
Region Array SSA ∗

Silvius Rus†

Texas A&M University
Guobin He†

Texas A&M University
Christophe Alias‡

ENS Lyon
Lawrence Rauchwerger†

Texas A&M University

ABSTRACT
Static Single Assignment (SSA) has become the intermedi-
ate program representation of choice in most modern com-
pilers because it enables efficient data flow analysis of scalars
and thus leads to better scalar optimizations. Unfortunately
not much progress has been achieved in applying the same
techniques to array data flow analysis, a very important and
potentially powerful technology. In this paper we propose
to improve the applicability of previous efforts in array SSA
through the use of a symbolic memory access descriptor
that can aggregate the accesses to the elements of an ar-
ray over large, interprocedural program contexts. We then
show the power of our new representation by using it to
implement a basic data flow algorithm, reaching definitions.
Finally we apply this analysis to array constant propagation
and array privatization and show performance improvement
(speedups) for benchmark codes.

1. INTRODUCTION
Important compiler optimization or enabling transforma-

tions such as constant propagation, loop invariant motion,
expansion/privatization depend on the power of data flow
analysis. The Static Single Assignment (SSA) [10] program
representation has been widely used to explicitly represent
the flow between definitions and uses in a program.

SSA relies on assigning each definition a unique name and
ensuring that any use may be reached by a single definition.
The corresponding unique name appears at the use site and
offers a direct link from the use to its corresponding and
unique definition. When multiple control flow edges carry-
ing different definitions meet before a use, a special φ node

∗This research supported in part by NSF Grants EIA-
0103742, ACR-0081510, ACR-0113971, CCR-0113974, ACI-
0326350, and by the DOE.
†Parasol Lab, Department of Computer Science, Texas
A&M University, {silviusr,guobinh,rwerger}@cs.tamu.edu.
‡Laboratoire de l’Informatique du Parallélism, ENS Lyon,
Christophe.Alias@ens-lyon.fr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’06, September 16–20, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-264-X/06/0009 ...$5.00.

x = 5
x = 7
. . . = x

(a)

x1 = 5
x2 = 7
. . . = x2

(b)

A(3) = 5
A(4) = 7
. . . = A(3)

(c)

A1(3) = 5
A2(4) = 7
. . . = A2(3)

(d)

Figure 1: (a) Scalar code, (b) scalar SSA form, (c) array

code and (d) improper use of scalar SSA form for arrays.

is inserted at the merge point. Merge nodes are the only
statements allowed to be reached directly by multiple defi-
nitions.

Classic SSA is limited to scalar variables and ignores con-
trol dependence relations. Gated SSA [1] introduced control
dependence information in the φ nodes. This helps select-
ing, for a conditional use, its precise definition point when
the condition of the definition is implied by that of the use
[27]. The first extensions to array variables ignored array
indices and treated each array definition as possibly killing
all previous definitions. This approach was very limited in
functionality. Array SSA was proposed by [16, 24] to match
definitions and uses of partial array regions. However, their
approach of representing data flow relations between indi-
vidual array elements makes it difficult to complete the data
flow analysis at compile time and requires potentially high
overhead run-time evaluation. Section 6 presents a detailed
comparison of our approach against previous related work.

We propose an Array SSA representation of the program
that accurately represents the use-def relations between ar-
ray regions and accounts for control dependence relations.
We use the USR symbolic representation of array regions
[23] which can represent uniformly memory location sets in
a compact way for both static and dynamic analysis tech-
niques. We present a reaching definition algorithm based
on Array SSA that distinguishes between array subregions
and is control accurate. The algorithm is used to implement
array constant propagation and array privatization for au-
tomatic parallelization, for which we present whole appli-
cation improvement results. Although the Array SSA form
that we present in this paper only applies to structured pro-
grams that contain no recursive calls, it can be generalized
to any programs with an acyclic Control Dependence Graph
(except for self-loops).

2. REGION ARRAY SSA FORM
Static Single Assignment (SSA) is a program representa-

tion that presents the flow of values explicitly. In Fig. 1(a),
the compiler must analyze the control flow graph in order to

Do i =1,3
A1 (i)=0

Enddo
Do i =1,3

A2 (i +3)=1
EndDo
@A3 = MAX(@A1, @A2)

(a)

Array SSA
@A3 = [(A1, 1), (A1, 2), (A1, 3),

(A2, 1), (A2, 2), (A2, 3)]

S imp l i f i e d ve r s i on
@A3 = [A1, A1, A1, A2, A2, A2]

Aggregated array r eg i on s
A3 ← A1 = [1 : 3]
A3 ← A2 = [4 : 6]

(b)

Figure 2: (a) Sample code in Array SSA form (not all

gates shown for simplicity). (b) Array SSA forms: (top)

as proposed by [16], (center) with reduced accuracy and

(bottom) using aggregated array regions.

decide which of the two values, 5 or 7, will be used in the last
statement. By numbering each static definition and match-
ing them with the corresponding uses, the use-def chains
become explicit. In Fig. 1(b) it is clear that the value used
is x2 (7) and not x1 (5).

Unfortunately, such a simple construction cannot be built
for arrays the same way as for scalars. Fig. 1(d) shows a
failed attempt to apply the same reasoning to the code in
Fig. 1(c). Based on SSA numbers, we would draw the con-
clusion that the value used in the last statement is that
defined by A2, which would be wrong. The fundamental
reason why we cannot extend scalar SSA form to arrays di-
rectly is that an array definition generally does not kill all
previous definitions to the same array variable, unlike in the
case of scalar variables. In Fig. 1(c), the second definition
does not kill the first one. In order to represent the flow
of values stored in arrays, the SSA representation must ac-
count for individual array elements rather than treating the
whole array as a scalar.

Element-wise Array SSA was proposed as a solution by
[24]. Essentially, for every array there is a corresponding @
array, which stores, at every program point and for every
array element, the location of the corresponding reaching
definition under the form of an iteration vector. The com-
putation of @ arrays consists of lexicografic MAX operations
on iteration vectors. Although there are methods to reduce
the number of MAX operation for certain cases, in general
they cannot be eliminated. This led to limited applicability
for compile-time analysis and potentially high overhead for
derived run-time analysis, because the MAX operation must
be performed for each array element.

We propose a new Region Array SSA (RA SSA) repre-
sentation. Rather than storing the exact iteration vector of
the reaching definition for each array location, we just store
the SSA name of the reaching definition. Although our rep-
resentation is not as precise as [24], that did not affect the
success of our associated optimization techniques. This sim-
plification allowed us to employ a different representation of
@ arrays as aggregated array regions. Fig. 2 depicts the
relation between element-wise Array SSA and our Region
Array SSA. Rather than storing for each array element its
reaching definition, we store, for each use-def relation such
as A3 ← A1, the whole array region on which values defined
at A1 reach A3.

