Partial Observation of Quantum Turing Machine and
Weaker Well-Formedness Condition

Simon Perdrix

Oxford University Computing Laboratory

Abstract. The quantum Turing machine (QTM) has been introduced by ddbuas an
abstract model of quantum computation. The transitiontfanof a QTM is linear, and
has to be unitary to be a well-formed QTM. This well-formestheondition ensures that
the evolution of the machine does not violate the postulaitgsiantum mechanics. How-
ever, we claim in this paper that the well-formedness camlis too strong and we intro-
duce a weaker condition, leading to a larger class of Turiaghimes called Observable
Quantum Turing Machines (OQTMs). We prove that the evotutbsuch OQTM does
not violate the postulates of quantum mechanics while ioffea more general abstract
model for quantum computing. This novel abstract model emifilassical and quantum
computations, since every well-formed QTM and every deigistic TM are OQTMs,
whereas a deterministic TM has to be reversible to be a wethéd QTM. In this paper
we introduce the fundamentals of OQTM like a well-obsenadra and a completion
lemma. The introduction of such an abstract machine allgvaiilassical and quantum
computations is motivated by the emergence of models oftqgopanomputation like the
one-way model. More generally, the OQTM aims to be an abstramework for the
pragmatic paradigm of quantum computing: 'quantum datssital control’. Further-
more, this model allows a formal and rigorous treatment obf@ms requiring classical
interactions, like the halting of QTM. Finally, it opens neerspectives for the construc-
tion of a universal QTM.

1 Introduction

How to make a quantum version of the deterministic Turing mrze (DTM)? While a proba-
bilistic Turing machine (PTM) is obtained from a DTM by allowg probability distributions
over machine configurations, a pre-quantum Turing machg@& M) is defined from a DTM
by allowing superpositions of machine configurations. Idiidn, a PTM has to satisfy a well
formedness condition ensuring that the probabilities asétipe numbers and sum to one. In
the same way, a reversible Turing machine (RTM) is an ingafdTM which satisfies a
well formedness condition ensuring its reversibility. Isimilar vein, Deutsch had introduced
the Quantum Turing machines (QTM) as a class of pQTMs whitisfgaa well formedness
condition. This well formedness condition ensures that @Td not violate the postulate of
quantum mechanics and implies reversibility as well. As@seguence, a QTM is a quantum
version of a RTM. However, recent developments of modelsiahtum computation like the
one-way quantum computer, point out that a quantum compuatatay be irreversible. Thus,
the well-formedness condition is too restrictive.

The main contribution of this paper consists in introdu@ngeaker well formedness con-
dition to capture the postulates of quantum mechanics piegently of the question of re-
versability. This weaker condition leads to a class of quamversions of DTMs, called Ob-
servable Quantum Turing machines (OQTM).



After a brief introduction to quantum basics (see [9] for anpdete introduction), we in-
troduce in section 4, such a less restrictive class of quarituring machines, thebserv-
able quantum Turing maching®QTM), where partial observations can be performed at
each transition. Fondamentals of OQTM are given: evolutiparator (which is not a uni-
tary transformation any more, but a trace-preserving cetefyl-positive map, like in the lin-
ear quantum Turing machines [6]) a well-observation camwifwhich is the generalisation
of the well-formedness condition.) Essential tools forggeanming OQTMs are introduced: a
well-observation lemma (i.e. the conditions the transitionction has to satisfy to make the
machine a well-observed pQTM); and a completion lemma (dirdi@l transition function sat-
isfies the conditions of the well-obseravtion lemma, it carektended to a total function of a
well-observed pQTM.) In section 5.1, we prove that any QTM ba simulated by an OQTM
in which a partial measurement is performed at each transiti order to know whether the
computation is halted or not.

In section 5.2, we prove that any QTM and any deterministiagnbumachine are well-
observed. Thus, OQTM expands the classical model of detéstici Turing machine, in-
cluding non-reversible machines. Moreover, well-obsgovacan be seen as a weaker well-
formedness condition allowing non-reversible computegio

In section 6, we prove that the computational power of OQTMgsivalent to the one of
QTM, since any OQTM can be simulated by a QTM within a quadrglowdown.

