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Abstract

Burke et al. [3], introduced the Matlab package Hifoo (H-Infinity Fixed Order Optimization)

in 2006 with the main goal of providing a powerful, yet user-friendly tool for computing

reduced-order controllers of linear systems. Built upon powerful methods for non-convex and

non-smooth optimization, Hifoo attempts to compute controllers which not only stabilize

the given plant, but also locally optimize one of several provided objective functions.

In this thesis, we will present two new extensions to Hifoo. The first allows the specified

plant to contain a non-trivial feedthrough term, allowing a direct connection between the

control input and the system output that is important in many realistic, physical processes.

The second extension allows the user to require specific structure in the state-space rep-

resentation of the controller matrices. Although well-known techniques exist to convert

systems with a non-trivial feedthrough to systems with a feedthrough equal to zero, these

techniques destroy any structure in the original controller.

Numerical experiments are provided not only for benchmark problems found in the

COMPLeib library, but also for realistic, physical systems such as the control of a flexible

beam and structured, static-output-feedback control of an F-16.
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Introduction

Originally formulated in the 1980’s as a framework for handling uncertainty or noise in a

given plant model, H∞ control quickly provided powerful techniques in the area of controller-

synthesis (an overview, with detailed references is provided in Zhou et al. [12]). These

techniques quickly led to practical, yet powerful tools in controller design, however the

domain in which they could be applied was limited. Specifically, most of these tools were

focused on computing full-order controllers, that is ones whose order is the dimension

of the plant itself. Recently, there has been a resurgence in new computational tools for

finding controllers that have a lower order than that of the plant. In many physically relevant

systems, it is often the case that the plant’s order is too large to allow a full-order controller

to be computationally feasible. Furthermore, even when controlling plants of low order, a

reduced-order controller may be desirable when the available memory and computational

power is limited, such as in embedded controllers. At the other extreme from full-order

control is static-output feedback (SOF), where a controller is sought with order zero. SOF

control is desirable, because the control law will be of a specific, simple form, as opposed

to a complex system of ordinary-differential equations. Although no general mathematical

techniques guarantee a solution to the SOF control problem, computational tools may still

succeed in computing a controller with desirable characteristics.

This work provides extensions to the Matlab package Hifoo forH∞ Fixed-Order Optimiza-

tion, created by Burke et al. [3]. Built upon the Matlab package Hanso (Hybrid Algorithm for

Non-Smooth Optimization), a powerful tool for non-smooth, non-convex optimization, Hifoo

follows a local optimization approach to low-order controller synthesis, utilizing a combina-

tion of random and user-provided initial controller matrices. The present work involves two

seemingly disparate, but related extensions to Hifoo. The first extension allows a direct link

between the plant’s controlled input and its measurable output. Although well-known tech-

niques exist which make this extension unnecessary, these methods destroy any specified

structure in the controller, which may be important from an engineering standpoint. The

second extension allows a simple means for the user to specify this controller structure. As
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input, the user may now select which elements of the controller’s system matrices to optimize

over, fixing the other elements to zero. Together, these extensions provide a user-friendly

tool for structured,low-order, control of linear-systems with a nontrivial feedthrough term.
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1

Background: Linear Control Theory

This chapter will provide a brief review of topics from Linear Systems and H∞ Control Theory.

For a more detailed introduction to Linear Systems, Robust and Optimal Control, and H∞

control see Chen [4], Dullerud and Paganini [5], Zhou et al. [12], and Francis [6] respectively.

1.1 Linear Systems

When analyzing physical processes, it is often important to mathematically model both

the internal dynamics of the process as well as its interaction with the external world.

This mathematical model is called a dynamical system and we define its state at time to

as the internal information x(t0) that together with the external input u(t) determines

the model’s output y(t) uniquely, for t ≥ t0. This relationship is denoted via the compact

notation
[
(x(t0),u(t))→ y(t)

]
. Let

[
(x1(t0),u1(t))→ y1(t)

]
and

[
(x2(t0),u2(t))→ y2(t)

]
correspond to two state-input-output pairs. A given system is linear if, for all t ≥ t0, it

satisfies the law of superposition, ie.

[
(αx1(t0)+ βx2(t0),αu1(t)+ βu2(t)) -→ αy1(t)+ βy2(t)

]
. (1.1)

Furthermore we will be interested in systems which are time invariant. Intuitively, this means

that regardless of the starting time, if the initial state and control input are the same, the

output will also be the same. Formally, let
[
(x(t0),u(t))→ y(t)

]
for t ≥ t0. The system is

time-invariant, if for any T ∈ R,

[
(x(t0 + T),u(t − T))→ y(t − T)

]
for all t ≥ t0 + T . (1.2)

If a system satisfies both Property 1.1 and Property 1.2, we say the system is Linear Time-

Invariant (LTI). Throughout this work, we will assume that all systems are linear time-invariant

and furthermore that the state of the system has finite dimension.
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1.1 Linear Systems

1.1.1 State-space Description

Given the linearity condition in Equation 1.1, every LTI-system emits a state-space realization

that is described by the set of differential equations:

ẋ(t) = Ax(t)+ Bu(t), x(0) = 0

y(t) = Cx(t)+Du(t), (1.3)

where x ∈ Rn is the state vector, u(t) ∈ Rm is the system input or control vector, and

y(t) ∈ Rp is the system output vector. Observe that the above plant is a system of first-order

differential equations with a specified initial condition and therefore, must have a unique

solution. A common, more compact, notation is frequently used by collecting x and u into a

single vector and writing (1.3) as: ẋ

y

 =
 A B

C D


 x

u

 . (1.4)

In many situations, the controller may not be able to control a subset of the system input,

u, nor measure a subset of the system output, y. We call these additional, non-controllable

and non-measureable terms the exogenous input vector, w(t), and exogenous output vector,

z(t), respectively. Often the exogenous input will represent system noise or information

and the exogenous output a known quantity that we wish to control. We expand System 1.3

to include such terms as follows:

ẋ(t) = Ax(t)+ [B1 B2]

 w(t)

u(t)


 z(t)

y(t)

 =
 C1

C2

x(t)+
 D11 D12

D21 D22


 w(t)

u(t)

 . (1.5)

Following the above compact notation, we again collect vectors x,w, and u into a single

vector and write this system as
ẋ

z

y

 =

A B1 B2

C1 D11 D12

C2 D21 D22




x

w

u

 . (1.6)
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1 Background: Linear Control Theory

G

K

w z

yu

Figure 1.1: Closed Loop system.

