were allowed to
move their heads around the neck axis) . If objects were represented in coordinate 

systems centered upon the objects themselves , subjects would not
have to turn the object at all (we known from the Shepard and Metzler
studies that this is quite unlikely to be true for these stimuli ) . If objects are
represented in a coordinate system aligned with the retina , subjects should
turn one object until the corresponding parts of the two objects are perpendicular 

to the other , so that they will have the same orientations with respect

to their respective lines of sight . And if shapes are represented in a coordinate
system aligned with salient environmental directions (e.g., the walls ) , one
object would be turned until its parts are parallel to those of the other , so
that they will have the same orientations with respect to the room . Parsons
and Hinton found that subjects aligned one object so that it was nearly parallel 

with another , with a partial compromise toward keeping the object 's retinal 

projections similar (possibly so that corresponding cube faces on the two
objects would be simultaneously visible ) . This suggests that part orientations
are represented primarily with respect to environmentally -influenced frames .
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The choice of a reference object, surface, or body part is closely tied to
the format of the coordinate system aligned with the frame of reference, since
rotatable objects (such as the eyes) and fixed landmarks easily support coordinate 

systems containing polar scales, whereas reference frames with orthogonal 
directions (e.g., gravity and the ground, the walls of a room) easily

support Cartesian-like coordinate systems. The type of coordinate system
employed has effects on the ease of making certain spatial judgments. As
mentioned, the 21h-0 sketch represents information in a roughly spherical
coordinate system, with the result that the easiest information to extract
concerning the position of an edge or feature is its distance and direction with
respect to the vantage point . As Marr (1982) points out, this representation
conceals many of the geometric properties .of surfaces that it would bedesir -
able to have easy access to; something closer to a Cartesian coordinate system
centered on the viewer would be much handier for such purposes. For example

, if two surfaces in different parts of the visual field are parallel, their
orientations as measured in aspherical coordinate system will be different ,
but their orientations as measured in a coordinate system with a parallel
component (e.g., Cartesian) will be the same (see Fig. 4). If a surface is flat ,
the represented orientations of all the patches composing its surface will be
identical in Cartesian, but not in spherical coordinates. Presumably, size constancy 

could also be a consequence of such a coordinate system, if a given

range of coordinates in the left- right or up- down directions always stood for

Figure 4. Effects of rectangular versus polar coordinate systems on making spatial
judgments . Whether two surfaces are parallel can be assessed by comparing
their angles with respect to the straight ahead direction in a rectangular
coordinate system (b) , but not by comparing their angles with respect to the
lines of sight in a polar system (a) . From Marr (1982) .

~

5)

(a) (b)
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a constant real world distance regardless of the depth of the represented

surface .

One potentially relevant bit of evidence comes from a phenomenon studied

by Corcoran ( 1977 ) , Natsoulas ( 1966 ) , and Kubovy et at . ( 1984 , Reference

note 1 ) . When an asymmetric letter such as ' d ' is traced with a finger on the

back of a person ' s head , the person will correctly report what the letter is .

But when the same letter is traced on the person ' s forehead , the mirror image

of that letter is reported instead ( in this case , ' b ' ) . This would follow if space

( and not just visible space ) is represented in a parallel coordinate system

aligned with a straight ahead direction , such as that shown in Fig . 4b . The

handedness of a letter would be determined by whether its spine was situated

to the left or right of the rest of its parts , such that ' left ' and ' right ' would be

determined by a direction orthogonal to the straight ahead direction , regardless 

of where on the head the letter is drawn . The phenomenon would not

be expected in an alternative account , where space is represented using spher -

ical coordinates centered on a point at or behind the eyes ( e . g . , Fig . 4a ) ,

because then the letter would be reported as if ' seen ' from the inside of a

transparent skull , with letters traced on the back of the head reported as

mirror - reversed , contrary to fact .

In many experiments allowing subjects to choose between environmental ,

Cartesian - like reference frames and egocentric , spherical reference frames ,

subjects appear to opt for a compromise ( e . g . , the Parsons and Hinton and

Kubovy et at . studies ; see also Attneave , 1972 ; Gilinsky , 1955 ; Uhlarik et at .

1980 ) . It is also possible that we have access to both systems , giving rise to

ambiguities when a single object is alternatively represented in the two systems

, for example , when railroad tracks are seen either as parallel or as

converging ( Boring , 1952 ; Gibson , 1950 ; Pinker , 1980a ) , or when the cotner

formed by two edges of the ceiling of a room can be seen both as a right

angle and as an obtuse angle .

Deriving shape descriptions

One salient problem with the Marr and Nishihara model of shape recognition 

in its current version is that there is no general procedure for deriving

an object - centered 3 - D shape description from the 21 / z - 0 sketch . The algorithm 

proposed by Marr and Nishihara using the two - dimensional

silhouette of a shape to find its intrinsic axes has trouble deriving shape

descriptions when axes are foreshortened or occluded by other parts of the

object ( as Marr and Nishihara pointed out ) . In addition , the procedures it

uses for joining up part boundaries to delineate parts , to find axes of parts

once they are delineated , and to pair axes with one another in adjunct relations 

rely on some limited heuristics that have not been demonstrated to

work other than for objects composed of generalized cones - but the per -



Visual cognition 31

ceiver cannot in general know prior to recognition whether he or she is

viewing such an object . Furthermore , there is no explicit procedure for grouping 

together the parts that belong together in a single hierarchical level in the

3 - D model description . Marr and Nishihara suggest that all parts lying within

a ' coarse spatial context ' surrounding an axis can be placed within the scope

of the model specific to that axis , but numerous problems could arise when

' .inrelated parts are spatially contiguous , such as when a hand is resting on a

knee . Some of these problems perhaps could be resolved using an essentially

similar scheme when information that is richer than an object ' s silhouette is

used . For example , the depth , orientation , and discontinuity information in

the 21 / 2 - 0 sketch could assist in the perception of foreshortened axes ( though

not when the blunt end of a tapering obje .ct faces the viewer squarely ) , and

information about which spatial frequency bandpass channels an edge came

from could help in the segregation of parts into hierarchical levels in a shape

description .

A gene .Raj problem in deriving shape representations from the input is that ,

as mentioned , the choice of the appropriate reference frame and shape primitives 

depends on what type of shape it is , and shapes are recognized via their

description in terms of primitives relative to a reference frame . In the remainder 

of this section I describe three types of solutions to this chicken - and - egg

problem .

Top - down processing

One response to the inherent difficulties of assigning descriptions to objects

on the basis of their retinal images is to propose that some form of ancillary

information based on a person ' s knowledge about regularities in the world is

used to choose the most likely description or at least to narrow down the

options ( e . g . , Gregory , 1970 ; Lindsay and Norman , 1977 ; Minsky , 1975 ;

Neisser , 1967 ) . For example , a cat - owner could recognize her cat upon seeing

only a curved , long , grey stripe extending out from underneath her couch ,

based on her knowledge that she has a long - tailed grey cat that enjoys lying

there . In support of top - down , or , more precisely , knowledge - guided perceptual 

analysis , Neisser ( 1967 ) , Lindsay and Norman ( 1977 ) , and Gregory

( 1970 ) have presented many interesting demonstrations of possible retinal

ambiguities that may be resolved by knowledge of physical or object - specific

regularities , and Biederman ( 1972 ) , Weisstein and Harris ( 1974 ) and Palmer

( 1975b ) and others have shown that the recognition of an object , a part of

an object , or a feature can depend on the identity that we attribute to the

context object or scene as a whole .

Despite the popularity of the concept of top - down processing within cognitive 

science an <; i artificial intelligence during much of the 1960s and 1970s ,
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there are three reasons to question the extent to which general knowledge
plays a role in describing and recognizing shapes. First , many of the supposed
demonstrations of top - down processing leave it completely unclear what kind
of knowledge is brought to bear on recognition (e.g., regularities about the
geometry of physical objects in general , about particular objects , or about
particular scenes or social situations ) , and how that knowledge is brought to
bear (e.g. , altering the order in which memory representations are matched
against the input , searching for particular features or parts in expected places ,
lowering the goodness-of-fit threshold for expected objects, generating and
fitting templates , filling in expected parts ) . Fodor (1983) points out that these
different versions of the top-down hypothesis paint very different pictures of
how the mind is organized in general : if only a restricted type of knowledge
can influence perception in a top - down manner , and then only in restricted
ways , the mind may be constructed out of independent modules with restricted 

channels of communication among them . But if all knowledge 'can

influence perception , the mind could consist of an undifferentiated knowledge 
base and a set of universal inference procedures which can be combined

indiscriminately in the performance of any task . Exactly which kind of top -
down processing is actually supported by the data can make a big difference
in one 's conception of how the mind works ; Fodor argues that so far most
putative demonstrations of top- down phenomena are not designed to distinguish 

among possible kinds of top-down processing and so are uninformative
on this important issue.