We use the USR [23] representation for array regions,
which can represent uniformly arbitrarily complex regions.
Moreover, when an analysis based on USRs cannot reach a
static decision, the analysis can be continued at run time
with minimal necessary overhead. For instance, in the ex-
ample in Fig. 2, let us assume that the loop bounds were
not known at compile time. In that case the MAX oper-
ation could not be performed statically. Its run time as
proposed by [24] would require O(n) time, where n is the
dimension of the array. Using Region Array SSA, the region
corresponding to A3 ← A1 can be computed at run time in
O(1) time, thus independent of the array size. Our resulting
Region Array SSA representation has two main advantages
over [16]:
• We can analyze many complex patterns at compile time
using symbolic array region analysis (essentially symbolic
set operations), whereas the previous Array SSA represen-
tation often fails to compute element-wise MAX operations
symbolically (for the complex cases).
•When a static optimization decision cannot be reached, we
can extract significantly less expensive run time tests based
on partial aggregation of array regions.

We will now present the USR representation for array re-
gions, describe the structure of Region Array SSA, and then
illustrate its use in an algorithm that computes reaching
definitions for arrays.

2.1 Array Region Representation: the USR
In the example in Fig. 3(a), we can safely propagate con-

stant value 0 from the definition at site 2 to the use at site 5
because the array region used, [1:5], is included in the array
region defined above, [1:10]. In the example in Fig. 3(b), we
cannot represent the array regions as intervals because the
memory references are guarded by an array of conditionals.
However, we can represent the array regions as expressions
on intervals, in which the operators represent predication
(#) and expansion across an iteration space (⊗∪). This
symbolic representation allows us to compare the defined
and used regions even though their shapes are not linear. In
the example in Fig. 3(c), a static decision cannot be made.
The needed values of the predicate array C(:) may only be
known at run time. We can still perform constant propaga-
tion on array A optimistically and validate the transforma-
tion dynamically, in the presence of the actual values of the
predicate array. Although the profitability of such a trans-
formation in this particular example is debatable due to the
possibly high cost of checking the values of C(:) at run time,
in many cases such costs can be reduced by partial aggrega-
tion and amortized through hoisting and memoization.

The Uniform Set of References (USR) previously intro-
duced in [23]1 formalizes the expressions on intervals shown
in Fig. 3. It is a general, symbolic and analytical repre-
sentation for memory reference sets in a program. It can
represent the aggregation of scalar and array memory refer-
ences at any hierarchical level (on the loop and subprogram
call graph) in a program. It can represent the control flow
(predicates), inter-procedural issues (call sites, array reshap-
ing, type overlaps) and recurrences. The simplest form of a
USR is the Linear Memory Access Descriptor (LMAD) [20],
a symbolic representation of memory reference sets accessed
through linear index functions. It may have multiple dimen-

1USRs were presented there under the name of RT LMAD
because they were used mostly to produce run time tests.

1 Do i = 1 , 10
2 A(i) = 0
3 EndDo
4 Do i = 1 , 5
5 . . . = A(i)
6 EndDo

.

1 Do i = 1 , 10
2 I f (C(i)>0)
3 A(i) = 0
4 EndIf
5 EndDo
6 Do i = 1 , 5
7 I f (C(i)>0)
8 . . . = A(i)
9 EndIf

10 EndDo

1 Do i = 1 , 10
2 I f (C(i)>0)
3 A(i) = 0
4 EndIf
5 EndDo
6 Do i = 1 , 5
7 . . . = A(i)
8 EndDo

.

1:10
 1:5

Definition
 Use

x
U

i=1,10
#

{i}
 C(i)>0

x
U

i=1,5
#

{i}
 C(i)>0

Definition
 Use

x
U

i=1,10
#

{i}
 C(i)>0

1:5

Definition
 Use

Do i = 1 , 10
I f (C(i)>0)
A(i) = 0

EndIf
EndDo

I f (C(1:5) >0)
Do i = 1 , 5

. . . = 0
EndDo

Else
Do i = 1 , 5

. . . = A(i)
EndDo

EndIf

(a) (b) (c) (d)

Figure 3: Constant propagation scenarios: (a) symbolically comparable linear reference pattern, (b) symbolically

comparable nonlinear reference pattern, (c) nonlinear reference pattern that require a run time test and (d) dynamic

constant propagation code for case (c).

sions, and all its components may be symbolic expressions.
Throughout this paper we will use the simpler interval nota-
tion for unit-stride single dimensional LMADs. For the loop
in Fig. 3(a), the array subregion defined by the first loop can
be represented as an LMAD, [1:10], and the array subregion
used in the second loop can also be represented as another
LMAD, [1:5].

The USR is stored as an abstract syntax tree with respect
to the language presented in Fig. 4 and can be thought of
as symbolic expressions on sets of memory locations. When
memory references are expressed as linear functions, USRs
consist of a single leaf, i.e., a list of LMADs. When the
analysis process encounters a nonlinear reference pattern or
when it performs an operation (such as set difference) whose
result cannot be represented as a list of LMADs, we add
internal nodes that record accurately the operations that
could not be performed.

In the examples in Fig. 3(b,c), memory references are
predicated by an array of conditions. This nonlinear ref-
erence pattern cannot be represented as an LMAD, so it is
expressed as a nontrivial USR. Although nothing is known
about the predicates, the USR representation allows us to
compare the definition and use sets symbolically in case (b).
In case (c) a static decision cannot be made. However, us-
ing USRs we can formulate efficient run time tests that will
guarantee the legality of the constant propagation transfor-
mation at run time. [23] showed how to extract efficient run
time tests from identities of type S = ∅, where S is a USR.
By setting S = used − defined, we can extract conditions
that guarantee the safety of the optimistic constant propa-
gation (Fig. 3(d)). Additionally, constant propagation may
enable other more profitable transformations such as auto-
matic parallelization by simplifying the control flow and the
memory reference pattern.

Most examples in this paper only present single-indexed
arrays accessed using a unit stride solely for the simplic-
ity of the presentation. The USRs can represent any mem-
ory reference pattern produced by multidimensional arrays
accessed over arbitrary large loop nests spanning multiple
subroutines. Strides can be arbitrary symbolic expressions.

Σ = {∩,∪,−, (,), #,⊗∪,⊗∩, ⊲⊳,
LMADs, Gate, Recurrence, CallSite}

N = {USR}, S = USR
P = {USR → LMADs|(USR)

USR → USR ∩ USR
USR → USR ∪ USR
USR → USR − USR
USR → Gate#USR
USR → ⊗∪

RecurrenceUSR
USR → ⊗∩

RecurrenceUSR
USR → USR ⊲⊳ CallSite}

Figure 4: USR formal definition. ∩, ∪, − are ele-

mentary set operations: intersection, union, difference.

