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Abstract

Vehicles with internal combustion (IC) engines fueled by hydrocarbon com-
pounds have been used for more than 100 years for ground transportation.
During the years and in particular in the last decade, the environmental as-
pects of IC engines have become a major political and research topic. Following
this interest, the emissions of pollutants such as NO,, C'Os and unburned hy-
drocarbons (UHC) from IC engines have been reduced considerably.

Yet, there is still a clear need and possibility to improve engine efficiency
while further reducing emissions of pollutants. The maximum efficiency of
IC engines used in passenger cars is no more than 40% and considerably less
than that under part load conditions. One way to improve engine efficiency
is to utilize the energy of the exhaust gases to turbocharge the engine. While
turbocharging is by no means a new concept, its design and integration into
the gas exchange system has been of low priority in the power train design
process. One expects that the rapidly increasing interest in efficient passenger
car engines would mean that the use of turbo technology will become more
widespread.

The flow in the IC-engine intake manifold determines the flow in the cylin-
der prior and during the combustion. Similarly, the flow in the exhaust man-
ifold determines the flow into the turbine, and thereby the efficiency of the
turbocharging system.

In order to reduce NO,, emissions, exhaust gas recirculation (EGR) is used.
As this process transport exhaust gases into the cylinder, its efficiency is de-
pendent on the gas exchange system in general. The losses in the gas exchange
system are also an issue related to engine efficiency. These aspects have been
addressed up to now rather superficially. One has been interested in global
aspects (e.g. pressure drop, turbine efficiency) under steady state conditions.

In this thesis, we focus on the flow in the exhaust port and close to the
valve. Since the flow in the port can be transonic, we study first the numerical
modeling of such a flow in a more simple geometry, namely a bump placed in
a wind tunnel. Large-Eddy Simulations of internal transonic flow have been
carried out. The results show that transonic flow in general is very sensitive to
small disturbances in the boundary conditions. Flow in the wind tunnel case
is always highly unsteady in the transonic flow regime with self excited shock
oscillations and associated with that also unsteady boundary-layer separation.



To investigate sensitivity to periodic disturbances the outlet pressure in the
wind tunnel case was varied periodically at rather low amplitude. These low
amplitude oscillations caused hysteretic behavior in the mean shock position
and appearance of shocks of widely different patterns.

The study of a model exhaust port shows that at realistic pressure ratios,
the flow is transonic in the exhaust port. Furthermore, two pairs of vortex
structures are created downstream of the valve plate by the wake behind the
valve stem and by inertial forces and the pressure gradient in the port. These
structures dissipate rather quickly. The impact of these structures and the
choking effect caused by the shock on realistic IC engine performance remains
to be studied in the future.

Descriptors: Transonic flow, Hysteresis, Shock/boundary-layer interaction,
Exhaust valve, Large Eddy Simulation.



Preface

This licentiate thesis consist of two parts. The first part gives an overview of
transonic internal flows and a short summary of the results. The second part
consists of three papers, which are adjusted to comply with the present thesis
format for consistency. The content of the papers have been updated and in-
clude minor refinements as compared to the published versions. In Chapter 77
of the first part of the thesis the contribution of the respondent to the papers
is stated.

February 2009, Stockholm
Olle Bodin



The significant problems we face can mot be solved at the
same level of thinking we were at when we created them.
Albert Einstein (1879-1955)
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Part 1

Overview and summary






CHAPTER 1

Introduction

Vehicles with internal combustion engines fueled by liquid hydrocarbon of some
sort has been a significant transport mode for about 100 years. During the later
part of the evolution towards present day, the focus of development has steadily
moved towards less impact on the environment. Not only are the emissions of
pollutants such as NO,, COy and unburned hydrocarbons reduced, but also
acoustic pollution.

An obvious way of decreasing the environmental impact of a vehicle is to
reduce the amount of fuel it consumes, increase the efficiency of the vehicle.
For reciprocal internal combustion engines, the efficiency with regard to output
power versus fuel energy content is typically less than 40%. The main loss
sources in the engine are cooling and flow-related.

One way to make an engine more efficient is to use the energy of the
exhaust gases to turbocharge it, and thereby reduce the flow losses. While
turbocharging is by no means a new concept, the rapidly increasing interest
in efficient passenger cars mean that the use of turbo technology will become
more widespread.

Even with turbocharging however, much of the exhaust energy is still lost.
Between the cylinder and the turbocharger turbine the exhaust gases pass thr-
ough first the exhaust port containing the exhaust valve, and then the exhaust
manifold. Along this path, as much as 30% of the available energy at the ex-
haust valve is lost, of course depending on the specific engine and operating
conditions. Clearly, the gas flow in this part of the engine can have a large
impact on the total efficiency of the engine

The work presented here is aimed at deepening the knowledge of the flow
in internal combustion engines through detailed simulations of the flow in the
exhaust port. More specifically, the transonic flow in a duct with a bump
and a simple exhaust port is analyzed. The flow in the exhaust port can be
characterized as follows:
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e Transonic

e Unsteady

e Transitional and turbulent flow

e Presence of unsteady separation bubbles

e Presence of unsteady and intermittent shocks
e Moving valve boundaries
e Geometrically small

The approach taken in this work is to use the more geometrically simple ex-
ample of internal and transonic flow over a bump to evaluate the analysis of
the complicated flow phenomena found in unsteady transonic flows. For this
geometry, experimental data is available making it possible to evaluate the
computational results by comparison to the experiments. As a second step, we
have allowed unsteadiness in the flow conditions by varying the outlet static
pressure. The results show clearly the intricate character of transonic flows;
namely, the presence of time-varying complex shock systems and that the flow
conditions under a given state of boundary conditions (BC) depends on flow
history (i.e. the flow is hysteretic). Additionally, one encounters unsteady tur-
bulent flow noting separated boundary layers with time dependent location and
extent. The knowledge, analysis, and basic understanding together with simi-
lar methodology from the bump flow investigation is then used to investigate
the transonic and unsteady flow in a model internal combustion engine exhaust
port. The port geometry has a significantly more complex geometry resulting
in new flow features that are not found in the case of the bump. Features are
secondary flow due to centrifugal instability and wake effects behind the valve
stem as well as their interaction.

The unsteadiness of the shock in the transonic bump flow is a result of
the interaction between the separating boundary layer and the shock. Acoustic
disturbances in the flow are present but is not significantly affecting the dynam-
ics of the shock motion. The shock position exhibit hysteresis when subjected
to slowly varying outlet pressure because of varying shock Mach number in
accelerating and decelerating flow. For the exhaust port, two distinctive pairs
of vortices are generated downstream of the valve by centrifugal instabilities in
the port and by the wake behind the valve. These secondary flow structures
are quite strong initially and, depending on the conditions downstream of the
valve, are convected downstream in a more or less coherent fashion.

The two first papers consider the wind tunnel geometry, while the third
consider the flow in a model exhaust port.



CHAPTER 2

Transonic flows

The compressibility of a fluid flow has a potentially large impact on the flow
behavior and flows of gases are in general compressible, i.e. has compressible
effects. However, when the propagation speed of sound in the fluid is large
compared to the fluid speed, the compressibility of the fluid is low and pressure
perturbations propagate in all directions with high speed. Because of this, it
is relevant to quantify when the speed of sound is “high”. This can be done
through the Mach number,
Ma = % (2.1)

where Uy, s is the speed of the fluid and a is the speed of sound in the fluid.

Two easily defined Mach numbers have special significance. First, the
limiting case of Ma = 0 is termed as the incompressible limit. For this case
it has to be stressed that the incompressible limit differs in essence from low
speed compressible flow, i.e. when the Mach number is small but not zero.

This is so because, in terms of losses, the effects of compressibility behaves
as the square of the Mach number. Thus, for engineering purposes and from a
numerical point of view, flows with Mach number lower than about 0.3 — 0.4
behaves as incompressible flows. Although the exact dividing value is not easily
defined, most agree that a maximum Mach number above 0.3 signify that the
flow in question has significant compressible effects and is compressible.

The other limiting case is when the Mach number is unity, i.e. when the
flow is sonic. For this case, the acoustic waves propagate at the same speed
as the flow. For Ma > 1 the flow is termed supersonic because the flow speed
exceeds the speed of sound and hence, no sound wave can propagate upstream.
Flows that contain significant sub-, and supersonic regions, are called transonic.

Transonic flow is present in many engineering applications and in IC engine
related flows. For example, the flow may be transonic past the intake and
exhaust valves and in the turbocharger (both compressor and turbine). The
shocks that occur imply a (near) discontinuity in some of the flow variables
such as density, pressure and shock normal velocity.