1.1.2 Transfer Function and Frequency Response

In addition to the state-space representation given in the previous section, linear systems can

be described via a transfer function that provides a relationship between the control input,

u, and system output, y, in the frequency domain. As we will see, the transfer function

representation will provide insight into various properties of the system. By applying the

Laplace transform to System 1.3 and assuming that x(0) = 0, we obtain

sX(s) = AX(s)+ BU(s)

Y(s) = CX(s)+DU(s) (1.7)

where the capitalized terms X(s), Y(s) and U(s) denote the Laplace transforms of the system

inputs x(t),y(t), and u(t) respectively. Substituting the first equation into the second, we

can calculate the system transfer function

Y(S) =
(
D + C(sI −A)−1B

)
U(s). (1.8)

Therefore, the state-space realization of the linear system given by Equation 1.3 provides a

state-space realization of its transfer function via the equation

G(s) = D + C(sI −A)−1B. (1.9)
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1.2 Feedback Control

We will often refer to this transfer function via the matrix notation

G(s) =

 A B

C D

 . (1.10)

1.2 Feedback Control

Once the plant is modeled by Equation 1.5, the primary goal of feedback control is to design

a controller that from the measurable system output y computes a new control vector u to

then pass back into the plant. In this work, our goal will be to design a controller which, at

the very least, stabilizes the given system. This process is depicted in Figure 1.1 where G

denotes the plant and K the controller. There we connect the open-loop model of the plant

with the open-loop model of the controller to form the closed-loop model of the entire system.

As in the above systems, the controller can be modeled by a set of state-space equations

of the form:  ḋ

u

 =
 Â B̂

Ĉ D̂


 d

y

 (1.11)

where d ∈ Rn̂ denotes the controller’s state and n̂ denotes the order of the controller. As

with the plant above, the controller has its own transfer function representation,

K(s) = D̂ + Ĉ(sI − Â)−1B̂. (1.12)

1.2.1 The Linear Fractional Transformation

The Linear Fractional Transformation (LFT) provides a mathematical means of modeling the

connection depicted in Figure 1.1. Let G(s) and K(s) denote the transfer functions of the

plant and controller respectively. Furthermore, we partition the transfer function of the plant

as follows:

G(s) =

 G11 G12

G21 G22

 (1.13)

where the dimensions of G11, G12, G21, and G22 correspond the dimensions of the system

matrices D11, D12, D21, and D22 respectively. We can then model the closed-loop transfer

6



1 Background: Linear Control Theory

function from the exogenous input w to the exogenous output z via the LFT

F(G,K) = G11 +G12K (I −G22K)−1G21. (1.14)

One such state-space realization of this LFT is given by the closed-loop equations calculated

in Appendix B.

In this work, the only theoretical use of this LFT will be in Section 1.3, where we use

Equation 1.14 to show the equivalence of two different closed-loop systems.

1.2.2 Internal Stability

Once the controller is connected to the plant as in Figure 1.1, it is important to ensure that

the new closed-loop system behaves properly regardless of the input provided to the system.

One such desirable property is the internal stability of the closed-loop system.

We call the connection of a plant decribed by Equation 1.5 with a controller described

by Equation 1.11, well posed if the matrix
(
I − D̂D22

)
is non-singular. Observe that if the

plant has a trivial feedthrough term, ie. D22 = 0, then the connection is well-posed a priori.

The connected system is internally stable if, in addition to being well posed, it is such that

whenever w = 0,

lim
t→∞

(x(t), d(t)) = (0,0) (1.15)

for every pair of initial conditions (x(t0), d(t0)). Although precise, this is not a very computa-

tionally useful definition for testing whether a system is internally stable. Another equivalent

definition of stability is given after the following definitions.

The spectral abscissa of a square matrix denotes the maximum real part of its eigenvalues.

Symbolically, let Λ(M) denote the set of eigenvalues for matrix M. The spectral abscissa,

α(M), is given by the formula

α(M) = max
λi∈Λ(M)

Re(λi). (1.16)

A matrix M is stable if the spectral abscissa satisfies α(M) < 0, namely M is stable if its

eigenvalues are located in the open left half-plane.

We now give an equivalent definition of internal stability, modified slightly from Dullerud

and Paganini [5].

7



1.3 H∞ Control

Proposition 1.1. The closed-loop system described by Figure 1.1 is internally stable if and

only if (I − D̂D22) is non-singular and the matrix

Ak =

 A+ B2F−1D̂C2 B2F−1Ĉ

B̂C2 + B̂D22F−1D̂C2 Â+ B̂D22F−1Ĉ

 (1.17)

is stable, where F =
(
I − D̂D22

)
.

A proof of this proposition is provided in the above reference. Observe that the matrix

Ak is the partition of the closed-loop matrix calculated in Appendix B concerning the state

variables x and d. The equivalence then follows from standard results of ordinary differential

equations and the matrix exponential. See Dullerud and Paganini [5, Chapters 2 and 5] for

more details.

