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Abstract. The quantum Turing machine (QTM) has been introduced by Deutsch as an
abstract model of quantum computation. The transition function of a QTM is linear, and
has to be unitary to be a well-formed QTM. This well-formedness condition ensures that
the evolution of the machine does not violate the postulatesof quantum mechanics. How-
ever, we claim in this paper that the well-formedness condition is too strong and we intro-
duce a weaker condition, leading to a larger class of Turing machines called Observable
Quantum Turing Machines (OQTMs). We prove that the evolution of such OQTM does
not violate the postulates of quantum mechanics while offering a more general abstract
model for quantum computing. This novel abstract model unifies classical and quantum
computations, since every well-formed QTM and every deterministic TM are OQTMs,
whereas a deterministic TM has to be reversible to be a well-formed QTM. In this paper
we introduce the fundamentals of OQTM like a well-observed lemma and a completion
lemma. The introduction of such an abstract machine allowing classical and quantum
computations is motivated by the emergence of models of quantum computation like the
one-way model. More generally, the OQTM aims to be an abstract framework for the
pragmatic paradigm of quantum computing: ’quantum data, classical control’. Further-
more, this model allows a formal and rigorous treatment of problems requiring classical
interactions, like the halting of QTM. Finally, it opens newperspectives for the construc-
tion of a universal QTM.

1 Introduction

How to make a quantum version of the deterministic Turing machine (DTM)? While a proba-
bilistic Turing machine (PTM) is obtained from a DTM by allowing probability distributions
over machine configurations, a pre-quantum Turing machine (pQTM) is defined from a DTM
by allowing superpositions of machine configurations. In addition, a PTM has to satisfy a well
formedness condition ensuring that the probabilities are positive numbers and sum to one. In
the same way, a reversible Turing machine (RTM) is an instance of DTM which satisfies a
well formedness condition ensuring its reversibility. In asimilar vein, Deutsch had introduced
the Quantum Turing machines (QTM) as a class of pQTMs which satisfy a well formedness
condition. This well formedness condition ensures that QTMs do not violate the postulate of
quantum mechanics and implies reversibility as well. As a consequence, a QTM is a quantum
version of a RTM. However, recent developments of models of quantum computation like the
one-way quantum computer, point out that a quantum computation may be irreversible. Thus,
the well-formedness condition is too restrictive.

The main contribution of this paper consists in introducinga weaker well formedness con-
dition to capture the postulates of quantum mechanics, independently of the question of re-
versability. This weaker condition leads to a class of quantum versions of DTMs, called Ob-
servable Quantum Turing machines (OQTM).



After a brief introduction to quantum basics (see [9] for a complete introduction), we in-
troduce in section 4, such a less restrictive class of quantum Turing machines, theobserv-
able quantum Turing machines(OQTM), where partial observations can be performed at
each transition. Fondamentals of OQTM are given: evolutionoperator (which is not a uni-
tary transformation any more, but a trace-preserving completely-positive map, like in the lin-
ear quantum Turing machines [6]) a well-observation condition (which is the generalisation
of the well-formedness condition.) Essential tools for programming OQTMs are introduced: a
well-observation lemma (i.e. the conditions the transition function has to satisfy to make the
machine a well-observed pQTM); and a completion lemma (if a partial transition function sat-
isfies the conditions of the well-obseravtion lemma, it can be extended to a total function of a
well-observed pQTM.) In section 5.1, we prove that any QTM can be simulated by an OQTM
in which a partial measurement is performed at each transition in order to know whether the
computation is halted or not.

In section 5.2, we prove that any QTM and any deterministic Turing machine are well-
observed. Thus, OQTM expands the classical model of deterministic Turing machine, in-
cluding non-reversible machines. Moreover, well-observation can be seen as a weaker well-
formedness condition allowing non-reversible computations.

In section 6, we prove that the computational power of OQTM isequivalent to the one of
QTM, since any OQTM can be simulated by a QTM within a quadratic slowdown.