2 Quantum Computing Basics

The basic carrier of information in quantum computing ¥slavel quantum systeng(ibit), or
more generally al-level quantum systenq(dit). The state of a single qudit is a normalized
vector of a Hilbert spac€”, whereA is a finite alphabet of symbols. An orthonormal basis
(0.n.b.) of this Hilbert space is described &g:), 7 € A}. So the general state) € C4 of a
single qudit can be written as:

> arlr),

TEA

with > __ 1 a-|> = 1. Vectors, inner and outer products are expressed in theiomta-
troduced by Dirac. Vectors are denoted; the inner product of two vectolls), |¢) is de-
noted by(plv). If [¢) = 3,4 ar|r) andg) = 3 Br|r), then(plv) = 3, o,
(wherea* stands for the complex conjugate). The left hand sidleof the inner product is a
bra-vector and the right hand side)) is aket-vector A bra-vector is defined as the adjoint
of the corresponding ket-vector: i) = Y=, a-|7), then(p| = |p)t = >, ai(7].
The bra-ket notation can also be used to describe outer ptmidiy) (1| is a linear operator,
(Je)(®])]e) = (¥]e) |). The state of a system composed2afudits in statdy) € C# and
|v) € CB respectively, is the normalized vectarn) ® |¢) € CA @ CB = CA*B, wherew is
the tensor product. For anye A,~ € B, |r,v) denotesr) & |7).

Probability distribution of quantum states 6f' can be represented by a density matrix
p € D(CA) C CA*4, i.e. a self adjoiritpositive-semidefinittcomplex matrix of tracéone.

According to the second postulate of quantum mechanicsdated system evolves ac-
cording to a unitary transformatiéri/ € C4*4, transforming a statp € D(C4) into

L M is self adjoint (or Hermitian) if and only it/ T = M

2 M is positive-semidefinite if all the eignenvaluesiafare non-negative.
% The trace ofM (tr(M)) is the sum of the diagonal elementsidf

* U is unitary if and only ifUTU = UUT = 1.



UpU'. More generally, whether the system is isolated or not, theesevolves according
to a trace-preserving completely-positive (tpcp) nfgptransformingp into F'(p). Accord-
ing to the Kraus representation theorem [2], for any tpcp rhaghere exists a collection
of matricesM; € C4*4, that satisfies a completeness condithon MZTMZ- = T, such that
F(p)=>3", Mz-pMQ'. A special instance of tpcp-map is a projective measurenestribed by
a collection of projector®;. A projective measurement transformimto ) . P;pP;. A projec-
tive measurement produces a classical outcgyweéth probability p;, (p) = Tr(P;,pPi,) =
Tr(P,,p). ° For instance, a projection onto a given stateis Py = |¢) (|, thus the prob-
ability to obtain the classical outcome associated with ibjector is|y) is Tr(|p)(p|p) =

Tr({plple))-

3 Quantum Turing Machine

For completeness, the definition of deterministic Turinghiaes is given. See [12] for fonda-
mentals on (classical) Turing machines.

Definition 1 (Deterministic Turing Machine (DTM)). A deterministic Turing machine is de-
fined by a triplet(X, @, d) where: X is a finite alphabet with an identified blank symigg)
@ is a finite set of states with an identified initial stateand final state;; # g0, andé, the
deterministic transition functidhis a function

0:QxY—XxQx{-1,0,1}

Deutsch in [4] introduced a quantum version of the Turing Inia&, extensively studied by
Bernstein and Vazirani [1]:

Definition 2 (Pre-Quantum Turing Machine (pQTM)). A pre-quantum Turing machifeQTM )
is defined by a triplefX, @, §) where: X' is a finite alphabet with an identified blank symbol
#, @ is afinite set of states with an identified initial stateand final state;; # o, andg, the
quantum transition function, is a function

S Q N N (CEXQX{—I,O,I}
(p,7) = quQ,aeE,de{—l,O,l} ap,r,q,o,d|07 q,d)

For convenience, the expressiéfp, 7, ¢, o, d) is used to denote,, , ,,.a € C, i.e. the
amplitude ind(p, 7) of |0, q,d). The evolution of a pQTMV is given by the linear operator
U defined onC@* " *Z (called the state space of configurations):

U]W: Z 6(p7TwaQ707d)|angax+d><paT7x|
p,qEQ,0c€X,de{—1,0,1},TeX* z€Z

whereT? € ¥* is T where the symbol in position is replaced by.
A quantum Turing machine (QTM ) iswell-formedpre-quantum Turing machine:

Definition 3 (Well-formedness condition).A pQTM M is well-formed if and only it/;; is
an isometry, i.eU},U,, = L.