1.3 H∞ Control

Again, given a plant, G, and a controller, K, we consider the system described by the block

diagram depicted in Figure 1.1. Let (Ak, Bk, Ck,Dk) denote the state-space realization of this

closed-loop system, derived in Appendix B. The transfer function between the input signal

w and the output signal z is given by

T(s) = Dk + Ck(sI −Ak)−1Bk. (1.18)

We now define the H∞ norm of this system by the formula

‖T‖ = sup
ω∈R

σ(Dk + Ck(iωI −Ak)−1Bk), (1.19)

where σ() denotes the maximum singular value. This quantity is shown graphically, via a

Bode magnitude plot, which displays the logarithm of the singular values of a given system as

a function of the logarithm of the frequency. In Matlab, the function sigma(sys) generates

the Bode magnitude plot of the system specified by the ss object, sys. Note that Matlab

actually plots the logarithm of the singular values scaled by a constant factor of 20.

The H∞ Control Problem can now be defined as: given a plant G, determine a controller

K such that

8



1 Background: Linear Control Theory

• The closed-loop system is internally stable, as in Proposition 1.1

• The H∞-norm of the transfer function, given by Equation 1.19, is minimized.

Clearly, internal stability is a most basic requirement for the system to be physically feasible,

since otherwise small amounts of noise or errors could lead to an unbounded system output of

the closed-loop system. The second condition seeks to find a controller which for all possible

input signals, w, minimizes the maximum energy of the output signal, z. Graphically, the

goal will be to compute a controller which minimizes the peaks shown in the Bode magnitude

plot of the given plant.

Often in H∞ control it is assumed that the given plant has a trivial feedthrough term, ie.

D22 = 0, which greatly simplifies the state-equations given in Equation 1.17. We will now see

how to remove this assumption via the following proposition, stated in Zhou et al. [12]. As

no proof of this statement could be found, we present our own.

Proposition 1.2. Let G(s) be a given plant and let G̃(s) denote an identical plant but with

D22 = 0. Assume that K̃ is a stabilizing controller for G̃ and that (I +D22K̃) is invertible.

Then

F(G,K) = F(G̃, K̃) (1.20)

where K = K̃(I +D22K̃)−1

Proof. Let the original plant G(s) be denoted by the following equivalent representations.

G(s) =


A B1 B2

C1 D11 D12

C2 D21 D22


=

 D11 D12

D21 D22

+
 C1

C2

 (sI −A)−1 [B1 B2]

=

 G11(s) G12(s)

G21(s) G22(s)

 .

9



1.4 Reduced-order control

From the second equation we observe that the simplified system G̃(s) can be written as

G̃(s) = G(s)−

 0 0

0 D22



=

 G11(s) G12(s)

G21(s) G22(s)−D22

 .
We now expand F(G,K) via expression 1.14 to obtain

F(G,K) = G11 +G12K(I −G22K)−1G21.

We achieve the desired result by substituting K = K̃(I+D22K̃)−1 and performing a sequence

of algebraic manipulations as follows:

F(G,K) = G11 +G12K̃
(
I +D22K̃

)−1
(
I −G22K̃(I +D22K̃)−1

)−1
G21

= G11 +G12K̃
[(
I −G22K̃(I +D22K̃)−1

)
(I +D22K)

]−1
G21

= G11 +G12K̃
[
(I +D22K̃)−G22K̃

]−1G21

= G11 +G12K̃
[
I − (G22 −D22) K̃

]−1G21

= F(G −

 0 0

0 D22

 , K̃)
= F(G̃, K̃)

Therefore, since the two LFT’s in Equation 1.20 are identical, for any stabilizing controller K̃

of the simplified system G̃, we can obtain a stabilizing controller for the original system via

the bijection K̃(I +D22K̃)−1.

1.4 Reduced-order control

When the order of the plant is large, often it is desired to design a controller with smaller

order. The extreme case of this is a static-output feedback (SOF) controller, where n̂ = 0. In

this case, we see that System 1.11 has no internal dynamics, taking the form of the simple

10



1 Background: Linear Control Theory

control law, u = D̂y. The general problem is to compute a reduced-order controller with

n̂ < n which maintains similar H∞ performance and behavior to a full-order controller of the

given plant.
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2

Problem statement and Hifoo Extensions

This section presents the general problem of H∞ control as well as two extensions to the

work of Burke et al. [3].

2.1 Problem Statement

We again consider the following state-space description of an open-loop, linear-system,G:
ẋ

z

y

 =

A B1 B2

C1 D11 D12

C2 D21 D22




x

w

u

 (2.1)

where x ∈ Rn is the state vector, u ∈ Rm is the controller input, y ∈ Rp is the measurable

output. The vectors w and z correspond to the exogenous input vector and output vector

respectively.

Our goal is to compute a controller K of the form: ḋ

u

 =
 Â B̂

Ĉ D̂


 d

y

 (2.2)

which stabilizes the closed-loop system shown in Figure 2.1.

2.2 Non-trivial Feedthrough

The first extension to Burke et al. [3] allows the given plant to have a non-trivial feedthrough

connection, ie. D22 need not be zero. This allows a direct connection between the control

input, u and the plants controllable output, y, leading to more complicated closed-loop

equations when we connect systems G and K as in Figure 2.1.

Eliminating the internal connection u and y through algebraic manipulations (see Ap-

12



2 Problem statement and Hifoo Extensions

G

K

w z

yu

Figure 2.1: Closed Loop system.

pendix B), we obtain the closed-loop system
ẋ

ḋ

z

 =
 Ak Bk

Ck Dk



x

d

w

 (2.3)

where

[
Ak Bk

Ck Dk

]
=


A+ B2F−1D̂C2 B2F−1Ĉ B1 + B2F−1D̂D21

B̂C2 + B̂D22F−1D̂C2 Â+ B̂D22F−1Ĉ B̂D21 + B̂D22F−1D̂D21

C1 +D12F−1D̂C2 D12F−1Ĉ D11 +D12F−1D̂D21

 (2.4)

and F =
(
I − D̂D22

)
. Observe that since the feedthrough term, D22, is not assumed to be

zero, this matrix is nonlinear in the controller variable, D̂, also complicating required gradient

calculations (given in Appendix B).