A second problem with extensive top - down processing is that there is a
great deal of information about the world that is contained in the light array ,
even if that information cannot be characterized in simple familiar schemes
such as templates or features (see Gibson , 1966, 1979; Marr , 1982) . Given
the enormous selection advantage that would be confer red on an organism
that could respond to what was really in the world as opposed to what it
expected to be in the world whenever these two descriptions were in conflict ,
we should seriously consider the possibility that human pattern recognition
has the most sophisticated bottom-up pattern analyses that the light array and
the properties of our receptors allow. And as Ullman (1984, this issue) points
out , we do appear to be extremely accurate perceivers even when we have
no basis for expecting one object or scene to occur rather than another , such
as when watching a slide show composed of arbitrary objects and scenes.

Two -stage analysis of objects
Ullman (1984) suggests that our visual systems may execute a universal set

of 'routines ' composed of simple process es operating on the 21h-D sketch ,
such as traci !1g along a boundary , filling in a region , marking a part , and
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sequentially processing different locations . Once universal routines are executed

, their outputs could characterize some basic properties of the prominent 

entities in the scene such as their rough shape and spatial relationships .

This characterization could then trigger the execution of routines specific to

the recognition of particular objects or classes of objects . Because routines

can be composed of arbitrary sequences of very simple but powerful proces -

ses , it might be possible to compile both a core of generally useful routines ,

plus a large set of highly specific routines suitable for the recognition of very

different classes of objects , rather than a canonical description scheme that

would have to serve for every object type . ( In Ullman ' s theory visual routines

would be used not only for the recognition of objects but also for geometric

reasoning about the surrounding visual environment such as determining

whether one object is inside another or counting objects . ) Richards ( 1979 ,

1982 ) makes a related proposal concerning descriptions for recognition , specifically

, that one might first identify various broad classes of objects such as

animal , vegetable , or mineral by looking for easily sensed hallmarks of these

classes such as patterns of movement , color , surface texture , dimensionality ,

even coarse spectral properties of their sounds . Likely reference frames and.

shape primitives could then be hypothesized based on this first - stage categorization

.

Massively parallel models

There is an alternative approach that envisions a very different type of

solution from that suggested by Richards , and that advocates very different

types of mechanisms from those described in this issue by Ullman . Attneave

( 1982 ) , Hinton ( 1981 ) and Hrechanyk and Ballard ( 1982 ) have outlined related 

proposals for a model of shape recognition using massively parallel

networks of simple interconnected units , rather than sequences of operations

performed by a single powerful processor ( see Ballard et al . 1983 ; Feldman

and Ballard , 1982 ; Hinton and Anderson , 1981 ) , for introductions to this

general class of computational architectures ) .

A favorite analogy for this type of computation ( e . g . , Attneave , 1982 ) is

the problem of determining the shape of a film formed when an irregularly

shaped loop of wire is dipped in soapy water ( the shape can be characterized

by quantizing the film surface into patches and specifying the height of each

patch ) . The answer to the problem is constrained by the ' least action ' principle 

ensuring that the height of any patch of the film must be close to the

heights of all its neighboring patches . But how can this information be used

if one does not know beforehand the heights of all the neighbors of any

patch ? One can solve the problem iteratively , by assigning every patch an

arbitrary initial height except for those patches touching the wire loop , which



are assigned the same heights as the piece of wire they are attached to . Then
the heights of each of the other patches is replaced by the average height of
its neighbors . This is repeated through several iterations ; eventually the array
of heights converges on a single set of values corresponding to the shape of
the film , thanks to constraints on height spreading inward from the wire . The
solution is attained without knowing the height of any single interior patch a
priori , and without any central processor .

Similarly , it may be possible to solve some perceptual problems using
networks of simple units whose excitatory and inhibitory interconnections
lead the entire network to converge to states corresponding to certain
geometric constraints that must be satisfied when recognition succeeds. Marr
and Poggio (1976) proposed such a 'cooperative ' model for stereo vision that
simultaneously finds the relative distance from the viewer of each feature in
pair of stereoscopic images and which feature in one image corresponds with
a given feature in the other . It does so by exploiting the constraints that each
feature . must have a single disparity and that neighboring features mostly
have similar disparities .

In the case of three -dimensional shape recognition , Attneave , Hinton , and
Hrechanyk and Ballard point out that there are constraints on how shape
elements and reference frames may be paired that might be exploitable in
parallel networks to arrive at both simultaneously . First , every part of an
object must be described with respect to the same object -centered reference
frame (or at least , every part of an object in a circumscribed region at a given
scale of decomposition ; see the discussion of the Marr and Nishihara model ) .
For example , if one part is described as the front left limb of a animal standing
broadside to the viewer and facing to the left , another part of the same object
cannot simultaneously be described as the rear left limb of that animal facing
to the right . Second , a description of parts relative to an object -centered
frame is to be favored if that description corresponds to an existing object description 

in memory . For example , a horizontal part will be described as the

downward -pointing leg of a chair lying on its back rather than as the forward -
facing leg of an unfamiliar upright object .

These constraints , it is argued , can be used to conve;rge on a unique correct
object -centered description in a network of the following sort . There is a
retina -based unit for every possible part at every retinal size, location , and
orientation . There is also an object -based unit for every orientation , location ,
and size of a part with respect to an object axis. Of course , these units cannot
be tied to individual retina -based units , but each object -based unit can be
connected to the entire set of retina -based units that are geo metric ally consistent 

with it . Every shape description in memory consists of a shape unit that
is connected to its constituent object -based units . Finally , all the pairs of
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Figure 5.
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A portion of a massively parallel network model for shape recognition .

Triangular symbols indicate special multiplicative connections : the product

of activation levels of a retina - based and a mapping unit is transmitted to

a / I object - based unit , and the product of the activation levels in those retina -

based and object - based units is transmitted to the mapping unit . From Hin -

ton ( 1981 ) .
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object - and retina - based units that correspond to a single orientation of the

object axis relative to the viewer are themselves tied together by a mapping

unit , such that the system contains one such unit for each possible spatial

relation between object and viewer . An example of such a network , taken

from Hinton ( 1981 ) , is shown in Fig . 5 .

The system ' s behavior is characterized as follows . The visual input activates

retina - based units . Retina - based units activate all the object - based units they



are connected to (this will include all object -based units that are geo metric ally
compatible with the retinal features , including units that are inappropriate
for the current object ) . Object -based units activate their corresponding shape
units (again , both appropriate and inappropriate ones) . Joint activity in particular 

retina - and object -based units activate the mapping units linking the

two , that is, the mapping units that represent vantage points (relative to an
object axis) for which those object -based features project as those retina -
based features . Similarly , joint activity in retina -based and mapping units
activate the corresponding object -based units . Shape units activate their corresponding 

object -based units ; and (presumably ) shape units inhibit other
shape units and mapping units inhibit other mapping units . Hinton (1981)
and Hrechanyk and Ballard (1982) argue that such networks should enter
into a positive feedback loop converging on a single active shape unit , representing 

the recognized shape, and a single active mapping unit , representing

the orientation and position of its axis with respect to the viewer , when a
familiar object is viewed .

In general , massively parallel models are effective at avoiding the search
problems that accompany serial computational architectures . In effect , the
models are intended to assess the goodness-of -fit between all the transformations 

of an input pattern and all the stored shape descriptions in parallel ,

finding the pair with the highest fit at the same time . Since these models are
in their infancy , it is too early to evaluate the claims associated with them .
Among other things , it will be necessary to determine : (a) whether the model
can be interfaced to preprocessing systems that segregate an object from its
background and isolate sets of parts belonging to a single object -centered
frame at a single scale; (b) whether the initial activation of object -based units
by retina -based units is selective enough to head the network down a path
leading toward convergence to unique , correct solutions ; (c) whether the
number of units and interconnections among units needed to represent the
necessary combinations of shapes, parts , and their dispositions is neurologically 

feasible ; and (d) whether these networks can overcome their current
difficulty at representing and recognizing relations among parts in complex
objects and scenes, in addition to the parts themselves .