® sinceT'r(MN) = Tr(NM) and for any projectoP, P? = P.
5 The transition function of deterministic Turing machineigposed to be total in this paper.



Lemmal (Well-formedness lemma [11])For a givenpQTM M = (X, Q,¢), M is well-
formed if and only if:
(@) Y(r,p) € ¥ x Q,

3(p,m)o(p,7) =1

(b) V(7,p), (7",p") € ¥ x Qwith (p,7) # (p',7'),
5(p, )16, 7') =0

(€) Y(r,p,0),(7",p',0") € Q x ¥ x X,

>, prigod=1)80, 7, q,0,d) =0
de{0,1},qeQ

(d) Y(7,p,0),(7".p/,0') € Q x X x X,

> 6, mq,0, 1), 7' q,07,1) = 0
q€Q

Atriple M = (X,Q,9) is called a partial pQTM ib is a partial quantum transition func-
tion. If such &) satisfies the four conditions of the well-formedness lempthdn M is called
a partially well-formed pQTM.

Lemma 2 (Completionlemma [11]).For every partially well-formed pQTM/ with a partial
guantum transitiory, there exists TM M’ with the same alphabet, the same set of states,
and a transition functiod’” which is equal t@ on the domain of.

A QTM M evolves according té/),: if the initial configuration ofM is |c) € CO*>"*Z,
then aftern transitions, the configuration of the machine(i$,,)"|c). Configurations may
also be represented by density matripes D(C?**"*7) (see [6]). Density matrices allows
representation of probabilistic distributions over quanstates. The evolution operator is then
the tpcp map:

Fu D(CQxE*xZ) N D(Csz*xZ)
p= UnpUys

4 Observable Quantum Turing Machine

Since a QTM has a unitary evolution, no measurement can Biedpmtil the machine halts. It
turns out that it may be useful to observe the machine duniagvolution, for instance to know
whether the machine is already halted or not. This problesndegn solved [10] by proving
that one can add a halt qubit that can be measured after eaxdition, and which switches
from 0 to 1 when the machine halts. We introduce a formal and more gefiaraework to
describe a partial observation of the machine before aed aftch transition:

Definition 4 (Observed pre-quantum Turing machine).For a givenpQTM M = (X, Q, 9),
and a partition X = {Kx,A € A} of ¥ x @, [M]k is anobserved pre-quantum Turing
machine The evolution ofM | is given byFi, . :
F[M]K :'D((CQXE*XZ) N D(@QxE*xZ) 1_
P 2on e XowPXo



wherey,, is a linear operator defined as follows:

o= Y, 0(p, T q.0,d)q, T,z +d)(p, T, |
(1.p)€K N, (0,9)€K,,,de{~1,0,1},z€Z,T€X*, st. Ty =7

Remark 1.Notice thaty, , = P,Ux Py, whereP, is a projector defined for any € A as
follows:

PV = Z |p7Ta I><p,T,ZC|

pEQ,x€L,TEX*st.(Ty,p)EK,

As a consequence, the evolution[df] can be decomposed into a projective measurement
of the internal states and the cell pointed out by the headrdity to the observabl®, =
> xea APy, then alinear transitiof’; —which is the same as the evolutionf— and finally
a second projective measurement according jo

Thus, before and after each transitiomraperty of the machine is measured. The mea-
sured property is described by a partitiph’,,\ € A}, composed ofA| regions, of the
internal states and the symbols of the cell pointed out byhdeaal. The measurement consists
in projecting the internal state of the machine and the stateted out by the head into one
of these regions. This measurement, which produces a@dsaitcome\ € A, is apartial
observation, since after the measurement the configuratiorbe in a superposition of the
elements of the regioA’).

From a physical point of viewW)\/|  is realizable ifF],/), is a trace-preserving completely-
positive (tpcp) map.

Definition 5 (Well-observation condition). An observedpQTM [M ]k is well-observed if
and only if £z, is atpcp map, i.e.:

Z XLMXML =1
A peA

Such a well-observed pre-quantum Turing machine is an sakkr quantum Turing ma-
chine:

Definition 6 (Observable quantum Turing machine).An observable quantum Turing ma-
chine(OQTM) is a well-observe@QTM [M| k.