The flow may separate if the pressure gradient is not favorable enough.
This also happens at strong variations in the shape of the wall or due to a

3
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shock, which implies a steep pressure increase. The shocks in the transonic
flow regime tend to be unsteady, leading to unsteady flow separation. These
effects imply non-recoverable losses and fluctuating forces induced by the flow.

Transonic flows are in general sensitive to boundary conditions (geometrical
or flow conditions). This sensitivity is even more pronounced for internal flows
where shocks may interact with wall boundary layers due to shock reflections
and unsteady boundary layer separation. The strong coupling between non-
linear phenomena, shock shape and unsteady boundary layers, is the basic
reason for the complexity of the flow. The complexity of transonic flow stems
not only from the non-linear interaction but also from the formation of multiple-
states which leads to hysteresis.

An experimental investigation by Liu & Squire (1988) considers the effect
of a bump curvature and pressure ratio on the flow structure in transonic tunnel
flow. The investigators use circular-arc bumps of varying radii under different
driving pressure, such that the shock Mach number is in the range between 1
and 1.82. In this range one finds both weak and strong shocks, as well as flows
with and without flow separation.

Three distinct types of boundary layer behavior have been observed: (i)
fully attached flow, (4i) trailing edge separation, where the flow separates due
to the adverse pressure gradient caused by the geometrical shape of the wall
and, (4ii) shock-induced separation, where the separation occurs behind the
shock foot. The pressure increase over the shock may be substantial when the
shock-normal Mach number upstream of the shock is not very close to unity.
Thus, shocks often induce adverse pressure gradients that lead to a thickening
of the boundary layer. Such a thickening leads to a sharper change in the
flow direction, which leads to an even stronger shock and hence, even stronger
flow separation. Thus, it is easy to come to the conclusion that such flows are
inherently unstable even for small perturbations.

The study of Liu & Squire (1988) shows that there exist a critical Mach
number, Ma,., where the separation changes type from trailing-edge to shock-
induced and that this Mach number has the most extensive separation in the
Mach number range under consideration for all bump curvatures.

The general flow structure was found to depend on the pressure ratio so
that at a low ratio the shock first forms as a normal shock at the bump surface
and as the pressure ratio increases it gradually moves downstream and becomes
stronger. With further increase in the pressure ratio the shock extends over
the whole tunnel, reaching the top wall of the tunnel where it is reflected.
With even higher pressure ratio, the shock bifurcates, forms a A-shock and
the reflected shock may be either a regular- or a Mach-reflection depending
on the incipient shock angle. The curvature of the bump effects the flow by
increasing the shock strength with increasing curvature while for the smallest
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curvatures, the flow did not form a A-shock at all. The critical Mach number
was found to be nearly independent of the curvature of the circular arc bump
(Ma, = 1.3). If this Mach number is exceeded, the separation of the boundary
layer is always shock-induced. The goal of the study of Liu & Squire (1988) was
not to investigate the dynamics of the shock. However, indications of shock
oscillations were found in the results.

2.1. Shock theory

F1GURE 2.1. Oblique shock with shock polar.

Shocks are classified as either normal or oblique referring to their angle with
respect to the incoming flow. As all shocks considered in this work are oblique,
most of the discussion and background will concern oblique shocks of which
normal shocks are a special case. While normal shocks can be described in one
dimension, oblique shocks are by their nature two or three-dimensional.

Oblique shocks occur when a supersonic flow is redirected by for example
a change in geometry such as a compression corner or a bump. The response
of the flow is to change the direction of the stream lines as they pass through
the oblique shock in order to accommodate the geometry change. Most text-
books that cover compressible flow , for example Anderson (2003), will contain



6 2. TRANSONIC FLOWS

derivations of the oblique shock relations so only the resulting relations will be
presented here.

In all equations in this section, subscript 1 and 2 denote conditions pre-
and post-shock, respectively. The relation between the shock angle 6, and
streamline deflection angle § as a function of incoming Mach number M; and
v = ¢p/cy, the ratio of specific heats, is:

M?sin?(0) — 1
tan(d) = 2 cot(d) = M7 T oos(20)) 72 (2.2)
One quite interesting property of oblique shocks is that the tangential veloc-
ity component is preserved as the streamline passes trough the shock. Now,
knowing this and the incoming flow velocity, one may calculate the normal
component of the post-shock velocity with the help of equation (2.2).

The geometrical nature of the oblique shock relations allow creative graph-
ical representations, one of which is the so called shock polar. This way of
presenting the relations is best considered in a polar coordinate system where:

=[5 [y ~ )] 23

The formulation in equation (2.3) was found in Lee (1969) and is represented
graphically in figure (2.1), where r(¢) is the distance between O and @, as
a strophoid-like curve together with the oblique shock. Oblique shocks may
be either weak or strong, depending on weather the flow velocity downstream
of the shock is supersonic (weak) or subsonic (strong). The intersections @
and Q' represent the weak and strong shock solutions, respectively, while Q"
represent the so called unphysical shock solution, see Lee (1969). The point S
represent the normal shock solution while O is a Mach line or an infinitely weak
oblique shock. Velocities pre- and post-shock are represented by the lengths of
v1 and vy, where the latter can have different lengths depending on shock type.
Shock angle and streamline deflection angle are defined by the same letters as
in equation (2.2).

2.2. Shock reflections

In the vicinity of walls shocks are reflected. The reflection of an oblique shock
can take place in two forms, either as a regular reflection (RR) or as a Mach
reflection (MR). An illustration of the two different reflection types can be seen
in figure (2.2) where the fluid flow is from left to right and 4, » and s mark the
incipient shock, the reflected shock and the Mach stem, respectively. When
the flow encounters the wedge, a shock is formed with an incipient angle that
is dependent on both the incoming Mach number and the wedge angle.

If the flow Mach number increases from a state where the reflection is a
RR, the angle will become smaller and the reflection will eventually transition
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from RR to MR. If the process is reversed and the incoming Mach number is
reduced from a state where the reflection is a MR, the RR does not occur at
the same incoming Mach number as the RR-MR transition (Hornung & Taylor
1982; Hornung & Robinson 1982; Ben-Dor et al. 2002; Ben-Dor 1999). This

. MR 4
\!\ e 7

2

\\ RR +
w
\(s Incipient shock angle

FIGURE 2.2. Left: Defining regular reflection (top), and Mach
reflection (bottom). Right: Illustrating the hysteresis in the
transition between Mach- and regular-reflection.

transition hysteresis is qualitatively illustrated in figure (2.2), where the angle
increases from left to right. The marked area in figure (2.2) is called the dual
domain due to the possibility of having either RR or MR in this range of shock
angles. The dual domain is bounded by two angles, wgr and wpsr, beyond
which only one type of reflection is possible.

It turns out that the RR-MR transition is sensitive to disturbances so that
in practice, the transition usually happens beyond wgrr but before wy,r while
MR-RR transition usually occurs at wrr. However, it must be stressed that
both reflections are stable and possible anywhere in the dual range although
the MR is more insensitive to small disturbances in the hysteretic range.

2.3. Self excited flow

In transonic flows, the shock position is often unsteady (Chen et al. 1979; Liu &
Squire 1988; Bogar et al. 1983). The most common mechanisms behind this are
either acoustic interaction, shock/boundary-layer interaction or a combination
of both.

The acoustic interaction scenario involve acoustic waves interacting with
the shock in a transonic wind tunnel and has been found by Bogar et al. (1983)
among others. Bogar et al. (1983) reports that this phenomenon occurs when
the shock Mach number was low enough such that the flow remains unsepa-
rated. The mechanism of the shock motion for this flow could then be described
using (linear and one-dimensional) acoustic theory.
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For stronger shocks, when the flow may have a separated boundary layer,
this type of mechanism could not be found and the authors suggest that the
unsteadiness is related instead to convective effects in the boundary layer or
some other dynamics of the separated boundary layer. These findings are
confirmed and expanded in a paper by Salmon et al. (1983) where it is stated
that acoustic perturbations exist in both the strong and weak shock case but
that these are overwhelmed by perturbations caused by the boundary layer in
the strong shock case.