As mentioned in the previous chapter, we can represent the closed-loop system (Ak, Bk, Ck,Dk)

as a transfer function between the exogenous input vector w and system output z which

gives the input-output behavior of the closed loop, namely Ak Bk

Ck Dk

 = Dk + Ck(sI −Ak)−1Bk. (2.5)
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2.3 User-specified controller structure

The originally specified control problems addressed by Hifoo in Burke et al. [3], which

include

• Finding a reduced-order controller which stabilizes a given plant

• Finding a reduced-order controller which in addition to the above, locally minimizes

the H∞ norm of the closed-loop system,

remain unchanged.

It should be noted that Proposition 1.2 provides an implicit means to construct a stabilizing

controller for any general plant with nontrivial feedthrough. Simply apply Hifoo to the same

plant, but with D22 set to zero. Then apply the given bijection to the calculated controller to

obtain a stabilizing controller of the original plant. However, given the next extension, that

of user-specified controller-structure, the ability to handle the feedthrough term directly is

essential, as the aforementioned bijection destroys any structure in the calculated controller.

2.3 User-specified controller structure

The second extension to Hifoo involves the ability to specify structure to the controller

state matrices Â, B̂, Ĉ and D̂. The user may input which entries of each controller matrix

to optimize over, fixing the other entries to zero. Desirable structure examples include

fixing the D̂ matrix to all zeros, resulting in a strictly proper controller transfer function;

specifying that each matrix is diagonal, resulting in a diagonal controller transfer function; or

specifying that each controller matrix is block diagonal, so that the corresponding transfer

function is itself block diagonal. The latter is useful in designing decoupled controllers for

large-scale systems, where instead of designing one, large controller, the set of input and

output variables is partitioned and several reduced-order controllers are found.

14



3

Hifoo: Implementation and Usage

This chapter provides a technical elaboration on the extensions provided to Hifoo as well

as some basic examples of the new functionality. See the next chapter for more detailed

examples.

3.1 Non-trivial Feedthrough

In Appendix B, we derive the closed-loop equations and gradients for a plant with D22 ≠ 0.

Observe that these equations are non-linear in the controller variable D̂, but simplify when

D22 = 0 exactly. Therefore, Hifoo tests whether D22 = 0 and if so, utilizes the original,

linear equations and gradients.

3.2 Controller Structure

The ability to specify controller structure is implemented through Matlab’s logical function-

ality. In Matlab, a logical matrix is a matrix of boolean values that is used as an index

into another matrix of elements. The following provides an example of the usage of Matlab’s

logical indexing ability:

>> MATRIX = [1 2; 3 4];

>> INDEX = logical([0 1; 1 0])

>> OFFDIAG = MATRIX(INDEX)

OFFDIAG =

3

2

Observe that the elements are returned in a column-wise fashion and that the dimensions of

the logical index must match the dimensions of the matrix of elements.

15



3.2 Controller Structure

When calling Hifoo, the user, in addition to providing the order of the desired controller,

may now specify a structure array of matrices corresponding to the controller variables

Â, B̂, Ĉ and D̂. Specifically, the user may pass a structure in the field options.structure,

with subsequent fields Ahat, Bhat, Chat and Dhat that specifies which elements of the

matrices Â, B̂, Ĉ, and D̂ Hifoo is free to optimize over and which are fixed to 0. The user

may specify these matrices as either binary or logical matrices; however, Hifoo converts

binary matrices to logical variables for internal use. For convenience, if a given matrix is not

specified, Hifoo assumes that all entries of the matrix are free to be optimized over and

sets the corresponding structure matrix to be a logical matrix consisting of all ones.

In addition to modifying the input format of Hifoo, it was necessary to update the required

gradient computations. This new gradient information is implied in example A.2, simplified

and rewritten here for convenience:

f(A+∆, B, C,D) = f(A, B,C,D)+
〈
∇Af ,∆

〉
+O(∆2).

If A has a specific structure, then an identical structure is imposed upon the perturbation

∆. Letting the logical matrix J denote the structure of A, the structured gradient becomes

∇Af(J), a vector corresponding to the free elements of A.

The next example demonstrates a standard Hifoo session utilizing this new functionality.

The goal is to find an order one controller for plant ‘AC1’ from the Compleib library, such that

the controller’s transfer function is diagonal. A sufficient condition for the transfer function

to be diagonal is that the system realization of the controller has the following structure:

Â = (a) B̂ =
(
b1 0 0

)

Ĉ =


c1

0

0

 D̂ =


d11 0 0

0 d22 0

0 0 d33

 .

A typical session would then proceed as follows:

>> STRUCTURE.Ahat = logical([1]);

>> STRUCTURE.Bhat = logical([1 0 0]);

>> STRUCTURE.Chat = logical([1;0;0]);

16



3 Hifoo: Implementation and Usage

>> STRUCTURE.Dhat = logical(eye(3,3));

>> options.structure = STRUCTURE;

>> K = hifoo(‘AC1’,1,options);

Observe that Ahat field as well as the logical conversions are not necessary, but are only

included as an example of use. To verify that the desired structure is indeed obtained, we

convert K to an ss object and calculate its transfer function as follows:

>> Kss = ss(K.a, K.b, K.c, K.d);

>> tf(Kss)

Transfer function from input 1 to output...

2.784 s + 3.213e-12

#1: -------------------

s + 3.775

#2: 0

#3: 0

Transfer function from input 2 to output...