Well-formedness lemma and completion lemma are essenoislfior programming QTMs.
We introduce analogues for OQTM, i.e., a well-observatenra and a completion lemma:

Lemma 3 (Well-observation lemma).For a givenpQTM M = (X, Q,§) and a givenk =
{Kx, A € A} C ¥ x Q, [M]k is well-observed if and only if:
@) V(r,p) € ¥ xQ,
3(p,)1o(p,m) =1
(b) VA e A,V(T,p), (T/ap/) € K)\ with (p7 T) # (p/aT/)'

3(p. 7T, ") =0

(c) VA e AV (r,p,0), (T, p',0") € Kxx X,

>, prigod=1)80, 7, q,0,d) =0
de{0,1},qeQ



(d) VA€ A,V(T,p,(j), (T/,p/,U/) € K)\ X Zn

Z 5(}% 7,4,0, _1)*6(19/7 7—/7 q, U/a 1) = 0
q€Q

Proof. According to remark Iy ,, = P, Un Py SO3"y e 4 XA X = Soren PAUL Ui P
since}’ 4 P, = L Thus,[M] is well-observed if and only if for any basis configura-
tions|p, T, z), [p", T, 2"), >\ c 4 (P, T,x|P,\U}:/[UMP,\|p’,T’,x’) = (p,T,z|p’,T',2"). Since
P\p,T,z) = |p, T, z) if (T, p) € K, and0 otherwise, the well-observation equation is obvi-
ously satisfied if T, p) and(T.,, p’) are not in a same blocK . If they are in the same block
then the well-observation condition {g, T, :c|UITMUM|p’, T, 2"y = (p, T,x|p', T',2"). Thus,
[M] is well-observed iff for each € A, the restriction o/, to C{(PT52), s:t- (Te,p)EKA} g
an isometry. For each of these restrictiond/af, one can apply the well-formedness condi-
tions (see lemma 1) leading to equatign$to (d). O
Comparing with the well-formedness lemma for QTM (see [Lije well-observation
lemma points out that the well-observation is a weaker dmrdihan the well-formedness
condition: equatior{a) has to be satisfied by both well-formed and well-observedhinas,
whereas equation$) to (d) are weaker for well-observation, since only the pairs ofnelats
in asameblock have to satisfy the equations.

For a given a partial pPQTMV = (Q, X, d) and a given partition of ¥ x Q, if &
satisfies the four conditions of the well-observation len8nthen[M] x is called a partially
well-observed pQTM.

Lemma 4 (Completion lemma).For every partially well-observed pQTM/| x with a par-
tial quantum transitiord, there exists a®@QTM [M']x with the same alphabet, the same set
of states, and a transition functior which is equal t@) on the domain oé.

Proof. The proof consists in applying the QTM completion lemma ochdalock of the parti-
tion K. If K = {K), X € A}, thenletM = (X, Q, d»), whered,, is the restriction ob to K.
According to lemmas 1 and 3/, is a well-formed partiaQTM, thusM, can be expanded to
a well-formedQTM Mj. Let5™*) be the transition function a¥/; . Finally, letd’ be such that
for any (p,7), §'(p,7) = 6XN(p,7) if (7,p) € K,. Since eacli*) satisfies the conditions of
lemma 1,4’ satisfies the conditions of lemma 3. Moreovérextends). O

5 Examples of Observable Quantum Turing Machines

5.1 Quantum Turing machine

The formalism of observable quantum Turing machines expamel formalism of quantum
Turing machines: any QTM is an OQTM where a non-informatiaetipl measurement is
performed. Indeed:

Proposition 1. For any pQTMM = (X, Q,0), M is well-formed if and only ifM]; 5y is
well-observed. Moreove®! and[M] s« gy have the same evolutiofiyy, ., ,, = Fu-

More generally, for any QTMV and any partitionk™ of its internal stated, M|k is well-
observed. However, the evolution of the machine dependsepdrtitionk’, so the language



recognized by the machine and the execution time dependeopatiition K. Proposition 1
states that if< is composed of a unique block, then the evolution of a Q¥Mand the OQTM
[M]k are the same. Another example whéfeis a bipartition is given in lemma 5. In that
example, for a given QTMV/, M and[M]x do not have the same evolution, however in this
particular example the computational powef\dfand[M ]k are the same.