The type of unsteadiness depends on the shock Mach number and the
geometry of the flow. Chen et al. (1979) have found that for weak shocks
(where the boundary layer separation is caused by the adverse pressure gradi-
ent) the shock oscillation frequency decreases with increasing shock strength.
For strong shocks, when the separation is caused by the shock, the oscillation
frequency and its amplitude increase with increasing shock strength (or shock
Mach number). The authors also postulate a one-dimensional model where the
main dynamics of the separated region can be viewed as two wave-like fami-
lies moving up, and downstream, respectively. The upstream waves are fast
and weak, while downstream waves are slow and strong. This model is sup-
ported by space-time correlations which show that there are two distinct types
of perturbations that are correlated to the shock motion. One of these are
propagating upstream and dominate at small pressure ratios while the other
is convected downstream in the boundary layer and becomes dominant as the
pressure ratio increases. The proposed model agrees well with the space-time
correlation results presented in the paper.

As the flow passes the shock there is a strong deceleration, primarily in
the streamwise component of the velocity. This causes a strong increase in
the streamwise velocity fluctuations and a large increase in the turbulence
production at the shock which is further enhanced when the flow separates.
Due to this strong perturbation, the properties of the incoming boundary layer
upstream of the shock will have negligible influence on the free shear layer of
the separation, see Délery (1983).

2.4. Forced flow

Due to the unsteady behavior of the shock, it is natural to investigate the
behavior of the system when it is subjected to periodic perturbations. The
possibility of controlling the shock motion and strength by careful choice of
the perturbations can be an important tool in certain applications. One may
apply the knowledge of such behavior to for example transonic wings, where
the fluctuating forces may cause structural problems, decrease the efficiency of
the wing or cause excessive noise.
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Many investigations of periodic forcing in bump flow exist, for example
Galli et al. (2005) where the outlet pressure in the transonic wind tunnel was
perturbed by a rotating elliptical shaft to create a sinusoidal-like variation in
the pressure downstream of the bump. Because the shock position was highly
dependent on the outlet pressure a disturbance of the natural oscillation of the
shock is created. Galli et al. (2005) found that damping the shock oscillations
was possible by the appropriate choice of perturbation frequency, but did not
report any attempts at amplifying it. Furthermore, Galli et al. (2005) found
that the shock oscillation amplitude is inversely dependent on the perturbation
frequency so that an increase in frequency leads to a decrease in amplitude.

In an investigation by Salmon et al. (1983) forcing was induced by a ro-
tating device set into the tunnel wall at a frequency 38% above the frequency
corresponding to the peak amplitude in the shock displacement spectra. The
results and conclusions of the work by Salmon et al. (1983) was that no direct
coupling between the natural oscillation of the shock and the forced perturba-
tion could be observed. It was suggested that this could be explained by the
broadband nature of the shock oscillation compared to the tonal nature of the
perturbation. The authors also stress that the reason for the natural oscilla-
tions in the case of strong shocks and shock-induced separation is boundary
layer perturbations. Furthermore, that transverse (normal to the boundary
layer) propagation of these perturbations is an important part of the mecha-
nism behind the natural oscillations of the strong shock.

An extensive investigation of forced flow by periodic perturbations in the
same geometry and facility as Salmon et al. (1983) was conducted by Sajben
et al. (1984). In this investigation the same forcing method as in Salmon et al.
(1983) was used but, with a much wider frequency range, including the natural
frequency of the shock oscillation. Just like Salmon et al. (1983) and Bogar
et al. (1983), two distinct flow configurations corresponding to weak and strong
shocks were found.

For weak shocks, the natural shock oscillation spectra has two peaks. One
of these correspond to the acoustic interaction between the shock and the out-
flow boundary that can be described by streamwise propagation of plane waves.
The other peak is explained through the perturbations that are created in the
unseparated boundary layer when subjected to an adverse pressure gradient.
The natural shock oscillation in the case of strong shocks is believed to be
caused by turbulence which excite perturbations that propagate both in the
core flow and in the boundary layers. Only one peak is present in the shock
spectra for the strong shock case and the acoustic interaction peak is not ev-
ident although the flow likely contain plane acoustic waves propagating back
and fourth in the main flow direction. These acoustic modes are weak and their
trace can hardly be observed in the otherwise turbulent flow.
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Sajben et al. (1984) use one-dimensional acoustic theory to predict the
motion of the shock. This simple model gives quite accurate results for the
weak-shock case but fails completely to predict the strong shock case. The
failure of the one-dimensional approach is the result of neglecting the boundary
layer and other viscous effects.

The investigation by Sajben et al. (1984) failed to excite any resonant
behavior in the shock oscillation in the weak and strong shock cases. The
proposed explanation for this is that the modes responsible for the natural
oscillation is not exited by the forced perturbations, which are close to plane
waves propagating along the length of the diffuser. This explanation is most
logical for the strong shock case, where there was no peak in the shock motion
spectra associated with acoustic modes. For the weak shock case, the peak in
the shock motion spectra associated with acoustics is not the main mode. The
diffuser geometry is described as two-dimensional, having a two-parameter set
of natural modes in a strict acoustic sense. Furthermore, the presence of the
boundary layer, especially in the strong shock case, is likely to increase the
number of modes even further. The exact mode that is responsible for the
natural shock oscillation has not been identified but the conclusion is that the
plane acoustic waves are not a likely candidate as the driving mechanism for
either case.

The reflective properties of the shock with respect to velocity and pressure
perturbations is important as it determines the upstream boundary condition
when the flow is choked. The downstream boundary in both experiments and
simulations is often more or less reflective and in the case of perturbed flow,
is also the source of the perturbations. Sajben et al. (1984) found that the
reflective properties of the shock is dependent on the property considered, flow
properties and weather or not a forced perturbation is present in the flow.
Depending on these, the reflection can vary between an almost total reflection
in a “closed end” fashion, a reflection coefficient of 1, and zero. As many
other properties of shocks, the reflective behavior can not be easily explained,
or modeled, for other than weak shocks and pressures perturbations. Strong
shocks and their strong coupling to boundary layer dynamics make the reflective
properties difficult to quantify.

2.4.1. Hysteresis

Hysteresis may occur in any non-linear system and implies that a system can
attain a distinct number of states depending on the path taken to get to the
state. The non-linearity of the Navier-Stokes and the Euler equations imply
the possibility of hysteresis both for viscous and inviscid flows.

An example not directly related to the present work is the stall character-
istics of certain airfoils where the stall angle does not coincide with the angle of
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boundary layer reattachment. In the transition between regular reflection and
Mach reflection, hysteresis can be observed because of the existence of the dual
domain where both reflections are possible. The transition angle is dependent
on the path to it (c.f. Ben-Dor et al. (2002)).

Another example of hysteresis in transonic flows is the mean position of the
shock in bump flow with steady state boundary conditions, but possibly with
different initial conditions. Such behavior has been reported by Moroianu et al.
(2005) and also by us (Chapter (4) and Papers (1) and (2)). In these investi-
gations, hysteresis in the shock position is observed when very low-frequency
perturbations are applied while keeping the flow in the quasi-steady regime.

2.5. Losses in transonic flows

Aside from the high flow velocity, which by itself serves to increase flow losses
due to the dependence of the wall shear stress on the wall-normal velocity
gradient, transonic flows have shocks that are associated with additional losses.
Here, the example of a normal shock in one-dimensional flow is used to illustrate
the concept (Anderson 2003) and, while this is a much simplified case, the
principles can be expected to hold true also for more complex and practical
cases where shocks occur. For this flow case the following equations are valid
and describe the ratio of the temperature and pressure before and after the
shock as function of the flow Mach number before the shock:

P2 2y 2

P2 v 2?2, 2.4

B 14 (M- ) (2.4
T,  ho 2y 2 ] [2"‘(’7_1)1‘412}
2oy S 2oy |2 2.5
T I {+v+1(1 SNcEDI: (25)

Now, consider the second law of thermodynamics in the following form:

_ 2y b2
szslcp1n<T1> R 1n<p1). (2.6)

Equation (2.6) gives the change in entropy as a function of the change of tem-
perature and pressure. This relation can be used together with equations (2.4)
and (2.5) to show that the change in entropy over a normal shock is a function
of the square of the Mach number upstream to the shock,
2y o 2+ (v - 1M
so—s1=c,In| |1+ —(M7 -1)| | —————5—
R Q 1M )} { (v + 1) M7

~R-In [1 + %(Ml2 - 1)} . (2.7)

It is clear that Equation (2.7) only has physical meaning for M; > 1 as the
entropy would otherwise decrease over the shock, something which is not pos-
sible.