2 Quantum Computing Basics

The basic carrier of information in quantum computing is a2-level quantum system (qubit), or
more generally ad-level quantum system (qudit). The state of a single qudit is a normalized
vector of a Hilbert spaceCA, whereA is a finite alphabet of symbols. An orthonormal basis
(o.n.b.) of this Hilbert space is described as:{|τ〉, τ ∈ A}. So the general state|ϕ〉 ∈ CA of a
single qudit can be written as:

∑

τ∈A

ατ |τ〉,

with
∑

τ∈A |ατ |
2 = 1. Vectors, inner and outer products are expressed in the notation in-

troduced by Dirac. Vectors are denoted|ϕ〉; the inner product of two vectors|ϕ〉, |ψ〉 is de-
noted by〈ϕ|ψ〉. If |ϕ〉 =

∑

τ∈A ατ |τ〉 and|ψ〉 =
∑

τ∈A βτ |τ〉, then〈ϕ|ψ〉 =
∑

τ∈A α
∗
τβτ

(whereα∗ stands for the complex conjugate). The left hand side〈ϕ| of the inner product is a
bra-vector, and the right hand side|ψ〉 is a ket-vector. A bra-vector is defined as the adjoint
of the corresponding ket-vector: if|ϕ〉 =

∑

τ∈A ατ |τ〉, then〈ϕ| = |ϕ〉† =
∑

τ∈A α
∗
τ 〈τ |.

The bra-ket notation can also be used to describe outer products: |ϕ〉〈ψ| is a linear operator,
(|ϕ〉〈ψ|)|ǫ〉 = 〈ψ|ǫ〉 |ϕ〉. The state of a system composed of2 qudits in state|ϕ〉 ∈ C

A and
|ψ〉 ∈ CB respectively, is the normalized vector|ϕ〉 ⊗ |ψ〉 ∈ CA ⊗ CB ∼= CA×B, where⊗ is
the tensor product. For anyτ ∈ A, γ ∈ B, |τ, γ〉 denotes|τ〉 ⊗ |γ〉.

Probability distribution of quantum states ofCA can be represented by a density matrix
ρ ∈ D(CA) ⊆ CA×A, i.e. a self adjoint1 positive-semidefinite2 complex matrix of trace3 one.

According to the second postulate of quantum mechanics, an isolated system evolves ac-
cording to a unitary transformation4 U ∈ C

A×A, transforming a stateρ ∈ D(CA) into

1 M is self adjoint (or Hermitian) if and only ifM† = M
2 M is positive-semidefinite if all the eignenvalues ofM are non-negative.
3 The trace ofM (tr(M)) is the sum of the diagonal elements ofM
4 U is unitary if and only ifU†U = UU† = I.



UρU †. More generally, whether the system is isolated or not, the state evolves according
to a trace-preserving completely-positive (tpcp) mapF , transformingρ into F (ρ). Accord-
ing to the Kraus representation theorem [2], for any tpcp mapF , there exists a collection
of matricesMi ∈ CA×A, that satisfies a completeness condition

∑

iM
†
i Mi = I, such that

F (ρ) =
∑

iMiρM
†
i . A special instance of tpcp-map is a projective measurementdescribed by

a collection of projectorsPi. A projective measurement transformsρ into
∑

i PiρPi. A projec-
tive measurement produces a classical outcomei0 with probabilitypi0(ρ) = Tr(Pi0ρPi0) =
Tr(Pi0ρ).

5 For instance, a projection onto a given state|ϕ〉 is P0 = |ϕ〉〈ϕ|, thus the prob-
ability to obtain the classical outcome associated with this projector is|ϕ〉 is Tr(|ϕ〉〈ϕ|ρ) =
Tr(〈ϕ|ρ|ϕ〉).

3 Quantum Turing Machine

For completeness, the definition of deterministic Turing machines is given. See [12] for fonda-
mentals on (classical) Turing machines.

Definition 1 (Deterministic Turing Machine (DTM)). A deterministic Turing machine is de-
fined by a triplet(Σ,Q, δ) where:Σ is a finite alphabet with an identified blank symbol#,
Q is a finite set of states with an identified initial stateq0 and final stateqf 6= q0, andδ, the
deterministic transition function6, is a function

δ : Q×Σ → Σ ×Q× {−1, 0, 1}

Deutsch in [4] introduced a quantum version of the Turing machine, extensively studied by
Bernstein and Vazirani [1]:

Definition 2 (Pre-Quantum Turing Machine (pQTM)). A pre-quantum Turing machine(pQTM )
is defined by a triplet(Σ,Q, δ) where:Σ is a finite alphabet with an identified blank symbol
#,Q is a finite set of states with an identified initial stateq0 and final stateqf 6= q0, andδ, the
quantum transition function, is a function