Halting of quantum Turing machines is symptomatic of thé lafca coherent integration of
the notion of observation. The unitary evolution of a QTM Imapthat the machine, seen as the
physical system, does not interact with its environmenta&®nsequence, it is impossible to
know whether the machine halts without measuring it. Moegoi¥ this measurement reveals
that the computation was actually not finished, the machasetd be re-initialised. In order to
solve this problem, an ad hoc mechanism, consists in addh@itag qubit to the machine.
This qubit can be measured at any time in order to know whetteecomputation is halted.
Such a machine is no more a QTM since its evolution is not nniteowever if some halting
condition are satisfied then the computational power of theat machine is equivalent to the
one of the corresponding QTM. One of the aims of the model sEolable quantum Turing
machines is to describe such a mechanism in a coherent fsrm@lince observation can be
represented in this formalism) and then gives a deeper staheling of the halting of quantum
process in general. Thus, following the work of Ozawa [10haiting of QTM, we show that
any QTM M satisfying the halting condition have the same computatipower ag M|k
where at each transition the internal state of the machinee&sured in order to know when
the machine halts.

Lemmabs. LetM = (Q, X, 5) be aQTM , then[M]y is well-observed, wherél = {3 x
(@Q\{qr}), X x {qs}}. Moreover, ifM satisfies the halting condition (i.e/]’ € X*,Vc €
Q x X* x IVt > 0,Up PU} |c) = PUyPU} |c), whereP =37 lqp, T, x){(qs, T, x|),
the computational powers @ff and[M]y are equivalent:

Vn € N,Vp € D(CR*¥ XY YT € x*,

Phatt,T (F7(p)) = Phatt,T (FﬁmH (P))

wherepyqii,7(p) denotes the probability that the machine halts (i.e. theriml state isg/)
and that the outcome of the tape measuremefhtifehe configuration of the machine js

Proof. The proof is based on the result presented in [10].

5.2 Classical Turing machines

In this section, we prove thafi/]x may be well-observed for som&, even if the pQTM
M is not well-formed. As a consequence, the well-observatmmdition is weaker than the
well-formedness condition. In lemma 2 a separation betweshformed and well-observed
machines is pointed out, by considering deterministicfigimachines.

One can describe a deterministic Turing machifés= (Q, X, ) by means of the pre-
quantum Turing machiné/ = (Q, X,0), whered(p,7) = |8(p,7)). It is well-known that
M is well-formed if and only ifM is a reversible deterministic Turing machine. However,
we prove for any deterministic Turing maching, that the OQTM[M]{{WE;XQ}, where a
total measurement of the internal states and the cell pbimi¢ by the head is performed, is
well-observed:



Proposition 2. For anyDTM M = (Q, 2, 4), [M]{{c}.ce s x @} IS Well-observed, wherg/ =
(@.%,0) is apQTM such thatv(p,7) € Q x ¥,d(p,7) = |§(p,7)). Moreover,M and
[M]{{c},cexx @y have the same evolution: for anye Q x X* x Z, Flit] (o eesnor (le){c]) =
|M () (M (c)]-

Probabilistic Turing machines are also special instanE€£IMs. A probabilistic Turing
machine is a tripleVl = (Q, X,9), withd : Q x ¥ x Q x X x {—1,0,1} — R™, such
that for any(p,7) € Q@ x X, 3" cq ses ac(-1,013 0(P,T,q,0,d) = 1. A configuration is
a probabilistic distribution described by a valuation fioic v : Q x X* x Z — R*. The
evolution operatoF), of a PTMM is such that for any configuration F, (v) = (¢, T, y) —

Z(p,T)EQXE,dE{—l,O,l} 5(p7 7,4, Ty*da d)V(p, TJ—da y— d)

Proposition 3. For any probabilistic Turing maching/ = (X, Q,0), [M'|1{c},ce 2xQx{-1,0.1}}
is well observed, and has the same evolut@s\/, whereM’ = (X, Q x {—1,0,1},§) is a

. é(p,1,q,0,d) ife=d
TM withd’ = d .
pPQ (p,7,q,(0,€),d) — {0 otherwise

Proof. In order to satisfy condition&) and(d) of the well-observation lemma, a copy of the
head move is added to the internal states of the machine,tbatthe total measurements
of the internal states af/’ avoid any superposition of the positions of the head, mattieg
observable quantum Turing machine a probabilistic machitieout superposition. O

As a consequence, the model of observed quantum Turing mexcis not only a for-
malisation of partial observation of properties during évelution, but also a unifying model
since quantum Turing machines and deterministic Turinghimes are observable quantum
Turing machines. In the next section, the computationalgyavl observable quantum Turing
machines is studied.