CHAPTER 3
Turbulent flow modeling and computational aspects

The equations describing fluid flow are the Navier-Stokes equations (NSE) and
consist of the conservation of mass (3.1), momentum (3.2) and energy (3.3)
together with a relation of state for the fluid (3.4). The equations read:

ap 0 B
E‘i‘aizj(/)'“j) =0, (3.1)
0 0 _ Op  Omy
a(p.uzng(p.uz.%) =50 " o, + pfi, (3.2)
9 9 o O Oui g
gt pruh) = g bt TG~ gy, t Weet tai, (3:3)
p=n-R-p-T. (3.4)

Above, p is the density, p the pressure, T the temperature, z; the cartesian
coordinates, t the time, wu;, i=1,3 is the velocity vector, f; an external force
field, 7;; is the viscous shear stress tensor, h is the specific enthalpy, R is the
gas constant and ¢; is the heat flux. W, is the work of external volume forces
and g is an external heat source. The heat flux g; is modeled through Fourier’s
law.

The viscous shear stress tensor, 7;; is for a Newtonian fluid:

B Ou;  Ouj 2. Ouy
Tig = H (axj + or; 36” &Tk) ’ (35)

where p is the dynamic viscosity of the fluid.

3.1. Turbulence

The flow at very low speeds is linear (and laminar) in character. As the speed
increases, the importance of non-linear effects increase as well. The importance
of non-linearity can be measured by the ratio of an estimate of the sizes of the

12
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non-linear term to the linear (viscous) term in the momentum equation. This
ratio becomes the Reynolds number,

Re = %, (3.6)

where U is a characteristic velocity and L is a characteristic length. Thus, at
small Re the flow is linear whereas, for large Re it is not. Non-linear effects may
manifest themselves in different ways in the fluid and all are not turbulence.
As discussed in the previous chapter, non-linearity may give rise to bifurcating
solution (states) and hysteresis. Such effects are deterministic and must be
distinguished from the notion of turbulence, it being chaotic in nature.

Turbulence can be described as a three-dimensional and time dependent
interacting set of vortices with a range of scales from large ones, related to
the global flow (L, T'), to small ones, at the so called Kolmogorov length and
timescales (v, t;). Closely linked with this is the so called energy cascade,
where kinetic energy on average is transferred from the largest eddies (scales)
to the smallest, where it is dissipated and turned into heat.

The large scales in a flow are governed, and limited, by the geometry of the
problem and are hence not universal. The smallest scales however, for large
enough Reynolds numbers, have universal behavior and hence lend themselves
for modeling. The Reynolds number, equation (3.6), is also a measure of the
separation of these scales and in some sense the character of the turbulence.
assumption The kinetic energy of the turbulent flow structures is generated
at the large scales by the shear in the mean flow and on average the energy
is transferred to smaller and smaller scales. However, energy is intermittently
transferred in the other direction as well, a process which is commonly called
backscatter.

An important property of turbulent flows is their enhanced transport and
mixing as compared to laminar flows. Increased transport of heat and species
may be beneficial in certain applications while it may be undesired in others.
For example, aircraft wings can be designed for laminar flow because of the
reduced drag at cruise conditions. A turbulent flow over a wing can be beneficial
tough, when an attached laminar flow is not possible, for example at high angle
of attack when high-lift is required such as at landing and takeoff. Here, the
rapid mixing of momentum in the boundary layer of the wing may eliminate
the separation of the boundary layer and thereby wing stall.

3.2. Turbulence modeling

The NSE can, in principle, be solved numerically for all speeds and geometries.
To do this, one need only to resolve the temporal and spatial scales of the flow.
Thus, it is essential to estimate these scales, either a priori or a posteriori. A
rough estimate can be made through the Reynolds number, equation (3.6).
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The ratio between the smallest (Kolmogorov) scales and the largest (inte-
gral) one goes, for very large Re, as Re~3/* whereas the corresponding ratio
for the time scales goes as Re~'/2. Thus, for a high Re, three-dimensional,
turbulent flow one has to carry out computations that grow almost as Re?.
This makes such a direct approach (called Direct Numerical Simulation, DNS)
limited to relatively small Re. For most engineering applications DNS cannot
be carried out and one has to rely on a model to fill out the gap resulting from
the lack of resolution. In contrast to numerical methodologies for the NSE, the
state of art of turbulence modeling is much less mature.

Turbulence is normally characterized by statistical properties such as mean,
RMS, higher statistical moments, pdf and spectra. Thus, it is natural to work
with variables that express directly these statistical quantities. In contrast,
DNS provides the instantaneous field which has to be processed in order to
determine the statistical properties of the turbulent field.

Equations for the mean of the original variables can be derived easily by
averaging the basic equations and writing the instantaneous variables in terms
of the mean and a fluctuating component.

The averaging process leads to a system of PDE that resembles the NSE
but, has the addition of terms containing correlations of the fluctuating compo-
nents because of the non-linearity of the NSE, the so called Reynolds Averaged
Navier Stokes (RANS) equations. The above mentioned term cannot be ex-
pressed in terms of the mean variables and therefore, in order to close the
system, one has to express these terms as functions of the mean variables (and
derivatives of these). This difficulty is called the closure problem and the differ-
ent expressions used to resolve the closure problem lead to different turbulence
models. In the following sections we give a very short account to some modeling
approaches, with the aim of explaining why in this work we find it appropriate
not to use RANS but rather rely on Large Eddy Simulations (LES).

Common turbulence models belong to one of the following categories:

e Direct Numerical Simulation (DNS)
e Large Eddy Simulation (LES)
e Reynolds Averaged Navier-Stokes (RANS)

Beyond this classification, there are also the hybrid approaches where LES and
RANS are combined in various ways.

3.2.1. Direct Numerical Simulation

Direct numerical simulation resolve all turbulent length scales present in the
flow and thereby this approach is in fact not a model! However, as stated above
DNS requires such a resolution that it is not applicable for most engineering
flows due to the required computational resources.
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3.2.2. Large Eddy simulation

If the scale content of a flow is not too wide (i.e. relatively low Re), DNS
is applicable. For larger Re new small scales are added and, if the energy
content of these scales is small, one may still use the same approach as in
DNS but refrain from resolving the smallest scales. In fact one may show that
the contribution of the small scales vanishes as the square of their amplitude.
However, with increasing Re and increasing range of unresolved scales the error
committed by the under-resolved DNS becomes larger and the results may be
too erroneous.

The basic idea to use not fully resolved DNS may be complimented by some
model that accounts for the effects of the unresolved scales on the resolved
ones. This is the essence of Large Eddy Simulation (LES); namely to resolve
the energetic scales of the flow and model the effect of the unresolved scales on
the resolved ones.

In order to illustrate the LES concept, consider a generic transport equa-

tion,

ou  OF(x)

o + Fra 0. (3.7)
Since we cannot resolve all the Fourier components of the solution, but only
the larger ones, we simply filter out the higher frequency modes. This can
be done by defining the filtering operator as a convolution of a kernel with
the variable (integrating over the whole volume). Normally, the kernel has a
compact support (such as the so called box filter), but it may also be unbounded
(such as the complete Gaussian kernel). In many LES formulations one does
not filter the variables explicitly, but rather works with the filtered equations
directly.

When equation (3.7) is filtered by applying a (linear) filtering operator on
each term, the equation for the filtered variable takes on the form of equation
(3.8). Filtering can be done explicitly or implicitly, but the result outcome is
similar, i.e. the elimination of the unresolved scales.

ou  OF(T)
ot + ox
The form of G is dependent on the applied filtering kernel and the filtering op-
eration is assumed to commute with the differentiation. This assumption about
commutativity, though correct in the differential form, may not be correct for
the discrete counterpart. If the assumption is valid, G contain terms that stem
from nonlinearities in the equation and expresses the effect of the unresolved
scales on the resolved ones.

~g. (3.8)

For the Navier-Stokes equations, the only contribution is thus due to the
convective terms. The contribution of these terms is called the Sub-Grid Scale
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(SGS) term and their effect on the resolved scales has to be accounted for
in terms of the resolved scales. The resulting equation system is closed with
an SGS model and, given appropriate boundary conditions, it can be solved
numerically.

3.2.2a. Subgrid scale modeling. The filtering operation in LES creates the SGS
terms in the equations, as described above. Due to the importance of the
unresolved scales many different approaches to capturing their effect on the
resolved scales exist.

Generally speaking, the main role of the SGS term is to account for the
effects of the small scales on the large ones and the flow in general. An obvious
effect is the dissipation which takes place at the smallest scales of the flow.
Thus, SGS terms (and its models) must be dissipative which incidentally is
also a requirement for stable numerical schemes. Another role that one often
associates with the SGS term is that it should have the ability to intermittently
transfer energy from small to large scales, to account for backscatter.

