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Performance Evaluation of Kernels in Multiclass
Support Vector Machines

R. SangeethaB. Kalpana

Abstract— In recent years, Kernel based learning algorithm
has been receiving increasing attention in the reaech domain.
Kernel based learning algorithms are related interally with the
kernel functions as a key factor. Support Vector Mahines are
gaining popularity because of their promising perfemance in
classification and prediction. The success of SVMds in suitable
kernel design and selection of its parameters. SVMis
theoretically well-defined and exhibits good geneteaation
result for many real world problems. SVM is extendd from
binary classification to multiclass classification since many
real-life datasets involve multiclass data. In thispaper, we
propose an optimal kernel for one-versus-one (OAO)and
one-versus-all (OAA) multiclass support vector macimes. The
performance of the OAO and OAA are evaluated usinghe
metrics like accuracy, support vectors, support vedor
percentage, classification error, and speed. The ennjgal results
demonstrate the ability to use more generalized keel functions
and it goes to prove that the polynomial kernel's prformance is
consistently better than other kernels in SVM for hese datasets.

Index Terms— Support Vector Machine, Multiclass
Classification, Kernel function, One versus One, Oaversus All.

I. INTRODUCTION

Improving efficacy of classifiers have been aneasive
research area in machine learning over the pastiegades,
which led to state-of-the-art classifiers like sagpvector
machines ,neural networks and many more. Suppartove
Machine is a robust classification tool, effectivelvercomes
many traditional classification problems like loggdtimum
and curse of dimensionality. Three major issueS\d¥ are
Kernel Mapping Quadratic Optimizationand Maximum
Margin Classifiers This paper focuses in the first issue
Multiclass SVM decomposes multiclass labels inteesal
two class labels and it trains a svm classifiesatve the
problems and then reconstruct the solution of tidtiolass

problem from outputs of the classifiers [9], suck a

OAO-SVM and OAA-SVM.

The paper is organized as follows. Section 2 agesgribe
SVM and Multiclass SVM. Section 4 explains the ledsrand
its parameters. Section 5 elucidates the experahegsults.
Lastly, Section 6 concludes with future work.
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Support Vector Machine has been a new and impadaht
for classification and regression. In dealing wihge data
classification, traditional optimization algorithnsich as
Newton Method or Quasi-Newton Method cannot worl an
more due to the memory problem. SVMs belong toralyeof
generalized linear classification. A special propef SVM
[3-6] is it simultaneously minimizes the empirical
classification error and maximizes the geometricgina So
SVM is called as Maximum Margin Classifiers. SVM psa
input vector to a higher dimensional space whemaaimal
separating hyperplane is constructed. Two parallel
hyperplanes are constructed on each side of therplgme
that separates the data. The separating hyperptare
hyperplane that maximize the distance between W t
parallel hyperplanes. An assumption is made thatahger
the margin or distance between these parallel pjmees
then better the generalization error of the classif

Consider the problem of separating the set of itrgin
vectors belonging to binary classes or dichotoriong(;, v;),
1,....1,x OR" y U {+1, -1}, where the Ris the input
space, xis the feature vector anglig the class label of XThe
separating hyperplanes are linear discriminatimgtions as
follows,

SUPPORT VECTOR MACHINE$12,13]

f(X)=w'x+b, 1)
where w is a weight vector and b is called the bise. One
of the hyperplanes that maximizes the margin,  is

flw I*
named as the optimal separating. The optimal sépgra
hyperplane [4] can be found by solving the follogvin
optimization problem:

.1 :
min —|w|+ C .
w,b,{ 2‘ ‘ ; f' ! (2)
subject to
y(w'x)+b=21-¢,6 =20 @)
or its dual problem
min ;—aTQa -e'a , @
subject to
O<a <C,i :1...J,yTa:O, (5)
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where e is the vector of all ones, C is the penaltgerror types namely,One versus Onedecomposition andOne
L e . versus All decomposition.The OAA decomposition [10]

which is positive; @ is y; <Xi » X > and 5' 's the transforms themulticlass problem into a series ofbinary

relaxation parameter. Thus if we obtaind b then we can subtasks that can be trained by the binary SVkt the

classify the decision function as follows training  set T, ={(X, ¥1),--.-,(X, ¥,) contain the