δ : Q×Σ → CΣ×Q×{−1,0,1}

(p, τ) 7→
∑

q∈Q,σ∈Σ,d∈{−1,0,1} αp,τ,q,σ,d|σ, q, d〉

For convenience, the expressionδ(p, τ, q, σ, d) is used to denoteαp,τ,q,σ,d ∈ C, i.e. the
amplitude inδ(p, τ) of |σ, q, d〉. The evolution of a pQTMM is given by the linear operator
UM defined onCQ×Σ∗×Z (called the state space of configurations):

UM =
∑

p,q∈Q,σ∈Σ,d∈{−1,0,1},T∈Σ∗,x∈Z

δ(p, Tx, q, σ, d)|q, T
σ
x , x+ d〉〈p, T, x|

whereT σ
x ∈ Σ∗ is T where the symbol in positionx is replaced byσ.

A quantum Turing machine (QTM ) is awell-formedpre-quantum Turing machine:

Definition 3 (Well-formedness condition).A pQTM M is well-formed if and only ifUM is
an isometry, i.e.U †

MUM = I.

5 sinceTr(MN) = Tr(NM) and for any projectorP , P 2 = P .
6 The transition function of deterministic Turing machine issupposed to be total in this paper.



Lemma 1 (Well-formedness lemma [11]).For a givenpQTM M = (Σ,Q, δ), M is well-
formed if and only if:
(a) ∀(τ, p) ∈ Σ ×Q,

δ(p, τ)†δ(p, τ) = 1

(b) ∀(τ, p), (τ ′, p′) ∈ Σ ×Q with (p, τ) 6= (p′, τ ′),

δ(p, τ)†δ(p′, τ ′) = 0

(c) ∀(τ, p, σ), (τ ′, p′, σ′) ∈ Q ×Σ ×Σ,
∑

d∈{0,1},q∈Q

δ(p, τ, q, σ, d− 1)∗δ(p′, τ ′, q, σ′, d) = 0

(d) ∀(τ, p, σ), (τ ′, p′, σ′) ∈ Q ×Σ ×Σ,
∑

q∈Q

δ(p, τ, q, σ,−1)∗δ(p′, τ ′, q, σ′, 1) = 0

A triple M = (Σ,Q, δ) is called a partial pQTM ifδ is a partial quantum transition func-
tion. If such aδ satisfies the four conditions of the well-formedness lemma 1, thenM is called
a partially well-formed pQTM.

Lemma 2 (Completion lemma [11]).For every partially well-formed pQTMM with a partial
quantum transitionδ, there exists aQTM M ′ with the same alphabet, the same set of states,
and a transition functionδ′ which is equal toδ on the domain ofδ.

A QTM M evolves according toUM : if the initial configuration ofM is |c〉 ∈ CQ×Σ∗×Z,
then aftern transitions, the configuration of the machine is(UM )n|c〉. Configurations may
also be represented by density matricesρ ∈ D(CQ×Σ∗×Z) (see [6]). Density matrices allows
representation of probabilistic distributions over quantum states. The evolution operator is then
the tpcp map:

FM : D(CQ×Σ∗×Z) → D(CQ×Σ∗×Z)

ρ 7→ UMρU
†
M

4 Observable Quantum Turing Machine

Since a QTM has a unitary evolution, no measurement can be applied until the machine halts. It
turns out that it may be useful to observe the machine during the evolution, for instance to know
whether the machine is already halted or not. This problem has been solved [10] by proving
that one can add a halt qubit that can be measured after each transition, and which switches
from 0 to 1 when the machine halts. We introduce a formal and more general framework to
describe a partial observation of the machine before and after each transition:

Definition 4 (Observed pre-quantum Turing machine).For a givenpQTMM = (Σ,Q, δ),
and a partitionK = {Kλ, λ ∈ Λ} of Σ × Q, [M ]K is an observed pre-quantum Turing
machine. The evolution of[M ]K is given byF[M ]K :

F[M ]K : D(CQ×Σ∗×Z) → D(CQ×Σ∗×Z)

ρ 7→
∑

λ,µ∈Λ χλ,µρχ
†
λ,µ



whereχλ,µ is a linear operator defined as follows:

χλ,µ =
∑

(τ,p)∈Kλ,(σ,q)∈Kµ,d∈{−1,0,1},x∈Z,T∈Σ∗, s.t.Tx=τ

δ(p, Tx, q, σ, d)|q, T
σ
x , x+ d〉〈p, T, x|

Remark 1.Notice thatχλ,µ = PµUMPλ, wherePν is a projector defined for anyν ∈ Λ as
follows:

Pν =
∑

p∈Q,x∈Z,T∈Σ∗ s.t.(Tx,p)∈Kν

|p, T, x〉〈p, T, x|

As a consequence, the evolution of[M ]K can be decomposed into a projective measurement
of the internal states and the cell pointed out by the head according to the observableOΛ =
∑

λ∈Λ λPλ, then a linear transitionUM – which is the same as the evolution ofM – and finally
a second projective measurement according toOΛ.