Subgrid scale models range from the quite simple ones, aiming at dissi-
pating energy at a correct rate to the more complex ones, of non-local and/or
non-linear character. It is important to emphasize that the choice of a cer-
tain SGS model must be based on the physical characteristics of the problem
and the ability of the model to account for important features of the specific
problem. Thus, there are no generally valid SGS models since flows may differ
largely from each other also in the small scale characteristics.

The most simple model in practice is the Smagorinsky model. This is a
very commonly used SGS model which also serves as the origin of several more
advanced models. The Smagorinsky model, equation 3.9, is an analogy to the
RANS variant of the eddy viscosity model.

Tirj = —QI/TSZ']‘, (39)

Vyp = (CSA)23, g = (2§ij§ij)l/2 . (310)
In the Smagorinsky model, the SGS stress, (77;), is related to the filtered rate
of strain, ?ij, as in equation 3.10. The Smagorinsky constant, Cs, and the
filter width, A, will effect the transfer of energy from the filtered scales to the
residual motions.

In the case of the Smagorinsky model and any other eddy viscosity type
models, energy transfer is one-way from the filtered motions to the residual
motions and there is thus no backscatter. This SGS model is probably the
most common and widely used model, although it it is considered to be too
dissipative in general and in particular at low Re, transitional, inhomogeneous
flows (c.f. Pope (2000)). The Smagorinsky model states explicitly that the
SGS term is of second order in terms of the filter width, or cutoff length, A.
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This implies that the error committed by the SGS model may be larger than
the truncation errors. This may cause problems if simulating laminar and
transitional flows.

Another issue related to SGS modeling is handling the near wall behavior,
where the behavior of turbulence depends on local, and problem dependent,
conditions and is not universal. The near wall modeling has been the subject of
many papers but due to the above mentioned property of problem dependence,
no generally valid model has been formulated. A common approach has been
to use models that are in direct analogy to RANS near wall models, such as the
van Driest damping function. Another approach that gained some popularity
is the hybrid method in which RANS models are used near the wall and LES
is used elsewhere.

The hybrid approach is rather straight forward from a conceptual point of
view but it may be intricate to implement without causing obviously incorrect
velocity profiles. Additionally, there is no solid physical foundation for the
hybrid approach since the near wall RANS handling, as is noted below, is not
generally valid and it has no advantages over other alternatives.

A significant improvement in the problematic areas of the Smagorinsky
model is made by the dynamic approach (dynamic Smagorinsky model). In
this model, the constant C is given a local value that is derived by assuming an
asymptotic behavior of the SGS term as the filter size is reduced. The approach
is done by using two filters of different sizes in order to make an estimation of
the SGS behavior and thereby obtaining an optimal Cy value. The dynamic
approach can handle fully resolved regions by computing the vanishing value of
the coefficient. Also, if the assumption of asymptotic behavior is valid for any
reason near the wall, the approach is still valid. The main difficulty that may be
encountered is that the coefficient attains a negative value, which may lead to
numerical instability. Olsson (1998) show that this issue can be circumvented
by satisfying a total dissipative condition.

3.2.2b. Implicit LES. When the filtered equation (3.8) is approximated by a
discrete approximation its principal appearance is:

ou  OF(z)

ot ox

In equation (3.11), T represents the truncation errors of the discretization
scheme.

= G+ T(T, Az, At). (3.11)

The role of the physical SGS and the contribution of the truncation errors
are additive. In fact, if one does not have a clear distinction between the filter
width and the numerical scale (i.e. these two scales vanish at the same rate),
the effects of the SGS terms can hardly be distinguished from the effects of
the discretization errors. This is so since, as the filter and numerical scales are
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reduced, the contribution of the SGS and the discretization error terms become
arbitrarily small.

A general problem is that one has to express the effects of SGS in terms
of the resolved scales and the loss of information (due to filtering) has to be
recovered. It is not self-evident that such a deconvolution is possible at all
without introducing a set of assumptions. Therefore, when explicit SGS models
are used, some hypothesis or physical reasoning must be introduced in order
to resolve this.

Another important issue with SGS is near solid walls, where the small scale
behavior is far from being universal (though the SGS term vanishes for small
enough filter scale).

In the Large Eddy Simulations performed in this work, no explicit subgrid
scale model is used (Grinstein et al. 2007), and we strive at using adequately
fine grids so that the error caused by approximating the SGS terms are of the
order of the truncation errors (i.e. the right hand side of of equation (3.11).
For this approach the inherent dissipation of the numerical schemes is used to
account for the dissipative role of the SGS term.

The advantages with this LES approach are simplicity and low computa-
tional cost. However, the dissipation of energy and any structural properties of
the unresolved scales are completely dependent on the grid and the numerical
scheme (i.e. non-physical parameters), making the identification of the SGS ef-
fects difficult. For conventional LES using a dissipative SGS model such as the
Smagorinsky model, it is essential that the numerical dissipation is as low as
possible so that the small scale effects are left to the model. For LES without
explicit SGS model (i.e. the so called “implicit” LES), the coupled nature of the
SGS effects and the numerics requires that the spatial resolution is adequate.

Generally speaking, using explicit SGS models allows one to use somewhat
coarser grids. Finally, one might argue that implicit LES is not true LES as it
will converge to a DNS if the resolution is increased. Because of this, one cannot
obtain (in implicit LES), in the strict sense, grid-independent solutions except
in the DNS limit. If this property is important or not is largely a question
of preference as the usability, applicability and accuracy of the implicit LES
approach has been demonstrated in many occasions and for a large number of
different flow cases (Grinstein et al. 2007).

3.2.3. Reynolds Averaged Navier-Stokes

Reynolds Averaged Navier-Stokes is the most common way of dealing with
turbulent flow computations, at least for engineering problems. This approach
uses averaging of the instantaneous fields in the NSE to obtain an equation for
the mean fields. Averaging is done by decomposing the instantaneous fields
in the following way: u; = U; + u} and p = P + p’ creating an average and a
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fluctuating part. If this decomposition is applied to the incompressible NSE,
the RANS equations are obtained as:

ou;

aSCZ‘ -
oU;, _OU; 10P 0 —

0, (3.12)

In equation 3.13, S;; = (U;; + U;;)/2, the mean strain rate tensor. The last
term in the momentum equation (3.13), Tu; , is called the Reynolds stress
tensor and contain the additional stress on the mean field due to the turbulent
fluctuations. The Reynolds stress must be modeled in order to close the RANS
equations and there are many ways to do this which, in principle, can be

categorized by the character of the model used for the Reynolds stresses.

The eddy viscosity assumption states that the turbulent stresses depend
on local phenomena only, which can be a reasonable approximation in simple
shear flow such as flat plate boundary layers, channel flow or mixing layers. In
highly three-dimensional flows, or flows containing large-scale fluctuations such
as separation bubbles, the assumption is not equally reasonable. Examples of
models based on the eddy viscosity assumption include the Baldwin-Lomax and
the Spalart-Almaras models, where the latter one is widely used in the aircraft
industry. So called “complete models” using the eddy viscosity assumption are
the most commonly used RANS models overall: The k—e and the k—w models
belong to this class.

Less commonly used in industrial applications are the Reynolds stress mod-
els, where the eddy viscosity assumption is replaced by a transport equation
for the Reynolds stresses. This removes the assumption that the turbulent
stresses are isotropic and dependent only on local quantities. The Reynolds
stress models are in principle more general when compared to the eddy viscos-
ity approach.

3.3. Computational aspects

For all the work presented here a general purpose, compressible flow, finite
volume CFD code was used, see Eliasson (2001). The system of equations is
hyperbolic (i.e. real characteristics) and can be integrated numerically in time.
The discrete problem, as the continuous problem, requires specifying boundary
conditions. The number of conditions that has to be given for the continuous
problem depends on the number of ingoing characteristics into the domain of
interest. In principle, the discrete problem requires the same number of condi-
tions. Some augmentation that depends on the particular spatial discretization
can be necessary.
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3.3.1. Temporal discretization

Advancing the flow equations in time can be done in several ways but in prin-
ciple it is either implicit or explicit.

When employing implicit time stepping, a steady state-like iterative proce-
dure is performed in each time step allowing larger time steps than numerical
stability would allow in the case of explicit time stepping. This may greatly
reduce computational time for some problems, when compared to explicit time
stepping, and is the most generally applicable approach of the two.

Explicit time stepping uses a Runge-Kutta-type procedure to directly ad-
vance the flow equations in time making each time step much cheaper with
regard to computational time compared to implicit time stepping. Addition-
ally, explicit methods lend themselves more easily to parallel computation.
However, as the length of the time step is directly linked to numerical stability
it may require small time steps. In LES, for physical reasons, one uses time
steps such that the fluid particles do not move more than one cell in a time-
step. This might lead to, when the computational grid varies largely, that one
could end up using very small time steps.