!
f(x)= Z a.y, <xi X > + b (6) modified hidden states defined as
o : : 1 for y =y,
Most optimization problems involve terms that are y, = (7)
unknown and are usually not directly obtainablerfrthe 2 for y # vy,

training data and they are not easy to guess,&ig.above
equation. Thus, it becomes convenient to formulate
equivalent optimization problem that has the saphgtisn as f,(x)= <0'y ° KS(X)> +b,, yOvy, (8)
the original one, but does not involve any othdorimation 516 trained by the binary SVM solver from the
than what is provided by the training samples. Tin®lves y

the use of Karush-Kuhn-Tucker conditions. The farmeseﬂ_XY yoy

problem is then called the Primal problem, andl#teer is ~ The OAO decomposition [10] transforms the multissla
called as Dual. problem into a series gf= c(c —1)/2 binary subtasks that can

be trained by the binary SVM. Let the training set
TS ={( x'l,yi),....,(x,'j,yl'j) contain the training
vectorsx e P={i: y,=y' V y; = y?} and the modified the hidden

The discriminant functions

[ Dataset Selectio ]

y states defined as
[ Data Preprocessing] 1 for yl_ =y, _
y, = PO AR ©)
y 2 for yi 2y,

[ Classification using SVM ] . i .
The training sefl,, , ] = 1,2,...9 is constructed for all

y g=c(c-1)/2 combinations of classes
y} gy & yj2 Oy \{y}} The binary SVM rules

y y
[ Binarv Classification ] [ Multiclass Classification ]

g,i=1 ..., garetrained on the da'fzg(jY .

IV. KERNELS IN MULTICLASS SUPPORT VECTOR MACHINES

4 4 Kernel functions establish the characteristics &MS
model and level of non linearity. A necessary anffigent
condition for a simple inner product kernel to adidvis that it
must satisfy Mercer’s theorem [11]. In general neds are of
two types namely ocal and Global kernels. Data that are
} close to each other in local kernels influence loa kernel

y
[ Feasible Kernel Selectic ]

y
[ Creation of Hybrid

points and data that are far away from each othejabal
kernels influence on the kernel points. Commonlgdus
kernels like polynomial, RBF, linear are used iis thaper.
Few other kernels are shown in Tablel.

In existing statistical learning theory, when kdsnare

Kernel and its mod

y
[ Classification ResL ]

Fig.1 Flow of Proposed work. positive definite, there is one approach to obtld@mapping
from original data set to feature space i.e. thendde are
lll. MULTICLASS SUPPORT VECTOR MACHINE$15] demanded to satisfy Mercer’s condition [16] andaagsult

they can be seen as dot product in some Hilbertespa
Mercer’s conditions seriously confine the wider laggiion

of SVM. Almost all the current review on kernel imeds in
machine learning focuses on kernels which are ipesit
definite.

Support Vector Machines are based on variationalitis
which constrained to have structural risk mininizai SRM)
principle and it uses convex optimization with uréq
optimum solution. In SVM, hyperplanes are derived t
separate the class labels in feature space. Onéheof
hyperplanes that maximizes the margin is an optimal
separating hyperplane. Binary classification isliegped in
[12, 13].