Thus, before and after each transition, apropertyof the machine is measured. The mea-
sured property is described by a partition{Kλ, λ ∈ Λ}, composed of|Λ| regions, of the
internal states and the symbols of the cell pointed out by thehead. The measurement consists
in projecting the internal state of the machine and the statepointed out by the head into one
of these regions. This measurement, which produces a classical outcomeλ ∈ Λ, is apartial
observation, since after the measurement the configurationcan be in a superposition of the
elements of the regionKλ.

From a physical point of view,[M ]K is realizable ifF[M ]K is a trace-preserving completely-
positive (tpcp) map.

Definition 5 (Well-observation condition). An observedpQTM [M ]K is well-observed if
and only ifF[M ]K is a tpcp map, i.e.:

∑

λ,µ∈Λ

χ
†
λ,µχλ,µ = I

Such a well-observed pre-quantum Turing machine is an observable quantum Turing ma-
chine:

Definition 6 (Observable quantum Turing machine).An observable quantum Turing ma-
chine(OQTM ) is a well-observedpQTM [M ]K .

Well-formedness lemma and completion lemma are essential tools for programmingQTMs.
We introduce analogues for OQTM, i.e., a well-observation lemma and a completion lemma:

Lemma 3 (Well-observation lemma).For a givenpQTMM = (Σ,Q, δ) and a givenK =
{Kλ, λ ∈ Λ} ⊆ Σ ×Q, [M ]K is well-observed if and only if:
(a) ∀(τ, p) ∈ Σ ×Q,

δ(p, τ)†δ(p, τ) = 1

(b) ∀λ ∈ Λ, ∀(τ, p), (τ ′, p′) ∈ Kλ with (p, τ) 6= (p′, τ ′),

δ(p, τ)†δ(p′, τ ′) = 0

(c) ∀λ ∈ Λ, ∀(τ, p, σ), (τ ′, p′, σ′) ∈ Kλ ×Σ,
∑

d∈{0,1},q∈Q

δ(p, τ, q, σ, d− 1)∗δ(p′, τ ′, q, σ′, d) = 0



(d) ∀λ ∈ Λ, ∀(τ, p, σ), (τ ′, p′, σ′) ∈ Kλ ×Σ,

∑

q∈Q

δ(p, τ, q, σ,−1)∗δ(p′, τ ′, q, σ′, 1) = 0

Proof. According to remark 1,χλ,µ = PµUMPλ so
∑

λ,µ∈Λ χ
†
λ,µχλ,µ =

∑

λ∈Λ PλU
†
MUMPλ

since
∑

µ∈Λ Pµ = I. Thus, [M ]K is well-observed if and only if for any basis configura-

tions|p, T, x〉, |p′, T ′, x′〉,
∑

λ∈Λ〈p, T, x|PλU
†
MUMPλ|p

′, T ′, x′〉 = 〈p, T, x|p′, T ′, x′〉. Since
Pλ|p, T, x〉 = |p, T, x〉 if (Tx, p) ∈ Kλ and0 otherwise, the well-observation equation is obvi-
ously satisfied if(Tx, p) and(T ′

x′ , p′) are not in a same blockKλ. If they are in the same block
then the well-observation condition is〈p, T, x|U †

MUM |p′, T ′, x′〉 = 〈p, T, x|p′, T ′, x′〉. Thus,
[M ]K is well-observed iff for eachλ ∈ Λ, the restriction ofUM to C{(p,T,x), s.t. (Tx,p)∈Kλ} is
an isometry. For each of these restrictions ofUM , one can apply the well-formedness condi-
tions (see lemma 1) leading to equations(a) to (d). �

Comparing with the well-formedness lemma for QTM (see [11]), the well-observation
lemma points out that the well-observation is a weaker condition than the well-formedness
condition: equation(a) has to be satisfied by both well-formed and well-observed machines,
whereas equations(b) to (d) are weaker for well-observation, since only the pairs of elements
in a sameblock have to satisfy the equations.