Gate#USR represents reference set USR predicated by

condition Gate. ⊗∪
i=1,nUSR(i) represents the union of ref-

erence sets USR(i) across the iteration space i = 1, n.

USR(formals) ⊲⊳ Call Site represents the image of the

generic reference set USR(formals) instantiated at a par-

ticular call site.

USRs also contain control dependence information. The
only restriction is that the program must be structured.

2.2 Array SSA Definition and Construction

2.2.1 Region Array SSA Nodes
In scalar SSA, pseudo statements φ are inserted at con-

trol flow merge points. These pseudo statements show which
scalar definitions are combined. [1] refines the SSA pseudo
statements in three categories, depending on the type of
merge point: γ for merging two forward control flow edges,
µ for merging a loop-back arc with the incoming edge at the
loop header, and η to account for the possibility of zero-trip
loops. The array SSA form proposed in [24] presents the
need for additional φ nodes after each assignment that does
not kill the whole array. These extensions, while necessary,
are not sufficient to represent array data flow efficiently be-
cause they do not represent array indices.

In order to provide a useful form of Array SSA, it is nec-

1 A(1) = 0
2 I f (x > 0)
3 A(2) = 1
4 EndIf

5 Do i = 3, 10
6 A(i) = 3
7 . . . = A(. . .)
8 A(i + 8) = 4
9 EndDo

10 · · · = A(1)
11 · · · = A(5)
12 I f (x > 0)
13 · · · = A(2)
14 EndIf

(a)

A0 : [A0, ∅] = Undefined
1 A1 : A1 (1)=0

A2 : [A2, {1}] = δ(A0, [A1, {1}])
2 I f (x>0)

A3 : [A3, ∅] = π([A2, (x > 0)])
3 A4 : A4[2] = 0

A5 : [A5, {2}] = δ(A3, [A4, {2}])
4 EndIf

A6 : [A6, {1} ∪ (x > 0)#{2}] =
γ(A0, [A2, {1}], [A5, (x > 0)#{2})

5 Do i = 3 , 10
A7 : [A7, [3 : i + 2] ∪ [11 : i + 8]] =

µ(A6, (i = 3, 10), [A9, [3 : i− 1]], [A11, [11 : i + 7]])
6 A8 : A8(i) = 3

A9 : [A9, {i}] = δ(A7, [A8, {i}])
7 · · ·=A9 (· · ·)
8 A10 : A10(i + 8) = 4

A11 : [A11, {i, i + 8}] = δ(A7, [A9, {i}], [A10, {i + 8}])
9 EndDo

A12 : [A12, {1} ∪ (x > 0)#{2} ∪ [3 : 18]] =
η(A0, [A6, {1} ∪ (x > 0)#{2}], [A7, [3 : 18]]

10 · · ·=A12 (1)
11 · · ·=A12 (5)
12 I f (x>0)

A13 : [A13, ∅] = π(A12, (x > 0))
13 · · ·=A13 (2)
14 Endif

(b)

Figure 5: (a) Sample code and (b) Array SSA form

essary to incorporate array region information into the rep-
resentation. Region Array SSA gates differ from those in
scalar SSA in that they represent, at each merge point, the
array subregion (as a USR) corresponding to every φ func-
tion argument.

[An,ℜn] = φ(A0, [A1,ℜn
1], [A2,ℜn

2], . . . , [Am,ℜn
m]) (1)

where ℜn =
m
[

k=1

ℜn
k and ℜn

i ∩ ℜn
j = ∅, (2)

∀ 1 ≤ i, j ≤ m, i 6= j

Equation 1 shows the general form of a φ node in Region
Array SSA. ℜn

k is the array region (as USR) that carries
values from definition Ak to the site of the φ node. Since
ℜn

k are mutually disjoint, they provide a basic way to find
the definition site for the values stored within a specific array
region at a particular program context. Given a set ℜUse(An)

of memory locations read right after An, equation 1 tells us
that ℜUse(An) ∩ℜ

n
k was defined by Ak. The free term A0 is

used to report locations undefined within the program block
that contains the φ node. Let us note that two array regions
can be disjoint because they represent different locations but
also because they are controlled by contradictory predicates.

Essentially, our φ nodes translate basic data flow relations
to USR comparisons. These USR comparisons can
• be performed symbolically at compile time in most prac-
tical cases, and

• be solved at run time with minimal necessary overhead,
based on USR partial aggregation capabilities.

Our node placement scheme is essentially the same as in
[24]. In addition to φ nodes at control flow merge points, we
add a φ node after each array definition. These new nodes
are named δ. They merge the effect of the immediately
previous definition with that of all other previous definitions.
Each node corresponds to a structured block of code. In
the example in Fig. 5, A2 corresponds to statement 1, A6

to statements 1 to 4, A11 to statements 6 to 8, and A12

to statements 1 to 9. In general, a δ node corresponds to
the maximal structured block that ends with the previous
statement.

2.2.2 Abstraction of Partial Kills: δ Nodes
In the example in Fig. 5, the array use A(1) at statement

10 could only have been defined at statement 1. Between
statement 1 and statement 10 there are two blocks, an If and
a Do. We would like to have a mechanism that could quickly
tell us not to search for a reaching definition in any of those
blocks. We need SSA nodes that can summarize the array
definitions in these two blocks. Such summary nodes could
tell us that the range of locations defined from statement 2
to statement 9 does not include A(1).

The function of a δ node is to aggregate the effect of dis-
joint structured blocks of code. 2 Fig. 6(a) shows the way we
build δ gates for straight line code. Since the USR represen-
tation contains built-in predication, expansion by a recur-
rence space and translation across subprogram boundaries,
the δ functions become a powerful mechanism for computing
accurate use-def relations.

Returning to our example, the exact reaching definition
of the use at line 10 can be found by following the use-def
chain {A12, A6, A2, A1}. A use of A12(20) can be classified
as undefined using a single USR intersection, {A12, A0}.

2.2.3 Abstraction of Loops: µ Nodes
The semantics of µ for Array SSA is different than those

for scalar SSA. Any scalar assignment kills all previous ones
(from a different statement or previous iteration). In Array
SSA, different locations in an array may be defined by var-
ious statements in various iterations, and still be visible at
the end of the loop. In the code in Fig. 5(a), Array A is
used at statement 7 in a loop. In case we are only interested
in its reaching definitions from within the same iteration of
the loop (as is the case in array privatization), we can apply
the same reasoning as above, and use the δ gates in the loop
body. However, if we are interested in all the reaching def-
initions from previous iterations as well as from before the
loop, we need additional information. The µ node serves
this purpose.