6 Computational Power of Observable Quantum Turing Machine

In this section, we mainly show that any observable quanturin@ machine can be simulated
within a polynomial slowdown by a quantum Turing machineotimer words, even if the model
of observable quantum Turing machines is more expressarettie model of quantum Turing
machines, they have the same computational power.

Theorem 1. For any OQTM [M] g, there exists @TM M’ which simulate$)M ] x within a
quadratic slowdown.

The rest of this section is dedicated to the proof of this teeo In order to simulate the
OQTM [M]k a two-tape QTMJM is used. Multi-tape quantum Turing machines have been
introduced in [16]. One of the tapes of is used to simulate the tape 8f, whereas the
second tape is an history, where the superposition of theifdesoutcomes of an hypothetical
observation according t of the currentinternal state is stored. At the end of the agiaton,
this auxillary tape is measured, simulating the observghntum Turing machine. First, a

" Notice that the configuration of an OQTM/|x is a density matrix where as a configuration of a
probabilistic Turing machiné/’ is a probabilistic distribution that can be represented eslzation
functionv : Q x X* x Z — R™. As a consequence, we say that the evolutiongffix and M’ are
the same itP o Fipy),. oW = Far, Wherel (v) = 3 oy v w7 V() [€) (c| and®(p) = ¢ — (c|p|c).



such two-tape quantum Turing machine is defined and we plravevell-fornedness of this
machine, then we prove the simulation of the original obsleler quantum Turing machine
with a linear slowdown. Finally, this two-tape quantum Tigrimachine can be simulated by a
one-tape quantum Turing machine within a quadratic slowdow

For a given pQTMM = (Q, X,0) and a partitionk = {K,, A € A} of X' x Q, let
M = (Q, X x A% U {#}, 5) be a2-tape quantum Turing machine. The alphabet of the first
tape isX, the alphabet of the second tape/A$ U {#}. The transition functio of M is
defined as followsyp € Q,Vr € X,

Sp.m#) =Y d(p,7,q,0,d)lg,0,d, ([r,p], 1), 1)

ne,(o,q) €K, ,de{-1,0,1}

where[r, p] € Ais such tha{r, p) € K, .

Notice that the second head always moves right, revealiogssary a blank symbol. That
is why the transition function is partially defined. One caove that verifies the well formed-
ness conditions afnity, orthogonality, and separabilitysee theorem 5.2.2 in [1] for the well-
formedness lemma fdrtape QTM and lemma 1 in [16] for multi-tape QTM. Thus accagli
to the completion lemma — lemma 2 in [16p-can be extended such that the corresponding
pQTM is well-formed.

The evolutior/;, of M is such thatforany € Q,z € Z,n € N*, T € £* w € (A?)",

Uyglp, Ty w,m) = > 8(p, Ty #, 0,0, dy (A, o), g, T 2 + dy w(d, ), n + 1)
q€Q,0eX \,ucA,de{-1,0,1}

Thus,

UIC['p’ Tz, w, n> = Z 6(p, Te,q,0, d)|q, Ty, x+d, w([T,p], /1')7 n -+ 1>
peA,(o,q) €K, ,de{—1,0,1}

The simulation of\/ by the2-tape quantum Turing machire works as follows: for any
initial configurationp € D(CP***%) of M, the initial configuration of\/ is p @ |#)(#| ®
|0)(0]. It means that the internal state and the state of the firstdegppthe same a4, whereas
the second tape is empty and the head of the second tape pointse cell indexed by.
After n transitions, the configuration off is UL (p® |#)(#| ® |O><O|)U};. At that time, the
second head points out the cell indexed®ynd all the cells of the second tape have a blank
symbol except the cells betwee@mndn — 1. These non-blank cells of the second tape are then
measured, leading to the configurati®),  s2). (w|UF, (p @ |#)(#] ® |0><0|)U}?|w). We
prove, by induction om, that this resulting configuration is equal K, (p) ® [#)(#| ®
[n)(n|. In order to initialize the induction, notice that the prayes true aftem = 0 transition.