Visual imagery has always been a central topic in the study of cognition . Not
only is it important to understand our ability to reason about objects and
scenes that are remembered rather than seen, but the study of imagery is tied
to the question of the number and format of mental representations , and of
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the interface between perception and cognition . Imagery may also be a particularly 
fruitful topic for study among the higher thought process es because

of its intimate connection with shape recognition , benefit ting from the progress 
made. in that area . Finally , the subject of imagery is tied to scientific and

literary creativity , mathematical insight , and the relation between cognition
and emotion (see the papers in Sheikh , 1983) ; though the scientific study of
imagery is mostly concerned with more pedestrian spatial ab.ilities such as
memory for literal appearance , spatial transformations , and matching images
against visual stimuli , it has been argued that an understanding of these
abilities may give us the toehold we need to approach the less tractable topics
in the future (Shepard , 1978; Shepard and Cooper , 1982) .

Imagery is in some ways a more difficult topic to study than recognition ,
and progress in the area is slower and consensus rarer . Unlike recognition ,
the direct inputs and outputs of the imagery system are not known beforehand

; they must be discovered at the same time as the operation of the
system itself . This has two implications . First , it is difficult to characterize
antecedently the ' function ' that the imagery system computes (cf . Marr ,
1982) . Second , there is the practical problem that the imagery system cannot
be engaged automatically in experimental settings by presenting a person
with particular physical inputs ; imagery must be engaged through more indirect 

pathways involving a person 's conceptual system (e.g., presenting him
or her with certain types of spatial problems , giving instructions to use imagery

) . Thus it can be difficult to determine when the imagery is used or even
whether there is a distinct imagery system.

Visual cognition 37

Philosophical objections to imagery

During much of this century the coherence of the concept of an image itself
has been called into question , and there have been claims that there is no
such thing as an image- that talk of imagery is just a figure of speech (e.g.,
Ryle , 1949) . However , most of the arguments within this debate really concerned 

the use of representations and process es in explanations of intelligence

and mental life . Now that there is something close to a working consensus
among cognitive scientists that intelligence can be characterized as computations 

over data structures or representations (see Block , 1980; Fodor , 1975;

Haugeland , 1981; Pylyshyn , 1980) , many of the criticisms of the concept of
imagery are now moot , or at least can be absorbed into the debate over the
representational and computational theories of mind in general (see Block
(1981, 1983) for further arguments ) . In particular , I think it would be wise
to avoid worrying about the following three non -issues:
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( 1) The homunculus problem . How can the mind contain ' images' unless
there was some little man in the head to look at the images? This is simply
not a problem under the computational theory of mind : images may be construed 

as data structures , and there is no more of a conceptual problem with

positing mechanistic operations that can access those data structures than
there is in positing mechanistic operations that access other mental representations 

such as linguistic or logical structures , or positing operations that

access data in a computer . In particular , the study of shape recognition has
led people to posit many types of operations that take as input array -like data
structures created by sensory receptors , such as the 21/2-0 sketch , and it
would be a short step to claim that the same process es could access such data
structures generated from memory rather than from the eyes (whether or not
this is true is, of course , a different matter ) .

(2) The epiphenomenon problem . Maybe images exist , but they are
epiphenomenal to the actual computations that constitute thinking about visual 

obj.ects. That is, they play no causal role , and are just like the lights that
flash on and off on the front panel of a computer . The problem here is an
ambiguity in the word ' image ' . It could be taken to refer either to the subjective 

experience that people have when they report thinking in images , or to
a mental representation that a theory might posit to help explain visual thinking

. If ' image ' is used in the former sense, then it is noncontroversially

epiphenomenal if one subscribes to the computational theory of mind in
general . In no computational theory of a mental process does subjective
experience per se playa causal role ; only representations and process es do ,
and the subjective experience , if it is considered at all , is assumed to be a
correlate of the processing . If , on the other hand , ' image ' is meant to refer
to a representation posited in a theory of spatial memory and reasoning , then
no one could hold that it is epiphenomenal : any theory positing a representation 

that never played a causal role would be rejected as unlikely to be true

using ordinary parsimony criteria .
(3) The subjectivity issue. It is dangerous to take people 's introspective

reports about the contents or properties of their images as evidence in charac-
terizing imagery , because such reports can be unreliable and subject to bias ,
because the referents of people 's descriptions of imagery are unclear , and
because interesting cognitive process es are likely to take place beneath the
level of conscious accessibility . Again , a non -issue: all parties agree that
much of image processing , whatever it is , is inaccessible to consciousness,
that experimental data and computational and neurological feasibility are the
proper source of constraints on imagery theories , and that introspective reports 

are psychological phenomena to be accounted for , not accurate descriptions 
of underlying mechanisms .



I believe we have reached the point where it is particular theories of imagery ,
not analyses of the concept of imagery , that are in question , and that the
' imagery debate ' is now a scientific controversy rather than a philosophical
conundrum . This controversy largely concerns two questions . First , does the
architecture of the mind contain any structures and process es that are specific
to imagery , or does imagery simply consist of the application of general
cognitive process es to data structures whose content happens to be about the
visual world ? Second , if it does make sense to talk of imagery as a dedicated
module , does it consist of the processing of pixels in an array with properties
similar to the 21/2-0 sketch , or does it consist of the processing of structural
descriptions ?

The most forceful proponent of the view that imagery is not a distinct
cognitive module is Zenon Pylyshyn ( 1981) . Pylyshyn argues that imagery
simply consists of the use of general thought process es to simulate physical
or perceptual events , based on tacit knowledge of how physical events unfold .
For example , mental rotation effects (e.g., Shepard and Hurwitz ( 1984) ;
also discussed below ) occur because subjects are thinking in real time about
the course of a physical rotation . They know implicitly that physical objects
cannot change orientation instantaneously and that the time taken by a rotation 

is equal to the angle of rotation divided by the rotation rate . They

perform the relevant computation , then wait the corresponding amount of
time before indicating their response . Pylyshyn argues that virtually all known
demonstrations of imagery phenomena , experimental or informal , can be
interpreted as the use of tacit knowledge to simulate events rather than as
the operation of a dedicated processor . In particular , he argues, the representation 

of space or of movement in images does not tell us anything about the
format of imagery representation , least of all that there is anything 'spatial '
or 'moving ' in the image itself ; the demonstrations just tell us about the
content of information that can be represented in imagery .

Though Pylyshyn has not proposed an explicit model of the general purpose 
cognitive mechanisms that subserve imagery , the type of mechanism

that would be congenial to his view would be a structural description . As
mentioned , structural descriptions use a symbolic format similar to that used in
the semantic networks proposed as representations of general knowledge .

A second class of theories has been proposed by Allan Paivio (1971) Roger
Shepard (1981) and Stephen Kosslyn (1980, 1983) (see also Kosslyn et at.
( 1984, this issue) and Farah (1984, this issue)) . They have proposed that
imagery uses representations and process es that are ordinarily dedicated to
visual perception , rather than abstract conceptual structures subserving
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Imagery theories
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thought in general . Furthermore , it is proposed that at least one of these
representations used in perception and imagery has a spatial or array -like
structure. By an array-like structure, I mean the following : images are patterns 

of activation in a structure consisting of units (or cells) that represent,
by being on or off (or filled or unfilled ) the oresence or absence of ~ n~rt or

patch of the surface of an object at a particular disposition in space (o Arienta-
tion or location ) . The medium is structured so that each cell is adjacent to a
fixed set of other cells , in such a way that the metric axioms are satisfied .4

This makes it meaningful to speak of properties like 'position ' , 'proximity ' ,
and 'direction ' of cells or pairs of cells ; these properties are defined by .the
adjacencies among cells within the medium and need not correspond to physical 

position , distance , or direction within the neural instantiation of the array
(though presumably they are related to proximity measured in number of
neural connections ) . The process es that occur within that medium are sensitive 

to the location of a cell within the medium ; that is, there are primitive

operations that access a particular cell by absolute or relative location , that
move -the contents of one cell to a neighboring one within the medium , and
so on . Furthermore , location within the medium is systematically related to
the disposition in space of the represented object or feature , so that adjacent
cells represent dispositions of the represented object or feature that differ hv

  ~ ~

some minimal amount . An array of values in a computer memory functioning
as a graphics bit map is an example of the type of array -like medium charac-
terized in this paragraph , but such media can also be quite different from bit
maps .s

Shepard (1981) has proposed an elegant though only partially worked -out
set of conjectures , according to which a shape is represented by a two -dimensional 

manifold curved in three -dimensional space to form a closed surface ,

such as a sphere . Each position within the manifold corresponds to one orien -

~ he metric axioms are (a) the distance between a point and itself is less than the distance between a point
and any other point ; (b) the distance between point a and point b is the same as the distance between point
b and point a ; (c) the distance between point a and point b plus the distance between point b and point c
must be greater than or equal to the distance between point a and point c.