[An,ℜn] = µ(A0, (i = 1, p), [A1,ℜ
n
1], . . . , [Am,ℜn

m]) (3)

The arguments in the µ statement at each loop header are all
the δ definitions within the loop that are at the immediately
inner block nesting level (Fig. 6(c)), and in the order in
which they appear in the loop body. Sets ℜn

k are functions
of the loop index i. They represent the sets of memory

2A δ function at the end of a Do block is written as η, and
at the end of an If block as γ to preserve the syntax of the
conventional GSA form. A δ function after a subroutine call
is marked as θ, and summarizes the effect of the subroutine
call on the array.

locations defined in some iteration j < i by definition Ak

and not killed before reaching the beginning of iteration i.
For any array element defined by Ak in some iteration j <
i, in order to reach iteration i, it must not be killed by
other definitions to the same element, which occur from that
point on until the beginning of iteration i. We must thus
subtract the regions defined in iteration j after definition Ak:
Kills(j), as well as all the regions defined in the subsequent
iterations j + 1, ..., i− 1: Killa(l).

ℜn
k (i) =

∪
O

j=1,i−1

2

4ℜk(j) −

0

@Kills(j) ∪
∪

O

l=j+1,i−1

Killa(l)

1

A

3

5 (4)

where Kills =
m
[

h=k+1

ℜh, and Killa =
m
[

h=1

ℜh

This representation gives us powerful closed forms for array
region definitions across the loop. We avoid fixed point iter-
ation methods by hiding the complexity of computing closed
forms in USR operations. The USR simplification process
will attempt to reduce these expressions to LMADs. How-
ever, even when that is not possible, the USR can be used
in symbolic comparisons (as in Fig. 3(b)), or to generate ef-
ficient run-time assertions (as in Fig. 3(c)) that can be used
for run-time optimization and speculative execution.

The reaching definition for the array use A12(5) at state-
ment 11 (Fig. 5(b)) is found inside the loop using δ gates. We
use the µ gate to narrow down the block that defined A(5).
We intersect the use region {5} with ℜ7

9(i = 11) = [3 : 10],
and ℜ7

11(i = 11) = [11 : 18]. We substituted i← 11, because
the use happens after the last iteration. The use-def chain
is {A12, A7, A9}.

2.2.4 Abstraction of Control: π Nodes
The control dependence predicates corresponding to array

definitions are embedded in USRs as seen in the γ gate at
the definition site of A6 in Fig. 5. The remainder of this
section presents an extension to classic SSA which represents
explicitly the control predicates of array uses.

Array element A13(2) is used conditionally at statement
13. Based on its range, it could have been defined only by
statement 3. In order to prove that it was defined at state-
ment 3, we need to have a way to associate the predicate
of the use with the predicate of the definition. We create
fake definition nodes π to guard the entry to control de-
pendence regions associated with Then and Else branches:
[An, ∅] = π(A0, cond). This type of gate does not have a
correspondent in classic scalar SSA, but in the Program De-
pendence Web [1]. Their advantage is that they lead to
more accurate use-def chains. Their disadvantage is that
they create a new SSA name in a context that may con-
tain no array definitions. Such a fake definition A13 placed
between statement 12 and 13 will force the reaching defini-
tion search to collect the conditional x > 1 on its way to
the possible reaching definition at line 2. This conditional is
crucial when the search reaches the γ statement that defines
A6, which contains the same condition. The use-def chain
is {A13, A12, A6, A5, A4}.

2.2.5 Array SSA Construction
Fig. 6 presents the way we create δ, η, γ, µ, and π gates for

various program constructs. The associated array regions

1 A(R1) = . . .
2 A(R2) = . . .
n A(Rn) = . . .

[A0, ∅] = Undefined
A1(R1) = . . .
[A2, R1] = δ(A0, [A1, R1])
A3(R2) = . . .
[A4, R1 ∪R2] = δ(A0, [A2, R1 −R2], [A3, R2])
A2n−1(Rn) = . . .
[A2n,

Sn

i=1 Ri] =

δ(A0, [A2n−2,
Sn−1

i=1 Ri −Rn], [A2n−1, Rn])

(a) Straight line code.

1 A(Rx) = . . .
2 I f (cond)
3 A(Ry) = . . .
4 EndIf

[A0, ∅] = Undefined
A1(Rx) = . . .
[A2, Rx] = δ(A0, [A1, Rx])
I f (cond)
[A3, ∅] = π(A2, cond)
A4(Ry) = . . .
[A5, Ry] = δ(A3, [A4, Ry])

EndIf

[A6, Rx ∪ cond#Ry] =
γ(A0, [A2, Rx − cond#Ry], [A5, cond#Ry])

(b) If block.

1 Do i =1,n
2 A(Rx(i)) = . . .

3 A(Ry(i)) = . . .
4 EndDo

[A0, ∅] = Undefined
Do i =1,n

[A5,ℜ
5
2(i) ∪ ℜ

5
4(i)] =

µ(A0, (i = 1, n), [A2,ℜ
5
2(i)], [A4,ℜ

5
4(i)])

A1(Rx(i)) = . . .
[A2, Rx(i)] = δ(A5, [A1, Rx])
A3(Ry(i)) = . . .
[A4, Rx(i) ∪Ry(i)] =
δ(A5, [A2, Rx(i)−Ry(i)], [A3, Ry(i)])

EndDo

[A6,⊗
∪
i=1,n(ℜ5

2(i) ∪ ℜ
5
4(i))] =

η([A0, ∅], [A5,⊗
∪
i=1,n(ℜ5

2(i) ∪ ℜ
5
4(i))])

(c) Do block. ℜ
5

k
(i) = definitions from Ak not killed upon entry to

iteration i (Equation 4).

Figure 6: Region Array SSA transformation: original

code on the left, Region Array SSA code on the right.

are built in a bottom-up traversal of the Control Depen-
dence Graph intraprocedurally, and the Call Graph inter-
procedurally. At each block level (loop body, then branch,
else branch, subprogram body), we process sub-blocks in
program order.

2.2.6 Complexity
The number of φ nodes is O(|E(CFG)| ∗ V ariable Count

because every statement (CFG node) could modify all the
variables. [23] showed that the number of USR nodes added
by each operation (union, intersection, etc) is O(1), and that
each USR node consumes O(1) memory. Since the number
of USR operations to build any φ node is also O(1), the
space complexity is thus O(|E(CFG)| ∗ V ariable count.

USR construction optimizations such as symbolic aggre-
gation push the time of each operation to O(|V (CFG)|) in
the worst case, though we have observed in practice an amor-
tized O(1). The total compilation time ranges from seconds
on a 200 lines code to minutes on a 5000 lines code, using a
Pentium IV 2.8GHz PC.

2.3 Reaching Definitions

Algorithm Search (Au , ℜuse , GivenBlock)
I f Au 6∈ GivenBlock or ℜuse = ∅ Then Return
Switch definition site(Au)
Case original statement :
ℜRD

u = ℜu ∩ ℜuse

Case δ , γ , η , θ : [Au,ℜu] = φ(A0, [A1,ℜ
u
1], . . .)