For a given a partial pQTMM = (Q,Σ, δ) and a given partitionK of Σ × Q, if δ
satisfies the four conditions of the well-observation lemma3, then[M ]K is called a partially
well-observed pQTM.

Lemma 4 (Completion lemma).For every partially well-observed pQTM[M ]K with a par-
tial quantum transitionδ, there exists anOQTM [M ′]K with the same alphabet, the same set
of states, and a transition functionδ′ which is equal toδ on the domain ofδ.

Proof. The proof consists in applying the QTM completion lemma on each block of the parti-
tionK. If K = {Kλ, λ ∈ Λ}, then letMλ = (Σ,Q, δλ), whereδλ is the restriction ofδ toKλ.
According to lemmas 1 and 3,Mλ is a well-formed partialQTM , thusMλ can be expanded to
a well-formedQTM M ′

λ. Let δ(k) be the transition function ofM ′
k. Finally, letδ′ be such that

for any(p, τ), δ′(p, τ) = δ(λ)(p, τ) if (τ, p) ∈ Kλ. Since eachδ(k) satisfies the conditions of
lemma 1,δ′ satisfies the conditions of lemma 3. Moreover,δ′ extendsδ. �

5 Examples of Observable Quantum Turing Machines

5.1 Quantum Turing machine

The formalism of observable quantum Turing machines expands the formalism of quantum
Turing machines: any QTM is an OQTM where a non-informative partial measurement is
performed. Indeed:

Proposition 1. For any pQTMM = (Σ,Q, δ), M is well-formed if and only if[M ]{Σ×Q} is
well-observed. Moreover,M and[M ]{Σ×Q} have the same evolution:F[M ]{Σ×Q}

= FM .

More generally, for any QTMM and any partitionK of its internal states,[M ]K is well-
observed. However, the evolution of the machine depends on the partitionK, so the language



recognized by the machine and the execution time depend on the partitionK. Proposition 1
states that ifK is composed of a unique block, then the evolution of a QTMM and the OQTM
[M ]K are the same. Another example whereK is a bipartition is given in lemma 5. In that
example, for a given QTMM , M and[M ]K do not have the same evolution, however in this
particular example the computational power ofM and[M ]K are the same.

Halting of quantum Turing machines is symptomatic of the lack of a coherent integration of
the notion of observation. The unitary evolution of a QTM implies that the machine, seen as the
physical system, does not interact with its environment. Asa consequence, it is impossible to
know whether the machine halts without measuring it. Moreover, if this measurement reveals
that the computation was actually not finished, the machine has to be re-initialised. In order to
solve this problem, an ad hoc mechanism, consists in adding ahalting qubit to the machine.
This qubit can be measured at any time in order to know whetherthe computation is halted.
Such a machine is no more a QTM since its evolution is not unitary, however if some halting
condition are satisfied then the computational power of the ad hoc machine is equivalent to the
one of the corresponding QTM. One of the aims of the model of observable quantum Turing
machines is to describe such a mechanism in a coherent formalism (since observation can be
represented in this formalism) and then gives a deeper understanding of the halting of quantum
process in general. Thus, following the work of Ozawa [10] onhalting of QTM, we show that
any QTMM satisfying the halting condition have the same computational power as[M ]K
where at each transition the internal state of the machine ismeasured in order to know when
the machine halts.

Lemma 5. LetM = (Q,Σ, δ) be aQTM , then[M ]H is well-observed, whereH = {Σ ×
(Q \ {qf}), Σ × {qf}}. Moreover, ifM satisfies the halting condition (i.e.,∀T ∈ Σ∗, ∀c ∈
Q × Σ∗ × Z, ∀t ≥ 0, UMPU t

M |c〉 = PUMPU t
M |c〉, whereP =

∑

x∈Z
|qf , T, x〉〈qf , T, x|),

the computational powers ofM and[M ]H are equivalent:
∀n ∈ N, ∀ρ ∈ D(CQ×Σ∗×Z), ∀T ∈ Σ∗,

phalt,T (Fn
M (ρ)) = phalt,T

(

Fn
[M ]H

(ρ)
)

wherephalt,T (ρ) denotes the probability that the machine halts (i.e. the internal state isqf )
and that the outcome of the tape measurement isT if the configuration of the machine isρ.

Proof. The proof is based on the result presented in [10].