5pylyshyn (1980, 1981) rightly emphasizes that it is crucial to distinguish among the representation of
geometric properties like distance , position , and direction , the corresponding physical properties in the world
themselves , and these properties defined over the surface of the brain . Pylyshyn accuses certain theorists of

confusing these notions, but in my opinion Pylyshyn's argument loses its force by failing to acknowledge
another sense of notions like distance , namely that defined by the intercell adjacencies in an array representation and respected by the process es that operate within such an array . According to the theories outlined

in the text , position and distance in the array represent position and distance in the world , and possibly
(depending on details of the neural instantiation of these mechanisms) rough position and distance within
Ce.\ ta\n \ eiE.\an~ a{ the. \)\ a\n . 1"n\l~ \ atner than caniu~ing c\i~\ance in \ne wor\c\ , \ne in\erna\ representation of
distance in the world , distance among cells in the internal structure representing the world , and distance in
the brain , these theorists are making assertions about how these different senses of distance are related .
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tation of the shape, with nearby positions corresponding to nearby orientations
. The shape of the manifold captures the various symmetries in the

represented object, so that the point representing the letter 'H ' rotated 1750
will be closer to the point representing its upright orientation than either of
them is to the point representing its 900 orientation . When points are activated 

in the medium (i .e., when one perceives or imagines a shape at a
particular orientation ) , activation spreads through the manifold , and when
fronts of activation originating from different sources meet (i .e. , when two
views of a shape are seen or imagined ) , a straight -line path between the
sources is activated . corresponding to the shortest angular trajectory that the

shape would have to pass through to rotate one orientation into the other .
Shepard uses this proto -model to make sense of a wide set of findings on
mental rotation and apparent movement ; see Shepard (1981) for details , and
Pinker and Kosslyn (1983) for exp Jication and commentary .

Kosslyn has proposed a different theory , instantiated in an explicit and
detailed computational model (Kosslyn, 1980, 1983; Kosslyn and Shwartz,
1977; also briefly summarized in this issue by Kosslyn et at. ( 1984) and by
Farah (1984)) . Here the medium , which Kosslyn calls the " visual buffer " , is
two -dimensional and Euclidean , and the position of cells within the array
corresponds to position within the visual field ( i .e. , a line of sight from the
vantage point of the viewer ; in this regard it is similar to a 21h-D sketch- see
Pinker (1980b)) . Cells , when activated , represent patches of the surface of a
represented shape, so that the pattern of activation within the buffer is
isomorphic to the shape of the visible surfaces of the object . As in Shepard 's
proposal, this medium can be filled from information arriving from the visual
system (subsequent to preprocessing such as the detection of edges and surface 

properties) ; or from information in long-term memory- this is what
generating a mental image consists of . In Kosslyn 's theory the long term
memory representations of objects' shapes and surface properties used in
imagery are assumed to be shared with those used in recognition (see Farah
(1984) for neuropsychological evidence that these representations are the
same) , and are assumed to have the format of a structural description augmented 

with whatever information is necessary to reconstruct the appearance 
of the surfaces of the object . The image generation process es (which

are the focus of the article by Farah (1984)) can fill the buffer with patterns
representing several objects from different long -term memory files , and can
place the objects in different positions , orientations , and sizes with respect
to one another . Once in the buffer , the pattern of activated cells can be

rotated , scaled in size, or translated , and the resulting patterns can be
examined by operations that detect shapes and spatial configurations (pre -
sumably, mechanisms similar to the visual routines proposed by Ullman



(1984) in this issue). The upper panel in Fig. 6 is an illustration of the general
architecture of Kosslyn's model. (A slightly different hybrid model in this
class has been proposed by Attneave (1974) , who suggests that a two- or
three-dimensional array can specify the locations of objects by containing
labels or pointers to symbolic descriptions, rather than edge or surface primitives 

depicting the object's shape.)
Hinton (1979a, b) has proposed a model for imagery belonging to a third

class. It shares the following assumptions with Kosslyn's model: there are
process es dedicated to the manipulation of spatial information in imagery;
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Figure 6. Two ways of representing viewer -specific information in imagery . The top
panel schematically illustrates an. array model ,. the lower panel schematically
illustrates a structural description model . The parameters within parentheses
symbolize the disposition of a part in local coordinate systems centered on
superordinate parts (see Fig . 2 and 3) ,. parameters within hexagons in the
lower panel symbolize the horizontal and vertical directions and depth with
respect to a single vantage point .
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there is a special format for information represented in imagery , involving a

global , viewer - centered reference frame ; and there is an array - like scale

within which the spatial disposition of the represented shape is specified .

However , in Hinton ' s model there is no array whose cells correspond to local

portions of the visual field and represent local patches of the shape . Rather ,

imagery consists of information appended to a structural description of the

object ' s shape . In this long - term memory representation , units correspond to

entire parts defined by a hierarchical decomposition of the shape of the object

, and the spatial relations between adjacent parts are defined with respect

to a frame of reference centered on one of the parts ( thus it is similar to Marr

and Nishihara ' s 3 - D model description ) . Image generation consists of activating 

a certain set of part nodes , and appending to them a second representation

of their spatial dispositions . This second set of coordinates is not specified

with respect to a local , object - centered frame of reference , but with respect

to a global reference frame centered on the viewer . A set of process  es can

then operate on these temporary viewer - centered coordinates appended to

the activated nodes in order to ascertain spatial relations holding among parts

of an object at different levels of its hierarchical decomposition or among

parts of different objects . The lower panel in Fig . 6 is a sketch of the general

nronfirtifis of Hinton ' s model . An additional feature of Hinton ' s model is that

. .

the various quantitative parameters used in specifying spatial dispositions are

encoded as pointers to one - dimensional arrays within which an activated cell

represents a particular position , orientation , or size . ( See Anderson ( 1983 )

who also presents a model that is centered around structural descriptions but

which contains special process  es for the manipulation of spatial information

in images ) .

Current issues in the study of visual imagery

Distinguishing among the three classes of models just described is not the

only focus of current research on imagery ( for example , Kosslyn et al . ( 1984 )

and Farah ( 1984 ) examine the decomposition of imagery into modules , and

do not directly address the format of the short - term memory structure underlying 

images ) . The following is a summary of some important current topics

in imagery research ; I will highlight how data bear on the models described

ahove but will also describe classes of research that are independent of that

controversy . For more general literature reviews on imagery research , see

Kosslyn ( 1980 ) , Kosslyn and Shwartz ( 1981 ) , Shepard and Cooper ( 1982 ) ,

and Finke and Shepard ( In press ) .



Cognitive penetration
These phenomena are relevant to the distinction between theories appealing 

to tacit knowledge alone versus theories appealing to dedicated imagery

process es. Pylyshyn ( 1979, 1981) cites cases where people 's knowledge and
belief .may influence the time and ease with which they use imagery in certain
tasks. Pylyshyn argues that if the operation of a putative processing module
is sensitive to the contents of a person 's beliefs , then it cannot be a primitive
component of the cognitive architecture inasmuch as the mode of operation
of the primitative architecture is by definition sensitive only to the syntactic
form of representations , not their content . Thus sensitivity to the contents of
beliefs is evidence that the process in question is a manifestation of whatever
mechanisms manipulate the representation underlying knowledge in general .