ForEach [Ak,ℜu
k]

Call Search (Ak , ℜuse ∩ ℜ
u
k , GivenBlock)

Call Search (A0 , ℜuse −ℜn , GivenBlock)
Case µ : [Au,ℜu(i)] = µ(A0, (i = 1, p), [A1,ℜ

u
1 (i)], . . .)

ForEach [Ak,ℜu
k(i)]

Call Search (Ak , ℜuse(i) ∩ ℜ
u
k(i) , Block(Ak))

Call Search (A0 ,⊗∪
i=1,p(ℜuse(i)−ℜu(i)) ,GivenBlock)

Case π(A0, cond)
Call Search (A0 , cond#ℜuse , GivenBlock)

EndIf

Figure 7: Recursive algorithm to find reaching defini-

tions. Au is an SSA name and ℜuse is an array region.

Array regions ℜ are represented as USRs. They are built

using USR operations such as ∩, −, #, ⊗∪.

Finding the reaching definitions for a given use is required
to implement a number of optimizations: constant propaga-
tion, array privatization etc. We present here a general algo-
rithm based on Array SSA that finds, for a given SSA name
and array region, all the reaching definitions and the corre-
sponding subregions. These subregions can then be used to
implement particular optimizations such as constant prop-
agation. Any such optimization can be performed either
at compile time, when associated USR comparison can be
solved symbolically, or at run-time, when USR comparisons
depend on input values.

For each array use ℜUse(Au) of an SSA name Au, and for a
given block, we want to compute its reaching definition set,
{[A1,ℜ

RD
1], [A2,ℜ

RD
2], . . . , [An,ℜRD

n], [A0,ℜ
RD
0]}, in which

ℜRD
k specifies the region of this use defined by Ak and not

killed by any other definition before it reaches Au. ℜRD
0 is

the region undefined within the given block. Restricting the
search to different blocks produces different reaching defini-
tion sets. For instance, for a use within a loop, we may be
interested in reaching definitions from the same iteration of
the loop (block = loop body) as is the case in array priva-
tization. We can also be interested in definitions from all
previous iterations of the loop (block = whole loop) or for
a whole subroutine (block = routine body). Fig. 7 presents
the algorithm for computing reaching definitions. The algo-
rithm is invoked as Search(Au, ℜUse(Au), GivenBlock). ℜuse

is the region whose definition sites we are searching for, Au

is the SSA name of array A at the point at which it is used,
and GivenBlock is the block that the search is restricted to.
The set of memory locations containing undefined data is
computed as: ℜuse −

Sn

i=1 ℜ
RD
i .

In case the SSA name given as input corresponds to an
original statement, the reaching definition set is computed
directly by intersecting the region of the definition with the
region of the use. If the definition is a δ, γ, η, θ, we perform
two operations. First, we find the reaching definitions cor-
responding to each argument of the φ function. Second, we
continue the search outside the current block for the region
containing undefined values. As shown, the algorithm would

make repeated calls with the same arguments to search for
undefined memory locations. The actual implementation
avoids repetitious work, but we omitted the details here for
clarity.

When Au is inside a loop within the given block, the
search will eventually reach the µ node at the loop header.
At this point, we first compare ℜuse to the arguments of the
µ function to find reaching definition from previous itera-
tions of the loop. Second, we continue the search before the
loop for the region undefined within the loop.

When the definition site of Au is a π node, we simply
predicate ℜuse and continue the search.

The search paths presented in Section 2.2 were obtained
using this algorithm.

3. APPLICATION:
ARRAY CONSTANT PROPAGATION

We present an Array Constant Propagation optimization
technique based on our Region Array SSA form. Often
programmers encode constants in array variables to set in-
variant or initial arguments to an algorithm. Analogous to
scalar constant propagation, if these constants get propa-
gated, the code may be simplified which may result in (1)
speedup or (2) simplification of control and data flow which
enable other optimizing transformations, such as automatic
parallelization.

We define a constant region as the array subregion that
contains constant values at a particular use point. We define
array constants are either (1) integer constants, (2) literal
floating point constants, or (3) an expression f(v) which is
assigned to an array variable in a loop nest. We name this
last class of constants expression constants. They are pa-
rameterized by the iteration vector of their definition loop
nest. Presently, our framework can only propagate expres-
sion constants when (1) their definition indexing formula is
a linear combination of the iteration vector described by a
nonsingular matrix with constant terms and (2) they are
used in another loop nest based on linear subscripts (similar
to [29]).

3.1 Array Constant Collection

3.1.1 Intraprocedural Collection
The constant regions for SSA name Au in a subprogram

are computed (Fig. 8) by invoking algorithm Search(Au,
⊤, WholeSubprogram), where ⊤ is a symbolic name for the
whole subscript space of array A. This call results in a set of
tuples {[A1,ℜ1], [A2,ℜ2],. . ., [An,ℜn], [A0,ℜ0]}, such that
region ℜj contains all the subscripts at which the value de-
fined by Aj is available to any use of Au. The constant
regions are those descriptors ℜj for which the definition site
of Aj is an assignment of a constant value. All ℜj are guar-
anteed to be mutually disjoint by the logic of the Search al-
gorithm and the fact that all the array regions on the right
hand side of a δ gate are mutually disjoint. When propagat-
ing expression constants, special care is taken at µ nodes to
update the iteration vector corresponding to the constant.

Region ℜ0 contains all the locations that hold data un-
defined in the subprogram. The conservative approach is
to consider them nonconstant. However, if an interprocedu-
ral analysis can infer that certain regions are constant upon
entry to the subprogram, the algorithm will also report the
corresponding subregions that reach Au (last loop in Fig. 8).

Algorithm Co l l e c t In t r aProc edu ra l
Input : Au as SSA name ,

IncomingConstants as [ℜ1
0, c1], ..., [ℜ

1
0, cm]

Output : AvailableConstants as [ℜ, c], ...

Call Search(Au,⊤, WholeSubprogram)
−−> {[A1,ℜ1], . . . , [An,ℜn], [A0,ℜ0]}

For i = 1 , n // Constants from this subprogram
I f (IsArrayConstant(RightHandSide(Definition(Ai)))

Report[ℜi, RightHandSide(Definition(Ai))]
EndIf

EndFor

For i = 1 , m // Incoming constants
Report[ℜ0 ∩ ℜ

i
0, ci]

EndFor

Figure 8: Algorithm to collect array constant regions

available to any use of SSA name Au in a given subpro-

gram.

Algorithm Co l l e c t I n t e rP ro c edu ra l
Input : Program
Output : AvailableConstants

change = true
While change Do
change = false
ForEach subprogram caller
ForEach SSA name Ai in caller
Call CollectIntraProcedural(Ai, Incoming(caller))

EndForEach
ForEach c a l l s i t e Call callee(...)
OldIncoming(callee) = Incoming(callee)
Call Adjust(Incoming(callee))
I f (Incoming(callee) 6= OldIncoming(callee))
change = true

EndIf
EndForEach

EndWhile

Figure 9: Algorithm to collect array constant regions

across the whole program.