Figure 1 represents the flow of the proposed work.
Multiclass SVM can be solved by combining the bynar
classification decision functions. Multiclass SV éf two
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A. Theorem. (Mercer’s)
Suppose thatk : y x X -
satisfies sup, K(x, y) <w,and define

R is symmetric and

T F() = [K(x,y) f(y)dy (10)
suppose that T, : L*(x) —» L?*(X) is positive
semi-definite; thus,

[[K () fF(x)f(y)dxdy 20 (11)

X X
for any, f O L2 (x ) . Let, vibethe Eigen
functions and Eigen vectors of Twith

[ KOGy (y)dy = A (%)

Then

1.Zi/]i<oo

2.8Up , ¢ (Xx) < o

3. K(x,y) = Z izl/]i‘//i ()¢ (y)
where the convergence is uniform in x, y.
Such a kernel defines a Mercer Kernel accordirigeccer
theorem given in [16]. This gives the mapping irféature
space as

x> @(X) = (AW, (), A0, (y),.)" (13)

B. Reproducing Kernel Hilbert Spaces [16]

12)

Let us consider an inner produéu ) V> as
1. Ausual dot product<U,V> —VWw= Z iViWi

2. Akernel product:<u,V> =k(v,w) =¢(v) (W)

where/(u) may have infinite dimension.

However, an inner produc<t.,.> must satisfy the
following conditions

1. symmetry (U,v)={v,u)du,vO x
2. Bilinearity (au+ pv,w) = alu,w)+ B{v,w)
du,v,wd y,0a,0R

3. Positive definiteneséu u)=z0,0ul
<U,u> =0 u=0

Definition 1

A Hilbert Space is an inner product space thabmpulete
and separable with respect to the norm definechbyiriner
product.

Definition 2
K (,.) is a reproducing kernel Hilbert spaces Hiif f[J H,
f(x) = <k(X,.), f ()> A Reproducing Kernel
Hilbert Space (RKHS) is a Hilbert space H with proglucing
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kernel whose span is dense in H. We could equitigilen
define an RKHS as a Hilbert space of function wath
evaluation functionals bounded and linear.

From the above definition and theorem, kernel fiamcK
must be continuous, symmetric, and have a positéfaite
gram matrix. Such a K means that there exists gpmgpo a
reproducing kernel Hilbert space such that the ptotuct
there gives the same value as the function Kkérael does
not satisfy Mercer's condition, then the correspmd
Quadratic Problem has no solution. Hence, if anvy kernel
is proposed it should be checked with mercer kernel

Table 1. Types of Kernels

Kernels Function
Laplacian K(xy) = exp{—X_yJ
ag
Rational 2
Quadratic K(xY) :1_)()4324
X—Vy| +c
Multiquadratic K(x.y) = HX_W‘Z e
Lo d
g K(x,y) ==logx-y| +1)
Bessel Iy (U”X _ y”)
K (X, y) = ”X _ y||—n(v+1)
Cauchy K (. y) = 1
YT T T d
byl
d
Wavelet N —C —C
KExY) = nr(‘){y'j
el a a

Table 2. Data Sets Used

Datasets Size Features Class
Pentagon 99 2 5
Iris 150 4 3
Wine 270 13 3

V. RESULTS AND DISCUSSIONS

In this sectionDAO andOAA SVM's kernel functions are
evaluated using the metrics like accuracy, suppectors,
support vector percentage, training error, classifn error
and time taken .For experimentation, two benchrdatksets
(Iris, Wine) are taken from the UCI machine leagnin
repository and one synthetic dataset from [10] Bsketch of
the datasets is given in table 2. In multiclass S¥id optimal
regularization paramete€ and the kernel parametesse
estimated by repeating classifications.
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Linear kernel K()g,X-):1+)ngj is a simple kernel

function based on the penalty paramégsince parametet

controls the trade-off between frequency of erroard
complexity of decision rule [7]. Also, it reducd®etsupport
vectors, training error and classification erroifyrementing
the parameter C.But it is not suitable for largeadats.

Polynomial kernel K (x;, X;) = (1+ )(iij)p also known

asglobal kerne| is non-stochastic kernel estimate with tw
parameters i.e€C and polynomial degrge Each data from the
setx; has an influence on the kernel point of the tekiess,
irrespective of its the actual distance froqij14], It gives
good classification accuracy with minimum number o
support vectors and low classification error.