For anyn > 0, the configuration of\Z, aftern + 1 transitions and the measurement of the
second tape is

pr=>" wlUL (p@ [#)(#| @ [0) (0T |w)

we(A2)n+1

=Y W @)l U (0@ [#)(#] @ 0) (ODU T w) (A, 1))t
A pEAwe(AZ)™

where((\, u)|, means that(\, i)| is applied on the cell indexed byon the second tape.



Since the second head always moves right, the transitiofoaum+ 1 does not act on the
cells indexed betweemandn — 1 of the second tape, and thus commutes with any operation
acting on these cells:

pr=>" AN Uy (wlUF (p @ [#)(#] @ [0)0DU LT [w)UL (A, 1))
A pEAwE(AZ)"

By induction,

p= 3 (AUt (Fin, (0) @ [#)(# @ [n) (UL (A, 1))
A peA

Foranyp,p’ € Q,anyT,T' € X*, and anyr, 2’ € Z,

S W) Uz lp, Ty, #,m) (0!, T, #, UL (N 1)
A p€EA
SNl X 8(p T, q,0,d)8 (0, T ¢ 0", d) g, T @ + d, ([T, pl, o), m + 1)
T AueA uo,M()EA,(UA,q)EKHO,(U’,Q’)EK%,dwi’E{*laO’l}

<q,7Ta£-L’7 756, + dl? ([Talc’7p/]7/1/6)7 n+ 1||()‘7 M))”l
J— Z<A|[T‘L7p]><[T;l7pl]|A> Z 6(p7 Tx7q, 0-7 d)(sT(p/7T,’;/7q,7U,7d,)|q7 T§7I + d7 #7” + 1>
T\ HEA (0,9)€EK i ,d,d"€{—1,0,1} ,

<ql7 C:/‘(/r 7Il+dl7#7n+1|

ol Ty, T XL, @ [#) (# @ In + 1) (n+ 1
T A\ peEA
= Fia (Ip, T, 2) (0, T, 2'|) @ [#) (#| @ [n + 1) (n + 1

Thus,
P = Fiil (0) @ [#)(#] @ [n + 1) {n + 1]

Thus M simulates) within a linear slowdown. Since any two-tape quantum Turimay
chine can be simulated by a one-tape QTM within a quadrasieddbwn [16],M/ is simulated
by a one-tape QTM within a quadratic slowdown. O

7 Conclusion and perspectives

This paper has introduced observable quantum Turing mesl@QTM) as a generalisation
of quantum Turing machines (QTM) allowing partial obseimatof the machine during the
computation. OQTM provides a formal model to deal with apgdiions where partial obser-
vations of the machine are necessary, like the halting probwhere observations are used
to know whether the computation is halted or not. OQTM turasto be a unifying model
of Turing machines, since any QTM but also any determiniENt are special instances of
OQTM, whereas it is well-known that non reversible detelisiio TM cannot be expressed
into the formalism of QTM. However, the computational powérOQTM is equivalent to
the power of QTM. Thus, the well-observation condition (@ibion verified by OQTM) is
weaker than the well-formedness condition (conditionfietiby QTM) and is a good candi-
date to meet the necessary and sufficient conditions for mJunachine to be a valid quan-
tum device. Since observations are formalized in OQTM, apestive is to investigate the
connections between OQTM and recent models of quantum ctatigu based on measure-
ments (Teleportation-based model [8, 13], One-way modgl3]) and the formal framework
of classically-controlled quantum Turing machines [14].



Indeed, the structure of the OQTM is inspired from the payatjuantum data, classical
control: quantum data are stored on the tape of the machine, whileathteol, thanks to the
partial observation of the internal states and the celltediout by the cell, is hybrid. A per-
spective is to characterize the amount of quantum contedeeé to have an efficient quantum
device: what is the minimat for which any OQTM|[M] can be efficiently simulated with
an OQTM[M'] k- where all the blocks o’ have a size less than?

Another open question is the existence of a universal OQTé&¢eRt developments in the
guest of a universal QTM [5, 7] point out that existence ofassical control could be helpful
for the design of a universal machine.
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