In the example in Fig. 5, the constant regions for SSA
name A12 are ({1}, 0), ((x > 0)#{2}, 1), ([3 : 10], 3) and
([11 : 18], 4). It is interesting to note that the algorithm is
control sensitive since the USRs embed control dependence
information. We can thus know that location A12(2) holds
value 1 when x > 0 holds true.

3.1.2 Interprocedural Collection
When collecting constants in a single subprogram, we have

assumed conservatively that the set of undefined elements
ℜ0 is not constant. However, arrays containing constant
regions may be passed as actual arguments or as global
names from a calling context into another subprogram. Even
though their corresponding formal names may appear unde-
fined locally, they will contain constant values upon entry
to the subprogram. For example, in Fig. 10, during the first
traversal of the program, the outcoming set of subroutine
jacld is collected and translated into subroutine ssor at call
site call jacld. In the next traversal, the value set of A at
callsite call blts is computed and translated into the incom-

Sub ssor
. . .
Call jacld(A)
Call blts(A)
. . .
End

.

Sub jacld(A)
Do i = 1, n

A(1, i) = 0
EndDo
End

.

Sub blts(A)
Do i = 1, n
Do j = 1, 5

V (1, i) = V (1, i)+
A(j, i) ∗ V (1 + j, i)

EndDo
EndDo
End

Figure 10: Example from benchmark code Applu

(SPEC)

ing value set of subroutine blts.
Our interprocedural constant propagation algorithm (Fig. 9)

starts by invoking its intraprocedural counterpart on each
subprogram. The incoming constant regions are consid-
ered empty. This phase computes array constants avail-
able at each subprogram call site, which are used to com-
pute actual incoming constant regions for the corresponding
callees. Conversely, this may lead to the callee producing
more constant values which will be taken into account when
re-analyzing the call site. The procedure is repeated until
the incoming constants do not change globally.

When a subprogram is called at a single site, its incoming
constants are simply a copy of the constants available at the
call site. The USRs that describe the associated regions are
translated symbolically, as are the expression constants.

In general, subprograms are called at several call sites,
from different contexts and with different arguments, which
could result in conflicting incoming constants. The conser-
vative solution is to consider only the constants that are
available at all call sites to the given subprogram. Alter-
natively, we can create several versions of the subprogram
(by cloning). In the worst case this could lead to the same
code increase as if inlining every subprogram. There are also
situations where, although the number of call sites is large,
the available constants may be grouped in a much smaller
number of equivalence (identity) classes.

3.2 Propagating and Substituting Constants
After the available value sets for array uses are computed,

we substitute the uses with constants. Since an array use
is often enclosed in a nested loop and it may take different
constants at different iterations, loop unrolling may become
necessary in order to substitute the use with constants. For
an array use, if its value set only has one array constant
and its access region is a subset of the constant region, then
this use can be substituted with the constant. Otherwise,
loop unrolling is applied to expose this array use when the
iteration count is a small constant. Constant propagation
is followed by aggressive dead code elimination based on
simplified control and data dependences.

4. APPLICATION: ARRAY PRIVATIZATION
Privatization is a crucial transformation which removes

memory related dependences (anti-, and output dependences)
and thus allows the parallelization of loops (among other op-
timizations). This is achieved by allocating private storage
for each iteration3 instead of reusing it across the iterations

3In practice, private storage is allocated per thread, and not
per iteration.

Do j =1, 1000
Do i =1, 10

W1 (i) = . . .
EndDo
[W2, [1 : 10]] = η(. . .)

Do i =1 ,10
. . . = W2 (i)

EndDo
End

(a)

Do j =1, 1000
Do i =1, 10

I f (c (i , j))
W1 (i) = . . .

EndIf
EndDo

[W2,∪
10
i=1c(i, j)#{i}] = η(. . .)

Do i =1 ,10
. . . = W2 (i)

EndDo
End

(b)

Figure 11: Loop parallelization example. Array W must

be privatized. Privatization can be proved at compile-

time in (a) and only at run-time in (b).

Algorithm IsCovered
Input : [Au,ℜu] , Loop
Output : t ruth value

Call Search(Au,ℜu, LoopBody)
−−> {[A1,ℜ1], . . . , [An,ℜn], [A0,ℜ0]}

Return isEmpty(ℜ0)

Figure 12: Algorithm to decide whether a read is cov-

ered by a previous write within every iteration of a given

loop.

of a loop. To validate such a transformation, the compiler
needs to prove that all read references within some iteration
are covered by previous write references to the same memory
locations and in the same iteration.

In the example in Fig. 11(a), the parallelization of the
outer loop requires the privatization of array W. We must
prove that all the reads in the second inner loop are covered
by the writes in the first inner loop. Using Array SSA, we
can solve this problem by invoking algorithm Search(W2,
[1 : 10], LoopBody), which returns {[W1, [1 : 10]], [W0, ∅]}.
Since the reference set corresponding to W0 (undefined) is
empty, we conclude that all uses of W2 are defined within
the same iteration (LoopBody). Therefore privatization of
W will remove cross iteration dependences.

In general (Fig. 12), given an array A and a loop Loop, we
invoke algorithm Search(Au, ℜUse(Au), LoopBody) for each
use of SSA name Au within the loop with footprint ℜUse(Au).
From the result, {[A1,ℜ1], [A2,ℜ2], . . . , [An,ℜn], [A0,ℜ0]},
we are only interested in the value of ℜ0, which is the set
of reads not covered by writes, or exposed reads. The priva-
tization problem can be formulated as there are no exposed
reads, or ℜ0 = ∅. In the example in Fig. 11(a), this identity
could be proved using symbolic static analysis. However, in
the example in Fig. 11(b), the definitions in the first inner
loop are controlled by an array of predicates. Depending
on their values, there may or may not exist exposed reads.
In this case a compile time decision cannot be made. [23]
shows how to extract efficient run time tests that prove iden-
tities such as ℜ0 = ∅ at run time. These run-time tests can
extract simple conditions based on partial aggregation and
invariant hoisting and generally have lower overhead than
the element-by-element run time computation of @ arrays
proposed by [16].

5. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

Our goal is not to prove the profitability of constant prop-
agation and array privatization, but to show that they can
be implemented easily using Region Array SSA. The pur-
pose of this section is to show that, in the cases where con-
stant propagation and array privatization can improve the
performance of an application, the accurate array dataflow
information produced by Region Array SSA makes a signif-
icant difference.