Although the form of Pylyshyn 's argument is generally accepted (all things
being equal ) , its application to particular sets of data , especially in the case
of imagery , is controversial . The problem is that the penetrability criterion
pertains to individual information processing components , but we can only
gather direct evidence that beliefs are penetrating individual tasks involving
many components (Fodor , 1983; Kosslyn et al . 1979) . If a person 's beliefs
influence the rate of mental rotation , the time to generate an image , and so
on , it could simply be that the executive has access to certain parameters that
can be set prior to the execution of an operation , such as transformation rate ,
decision criteria , or the choice of shapes to imagine or transformations to
execute (for example , the rotation operator might have a rate parameter that
can be set externally , but all other aspects of its operation might be fixed ) .
Which processing stage is the one influenced by a person 's beliefs makes all
the difference in the world , but identifying such stages is as difficult as making
any other claim about representations and process es based on experimental
data . (There is also controversy over the facts of which imagery tasks actually
are penetrable by beliefs ; see e.g., Finke , 1980; Kosslyn , 1981; Pinker ,
Choate and Finke , 1984a; Reed et al . , 1983) .
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Constraints on imagery
If imagery is nothing but the use of tacit knowledge to simulate physical

events , then the only constraints on what we can do in our images should
stem from what we know can or cannot occur in the world . However , there
have been many reports , some introspective , some experimental , that people
cannot form images of arbitrary specifications of spatial properties and relations

. For example , we cannot imagine a shape whose orientation , location ,

subjective size, or direction with respect to the vantage point are simply
indeterminate , undefined , or unspecified ; each image must make commitments 

to particular values of these parameters . Similarly , we cannot imagine
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two objects that are next to one another without one being to the left of the
other ; nor can we imagine the front and back of an opaque intact object
simultaneously , nor the visual space in front of and behind the head (see e.g.,
Fiske et al . . 1979 ; Hinton , 1979b ; Pinker and Finke , 1980 ; Poincare , 1913 ;

Johnson -Laird , 1983; Keenan and Moore , 1979) .
Note that these possible constraints stand in contrast to long -term memory

for visual information in general . As Pylyshyn (1973) has pointed out , we
often remember that an object was in a room or near another object without
being able to recall where in the room or on what side of the object it was;
similarly , Nickerson and Adams (1979) have shown that people are quite
inaccurate at remembering spatial relations among the parts of familiar objects 

such as a Lincoln penny . The constraints also contrast with the option -

ality of other properties in imagery , such as color , surface texture , local parts ,
and details of edges, which are often reported as being totally unspecified in
images. This means that the constraints are not just constraints on which
properties are defined in the world , because just as an object must have an
orientation when viewed , it must have a certain color and texture .

When there are constraints on which geometric properties are optional in
images and which are obligatory , when these constraints hold of imagery in
particular and not of long term memory about visual information in general ,
and when they are not predictable from physical and geometric constraints
on objects in the world , we have evidence that imagery is represented by
special mechanisms . In particular , in a structural description , any geometric
attribute that can be factored out of a shape description (e.g., orientation ,
size, relative location ) can be lost and hence undefined , and abstract spatial
relations (e.g., 'next to ') can be specified easily . In contrast , in an array
model it is impossible to form an image representation lacking a size, absolute
or relative location , or orientation , because shapes are represented only by
being placed somewhere in the array medium , thereby receiving some specification 

of location , size, and so on automatically . Thus the constraints , if they

are robust , would speak against a totally factored structural description .

Mental transformations and couplings among between geometric properties
. The most famous body of research on imagery in the past decade has been

concerned with image transformations (Cooper and Shepard , 1973; Shepard
and Metzler , 1971; Shepard and Hurvitz , 1984) ; see also the section on " Assigning 

reference frames " above ) . Shepard and his collaborators have shown

that when people have to decide whether two 3-D objects have the same
shape, the time they take is a linear function of the difference in their depicted
orientations . When they have to judge the handedness of alphanumeric
characters or random polygons (i .e., whether one is normal or mirror -re-

.
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versed) , time increases monotonically with degree of deviation in orientation
from the upright . Shepard 's interpretation of these findings is that subjects
engage in a smooth , continuous process of mental rotation , transforming the
orienttion of an imagined shape until it coincides in a template -like manner
with a second , perceived shape or with a shape stored in a canonical upright
orientation in memory . By itself , the increase in reaction time with orientation 

would not necessarily support the claim that a continuous rotation is

imagined , but Shepard and Cooper have independent evidence that the rotation 
process computes intermediate representations in the angular trajectory

(see Shepard and Cooper (1982) for a review ) . There have also been demonstrations 
of phenomena interpretable as mental translation or scanning

(Finke and Pinker , 1982, 1983; Kosslyn et at. , 1978; Pinker et at. , 1984a) , and
size scaling (Bundesen and Larsen , 1975; Kosslyn , 1980) .

In interpreting these data , it is important to separate two aspects of the
phenomenon : why transformations are necessary at all , and why the transformations 

are gradual (e.g., why people take increasing time for greater orien -

tation ' disparities , rather than simply taking a constant additional amount of
time when there is any difference in orientation at ~all ) . I think that the
necessity of performing image transformations tells us about which pairs of
geometric attributes are obligato rily coupled in images , rather than being
factored apart , leading to similar conclusions to those suggested in the previous 

section on imagery constraints . Consider the following structural description 
of a viewed object :Object X:Shape:[ (Object-centered 3-D mOdel)]
Viewer -relative

location : (x , y , d)

Viewer -relative

orientation : (s, t)

Size: (z)

Now consider what would happen if one had to verify that two stimuli had
the same shape, or whether one stimulus did or did not correspond in shape
to a standard in memory . If the judgment could be made on the basis of
structural descriptions such as this one , exploiting the explicit decoupling of
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geometric attributes in it , then depicted orientation should make no difference
. All one has to do is examine the part of the structural description that

specifies shape, and ignore the parts specifying orientation , location , and
size. In fact , the factoring apart of orientation , location , and size in structural
descriptions, allowing process es to ignore selectively the geometric attributes
that are irrelevant to their tasks , is considered one of the chief selling points
of this format . However , the facts of mental transformations indicate that

this account cannot be completely correct : when judging shape, people are
systematically affected by the irrelevant attributes of orientation and size.
Similarly , when verifying whether an imagined object has a part , people are
affected bv the size of the object or of the part (Kosslyn , 1980) ; and when

verifying whether one point lies in a certain direction with respect to another ,
they are affected by the distance between " them (Finke and Pinker , 1983) .
There is also evidence that the imagined size of an object affects the rate of
rotation (Shwartz , 1979; Pinker , unpublished data ; though see also Bundesen
et at. , 1981) . Finally , when matching an imagined shape against a physically
presented 'one , differences in orientation , size, location , and combinations of
these differences all affect the speed of the match (Bundesen and Larsen ,
1975; Cooper and Shepard , 1973; Farah , In press; Kosslyn , 1980; Shepard and
Cooper , 1982) .

The Dhenomena of mental image transformations , then , suggest that the

completely factored structural description as shown above cannot be the one
used in imagery . Exactly what about it is wrong is not completely clear . The
phenomena are consistent with the spatial models of Shepard and Kosslyn in
that in those models , shape and orientation (and , in Kosslyn 's model , size
and location ) are not factored apart ; they are ' in ' one and the same set of
activated cells . Thus the value of one attribute may affect the accessing of
another when two representations differing in the first attribute are compared

; the comparison process might be similar in some ways to template
m~t~hinfJ. Hinton and Parsons (1981) argue otherwise ; they suggest that

~

shape and orientation are factored apart in image representations except for
the handedness of the object -centered reference frame , which is determined
in the viewer -centered reference frame (see the earlier section on " Assigning
reference frames " ) . Hence normalization of orientation is necessary
whenever shapes must be discriminated from their mirror -reversed versions ,
the situation in most of the mental rotation experiments . Mental rotation also
occurs , however , when the foils are not mirror -images (e.g., Cooper and
Podgorny , 1976; Shwartz , 1981, Reference note 4) ; whether or not Hinton
and Parson's account is correct in these cases will depend on whether the relevant 

shape representations depend on the handedness of their reference
frame (e.g., wh~ther random polygons are represented in terms of a list of
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their angles going clockwise from the topmost angle ) . Another , related possibility 
for the necessity of computing geometric transformations is that the

shape description does not have a global specification of viewer -relative
orientation , only specifications appended to each part . The description of the
dispositions of the object 's parts would change with orientation , requiring a
normalization of orientation before shape can be extracted . In any case, the
fact that mental transformations must occur when processing information in
images indicates that images cannot consist of a viewpoint -invariant object -
centered description plus a global specification of orientation .