5.2 Classical Turing machines

In this section, we prove that[M ]K may be well-observed for someK, even if the pQTM
M is not well-formed. As a consequence, the well-observationcondition is weaker than the
well-formedness condition. In lemma 2 a separation betweenwell-formed and well-observed
machines is pointed out, by considering deterministic Turing machines.

One can describe a deterministic Turing machinesM = (Q,Σ, δ) by means of the pre-
quantum Turing machinẽM = (Q,Σ, δ̃), whereδ̃(p, τ) = |δ(p, τ)〉. It is well-known that
M̃ is well-formed if and only ifM is a reversible deterministic Turing machine. However,
we prove for any deterministic Turing machineM , that the OQTM[M̃ ]{{c},c∈Σ×Q}, where a
total measurement of the internal states and the cell pointed out by the head is performed, is
well-observed:



Proposition 2. For anyDTM M = (Q,Σ, δ), [M̃ ]{{c},c∈Σ×Q} is well-observed, wherẽM =

(Q,Σ, δ̃) is a pQTM such that∀(p, τ) ∈ Q × Σ, δ̃(p, τ) = |δ(p, τ)〉. Moreover,M and
[M̃ ]{{c},c∈Σ×Q} have the same evolution: for anyc ∈ Q×Σ∗×Z,F[M̃ ]{{c},c∈Σ×Q}

(|c〉〈c|) =

|M(c)〉〈M(c)|.

Probabilistic Turing machines are also special instances of OQTMs. A probabilistic Turing
machine is a tripleM = (Q,Σ, δ), with δ : Q × Σ × Q × Σ × {−1, 0, 1} → R+, such
that for any(p, τ) ∈ Q × Σ,

∑

q∈Q,σ∈Σ,d∈{−1,0,1} δ(p, τ, q, σ, d) = 1. A configuration is
a probabilistic distribution described by a valuation function ν : Q × Σ∗ × Z → R+. The
evolution operatorFM of a PTMM is such that for any configurationν,FM (ν) = (q, T, y) 7→
∑

(p,τ)∈Q×Σ,d∈{−1,0,1} δ(p, τ, q, Ty−d, d)ν(p, T
τ
y−d, y − d).

Proposition 3. For any probabilistic Turing machineM = (Σ,Q, δ), [M ′]{{c},c∈Σ×Q×{−1,0,1}}

is well observed, and has the same evolution7 asM , whereM ′ = (Σ,Q× {−1, 0, 1}, δ′) is a

pQTM withδ′ = (p, τ, q, (σ, e), d) 7→

{

√

δ(p, τ, q, σ, d) if e = d

0 otherwise
.

Proof. In order to satisfy conditions(c) and(d) of the well-observation lemma, a copy of the
head move is added to the internal states of the machine, suchthat the total measurements
of the internal states ofM ′ avoid any superposition of the positions of the head, makingthe
observable quantum Turing machine a probabilistic machinewithout superposition. �

As a consequence, the model of observed quantum Turing machines is not only a for-
malisation of partial observation of properties during theevolution, but also a unifying model
since quantum Turing machines and deterministic Turing machines are observable quantum
Turing machines. In the next section, the computational power of observable quantum Turing
machines is studied.

6 Computational Power of Observable Quantum Turing Machine

In this section, we mainly show that any observable quantum Turing machine can be simulated
within a polynomial slowdown by a quantum Turing machine. Inother words, even if the model
of observable quantum Turing machines is more expressive than the model of quantum Turing
machines, they have the same computational power.

Theorem 1. For anyOQTM [M ]K , there exists aQTM M ′ which simulates[M ]K within a
quadratic slowdown.

The rest of this section is dedicated to the proof of this theorem. In order to simulate the
OQTM [M ]K a two-tape QTMM̃ is used. Multi-tape quantum Turing machines have been
introduced in [16]. One of the tapes of̃M is used to simulate the tape ofM , whereas the
second tape is an history, where the superposition of the possible outcomes of an hypothetical
observation according toK of the current internal state is stored. At the end of the computation,
this auxillary tape is measured, simulating the observablequantum Turing machine. First, a

7 Notice that the configuration of an OQTM[M ]K is a density matrix where as a configuration of a
probabilistic Turing machineM ′ is a probabilistic distribution that can be represented as avaluation
functionν : Q × Σ∗ × Z → R

+. As a consequence, we say that the evolutions of[M ]K andM ′ are
the same ifΦ◦F[M]K ◦Ψ = FM′ , whereΨ(ν) =

P

c∈Q×Σ∗×Z
ν(c) |c〉〈c| andΦ(ρ) = c 7→ 〈c|ρ|c〉.



such two-tape quantum Turing machine is defined and we prove the well-fornedness of this
machine, then we prove the simulation of the original observable quantum Turing machine
with a linear slowdown. Finally, this two-tape quantum Turing machine can be simulated by a
one-tape quantum Turing machine within a quadratic slowdown.