#1: 0

#2: -0.1694

#3: 0

Transfer function from input 3 to output...

#1: 0

#2: 0

#3: 8.178

17



4

Numerical Experiments with Hifoo

This chapter provides numerical experiments of the new features of Hifoo along with

comparisons, when applicable, to Matlab’s Robust Control Toolbox function hinfsyn, a

powerful tool for finding full-order controllers of a given plant.

4.1 Compleib examples

We first perform tests based on plants found in the Compleib library, described in Leibfritz [9].

However, since all the models in this library provide plants with a trivial feedthrough term,

we set the D22 plant variable to a random matrix of the appropriate dimension. Although

this modified plant will no longer correspond to the original physical system, it will allow for

a means of comparison between the controllers generated by hinfsyn and Hifoo.

We first apply both tools to the problem labeled ‘AC4’ in the Compleib library. Table 4.1

depicts the H∞ norms of the generated controllers for different orders by Hifoo (hinfsyn

only computes a full-order controller, which is the value listed). We immediately observe that

the order-2 controller (marked by #) generated by Hifoo almost equals the H∞ performance

of the full-order controller found by hinfsyn.

order Hifoo

0 0.935467

1 0.557814

2 0.557332 (#)

3 0.557332

4 0.557318

hinfsyn 0.557371

Table 4.1: A comparison between Hifoo and hinfsyn on Compleib ‘AC4’.
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4 Numerical Experiments with Hifoo

4.2 A Flexible Beam

Moheimani et al. [10] provides a realistic model of a flexible beam controlled by piezoelectric

actuators, which naturally gives rise to a nonzero feedthrough term. We first look at the Bode

magnitude plot (described in Section 1.3) of the plant which gives the oscillatory behavior

of the singular values of the open-loop system at varying frequencies. The goal is to find a

controller that mitigates these peaks and oscillations.
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Figure 4.1: Bode magnitude plot of open-loop model of beam
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4.2 A Flexible Beam

We now apply Hifoo to compute a full-order controller for this system (the commands to load

the flexible-beam model into Matlab as the ss object FLEXIBLE_BEAM have been suppressed).

>> [K] = hifoo(FLEXIBLE_BEAM,6);

We now overlay the Bode magnitude plot of the closed-loop system found by Hifoo (given

by lft(FLEXIBLE_BEAM,K) in Matlab) on Figure 4.1.
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We see that the controller found by Hifoo introduces a few small spikes at low frequencies,

but in general does decrease the peaks of the system. For this particular problem, the

controller computed by hinfsyn performs better than that found by Hifoo, as shown in

Figure 4.3. Hifoo quickly found a stabilizing controller for the flexible beam, however, due to

the local optimization approach inherent in its design, was unable to compute a comparable

controller. If, however, the controller from hinfsyn was passed to Hifoo as an initial point,

Hifoo was able to slightly improve upon that controller’s H∞ performance.

4.3 Examples with Structure

This section provides examples of Hifoo utilizing the new controller structure functionality.

As in the first section, we will give examples using plants from the Compleib library. A

transfer function is strictly proper if the limit of each entry approaches zero as the frequency

goes to infinity. The first example will utilize Hifoo to find a controller with a strictly proper

transfer function for Compleib problem ‘AC4’. A necessary and sufficient condition for this

structure is that the controller’s system realization satisfies D̂ = 0. We specify this in the

following Matlab session (remembering that the terms not specified in options.structure are

assumed to consist entirely of ones):

>> STRUCTURE.Dhat = zeros(1,2);

>> options.structure = STRUCTURE;

>> [Ks, fs] = hifoo(’AC4’,4, options)

Ks =

a: [4x4 double]

b: [4x2 double]

c: [-2.34884535618074 0.71459710888066 1.74937103960848 -1.64849868570093]

d: [0 0]

fs =

0.56574372028149
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Not only does Hifoo return the computed controller, but the user may also request the

H∞ norm of the closed-loop system as we did above in variable fs. We verify that this is

the desired structure by converting the controller returned by Hifoo to a ss object and

calculating the controller’s transfer function. Observe that the degree of the numerator is in

fact less the the degree of the denominator, so the limit of each entry does tend to zero at

infinity.

>> Kss = ss(Ks.a, Ks.b, Ks.c, Ks.d);

>> tf(Kss)

Transfer function from input 1 to output:

-35.19 sˆ3 - 2401 sˆ2 - 1.506e05 s - 1.383e05

--------------------------------------------------

sˆ4 + 141.7 sˆ3 + 5888 sˆ2 + 9.354e04 s + 9.197e04

Transfer function from input 2 to output:

-32.2 sˆ3 - 1280 sˆ2 - 2.406e04 s - 8294

--------------------------------------------------

sˆ4 + 141.7 sˆ3 + 5888 sˆ2 + 9.354e04 s + 9.197e04

As expected, the structured controller achieves a slightly worse H∞ norm (fs value) than

the controllers found in the previous section, since adding structure effectively restricts the

space of stabilizing controllers.

Another often desired structure requires that the controller’s transfer function be diagonal

or block diagonal. We will know apply Hifoo to Compleib plant, ‘HE2’, a fourth order system

describing the vertical motion of a helicopter. For this plant, a sufficient condition to

guarantee that the controller has a diagonal transfer function is that the controller matrices
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4.3 Examples with Structure

have the following structure:

Â =



a11 a12 0 0

a21 a22 0 0

0 0 a33 a34

0 0 a43 a44


B̂ =



b11 0

b21 0

0 b32

0 b42



Ĉ =

 c11 c12 0 0

0 0 c23 c24

 D̂ =

 d11 0

0 d22

 .
We first utilize Hifoo to calculate a full-order controller for comparison purposes:

>> [K,f] = hifoo(‘HE2’,4)

K =

a: [4x4 double]

b: [4x2 double]

c: [2x4 double]

d: [2x2 double]

f =

2.45203584204612

Note that for the same problem, hinfsyn returns a comparable controller with an H∞ norm

of 2.0122. Now we supply the above structure to Hifoo to find a controller with a diagonal

transfer function.