Why the transformations must be executed incrementally is another issue.
Logically there is no reason why the process es that update the represented
orientation of a shape could not arrive at new orientations in one fell swoop .
If orientation is simply a parameter appended to a shape description , one
value could simply be replaced by another . Even in an array theory like
Kosslyn 's, the process that moves surface primitives from cell to cell (based
on the coordinates of the first cell and the nature of the transformation ) could
calculate the coordinates of the target destination in one step rather than
calculating a sf'-ries of destinations separated by small increments .

Explanations for the gradualness of image transformations divide into
three classes. In theories with an array component , neighboring cells are used
to represent adjacent orientations and the orientation changes are accomplished 

by hardwired connections between cells within some bounded
neighborhood (e.g., Hinton , 1979a; Shepard , 1981; Trehub , 1977) . Since
there are hardwired connections only between neighboring cells , larger transformations 

require the network of connections to be activated iteratively ,
transferring activation from initial to final state through intermediate states
in bucket brigade fashion .6

The second class of account appeals not to constraints on the transformation 
mechanisms but on the executive process es that control it . For example ,

Kosslyn ( 1980) proposes that incremental transformations are selected because 
they minimize noise introduced into the depicted shape by the transformation 

operation , and because they allow a simple control strategy when the
target orientation is not known in advance : the executive can monitor the
successive representations and stop the transformation when the represented
shape is familiar or matches some target (Marr (1982) makes a similar conjecture

) . In these accounts , the necessity of choosing gradual transformations

�

I>rrhe local nature of the wiring in these networks could either be an accidental consequence of principles
of neural organization, or could have been selected during evolution to mirror the continuity of the motion
of physical objects, as Shepard (1981) and Hayes-Roth (1979) have conjectured.
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ultimately derives from the coupling of shape and orientation ( size , location ,

etc . ) in imagery , because only if they are coupled would the size of the

transformation affect the process of recognizing a target shape .

The third class of account comes from Pylyshyn ( 1981 ) and Mitchell and

Richman ( 1980 ) , who also argue that it is executive process  es that cause the

transformation to be incremental , but attribute the source of this choice to a

different factor , namely one ' s tacit knowledge that movement in the world is

continuous and one ' s desire or tendency to simulate the time course of physical 

events . In particular , experiments in which subjects are told explicitly to

transform a pattern ( e . g . , Kosslyn et al . , 1973 ) ; or in which subjects know

that the experiment is about ' rotation ' , ' movement ' , and so on , are open to

this explanation , it is argued , because subjects could literally construe their

task as the mental simulation of motion . The account becomes less plausible

in cases where subjects are left to their own devices and are asked to solve

the task as quickly as possible , with no mention of imagery or of transformations 

( e . g ' 1 Cooper and Shepard , 1973 ; Finke and Pinker , 1982 , 1983 ; Pinker

et al . , 1984a ) . Instead , tacit knowledge , accounts would have to claim that

subjects carry with them the habit of simulating physical events whenever

they make spatial judgments . However , such an account would then need to

p; xnlrlin what it is about the mind that would cause it to adopt such unneces -

sary habits ( Kosslyn , 1981 ) and why mental transformations are not carried

out when various sorts of advance information are provided to the subject

( e . g . , Cooper and Shepard , 1973 ; Finke and Pinker , 1983 ; Pinker et at . ,

1984a ) .

Goodness and cohesiveness of parts

The definition of the primitive units represented in structural description

and array theories is one of the key features that differentiate them . In structural 

descriptions , the primitives correspond to cohesive parts of objects and

their dispositions with respect to reference frames centered on superordinate

parts . In an array representation , the primitives correspond to local patches

of surface or to edges , located with respect to a single reference frame centered 

on the viewer ( see Fig . 6 ) . Hence , in structural descriptions , it should

be easy to make judgments about spatial relations among cohesive parts

specified within the same reference frame , whereas in arrays , the parts do

not have a special status and the difficulty of a judgment should be determined 

by factors such as distance and size rather than part cohesiveness or

membership in a family of parts in the same reference frame . Thus it has

been taken as evidence against array representations that it is extremely

difficult to see parts in complex objects that are low in Gestalt ' goodness ' or

that do not corr ~ spond to one of the units in one ' s internal description or



conceptualization of the objects (Hinton , 1979a; Palmer , 1977; Reed , 1974;
see also Fig . 7) .

Unfortunately , these demonstrations become less than decisive in settling
the array - versus- description issue because most explicit imagery theories
have multiple mechanisms . For example , in Kosslyn 's array theory , objects '
shapes are stored in long -term memory as structural descriptions involving
the objects ' parts , and image generation consists of the successive activation
in the array of patterns for those parts (Kosslyn et al . , 1983) . Since imagined
parts begin to fade as soon as they are generated , (Kosslyn , 1980) , at any
given time an image of a complex shape will contain only subsets of parts
that were originally generated in close temporal proximity . These will usually
be parts that have a distinct identity and that belong to the same reference
frame in memory . Hence relations that cut across parts or reference frames
will be difficult to make , just as in the structural description account . Conversely

, in a structural description theory that allows a global set of viewer -
centered coordinates to be appended to each part description (e.g., as shown
in the lower panel of Fig . 6) , relations among parts in different reference
frames should not be difficult to perceive . In both theories , limitations on the
number of parts kept active at one time , and the use of structural descriptions
at one level of shape representation , are the source of the explanation for
these phenomena . Discriminating among the theories will be easier when
each makes more precise commitments as to how the limitations in capacity
are measured , and what determines the choice of reference frames .
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Figure 7.
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Imagery and perception
There is a large body of research exploring similarities between imagining

a pattern and perceiving one (see Finke , 1980;Finke and Shepard , In press;
Shepard and Podgorny , 1978; Shepard and Cooper , 1982) . These include
chronometric patterns in discriminating magnitudes of perceived and imagined
objects ; perceptual aftereffects following the formation of images , and paral -

Effects of descriptions on the visualization of parts . Different parts are more
or less easy to detect in an imagined pattern depending on whether the whole
is conceptualized as two overlapping triangles , two overlapping parallelograms

, two adjacent hourglass es, or a diamond contained in a large
hourglass . From Reed (1974) .
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le Is in the scaling of magnitudes or similarities among perceived and remembered 
stimuli . Finke ( 1980) and Finke and Shepard (In press) discuss the

relevance of this large body of findings to theories of imagery . Finke distin -
guishes among similarities between imagery and perception according to the
locus of the relevant perceptual effect in the nervous system . For example ,
one can conceive of perceptual effects that are due to properties of the sensory 

receptors and lower -level feature analyzers and grouping process es ( i .e.,
those process es leading to what Marr calls the Primal Sketch ) , those that are
due to properties of the higher level analysis of objects ' shapes, sizes, surface
features , orientations , and so on ; and those that are due to general knowledge
and cognitive skills , such as a person 's tacit knowledge of the workings of his
or her perceptual system . Finke argues that among the phenomena that are
similar in imagery and perception , there are" some that can be attributed to
the second of these three levels , that is , phenomena that reflect the operation
of middle -level perceptual process es that are independent of a person 's
knowledge and beliefs . If so, it would argue that imagery is more than the
application of one 's general purpose knowledge about physical or perceptual
process es.

In search of the imagery medium
The research most directly addressed to distinguishing between the array

and structural description theories has attempted to discover evidence for the
putative medium underlying images. According to the array theory there is
a fixed medium underlying all visual images, regardless of their content;
according to the alternative, the representation underlying the image of an
object is simply the activated representation of that object's shape in memory
(see Farah, 1984 for discussion) . If an imagery medium exists, its parts should
correspond to fixed points in the visual field , it should display the same
eccentricity, isotropy, and contrast constraints as one would find in the corresponding 

perceptual medium, regardless of which objects are being represented
, and it should have an identifiable locus or loci in the nervous system

. There are inherent methodological difficulties in determining whether
such a medium exists because people's tacit knowledge of their own perceptual 

experience could make it easy for them simply to remember how something 
originally appeared to them when forming an image, rather than forming 

a pure image and allowing the inherent structure of imagery representations 
to affect its "appearance" (Pylyshyn, 1981) . Nonetheless, there have

been several interesting lines of investigation, and attempts to overcome the
methodological problems.