In the computations performed in this work, explicit time stepping using a
three-stage Runge-Kutta scheme of formally first order accuracy is used. The
time step length was chosen so that a maximum Courant number of around
0.6 was attained. First order formal accuracy may seem rather poor but, as
the total accuracy of the method depends on a combination of spatial and
temporal discretization, and the time steps are smaller by about three orders
of magnitude when compared to the spatial steps, the spatial discretization is
in fact more significant for the total accuracy.

3.3.2. Spatial discretization

When using LES, high resolution and low dissipation in the spatial discretiza-
tion is very important. Using a central-type scheme gives low numerical dissi-
pation but unfortunately also unphysical dispersion phenomena and spurious
oscillations which necessitates the use of some numerical fix, such as a high
order filtering, to stabilize the numerical algorithm.

One way which is commonly used in compressible CFD codes is to add ar-
tificial, non-physical, dissipation in some form to the equations. In this work,
a Jamesson-type artificial dissipation (Hirch 1990) is used together with a sec-
ond order accurate central scheme producing the required characteristics while
maintaining the formal accuracy of the underlying scheme. The numerical algo-
rithm is then stabilized by an dissipation-like mechanism, damping unphysical
growth of oscillations in the computational domain. This type of dissipation
is based on a blend of second and fourth order differences. In practice, the
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computational code employs a sensor that enables the fourth order dissipation
to be switched of in the vicinity of shocks.

3.3.3. Boundary conditions

For the in-, and outflow boundaries, physics dictates by the theory of char-
acteristics the amount of information that is allowed to be specified. More
precisely, the amount of in-going characteristics at each boundary determines
the number of required boundary conditions.

At a subsonic inlet boundary, four conditions have to be given. At a
supersonic inlet five conditions have to be given. At a subsonic or supersonic
outflow one and no boundary conditions, respectively, are specified.

For all calculations preformed in this work, a constant mass flow subsonic
inlet condition was used together with a constant-pressure subsonic outlet and
adiabatic no-slip walls. The code employs directly the total temperature, flow
direction and desired mass flow. Within the code, the total pressure is adjusted
so that the desired mass flow is obtained at the inlet. The outlet boundary
condition is set to a constant static pressure which may vary with time as in
the bump calculations.

3.3.4. Mesh

For all computed cases, structured grids are used. The mesh used for the bump
and valve port cases are stretched at the inlet and outlet. This is done in order
to reduce the reflection of pressure perturbations since they are not the subject
of study and may adversely effect the numerical stability. In the bump mesh,
stretching is used also in the wall normal direction using a stretch factor of
1.01.

3.3.5. Numerical accuracy and result comparison

Determining the numerical accuracy of the code and comparing results obtained
by computations to experimental results are two ways of evaluating the validity
of the computational results. While the investigation of numerical accuracy is
fairly straightforward, comparisons of numerical and experimental results can
be surprisingly difficult.

The problem is not in the actual comparison, but rather in addressing the
same problem. Difficulty arises from the fact that experiments and simulations
seldom have the same boundary conditions, both in terms of the domain geom-
etry and, more often, in terms of the flow conditions at the inflow and outflow
boundaries.

The literature contains a large number of experimental data but only very
few of these include a detailed description of the set-up so as to allow one to set



22 3. TURBULENT FLOW MODELING AND COMP. ASPECTS

boundary conditions that are accurate enough (in terms of mean and turbulent
quantities). The situation is even more problematic for LES, where one need
instantaneous data at the boundaries.

With this background it is obvious that if one wants to make a side-by-side
comparison of simulations and experiments then, aside from correctly describ-
ing the physics involved, one must put a considerable effort into making sure
the boundary conditions match each other if close agreement is to be expected.

In order to determine the validity of the present work, the numerical accu-
racy of the code has been evaluated by a method proposed by Celik (2005) and
qualitative results were are compared to experimental results by Bron (2003)
and Sigfrids (2003).

Due to both the difficulty in accurately reproducing the inlet and outlet
conditions of the experiments and the apparent insensitivity of the main flow
features to the incoming boundary layer, it was decided that simplified bound-
ary conditions could be used. These consist, as stated in the above section, of a
constant mass-flow inlet with a plug inlet profile and a constant static pressure
outlet.

The main flow features are well captured by the simulation despite these
simplifications while the exact shock position and other quantitative results
are not. Since the motivation for the bump simulations was not to validate the
experimental results but rather to investigate the code capabilities regarding
transonic flow and enhance the understanding of the sensitivity of the flow, the
used boundary conditions are adequate.

The numerical accuracy study of the code resulted in an apparent accuracy
of the order of 1.98, a result which must be considered very good with a formally
second order spatial discretization. We conclude by stating that the ability of
the overall method to accurately handle transonic flow seem to be good.



CHAPTER 4

Results

In this chapter we describe shortly the results for two cases that have been
considered in this thesis, namely the bump flow and a generic outlet port valve
geometry. Transonic flow in a wind tunnel past a bump has been considered
first. This problem has a rather simple geometry as compared to an IC-engine
port, yet the flow exhibits many of the complexities found in the engine case.
In both cases, LES is used to capture the transonic phenomena and unsteady
flow field.

4.1. Transonic bump flow

For the simulations of transonic bump flow the geometry of a wind tunnel
experiment by Sigfrids (2003) and Bron (2003) is used. To investigate acoustic
effects two different tunnel lengths have been considered. These have the size
of 115021202200 mm and 95021202200 mm, respectively (length x height x
width). The bump has a chord length of 190 mm and a maximum height of
11 mm. The coordinate system of the computational domain is set so that
the positive x-axis is in the streamwise direction, the y-axis is in the cross-flow
direction and the z-axis is normal to the bump side of the tunnel. The origin
of the coordinate system is in the spanwise center of the tunnel, on the bump
side of the tunnel, immediately in front of the bump.

4.1.1. General flow observations

Qualitative investigations of the flow field in the tunnel confirm the occurrence
of several expected phenomena observed in the experimental investigations by
Bron (2003) and Sigfrids (2003).

Under all conditions tested, a shock system is formed in the channel as well
as a significant separation of the boundary layer. The shock system and sep-
aration appearance varies considerably in the range of pressure ratios tested,
examples of the instantaneous flow field at several different outlet pressures are
shown in figure (4.1). Upstream of the bump, the developing boundary layer
is very thin and is further compressed on the bump upstream of the shock.
Downstream of the separation reattachment point, the flow has subsonic veloc-
ity and there are rapidly growing boundary layers on the walls. Depending on

23
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FIGURE 4.1. Instantaneous iso-Mach number lines at different
outlet pressures. Top figure show an intermittently regular
reflected shock. Bottom left figure show an unreflected shock.
Bottom right figure show a Mach-reflected shock.

the tunnel pressure ratio, the shock is either regularly reflected, Mach reflected
or not reflected in the tunnel ceiling, see figure (4.1). The shock and flow field

? ° 10* 10°
frequency (Hz) frequency (Hz)

FIGURE 4.2. PSD of streamwise velocity fluctuation from the
shock foot (left) and separation bubble.

downstream of the shock is unsteady in all the tested conditions. In figure
(4.2) the PSD of the streamwise velocity fluctuations at two stations close to
the bump surface can be observed. The left figure represent a point at the
mean location of the shock foot, x5 while the data in the right figure is taken
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FiGURE 4.3. Spatial correlation of the streamwise velocity
fluctuations along a line above the bump surface.

from the free shear layer of the separation at half the mean separation length,
Ty

No clear mutual peaks can be observed in the spectra of the two points
but, as can be seen in figure(4.3), the velocity fluctuations are clearly related.

In order to investigate the interaction of the shock and the separated
boundary layer the point z,. is used as a monitoring point. The auto-correlation
of the axial velocity along a line 6 mm above the bump surface is correlated to
the axial velocity at the monitoring point using:

Up () U (t)
Um (t)2

where z, and x,, represent two points along the line of interest. The results
are plotted in Figure 4.3 where z, is the point having R = 1. The peak
having R & 0.72 is the physical location of the separation and shock foot, x.
This result shows a strong spatial correlation between z,. and x¢ implying that
the unsteady motion of the shock foot and the separated boundary layer are
strongly related.

R(xp, ) = , (4.1)
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The Strouhal number,
fL
St = i (4.2)
where f is the frequency, L a length and U a velocity is a useful tool. By
forming the Strouhal number one may try to relate the peaks of the PSD of
figure (4.2) to global velocity- and length scales and thus determine their origin.