>> STRUCTURE.Ahat = [ones(2,2) zeros(2,2); zeros(2,2) ones(2,2)];

>> STRUCTURE.Bhat = [ones(2,1) zeros(2,1); zeros(2,1) ones(2,1)];

>> STRUCTURE.Chat = [1 0; 1 0; 0 1; 0 1]’;

>> STRUCTURE.Dhat = eye(2,2);

>> options.structure = STRUCTURE;

>> [Ks, fs] = hifoo(‘HE2’, 4, options)

Ks =

a: [4x4 double]

b: [4x2 double]
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4 Numerical Experiments with Hifoo

c: [2x4 double]

d: [2x2 double]t

fs =

4.20598687088419

As expected, we observe a loss in H∞ performance. Again, we will verify that the calcuated

controller does in fact have a diagonal transfer function with the following Matlab commands:

>> Kss = ss(Ks.a, Ks.b, Ks.c, Ks.d);

>> tf(Kss)

Transfer function from input 1 to output...

18.31 sˆ2 + 39.81 s + 13.54

#1: ---------------------------

sˆ2 - 7.832 s + 217.4

#2: 0
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4.4 Structured SOF control of an F-16 aircraft

Transfer function from input 2 to output...

#1: 0

5.177 sˆ2 + 64.63 s + 2.473

#2: ---------------------------

sˆ2 + 25.5 s + 189.4

4.4 Structured SOF control of an F-16 aircraft

Bates and Postlethwaite [1, §4.3.6] provide an example of designing a structured, static-

output feedback, wing-leveller controller for an F-16 aircraft, first described in Stevens and

Lewis [11]. The state-space realization of this plant is given by the following matrices:

A =



−0.322 0.064 0.0364 −0.9917 0.0003 0.0008 0 0

0 0 1 0.0037 0 0 0 0

−30.6492 0 −3.6784 0.6646 −0.7333 0.1315 0 0

8.5395 0 −0.0254 −0.4764 −0.0319 −0.062 0 0

0 0 0 0 −20.2 0 0 0

0 0 0 0 0 −20.2 0 0

0 0 0 57.2958 0 0 −1 0

0 −1 0 0 0 0 0 0


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B1 =



0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0



B2 =



0 0

0 0

0 0

0 0

20.2 0

0 20.2

0 0

0 0



C1 =

 0 1 0 0 0 0 0 0

0 0 0 57.2958 0 0 −1 0



C2 =



0 0 0 0 0 0 0 1

0 0 0 −57.2958 0 0 1 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0



D11 = D12 =

 0 0

0 0



D21 =



0 0

0 1

0 0

1 0


D22 =



0 0

0 0

0 0

0 0


.

The goal is to find a static-output feedback controller of the form

K =

 k1 0 k3 k4

0 k2 0 0

 .
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4.4 Structured SOF control of an F-16 aircraft

Observe that this controller corresponds to the specific controller matrix, D̂. They then

provide two controllers for this system. The first is found using the LQ optimization approach

of Stevens and Lewis [11] and the latter via H∞ loop-shaping. These controllers are given by

the matrices

KLQ =

 −18.6752 0 6.7479 −25.379

0 −0.568 0 0



KLS =

 −17.5342 0 5.5001 −28.0127

0 −0.5311 0 0

 .
After converting the above system to an ss object, we compute a controller with the given

structure utilizing Hifoo.

>> K = hifoo(P,options);

d =

u1 u2 u3 u4

y1 -0.003702 0 0.7496 -0.4588

y2 0 -0.1909 0 0

The H∞ norms of each closed-loop system are calculated using the Matlab norm function via

the command

>> f = norm(lft(P,K*),inf)

where K∗ denotes each respective controller above. This information is given in Table 4.2.

We now analyze the behavior of the open-loop plant as well as the effect of each controller

Controllers K KLQ KLS

H∞ norms 1.0000 7.0305 9.0725

Table 4.2: Comparison of H∞ norms for closed-loop systems with different controllers

on the closed-loop oscillations of the system. We first study the Bode magnitude plot of
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4 Numerical Experiments with Hifoo

the system when controllers KLQ and KLS are connected with the open-loop system above

in Figure 4.4. Both controllers provide similar performance, smoothing out the sharp peak

around 80 rad/sec. We next plot the open-loop system along with the controller generated

by Hifoo in Figure 4.5. Observe that the oscillations in the open-loop system are reduced

dramatically by the controller found by Hifoo.
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4.4 Structured SOF control of an F-16 aircraft

     Open-loop system
--   Closed-loop system: KLQ
...  Closed-loop system:  KLS

Figure 4.4: Closed-loop behavior for controllers KLQ and KLS
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Figure 4.5: Closed-loop behavior for controller generated by Hifoo
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Future Work

In the future, we hope to provide other useful extensions to Hifoo. One such possibility

includes the ability to solve problems in simultaneous stabilization, such as Blondel’s famous

Chocolate Problem described in Blondel [2]. The user will be able to enter multiple plants

to Hifoo, which will attempt to compute a single controller which stabilizes each plant

separately. Another possible extension is the ability to require Hifoo to compute controllers

that place the zeros and poles of the closed-loop transfer function in a specific region in

the complex plane, such as inside (or outside) the unit disk. Finally, we plan to expand the

objective functions Hifoo can optimize over to include both H2 and mixed H2/H∞ norms.

With the current advancements described in this work, as well as the planned extensions in

the future, Hifoo could prove to be a useful tool in many control engineering applications.
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A

Mathematics

In this section we will review some basic results from linear algebra and functional analysis.