For a given pQTMM = (Q,Σ, δ) and a partitionK = {Kλ, λ ∈ Λ} of Σ × Q, let
M̃ = (Q,Σ × Λ2 ∪ {#}, δ̃) be a2-tape quantum Turing machine. The alphabet of the first
tape isΣ, the alphabet of the second tape isΛ2 ∪ {#}. The transition functioñδ of M̃ is
defined as follows:∀p ∈ Q, ∀τ ∈ Σ,

δ̃(p, τ,#) =
∑

µ∈Λ,(σ,q)∈Kµ,d∈{−1,0,1}

δ(p, τ, q, σ, d)|q, σ, d, ([τ, p], µ), 1〉

where[τ, p] ∈ Λ is such that(τ, p) ∈ K[τ,p].
Notice that the second head always moves right, revealing necessary a blank symbol. That

is why the transition function is partially defined. One can prove that̃δ verifies the well formed-
ness conditions ofunity, orthogonality, and separability– see theorem 5.2.2 in [1] for the well-
formedness lemma for1-tape QTM and lemma 1 in [16] for multi-tape QTM. Thus according
to the completion lemma – lemma 2 in [16] –̃δ can be extended such that the corresponding
pQTM is well-formed.

The evolutionUM̃ of M̃ is such that for anyp ∈ Q, x ∈ Z, n ∈ N∗, T ∈ Σ∗, w ∈ (Λ2)n−1,

UM̃ |p, T, x, w, n〉 =
∑

q∈Q,σ∈Σ,λ,µ∈Λ,d∈{−1,0,1}

δ̃(p, Tx,#, q, σ, d, (λ, µ), 1)|q, T σ
x , x+ d, w(λ, µ), n + 1〉

Thus,

UM̃ |p, T, x, w, n〉 =
∑

µ∈Λ,(σ,q)∈Kµ,d∈{−1,0,1}

δ(p, Tx, q, σ, d)|q, T
σ
x , x+ d, w([τ, p], µ), n+ 1〉

The simulation ofM by the2-tape quantum Turing machinẽM works as follows: for any
initial configurationρ ∈ D(CQ×Σ×Z) of M , the initial configuration ofM̃ is ρ ⊗ |#〉〈#| ⊗
|0〉〈0|. It means that the internal state and the state of the first tape are the same asM , whereas
the second tape is empty and the head of the second tape pointsout the cell indexed by0.
After n transitions, the configuration of̃M isUn

M̃
(ρ⊗ |#〉〈#| ⊗ |0〉〈0|)U †n

M̃
. At that time, the

second head points out the cell indexed byn, and all the cells of the second tape have a blank
symbol except the cells between0 andn−1. These non-blank cells of the second tape are then
measured, leading to the configuration

∑

w∈(Λ2)n〈w|Un
M̃

(ρ ⊗ |#〉〈#| ⊗ |0〉〈0|)U †n

M̃
|w〉. We

prove, by induction onn, that this resulting configuration is equal toFn
[M ]K

(ρ) ⊗ |#〉〈#| ⊗

|n〉〈n|. In order to initialize the induction, notice that the property is true aftern = 0 transition.
For anyn > 0, the configuration ofM̃ , aftern + 1 transitions and the measurement of the
second tape is

ρ′ =
∑

w∈(Λ2)n+1

〈w|Un+1

M̃
(ρ⊗ |#〉〈#| ⊗ |0〉〈0|)U †n+1

M̃
|w〉

=
∑

λ,µ∈Λ,w∈(Λ2)n

〈w|〈(λ, µ)|n+1U
n+1

M̃
(ρ⊗ |#〉〈#| ⊗ |0〉〈0|)U †n+1

M̃
|w〉|(λ, µ)〉n+1

where〈(λ, µ)|n means that〈(λ, µ)| is applied on the cell indexed byn on the second tape.