For example, Finke and Kosslyn (1980) , Finke and Kurtzman (1981) , and
Pennington and Kosslyn (1981, Reference note 2; see the paper by Kosslyn
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et al . in this issue) have attempted to show that images have decreased resolution 
at peripheral eccentricities and oblique orientations , just like physical

patterns , but that these effects were not known to the subjects , at least not
consciously . Kosslyn ( 1983) has also shown that imagining a pattern at a
particular location over a prolonged period makes it harder to imagine a new
pattern at that location , as if a single neural substrate was being fatigued or
habituated . Bisiach and Luzzati ( 1978) have shown that brain -injured patients
suffering from attentional neglect of one visual hemifield also show signs of
neglect in images of objects in that hemifield . For example , when imagining
a piazza and describing the buildings facing them they fail to describe the
buildings on one side- but fail to describe a different set of buildings , those
that would be seen in the same part of the visual field , when imagining
themselves facing in a different direction . And Farah (1984) argues that the
process that converts long -term memory representations into the format corresponding 

to imagery can be selectively impaired and that this impairment

is caused by damage only to certain parts of the brain .7

Computing and updating viewer -centered representations
The instrospective and experimental evidence on imagery suggests images

represent the surfaces visible from a fixed vantage point , rather than just the
intrinsic geometry of an object (see Hinton , 1979b; Pinker , 1980b; Pinker
and Finke , 1980) . The major models of imagery , both of the array and structural 

description variety , are designed to capture this fact . However , computing 
the dispositions and visible surfaces of parts from a description of their

shape plus a specification of a vantage point , and updating that representation
during image transformations , can be a nontrivial computational problem ,
especially as images are subject to transformations that alter the sets of surfaces 

that are visible (e.g. , rotation in depth , translation or panning that

brings new objects into view , zooming to reveal formerly blurred detail ) .
Furthermore , simply computing the rotation and translation transformations 

themselves can be problematic , especially in array theories . If the viewer
-centered coordinates are specified in polar coordinates , then rotations in

the frontal plane around the fovea are easy to compute , but not rotations in
depth , about noncentral axes, or translations . If rectangular coordinates are
used, sideways or up-and-down translations are easy to compute , but not
diagonal translations or rotations . One possibility is that aside from the vie -
- - -- -

7 Evidcnce on position -specific neglect Folio\'-'ing brain injury supports theories that have specific neural
loci representing specific locations in the visual field . Hinton 's ( 1979a) hybrid structural description model has
this property , since location parameters are claimed to be given a ' place ' representation in unidimensional
neural arrays . There is , however , a prediction that differentiates Hinton 's model from array theories : according
to Hinton , entire objects or parts should be neglected when they are represented at particular locations ,
whereas according to Kosslyn , arbitrary chunks of a part ( \vhatever materia ! overlaps the missing region ) can
be inacccssiblc .
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wer -centered coordinate system that defines the fixed 'address' of each array
cell , rectangular and cylindrical coordinate systems can be dynamically centered 

on or linked to patterns for objects in the array , giving the cells a
second , transient set of coordinates . Imagined transformations and the positioning 

of objects and parts with respect to one another could then be accomplished 

by process es that manipulate these transient , more appropriate
coordinates (see the section on " Frames of reference for the visual field " ;
also Pinker , 1980c, Reference note 3; 1981; Trehub , 1977) .

Thus the complexity of mechanisms needed in an imagery theory hinges
crucially on which geometric transformations we actually can compute in
generating and updating our images . It may turn out , for example , that the
image generation process es (i .e. , those discussed at length by Farah (1984)
are not as powerful as one might think . I have found that subjects can accurately 

remember the projected positions of objects in scenes when they are
told to visualize the way the scene looked from a vantage point that the
subjects had actually experienced . However , when the subjects had to visualize 

t~e scene as it would appear from a different , hypothetical viewing
distance , the subjects were unable to predict the projected positions of the
objects accurately (unless a rich context framework was visible at the time of
making the judgments ) . Instead , the subjects simply reconstructed the
perspective they had actually witnessed and then uniformly scaled its size to
approximate the novel perspective view (Pinker , 1983) . In a different set of
experiments , (Pinker et at. , 1984b) , I found that subjects could not visualize
in a single step the appearance of a three -dimensional object from an arbitrary 

viewing angle , even when they had advance information about the viewing 
angle . Instead they first visualized it in some canonical orientation , and

then mentally rotated it into the target orientation .
These findings argue against an image generation process that takes as

input an object -centered shape representation plus a specification of an arbitrary 
viewpoint , and computes as output the corresponding viewer -centered

representation . Instead it suggests that the memory representation from
which images are generated uses a viewer -centered format and that the generation 

process simply activates this representation intact (at which point
image transformation process es could begin to operate ) . This could have
interesting implications for the representation of shape in general . My experimental 

evidence suggests that long -term image representations are primarily

viewer -centered . Both parsimony considerations and neurological evidence
summarized by Farah ( 1984) suggest that the long term representations of
shape used in recognition are the same as those used in imagery . And Marr
and Nishihara argue that shape representations used in recognition are
primarily object -centered . One of these three claims has to give .



What is imagery good for ?
The question of whether we have cognitive representations and process es

dedicated to imagery is closely related to the question of what advantages
such representations bring to reasoning and thinking . If general knowledge
systems could do everything that a putative imagery system could do and
could do it as well or better , one would have to question why the imagery
system is there . No one questions the need for memories and reasoning
process es that deal with visual information or hypothetical scenes or physical
interactions ; the question is whether any of the special properties that have
been attributed to the imagery system- such as sharing one of the representational 

media used in perception , representing information in a single viewer
-centered coordinate system , conflating shape, orientation , and position ,

or executing transformations continuously - are computationally desirable .
There have been several conjectures about the possible use fulness of these

and other properties of the imagery system. None of these conjectures is
strongly grounded as yet in computational complexity theory or in experimental 

investigations , but all have a certain intuitive appeal and all are amenable
to such investigations . Here is a sample of prominent suggestions :

( 1) Global coordinate system. In the section on shape recognition , I reviewed 
compelling arguments for representing objects ' shapes in distributed

coordinate systems rather than a global one (see e.g. , Fig . 2) . Efficient though
this scheme is for recognition , it can be problematical when one must reason
about spatial relations among non -adjacent parts . Consider how one could
answer a question such as " is the midpoint of a horse 's tail higher or lower
than its lips ?" The position of the midpoint of the tail is specified with respect
to the tail as a whole ; the position , angle , and size of the tail are specified
with respect to the torso ; the position , angle , and size of the lips are specified
with respect to the face, whose position , size, and angle are specified with
respect to the head , whose position , size, and angle are specified with respect
to the torso . One cannot simply look up any pair of coordinates to answer
the question , because the coordinates of the midpoint of the tail and those
of the lips have completely different meanings . Comparing the positions of
the two objects could be done by transforming the geometricparameters of
one of them into the coordinate system of the other , but that would require
several successive coordinate transforms . Not only might such a series of transformations 

be time -consuming and error -prone , but noise in the representation 
of one of the parameters or noise introduced by the transformation

process es could accumulate from transformation to transformation and the
final comparison could be severely inaccurate . For example , errors of a few
degrees in the representation of the angle of a giraffe 's neck could lead to

S. Pinker54



Visual cognition 55

large errors in the judgment of how far ahead of its feet its snout extends .
If the position , orientation , and size of each of a set of parts could be

specifie 'd in terms of a single coordinate system, relations between parts
within the .same 3-D model would be a bit more difficult to compute , but
relations among parts separated by many intervening models would be easier
and more accurate . Hinton ( 1979b) has suggested that visual imagery consists
of the use of a global viewer -centered reference frame to represent the dispositions 

of arbitrary collections of parts for the purpose of judging spatial relations 

among them (see Finke and Pinker ( 1983) for some relevant experimental 
evidence ) . Shepard and Hurvitz ( 1984) also point out that mental rotation

can serve to bring one object into alignment with the reference frame of
another , or into alignment with a viewer -centered reference frame , to facilitate 

the computation of reference -frame -specific predicates such as 'right '

arid ' left ' (see also the section above on " Assigning reference frames " ) .
This advantage is not tied to a single theory of imagery ; it could be obtained 

whether the global coordinates are listed as tags on nodes in structural

descriptions, of whether they are the address es of the cells in an array medium
occupied by the represented surfaces of the object (see Fig . 6) . There are ,
however , diferences in the extent to which the advantages could be exploited
in the two models ; in an array model , the boundaries of various parts or
details of their surfaces can be compared in the same global reference frame
whenever an object or part is activated , whereas in the structural description
account , only relations among entire parts are possible . Thus it has been
argued that array representations are especially efficient when properties that
cut across part boundaries , such as the empty space defined by a pile of
objects on a table , must be computed (Funt , 1976; Hayes -Roth , 1979; see
also Waltz , 1979 ) .