For a more detailed introduction, see Lax [8] or Horn and Johnson [7].

A.1 Matrix Calculus

Let F : Cn×n → Cn×n denote a matrix-valued function. By analyzing the function F(M +∆),

where ∆ is an arbitrary perturbation of matrix M, we loosely define the derivative of F with

respect to matrix M as the term which is linear in the perturbation ∆. A formal definition

can be given, utilizing the Kronecker product, however, that would be beyond the scope of

this appendix.

We will first show the effect of a perturbation on the matrix inverse operator, which will

be important later on.

Example A.1. Let F(M) = M−1. We calculate the effect of a perturbation on F as follows

F(M +∆) = (M +∆)−1

= ((M(I +M−1∆))−1

= (I +M−1∆)−1M−1

= (I −M−1∆+O(∆2))M−1 (by geometric series)

= M−1 −M−1∆M−1 +O(∆2). (A.1)

A standard but very important result from linear algebra concerns the effect of a pertur-

bation to the eigenvalues of a matrix. The result as stated and proved in Horn and Johnson

[7, §6.3, Theorem 6.3.12] is paraphrased in the following:

Theorem A.1. Let A(t) be differentiable at t = 0. Assume that λ is an algebraically simple

eigenvalue of A(0) and that λ(t) is an eigenvalue of A(t), for small t such that λ(0) = λ.

Let v be a right eigenvector of A and u a left eigenvector of A corresponding to eigenvalue
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A.1 Matrix Calculus

λ, both normalized to 1. Then

λ′(0) = u∗A′(0)v.

Moreover, if A(t) = A+ tE for a fixed matrix perturbation, E, then for t small

λ(A+ tE) = λ(A)+ tu∗Ev +O(t2). (A.2)

Techniques discussed in Horn and Johnson [7] extend this result to perturbations of

singular values as well, where v and u are now the corresponding left and right singular

vectors of A.

An important example is provided by the maximum singular value function

f(A, B,C,D) = σ(D + C(sI −A)−1B)

where A,B,C,D are matrices of compatible dimensions. Note that the inner product on the

space of matrices is defined as

〈A,B〉 = tr
(
A∗B

)

where tr (M) denotes the trace of matrix M. This equation arises naturally in control theory,

as part of the H∞ norm of a given transfer function. See Section 1.3 for more details.

Example A.2. Let f(A, B,C,D) = σ(D + C(sI −A)−1B)

We will compute the derivative of f with respect to matrix A. Let G = (sI − A) and let u

and v denote the left and right singular vectors of D + C(sI −A)−1B corresponding to the

singular value σ(D+C(sI−A)−1B). We now compute the derivative by again analyzing the
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effect of a perturbation to the A matrix.

f(A+∆, B, C,D) = σ(D + C(sI − (A+∆))−1B)

= σ(D + C((sI −A)−∆)−1B)

= σ(D + C
(
(G−1 +G−1∆G−1

)
B)+O(∆2) (by Eq. A.1)

= σ(D + CG−1B + CG−1∆G−1B)+O(∆2)

= σ(D + C(sI −A)−1B)+u∗CG−1∆G−1Bv +O(∆2) (by Eq. A.2)

= f(A, B,C,D)+ tr
(
u∗CG−1∆G−1Bv

)
+O(∆2)

= f(A, B,C,D)+ tr
(
G−1Bvu∗CG−1∆

)
+O(∆2)

= f(A, B,C,D)+
〈(
G−1Bvu∗CG−1

)∗
,∆
�
+O(∆2)

we therefore obtain the gradient with respect to matrix A

∇Af =
(
G−1Bvu∗CG−1

)∗
. (A.3)

A.2 The Space H∞

An important space in control theory is the Hardy Space, H∞. Let

F : C -→ Cn×m be an analytic, matrix-valued function. We define the norm of F as

‖F‖ = sup
Re(s)>0

σ(F(s)). (A.4)

The Maximum-modulus theorem from complex analysis says that if F is analytic, it must

obtain its maximum on the boundary. We can therefore rewrite the above norm as

‖F‖ = sup
ω∈R

σ(F(iω)) (A.5)

where the supremum is taken over the imaginary axis. We define the space H∞ as

H∞ =
{
F| F : C → Cn×m, F is analytic,‖F‖ <∞

}
. (A.6)

The subspace of H∞ consisting of matrices whose entries are real, rational functions is

denoted RH∞. The space RH∞ describes an important class of functions corresponding

to the bounded, stable transfer matrices as described in Section 1.1.2. This provides a

theoretical approach to H∞ controller synthesis described in Francis [6].
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B

Closed-Loop System Calculations

This appendix presents the calculation of the closed loop system for a controller with D22 ≠ 0.

Furthermore, we give an example of the new, required gradient calculations.

As in Chapter 2 we represent the plant, G, and controller, K, as the following systems of

differential equations:

G :



ẋ = Ax + B1w + B2u

z = C1x +D11w +D12u

y = C2x +D21w +D22u

(B.1)

K :


ḋ = Âd+ B̂y

u = Ĉd+ D̂y
(B.2)

We now close the loop by first substituting the system equation for y into the controller’s

equation for u to obtain

u = Ĉd+ D̂ [C2x +D21w +D22u]

u− D̂D22u = Ĉd+ D̂C2x + D̂D21w

u = Ĉd+ D̂C2x + D̂D21w

u =
[
I − D̂D22

]−1 (
Ĉd+ D̂C2x + D̂D21w

)
and

y = C2x +D21w +D22

[
I − D̂D22

]−1 (
Ĉd+ D̂C2x + D̂D21w

)
.