The highest peak in the shock foot spectra at 1 kHz, left figure (4.2), is
likely related to the global flow as it scales with the bump length and convection
velocity. Also seen in this spectra is a harmonic of this peak, at 2 kHz. Moving
on to the right figure (4.2) the dominant peaks are at 8 kHz and 10 kHz. The
8 kHz peak scale with the domain length and velocity of sound and is likely
acoustic plane waves originating at the shock and then propagating up- and
downstream in the channel. The 10 kHz peak can scale with the inlet flow
velocity and bump height.

No direct evidence of the acoustic modes directly affecting the shock dy-
namics as mentioned by for example Sajben et al. (1984) could be found during
this work. However, the behavior of the shock at high outlet pressures when
the flow is not choked is significantly more unsteady compared to the choked
flow. Acoustic modes are believed to be present in the channel at all outlet
pressures, but when the flow is choked the disturbances emanating from the
boundary layer dominates these and are the primary force behind the shock
motion.

The proposed reason for the more unsteady and significantly different be-
havior observed is then that the acoustic modes contribute to the shock motion
together with the boundary layer disturbances, when the flow is not choked. If
they are of comparable strength, they may interact with each other and thus
create a quite different perturbation profile compared to the case when the
boundary layer disturbances dominate.

4.1.1a. Forced flow oscillation. To investigate the response of this sensitive
flow to disturbances, periodic excitation at different frequencies was attempted.
Excitation by means of varying both the outlet static pressure and the inlet
mass flow was investigated, but only the former in a detailed fashion. The
reason for this choice is that this is the preferred method of almost all prior
investigations of transonic bump flow known to the author, making comparisons
more straightforward. The outlet static pressure was varied within the limits
of the steady boundary condition investigation in a sinusoidal fashion,

Pout = Po + 008]30 SiIl(Qﬂ'ft), (43)

where pg was set to 100 kPa. The excitation frequency was set initially to 5
Hz, but also 10 Hz and 30 Hz was tested.
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The position of the shock foot as a function of the outlet pressure can
be seen in figure (4.4), together with mean positions from computations using
steady boundary conditions. The shock position shows clear hysteresis for all
forcing frequencies.

The shape of the shock position traces indicate the formation of a cycle
where the shock position depends, for a given back pressure, on if the flow is
accelerating or decelerating. When the perturbation frequency is varied the
shape of the position trace also varies quite significantly. Comparing the three
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FIGURE 4.4. Position of the main shock as function of the
varying outlet pressure. Top left: 30 Hz perturbation fre-
quency. Top right: 10 Hz perturbation frequency. Bottom: 5
Hz perturbation frequency.

different plots in figure (4.4) one can see that the amplitude of the shock motion
seems to decrease as perturbation frequency increases. For 5 and 10 Hz, the
deviation from the steady BC data at an outlet pressure of 100 kPa is more
significant when the flow is decelerating compared to accelerating flow. In the
case of 30 Hz perturbation frequency, the deviation is more or less the same
at this point. In general, the 30 Hz case stands out in comparison to the two
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lower frequencies and must be quite far removed from the quasi-steady regime
in which at least the 5 Hz case is located.

If some extrapolation is allowed from the presented data one could make
the assumption that, if the perturbation frequency is very low, the trace would
be on top of the steady BC data, and, if it was very high there would be no
shock motion. In physical terms, the response time of the system is finite and
not dependent on the forcing frequency as can clearly be seen in figure (4.4). If
the perturbation frequency is very high, this response time will be too long for
the shock system to adjust to the change in conditions leading to the decrease
in amplitude which can be observed already at 30 Hz.

The reasoning behind the other perturbation frequency limit is that if the
frequency is precisely zero, the flow has stationary boundaries. If the frequency
is very low, the flow behavior is likely to be very close to the steady case.

There may however be perturbation frequencies at which the shock behav-
ior deviates from this proposed behavior if resonance in the system occurs. The
possibility of resonance exists if the natural oscillation frequency of the shock
locks in to the perturbation frequency. The natural oscillation of the shock is
quite broad-band and situated at frequencies an order of magnitude above the
tested ones, explaining why no resonance has been observed.

Due to practical reasons the low frequency perturbation cases have a smaller
amount of recorded periods compared to the high frequency ones. This means
that the settling behavior of the position trace at different frequencies can not
by evaluated equally and that especially the trace of the 5 Hz case, having
only 3 periods of data, is difficult to analyze at all. So, the nature of the trace
and the kind of attractor will not be discussed. To further analyze the data
from the forced flow, the RMS of the static pressure along a line on the bump
surface in the center of the channel was studied. The data in figure (4.5) show
clearly the difference in the amplitude of the shock oscillation when comparing
the different cases in the width of the first peak.

Another clear difference is the maximum of the RMS in the shock peak,
and also the different appearance in the reattachment region. All the perturbed
cases have a higher RMS at the shock location compared to the separation
region while, for the steady BC case it is the opposite. That the RMS levels
are much higher for the perturbed cases is quite natural as the amplitudes are
naturally higher because of the perturbation.

In order to explain the hysteresis one must first consider a coordinate sys-
tem in which the shock is at rest. In such a system the motion of the shock,
which results from the change of pressure ratio over the domain, will cause a
higher shock Mach number when the flow is decelerating and the shock moves
upstream and a lower shock Mach number when the shock moves downstream
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FI1GURE 4.5. RMS of pressure on the bump surface at channel
centerline. Normalized by RMS value with steady boundary
conditions at shock location.

in accelerating flow. This is so because the incoming flow Mach number changes
very little over the range of the outlet pressure variation.

This behavior was also observed by Bruce & Babinsky (2008) among oth-
ers. Because of this behavior, the shock Mach number will depend on the
outlet pressure history causing the shock to assume a more upstream position
in accelerating flow and vice versa for decelerating flow, compared to steady
boundary condition calculations at the same pressure ratio. This behavior also
causes the variation in the shock induced separation discussed in paper (2).
The separation is more violent in the decelerating flow because of the higher
relative Mach number and hence, stronger shock, compared to both steady
boundary condition conditions and accelerating flow.

The total pressure loss is related to shock strength but there are also other
sources of viscous losses in the considered flow. The shock Mach number varies
between approximately unity and 1.5 so there must be a clear variation in
the losses associated with the shock as the outlet pressure varies, something
which is evident in the data. The reason for the lack of hysteresis in the total
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FI1GURE 4.6. Simplified exhaust valve geometry, cut at sym-
metry plane.

pressure loss is either that the shock strength does not exhibit hysteresis or that
the balance of the sources of pressure loss may change as the flow accelerates
and decelerates. No attempt has been made to separate the different sources
of loss but it is expected that the shock is dominant. Thus, the first suggestion
above is the most likely.

4.1.2. Summary

The flow considered shows the expected general behavior when compared to
both experiments and calculations of similar flows. The shock is unsteady in all
conditions and the dynamics of the shock is strongly correlated to the unsteady
separation. Hysteresis in the shock position was found when varying the outlet
static pressure in a sinusoidal fashion at 5, 10 and 30 Hz. The hysteresis occurs
because of the varying shock Mach number in accelerating and decelerating flow
at the same outlet pressure level.

4.2. Transonic flow in an model IC engine exhaust valve port

Simulations of the fluid flow in a model exhaust port, shown in figure (4.6),
has been carried out. This model has dimensions comparable to those in a
normal passenger car engine. Only one valve lift has been investigated and all
geometries and boundary conditions are steady in time, meaning no moving
piston or valve. Three different cylinder (inlet) pressures have been considered,
as stated in table (1).

The justification for the simplification of stationary geometry is that com-
pared to the flow velocity in the exhaust port, the valve velocity is an order of
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magnitude less. The flow over the moving valve can then be viewed as several
independent flows with different pressure ratios and valve lifts.

The boundary conditions are simplified for practical reasons, the correct
real boundary conditions are not available for the geometry used and are not
easily obtained. Actually, even if an actual engine geometry was used, the
complete boundary conditions are not likely to be easily obtainable, if at all. If
experimental data was available together with well documented experimental
procedure, a much more physically accurate boundary description then what
was used in this work is possible. Together with an actual geometry, it may
then be possible to produce results with a more direct relevance to industrial
geometries.

4.2.1. Introduction

High efficiency in the gas exchange process of an internal combustion engine is
essential in order to construct engines with a high overall efficiency.