Since the second head always moves right, the transition numbern+ 1 does not act on the
cells indexed between0 andn − 1 of the second tape, and thus commutes with any operation
acting on these cells:

ρ′ =
∑

λ,µ∈Λ,w∈(Λ2)n

〈(λ, µ)|nUM̃ 〈w|Un
M̃

(ρ⊗ |#〉〈#| ⊗ |0〉〈0|)U †n+1

M̃
|w〉U †

M̃
|(λ, µ)〉n

By induction,

ρ′ =
∑

λ,µ∈Λ

〈(λ, µ)|nUM̃ (Fn
[M ]K

(ρ) ⊗ |#〉〈#| ⊗ |n〉〈n|)U †

M̃
|(λ, µ)〉n

For anyp, p′ ∈ Q, anyT, T ′ ∈ Σ∗, and anyx, x′ ∈ Z,

P

〈(λ,µ)|nUM̃ |p, T, x, #, n〉〈p′, T ′, x, #, n|U†

M̃
|(λ, µ)〉n

λ, µ ∈ Λ

=

P

〈(λ, µ)|n
P

δ(p, Tx, q, σ, d)δ†(p′, T ′
x′ , q

′, σ′, d′)|q, T σ
x , x + d, ([Tx, p], µ0), n + 1〉

λ,µ∈Λ µ0,µ′
0
∈Λ,(σ,q)∈Kµ0

,(σ′,q′)∈K
µ′
0

,d,d′∈{−1,0,1}

〈q′, T ′σ′

x′ , x′ + d′, ([T ′
x′ , p

′], µ′
0), n + 1||(λ, µ)〉n

=

P

〈λ|[Tx, p]〉〈[T ′
x′ , p

′]|λ〉
P

δ(p, Tx, q, σ, d)δ†(p′, T ′
x′ , q

′, σ′, d′)|q, T σ
x , x + d, #, n + 1〉

λ,µ∈Λ (σ,q)∈Kµ,d,d′∈{−1,0,1}

〈q′, T ′σ′

x′ , x′ + d′, #, n + 1|

=

P

χλ,µ|p, T, x〉〈p′, T ′, x′|χ†
λ,µ ⊗ |#〉〈#| ⊗ |n + 1〉〈n + 1|

λ,µ∈Λ

= F[M]K (|p, T, x〉〈p′, T ′, x′|) ⊗ |#〉〈#| ⊗ |n + 1〉〈n + 1|

Thus,
ρ′ = Fn+1

[M ]K
(ρ) ⊗ |#〉〈#| ⊗ |n+ 1〉〈n+ 1|

ThusM̃ simulatesM within a linear slowdown. Since any two-tape quantum Turingma-
chine can be simulated by a one-tape QTM within a quadratic slowdown [16],M is simulated
by a one-tape QTM within a quadratic slowdown. �

7 Conclusion and perspectives

This paper has introduced observable quantum Turing machines (OQTM) as a generalisation
of quantum Turing machines (QTM) allowing partial observation of the machine during the
computation. OQTM provides a formal model to deal with applications where partial obser-
vations of the machine are necessary, like the halting problem where observations are used
to know whether the computation is halted or not. OQTM turns out to be a unifying model
of Turing machines, since any QTM but also any deterministicTM are special instances of
OQTM, whereas it is well-known that non reversible deterministic TM cannot be expressed
into the formalism of QTM. However, the computational powerof OQTM is equivalent to
the power of QTM. Thus, the well-observation condition (condition verified by OQTM) is
weaker than the well-formedness condition (condition verified by QTM) and is a good candi-
date to meet the necessary and sufficient conditions for a Turing machine to be a valid quan-
tum device. Since observations are formalized in OQTM, a perspective is to investigate the
connections between OQTM and recent models of quantum computation based on measure-
ments (Teleportation-based model [8, 13], One-way model [15, 3]) and the formal framework
of classically-controlled quantum Turing machines [14].



Indeed, the structure of the OQTM is inspired from the paradigmquantum data, classical
control: quantum data are stored on the tape of the machine, while thecontrol, thanks to the
partial observation of the internal states and the cell pointed out by the cell, is hybrid. A per-
spective is to characterize the amount of quantum control needed to have an efficient quantum
device: what is the minimalk for which any OQTM[M ]K can be efficiently simulated with
an OQTM[M ′]K′ where all the blocks ofK ′ have a size less thank ?

Another open question is the existence of a universal OQTM. Recent developments in the
quest of a universal QTM [5, 7] point out that existence of a classical control could be helpful
for the design of a universal machine.
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