Introducing the notation, F =
[
I − D̂D22

]
, we now substitute our equation for u into our

equation for ẋ to obtain:

ẋ = Ax + B1w + B2

[
F−1

(
Ĉd+ D̂C2x + D̂D21w

)]
= Ax + B1w + B2F−1Ĉd+ B2F−1D̂C2x + B2F−1D̂D21w

=
(
A+ B2F−1D̂C2

)
x + B2F−1Ĉd+

(
B1 + B2F−1D̂D21

)
w.
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B Closed-Loop System Calculations

Similarly for ḋ and z we obtain

ḋ = Âd+ B̂y

= Âd+ B̂
(
C2x +D21w +D22F−1

(
Ĉd+ D̂C2x + D̂D21w

))
=
(
B̂C2 + B̂D22F−1D̂C2

)
x +

(
Â+ B̂D22F−1Ĉ

)
d+

(
B̂D21 + B̂D22F−1D̂D21

)
w

and

z = C1x +D11w +D12F−1
(
Ĉd+ D̂C2x + D̂D21w

)
=
(
C1 +D12F−1D̂C2

)
x +D12F−1Ĉd+

(
D11 +D12F−1D̂D21

)
w.

Collecting all the terms into a single matrix, we obtain the compact representation of the

closed-loop system 
ẋ

ḋ

z

 =
 Ak Bk

Ck Dk



x

d

w

 (B.3)

where

[
Ak Bk

Ck Dk

]
=


A+ B2F−1D̂C2 B2F−1Ĉ B1 + B2F−1D̂D21

B̂C2 + B̂D22F−1D̂C2 Â+ B̂D22F−1Ĉ B̂D21 + B̂D22F−1D̂D21

C1 +D12F−1D̂C2 D12F−1Ĉ D11 +D12F−1D̂D21

 (B.4)

and F =
(
I − D̂D22

)
.

Not only does assuming a non-trivial feedthrough complicate the above system equations,

it also requires additional chain-rule computations, as the above matrix is no longer linear in

the controller variables. The H∞ norm defined in Equation A.5 of the closed-loop system

can be viewed as a supremum over all frequencies of the composite function of controller

variables, Â, B̂, Ĉ and D̂:

σ(Dk(Â, B̂, Ĉ, D̂)+ Ck(Â, B̂, Ĉ, D̂)(sI −Ak(Â, B̂, Ĉ, D̂))−1Bk(Â, B̂, Ĉ, D̂)). (B.5)

To implement this in Hifoo, it is necessary to calculate the gradient of this objective function

using the chain-rule. As an example, we will calculate the propogation of a perturbation of

the D̂ variable on Ak and hence the objective function. An algebraic calculation utilizing
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Equation A.1 gives the following:

Ak(Â, B̂, Ĉ, D̂ +∆) = Ak +∆Ak

where ∆Ak is given by

∆Ak =

 B2F−1∆MC2 B2F−1∆D22F−1Ĉ

B̂D22F−1∆MC2 B̂D22F−1∆D22F−1Ĉ



=

 B2F−1

B̂D22F−1

∆[ MC2 D22F−1Ĉ
]

and F =
(
I − D̂D22

)
and M =

(
I +D22F−1D̂

)
. We now substitute ∆Ak into the perturbation

utilized in example A.2

f(Ak, Bk, Ck,Dk)+
〈(
G−1Bvu∗CG−1

)∗
,∆Ak

�
+O(∆2)

and expand the second term in the summation, replacing
(
G−1Bvu∗CG−1

)∗
with ∇f :

〈
∇f ,∆Ak

〉
=
〈
∇f ,

 B2F−1

B̂D22F−1

∆[ MC2 D22F−1Ĉ
]〉

= tr

∇f∗
 B2F−1

B̂D22F−1

∆[ MC2 D22F−1Ĉ
]

= tr

[ MC2 D22F−1Ĉ
]
∇f∗

 B2F−1

B̂D22F−1

∆


=
〈[ MC2 D22F−1Ĉ

]
∇f∗

 B2F−1

B̂D22F−1



∗

,∆
〉

giving us the new gradient with respect to the initial perturbation of controller variable Â as

∇fÂ =

[ MC2 D22F−1Ĉ
]
∇f∗

 B2F−1

B̂D22F−1



∗

. (B.6)

Similar computations give the result for the other required gradients.

38



Bibliography

[1] D. Bates and I. Postlethwaite, editors. Robust Multivariable Control of aerospace systems.

Delft University Press, 2002.

[2] V. Blondel. Simultaneous Stabilization of Linear Systems. Lecture Notes in Control and

Information Sciences 191. Springer, Berlin, 1994.

[3] J. Burke, D. Henrion, A. Lewis, and M. Overton. HIFOO - a Matlab package for fixed-order

controller design and H∞ optimization. 2006.

[4] C.-T. Chen. Linear System Theory and Design. Oxford University Press, Inc., New York,

NY, USA, 1999.

[5] G. E. Dullerud and F. Paganini. A course in robut control theory, volume 36 of Texts in

Applied Mathematics. Springer-Verlag, 2000.

[6] B. A. Francis. A Course in H∞ Control Theory, volume 88 of Lecture Notes in Control

and Information Sciences. Springer-Verlag, 1987.

[7] R. Horn and C. R. Johnson. Matrix Analysis. Cambridge, 1985.

[8] P. Lax. Linear Algebra. John Wiley, New York, 1997.

[9] F. Leibfritz. COMPLeib: constraint matrix optimization problem library. Technical report,

University of Trier, Germany, 2005.

[10] S. O. R. Moheimani, B. J. G. Vautier, and B. Bhikkaji. Experimental implementation of

extended multivariable ppf control on an active structure. IEEE Transactions on Control

Systems Technology, to appear.

[11] B. L. Stevens and F. L. Lewis. Aircraft Control and Simulation. Wiley, 1992.

[12] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, 1996.

39