We have showed how to use the generic Search algorithm
to implement both constant propagation and array privati-
zation. However, in some cases it is not necessary to per-
form a full search. When performing array privatization,
we only need to compute ℜ0, which may be much cheaper
than computing the whole list of reaching definitions. When
propagating constants, it is not necessary to compute the
reaching definition sets that cannot originate from a con-
stant assignment. Our implementation takes into account
these optimizations.

We implemented (1) Region Array SSA construction, (2)
the reaching definition algorithm and (3) array constant col-
lection in the Polaris research compiler [2], while constant
substitution was done by hand because our compiler frame-
work lacked some of the necessary infrastructure. We ap-
plied constant propagation to four benchmark codes 173.ap-
plu, 048.ora, 107.mgrid (from SPEC) and QCD2 (from PER-
FECT). The speedups were measured on four different ma-
chines (Table 1). The codes were compiled using native
compilers at O3 optimization level (O4 on the Regatta).
107.mgrid and QCD2 were compiled with O2 on SGI be-
cause the codes compiled with O3 did not validate).

In subroutine OBSERV in QCD2, which takes around
22% execution time, the whole array epsilo is initialized with
0 and then six of its elements are reassigned with 1 and -1.
The array is used in loop nest OBSERV do2, where much
of the loop body is executed only when epsilo takes value 1
or -1. Moreover, the values of epsilo are used in the inner-
most loop body for real computation. From the value set,
we discover that the use is all defined with constant 0, 1
and -1. We manually unrolled the loop OBSERV do2, sub-
stituted the array elements with their corresponding values,
eliminated If branches and dead assignments and succeeded
in removing more than 30% of the floating-point multiplica-
tions. Additionally, array ptr is used in loops HIT do1 and
HIT do2 after it is initialized with constants in a DATA
statement. In subroutine SYSLOP, called from within these
two loops, the iteration count of a While loop is determined
by the values in ptr. After propagation, we can fully unroll
the loop and eliminate several If branches.

In 173.applu, a portion of arrays a, b, c, d is assigned
with constant 0.0 in loop JACLD do1 and JACU do1. These
arrays are only used in BLTS do1 and BUTS do1 (Fig. 10),
which account for 40% of the execution time. We find that
the uses in BLTS do1 and BUTS do1 are defined as constant
0.0 in JACLD do1 and JACU do1. Loops BLTS do1111 to
BLTS do1114 and BUTS do1111 to BUTS do1114 are un-
rolled. After unrolling and substitution, 35% of the multi-
plications are eliminated.

In 048.ora, array i1 is initialized with value 6 and then

Machine Processor Speed

Intel PC Pentium 4 2.8 GHz

HP9000/R390 PA-8200 200 MHz

SGI Origin 3800 MIPS R14000 500 MHz

IBM Regatta P690 PowerR4 1.3 GHz

(a)

Program Intel HP IBM SGI

QCD2 14.0% 17.4% 12.8% 15.5%

173.applu 20.0% 4.6% 16.4% 10.5%

048.ora 1.5% 22.8% 11.9% 20.6%

107.mgrid 12.5% 8.9% 6.4% 12.8%

(b)

Table 1: Constant propagation results. (a) Experimen-

tal setup and (b) Speedup.

Program Coverage 1 proc 2 procs 4 procs

S D

ADM 46% 44% -3.5% 78% 216%

BDNA 32% 0% -11.9% 71% 225%

DYFESM 0% 9% -4.5% 75% 177%

MDG 4% 91% -2.0% 91% 263%

Table 2: Array privatization results. Speedup after au-

tomatic parallelization on 1, 2 and 4 processors on an

SGI Altix machine. The coverage column shows the per-

centage of the execution time that could be parallelized

only after array privatization. S = at compile time using

static analysis, D = at run time using dynamic analysis.

some of its elements are reassigned with constants -2 and -4
before being used in subroutine ABC, which takes 95% of
the execution time. The subroutine body is a While loop.
The iteration count of the While loop is determined by i1
(there are premature exits). Array a1 is used in ABC after a
portion of it is assigned with floating-point constant values.
After array constant propagation, the While loop is unrolled
and many If branches are eliminated.

107.mgrid was used as a motivating example by previ-
ous papers on array constant propagation [30, 24]. Array
elements A(1) and C(3) are assigned with constant 0.0 at
the beginning of the program. They are used in subroutines
RESID and PSINV, which account for 80% of the execution
time. After constant propagation, the uses of A(1) and C(3)
in multiplications are eliminated.

Table 2 shows the impact of array privatization on the
automatic parallelization of major loops in all the applica-
tions. In ADM, DYFESM and MDG the privatization prob-
lems could be solved only at run time. However, the cost
of the run time tests was greatly reduced through partial
aggregation of USRs, which led to significant speedups on 2
and 4 processors. The slowdowns on 1 processor are due to
the overhead of parallelization and that of run time tests.

6. RELATED WORK
Array Data Flow. There has been extensive research

on array dataflow, most of it based on reference set sum-
maries: regular sections (rows, columns or points) [4] linear
constraint sets [26, 12, 11, 3, 28, 18, 21, 17, 22, 15, 14, 9, 19,
7, 30, 23], and triplet based [13]. Most of these approaches

approximate nonlinear references with linear ones [17, 9].
Nonlinear references are handled as uninterpreted func-

tion symbols in [22], using symbolic aggregation operators
in [23] and based on nonlinear recurrence analysis in [14].
[8] presents a generic way to find approximative solutions
to dataflow problems involving unknowns such as the iter-
ation count of a while statement, but limited to intrapro-
cedural contexts. Conditionals are handled only by some
approaches (most relevant are [28, 17, 13, 19, 23]). Extrac-
tion of run-time tests for dynamic optimization based on
data flow analysis is presented in [19, 23].

Array SSA and its use in constant propagation

and parallelization. In the Array SSA form introduced
by [16, 24], each array assignment is associated a reference
descriptor that stores, for each array element, the iteration
in which the reaching definition was executed. Since an
array definition may not kill all its old values, a merge func-
tion φ is inserted after each array definition to distinguish
between newly defined and old values. This Array SSA form
extends data flow analysis to array element level and treats
each array element as a scalar. However, their representa-
tion lacks an aggregated descriptor for memory location sets.
This makes it in generally impossible to to do array data
flow analysis when arrays are defined and used collectively
in loops. Constant propagation based on this Array SSA
can only propagate constants from array definitions to uses
when their subscripts are all constant. [7, 6] independently
introduced Array SSA forms for explicitly parallel programs.
Their focus is on concurrent execution semantics, e.g. they
introduce π gates to account for the out-of-order execution
of parallel sections in the same parallel block. Although [6]
mentions the benefits of using reference aggregation they do
not implement it.
Array constant propagation can be done without using Ar-
ray SSA [30, 25]. However, we believe that our Array SSA
form makes it easier to formulate and solve data flow prob-
lems in a uniform way.
Table 3 presents a comparison of some of the most relevant
related work to Region Array SSA. The table shows that
RA SSA is the only representation of data flow that is ex-
plicit (uses SSA numbering), is aggregated, and can be com-
puted efficiently at both compile-time and run-time even in
the presence of nonlinear memory reference patterns. The
precision of RA SSA is not as good as that of the other
two SSA representations because we lack iteration vector
information. However, iteration vectors would become very
complex in interprocedural contexts (they must include call
stack information), whereas USRs represent arbitrarily large
interprocedural program contexts in a scalable way.