(2) Incidental properties . When we learn about a new object , we record a
number of facts about its structure , but not every potentially useful fact . For
example , we do not record explicitly the shape of the ear of a sheep, or
whether any of the parts of a car are triangular , or how many windows there
are in one 's house . Such information is often implicit in the information we
do record , but it is simply not listed as an explicit proposition in memory . If
there are routines analogous to the ones proposed in this issue by Ullman
(1984) that can recognize these properties from visual input , then perhaps they
can also recognize them from information stored in memory that is similar in
form to the visual input . That is, we might store a relatively uncommitted ,
literal record of the appearance of objects from which we can compute properties 

that we could not anticipate the need for knowing when we initially

saw the object . Kosslyn ( 1980) reports an extensive series of experiments and
intuitive demonstrations showing that imagery is used when people are re-
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quired to answer questions about parts of objects that are 'poorly associated '
with the objects (that is, parts that we are not likely to have thought of in
connection with that object before ) 'and not deducible from the properties of
the superordinate class to which the object belongs . Thus " does a bee have
a dark head" requires the use of imagery (as assessed by effects of size and
scanning , as well as by introspective reports ) , but " does a bee have a stinger "
or " does a bee have wheels " do not .

(3) Incremental representation in perception . Ullman ( 1984) argues that
certain types of visual recognition are solved by routines that can add information 

to the visual input , yielding " incremental representations " that subsequently 
are used by that routine or by other routines (e.g. ~co loring ' regions

, marking objects ) . Though Ullman suggests that visual routines are fast ,
unconscious , low -level recognition operations , it is also possible that some
of these operations are identical to what are often called imagery operations 

(sequences of which , presumably , can become automatized with practice 
and hence could become fast and unconscious ) . Thus it is noteworthy

that Ullman 's operation of 'boundary tracing ' , which is similar to the operations 
of mental scanning and extrapolation proposed in connection with imagery

, appears to occur at the same rate (in degrees of visual angle per second)
as image scanning (Finke and Pinker , 1983; Jolicoeur et al . , 1984b) . It is
also possible that the generation and template -like matching of images against
perceptual input (see Shepard and Cooper ( 1982) for a review ) is a visual
routine that can be used to recognize objects when one number of a small
set of candidate objects is expected and when it is difficult to compute a 3-D
model for the input . This could happen if the input pattern lacks stable axes
or a stable decomposition into parts , when it must be discriminated from
mirror -reversed versions , or when the input is severely degraded .

(4) Reasoning in isomorphic domains . If images are representations in a
medium with certain fixed properties , and can be subjected to transformations 

such as rotation and scaling , then imagery could be used as an analogue

computer , to solve problems whose entities and relations are isomorphic to
objects and spatial relations . That is, certain abstract problems could best be
solved by translating their entities into imagined objects , transforming them
using available image transformations , detecting the resulting spatial relations
and properties , and translating those relations and properties back to the
problem domain .

For example , if every imagined object is constrained to have a single set
of coordinates within a global coordinate system (e.g. , the array proposed by
Kosslyn ) , then it is impossible to represent the fact that one object is next to
another without also commit ting oneself to which is to the left . (This is not
true for abstract propositional representations , where the two -place predicate
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" next to " can be asserted of a pair of objects with no such commitment .)
Furthermore , if there is a routine that can compute which of two objects is
to the left of another on the basis of its global coordinates or the position of
the cells it occupies in the array , then transitivity of left -to -right position falls
out of the transitivity of the coordinates or of cell position within the array .
The result of these properties is that problems such as three -term syllogisms
(e.g., John is nobler than Bill , Sam is less noble than Bill , who is the noblest ?)
can be solved straightforwardly by imagining an object for each entity in the
problem and placing them to the left and right of one another in an order
corresponding to the dimension of comparison (Huttenlocher , 1968; Shaver
et at. , 1975; see also Johnson -Laird , 1983) .

Shepard (1978) and Shepard and Cooper (1982) also note that the use of
imagery in mathematical and scientific problem solving may be effective because 

the medium used to represent images and the operations transforming

them might embody physical and geometric constraints on terrestrial objects
and space. When there are isomorphisms between physical objects in space
and other domains (e.g., electromagnetic fields and elastic lines or surfaces) ,
imagining a concrete analogue of an entity , transforming it , and then translating 

it back to the original domain could make explicit certain properties and

equivalences in that domain that were only implicit beforehand .

In this tutorial review , I have made no effort to conceal the disagreement
and lack of resolution that surrounds many of the issues discussed. This
should be taken not as a sign of disarray , but as a sign of the vigor of a ne\ 'ly
revitalized branch of cognitive psychology . After a period of relative stag"lation

, researchers in visuospatial cognition are striving to synthesize a large
number of new empirical findings , theoretical constructs , and external constraints

. The past decade has seen Marr 's important statements of the problems 
that visual recognition must solve and of the criteria of adequacy for

theories of shape representation , his introduction into discussions in visual
cognition of physical , optical , and geometric constraints that the visual system
can exploit , and his concrete proposals on several classes of visual representations 

and algorithms . It has also witnessed a burgeoning of experimental

data on imagery and recognition made possible by the chronometric methodol -
ogy of Shepard and Kosslyn ; tentative resolutions of the principal conceptual
objections to theories of visual representations ; the development of explicit
computations and neural models of process es and structures that were previ -
ously characterized only in vague metaphors ; and the application to visual
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imagery of concepts used in shape recognition such as distributed coordinate
systems, object- and viewer-centered reference frames, and the 21/2-0 sketch.
Most recently, we have seen an exposition of properties of alternative compu-
tational architectures, including the massively parallel systems that visual-
processing surely requires at some levels. Theories and data in visual cognition 

are being applied for the first time to neighboring disciplines that previously 
had been largely insulated from theoretical considerations. such as com-

puter vision systems, individual difference psychology, and neuropsychology,
and these disciplines are now in a position, in turn , to inform basic research
on visual cognition. There are disagreements and confusion over specifics, to
be sure, and syntheses between independent bodies of research that have yet
to be made, but it seems clear what the problems to be solved are, what sorts
of data and arguments are relevant, . and what degrees of precision and
explicitness it is reasonable to hope for in our theories.
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Resume

Cet article cst une revue didactiquc sur Ics questions csscnticlles de la cognition visuclle . II est centre sur la

reconnaissanc .e des formes et sur la representation des objcts et des relations spatialcs en perception et en

imagcrie . L ' auteur donne d ' abord un bref rapport sur I ' etat de la question puis fait une presentation plus

approfondie des theories contemporaines , des donnees et des prospcctives , II discute different  es theories de

la reconnaissance des formes tcllesque Ics descriptions structurales en termes de patrons , traits , Fourier ,

Marr - Nishihara , ct Ics modcles parallcies . II discute aussi les propositions du type cadres de reference ,

primitifs , traitcments de haut en bas ct architectures de caIcul utilisees dans la reconnaissance spatiale . Suit

une discussion sur I ' imageric menta Ie ou sont abordes Ics concepts utilises dans Ics recherches sur I ' imagerie ,

les theories dc I ' imagcric , Ics rapports entre imagcric et perceptionIcs transformations d ' imagc , les comple -

xites dc calcul dans Ie traitemcnt des images , Ics questions ncurologiqucs et Ic role fonctionncl possible de

I ' imagcric . On insistc sur Ics relations entre Ics theories de fa reconnaissance ct I ' imagcrie ainsi que sur la

pert ,incncc des articles de cc volume sur ces sujcts .