The exhaust part of the gas exchange process involves non-isothermal, tur-
bulent, transonic flow in a non-trivial and non-stationary geometry. The flow
around the exhaust valves contains unsteady supersonic regions and unsteady
separation bubbles during the blow-down phase. When the exhaust valves open
the pressure difference between the combustion chamber and the exhaust port
is large, typically more than 50 bar. This, coupled with the small area con-
necting port and combustion chamber, may give rise to choking effects which
limit the maximum mass flow through the valves.

The flow in the volume immediately after the exhaust valve can be charac-
terized as three-dimensional, transonic and unsteady. The shape of the exhaust
manifold leads to the formation of additional large unsteady flow structures.
Furthermore, the acoustics in the manifold may have an environmental (noise)
impact on the power-train system.

On the intake side of the gas exchange process, detailed knowledge of the
flow field behavior is essential to ensure efficient combustion as the combustion
process is highly dependent on the conditions in the cylinder prior to the actual
combustion.

Some components of the inflow conditions do survive and others are am-
plified during the compression phase of the engine. For example, the swirl
generated at the intake port survives and may be enhanced by the compression
whereas the tumbling motion does not. This is the result of the instability
of some modes and the stability of others as well as the change of geometry
caused by the compression.

Because of such effects and their impact on fuel consumption and pollutant
formation, much work has been done to understand the flow in the intake ports
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and cylinder during the intake and combustion strokes both by the industry
and in the academic world (Valentino et al. 1993; Bicen et al. 1986; Yasar et al.
2006; Lee et al. 2005).

More fundamental studies of the flow in the exhaust valve port are much
less common, despite the impact of the flow on the turbo-charger and the after-
treatment devices. Nevertheless, it has been shown (Ehrlich et al. 1997), that
the flow into the turbocharger varies significantly during the engine cycle and
that it contains flow structures that significantly affect the efficiency of the
turbine. Another important issue is the loss of energy in the exhaust port
associated with viscous phenomena and the importance of evacuating as much
as possible of the exhaust gas before the end of the exhaust stroke.

Simple, mostly steady state flow and experimental, investigations involving
the calculation of the discharge coefficient for a specific valve lift and exhaust
port geometry with quite small pressure differences (P;,, / P,y: =~ 1.1) are carried
out in the automotive industry.

These investigations typically focus on mean values of the losses for a spe-
cific geometry to determine the discharge coefficient and they do not consider
the flow details at all. The data obtained in this way is often used in engine
system simulation tools for the entire operational range of the engine. A more
accurate description of the flow losses during the gas exchange, including a
larger part of the engine operational range, may make these simulation tools
more predictive than they are today.

Detailed investigation of the flow in the exhaust port by experimental meth-
ods is difficult due to geometrical constraints which makes it difficult to use
measurement techniques such as hot-wire anemometry. On the other hand it is
also difficult to gain optical access to the valve port region in order to use LDV
or PIV measurement techniques. Therefore, it is essential to use numerical
simulation in order to enhance the understanding of these flows. However, one
cannot verify the numerical results directly in the primary regions of interest
close to the valve due to the experimental difficulties and one must rely on data
further up- and down-stream of the region of interest which may be more easily
accessible for experimental investigations.

TABLE 1. Computed Cases setup for simplified geometry

Ptot,in(Bar> Pstat,out(Bar)
Case 1 3 2
Case 2 40 10
Case 3 120 2
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FIGURE 4.7. Left: Instantaneous in-plane velocity vectors one
pipe diameter downstream of the valve. Arrows are in-plane
velocity, axial flow is into the picture. Right: Streamlines
showing the wake behind the valve.

4.2.2. General flow observations

The flow in the model exhaust port for the three cases are qualitatively similar
to each other. At the inlet region, the flow is almost stationary at a high static
pressure. Near the valve, the flow is rapidly accelerated to a high velocity
(supersonic for Cases 2 and 3). After the valve plate, the geometry expands
and makes an almost 90° turn while passing the valve stem. At the bend
the flow velocity is significantly higher in the outer part. This is the most
interesting part of the flow as it exhibits significant unsteady dynamics and is
the birthplace of two pairs of counter-rotating vortices, one in the upper part
and the other in the lower part of the port, shown in see figure (4.7).

These vortex pairs are formed by different mechanisms: The lower pair is
created by inertial forces and the pressure gradient in the pipe bend while the
upper pair is created by interaction between the wake behind the valve and the
free stream.

The pressure gradient in the bend is directed inwards and the low-momentum
fluid at the pipe walls are forced in this direction by this gradient. Inertial forces
work in the opposite direction, outwards, and the result are the lower pair of
vortices.

The wake behind the valve stem can be seen in figure (4.7), the low-
momentum fluid in the wake exits downward in the picture due to the pressure
gradient in the pipe. When this fluid interacts with the mean flow, from left
to right in the figure, the two upper vortices are created.
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4.2.3. Spectral and correlation analysis

In order to confirm the general observations made and also make some more
quantitative analysis, the power spectral density (PSD) and autocorrelation
techniques were used on data recorded along the centerline of the port channel.
All data is obtained by first running the simulation for approximately 20 flow-
through times and then gather statistics during 20 additional flow-through
times. This procedure is used to ensure that the results are free of dependence
on the initial conditions, to a reasonable degree.

The dominant peaks in all the spectra can be associated to the valve stem
diameter and flow velocity by the Strouhal number. The likely origin of the
peaks is the dynamics of the outer vortex pair because of the close connection
to the valve stem by the Strouhal number, of order unity, of these peaks.

The correlation analysis show that the disturbances quickly dissipated out
for cases 1 and 3, but survived for case 2. The cause for this may be that
because case 2 never relaxes back to subsonic flow after the first acceleration
the flow is supersonic in the downstream part of the exhaust port. This means
that, although losses are higher in this case (even higher than case 3), there
are no disturbances propagating upstream in the core flow who can disturb the
structures created at the valve and in the bend. These disturbances may cause
the created structures to dissipate faster for the two cases with subsonic flow
in the downstream part of the port.

A more detailed analysis, together with figures can be found in paper (3).

4.2.4. Summary

The flow in the considered geometry was found to be highly unsteady, some-
thing which is expected also in industrial geometries. Vortex structures are
formed in the bend, both by wake interaction, pressure gradients in the bend
and inertial effects. The mechanisms responsible for the creation of the vor-
tical structures observed in the flow are such that they can be expected to
be present also in other port geometries. The generated structures stay more
coherent during convection for case 2 compared to the other cases, possibly
because of less disturbances in the flow field for this case. Total pressure loss
was highest for case 2, the case with supersonic flow velocity at the outlet. For
the two subsonic outflow cases losses were higher for case 3, which has higher
flow velocity.



CHAPTER 5
Summary and future work

Large Eddy Simulations of the transonic flow past a bump and in a model IC
engine exhaust valve port has been carried out.

The results from the first investigation show that a subsonic inflow is ac-
celerated to supersonic velocity as it passes the bump for low enough outlet
pressure where a shock system is formed, terminating the supersonic region.
The formation of a shock lead to shock-induced separation of the incoming
boundary layer due to the large pressure gradient over the shock. Primarily
due to a strong coupling of the shock and separation dynamics, the shock sys-
tem is always unsteady. The flow is highly sensitive, making small changes
in the boundary conditions result in significant variations in the shape and
type of shock system as well as separation appearance. The shock system po-
sition exhibit a hysteretic behavior when the outflow pressure was varied with
a low frequency. This behavior is due to differences in relative shock speed in
accelerating and decelerating flow.

The latter investigation show that at realistic pressure ratios in a model
exhaust port, transonic flow is obtained. For all computed cases, two pairs of
vortices are created in the exhaust port by interaction with the valve stem and
by inertial effects and the pressure gradient in the pipe bend. The pairs are
located in the top and bottom parts of the exhaust port, respectively. The
upper vortices, originating in the interaction with the wake behind the valve
stem is responsible for the main unsteadiness in the flow while the lower pair are
low-momentum and thought to not be driving any unsteadiness. The spectral
and correlation investigation confirm periodical motion originating in the wake
interaction and show that the periodical structures quickly dissipate.

5.1. Future work

All the work presented here is preparatory for computations of actual exhaust
port geometries. The intention is to build on the knowledge gained by this
work and expand the study to moving, industrial geometries. As this study
has shown, the flows considered are very sensitive to the boundary conditions,
something which can also be said for LES or CFD in general. If one expects

35
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accurate results, then one must pay very close attention to the boundary con-
ditions used. One great challenge, at least at the present stage, is to obtain
the correct boundary conditions for simulations of an industrial geometry. The
aim of the future studies is to identify, and quantify, loss sources and flow
structure-generating mechanisms in industrial geometries.
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