7. CONCLUSIONS AND FUTURE WORK
We introduced a region based Array SSA providing accu-

rate, interprocedural, control-sensitive use-def information
at array region level. Furthermore, when the data flow prob-
lems cannot be completely solved statically we can continue
the process dynamically with minimal overhead. We used
RA SSA to write a compact Reaching Definitions algorithm
that breaks up an array use region into subregions corre-
sponding to the actual definitions that reach it. The imple-
mentation of array constant propagation and array privati-
zation shows that our representation is powerful and easy to
use.

RA SSA Array SSA [24] Dist. Array SSA [6] Fuzzy Dataflow [8] Predicated Dataflow [19]

SSA Form Yes Yes Yes No No

Aggregated Yes No No Yes Yes

Static/Dynamic CT/RT CT/RT CT/RT CT CT/RT

Interprocedural Yes No No No Yes

Accuracy Statement Operation Operation x Thread Operation Statement

CT Nonlinear Yes No No Yes No

RT Nonlinear Yes Yes Yes No No

Table 3: Related work on array dataflow and array SSA. CT/RT Nonlinear = able to solve problems involving

nonlinear reference patterns at compile time / run time.

8. REFERENCES
[1] R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein.

The Program Dependence Web: A representation
supporting control-, data-, and demand-driven
interpretation of imperative languages. In ACM PLDI,
White Plains, NY, 1990.

[2] W. Blume, et. al. Advanced Program Restructuring
for High-Performance Computers with Polaris. IEEE
Computer, 29(12):78–82, December 1996.

[3] M. Burke. An interval-based approach to exhaustive
and incremental interprocedural data-flow analysis.
ACM TOPLAS., 12(3):341–395, 1990.

[4] D. Callahan and K. Kennedy. Analysis of
interprocedural side effects in a parallel programming
environment. In Supercomputing: 1st Int. Conf.,
LNCS 297, pp. 138–171, Athens, Greece, 1987.

[5] L. Carter, B. Simon, B. Calder, L. Carter, and
J. Ferrante. Predicated static single assignment. In
IEEE PACT ’99, pp. 245, Washington, DC, 1999.

[6] D. R. Chakrabarti and P. Banerjee. Static single
assignment form for message-passing programs. Int. J.
of Parallel Programming, 29(2):139–184, 2001.

[7] J.-F. Collard. Array SSA for explicitly parallel
programs. In Euro-Par, 1999.

[8] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy
array dataflow analysis. In PPOPP ’95, pp. 92–101,
New York, NY, USA, 1995. ACM Press.

[9] B. Creusillet and F. Irigoin. Exact vs. approximate
array region analyses. In LCPC, LNCS 1239, pp.
86–100, San Jose, CA, 1996.

[10] R. Cytron, et al An efficient method of computing
static single assignment form. In 16th ACM POPL,
pp. 25–35, Austin, TX., Jan. 1989.

[11] P. Feautrier. Dataflow analysis of array and scalar
references. Int. J. of Parallel Programming,
20(1):23–54, 1991.

[12] T. Gross and P. Steenkiste. Structured dataflow
analysis for arrays and its use in an optimizing
compilers. Software: Practice & Experience,
20(2):133–155, 1990.

[13] J. Gu, Z. Li, and G. Lee. Symbolic array dataflow
analysis for array privatization and program
parallelization. In Supercomputing ’95, pp. 47. ACM
Press, 1995.

[14] M. R. Haghighat and C. D. Polychronopoulos.
Symbolic analysis for parallelizing compilers. ACM
TOPLAS, 18(4):477–518, 1996.

[15] M. H. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W.

Liao, and M. S. Lam. Detecting coarse-grain
parallelism using an interprocedural parallelizing
compiler. In Supercomputing ’95, pp. 49, 1995.

[16] K. Knobe and V. Sarkar. Array SSA form and its use
in parallelization. In ACM POPL, pp. 107–120, 1998.

[17] V. Maslov. Lazy array data-flow dependence analysis.
In ACM POPL, pp. 311–325, Portland, OR, Jan. 1994.

[18] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam.
Array data-flow analysis and its use in array
privatization. In ACM POPL, pp. 2–15, Charleston,
SC, Jan. 1993.

[19] S. Moon, M. W. Hall, and B. R. Murphy. Predicated
array data-flow analysis for run-time parallelization.
ACM ICS, pp. 204–211, Melbourne, Australia, 1988.

[20] Y. Paek, J. Hoeflinger, and D. Padua. Efficient and
precise array access analysis. ACM TOPLAS,
24(1):65–109, 2002.

[21] W. Pugh and D. Wonnacott. An exact method for
analysis of value-based array data dependences. In
LCPC 1993, LNCS 768, pp. 546–566, Portland, OR.

[22] W. Pugh and D. Wonnacott. Nonlinear array
dependence analysis. UMIACS-TR-94-123, Univ. of
Maryland, College Park, MD, USA, 1994.

[23] S. Rus, J. Hoeflinger, and L. Rauchwerger. Hybrid
analysis: static & dynamic memory reference analysis.
Int. J. of Parallel Programming, 31(3):251–283, 2003.

[24] V. Sarkar and K. Knobe. Enabling sparse constant
propagation of array elements via array ssa form. In
SAS, pp. 33–56, 1998.

[25] N. Schwartz. Sparse constant propagation via memory
classification analysis. TR1999-782, Dept. of Compute
Science, Courant Institute, NYU, March, 1999.

[26] R. Triolet, F. Irigoin, and P. Feautrier. Direct
parallelization of Call statements. In ACM Symp. on
Comp. Constr., pp. 175–185, Palo Alto, CA, June
1986.

[27] P. Tu and D. Padua. Gated SSA–based demand-driven
symbolic analysis for parallelizing compilers. In 9th
ACM ICS, Barcelona, Spain, pp. 414–423, July 1995.

[28] P. Tu and D. A. Padua. Automatic array privatization.
In LCPC, LNCS 768 Portland, OR, 1993.

[29] P. Vanbroekhoven, G. Janssens, M. Bruynooghe,
H. Corporaal, and F. Catthoor. Advanced copy
propagation for arrays. In LCTES ’03, pp. 24–33, New
York, 2003.

[30] D. Wonnacott. Extending scalar optimizations for
arrays. In LCPC ’00, LNCS 2017, pp. 97–111.