Radial basis function K(x,x ) =exptyx —xsz) also

Multiclass Suport Vector Machines

And, they are graphically depicted in figures 24 3or OAO
and figures 5, 6, 7 for OAA using kernel parametirs
X axis and range of values in Y axis. Similarly pog
vectors, support vector percentage, accuracylastrdted in
tables 4.1, 4.2, 4.3. Also, they are visually poréd in figures
8, 9, 10 for OAO and figures 11, 12, 13 for OAA.

In table 3.1 (i)Exponential RBFkernel’s training error,
classification error rate and time are lesser tthen other

geernels for OAO SVM, (iiPolynomialandExponential RBF

Kernels training time, error rate and time aredegban the
other kernels for OAA SVM. In table 3.Pplynomial ERBF
and RBF kernelstraining error, classification error and time
are better compared to other kernels for OAO andhOA
table 3.3Polynomial, ERBFandRBF kernels training error,
classification error and time are better compa@dther
kernels for OAO and OAA.Similarly, from tables [4.4.3]

known adocal kernel is equivalent to transforming the dataPolynomial kerneland RBF kernelsgive better result. In

into an infinite dimensional Hilbert space .Thus;an easily
solve the non-linear classification problem. It haseffect on
the data points in the neighborhood of the testevfl4]. RBF
gives similar result as polynomial with minimum itviag

error but for some cases the number of supportovemtd
classification error increases.

Exponential radial basis function
K(X,X-):exp(—w) gives piecewise linear solution.
20
2
i i i ; X =X
Gaussian radial basis functlonK()g’xj):eXp(_H ZUZIH)

deals with data that has conditional probabilitgtribution
approaching gaussian functioRBF kernelsperform better
than the linear and polynomial kernel. Howeveis difficult
to find an optimum parametessand equivalen€ that gives
better result for a given problem.

Sigmoid keme'K(xi,xj):tanh(quxj - o) Is not efficient

as other kernel function, because it lacks the sszog
condition of a valid kernel. Parameterandd must be chosen
properly to obtain high classification accuracy.

The performance metrics of several kernels are eoatp
to find an optimal and efficient kernel and it iarged out
using MATLAB and C++. The tables 3.1, 3.2, 3.3 show
training error, classification error and time takendifferent
kernels in OAO and OAA SVM on three datasets.
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kernel function, number of support vector increabes the
classification accuracy diminishes. After analyzialy the
features of the kernel function, appropriate andinuogd
kernels for our datasets are polynomial kernel &RRF
kernels. They have minimum number of support vegtor
minimum value as classification error and goodsifasition
accuracy which is shown in Figure 2-13.

VI.

Classification time and Computational complexity the
multiclass SVM classifier depend on the numberugfp®rt
vectors required. In SVM classification, the regdimemory
to store the support vectors is directly proposioto the
number of support vectors. Hence, support vectarst e
reduced to speed up the classification and to nimeirthe
computational and hardware resources required
classification. Here, performance metrics of défarkernels
in multiclass SVM on three datasets are comparexi.aA
result, the efficient kernel for multiclass SVM séifier is
polynomial kernel for these datasets. Hybrid kesran be
created using systematic methodology and optinurati
technique. Therefore, the best method to combimettimal
feasible kernels would be our research work inr&itu

CONCLUSION

for
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APPENDIX
Table 3.1 Training and Test Error Rate for Iris Dataset

Kernels Parameter One versus Ong Parameter One versus All -
TE CE Time(s) TE CE Time(s)
Linear C=10 0.0167 0.5 0.03 C=10 0.0583 0.3338 0.14
C=100 0.0 0.6333 0.01 C=10000 0.0167 0.3000 28
Polynomial | C=1,p=1.5 0.0167 0.3338 0.04 C=10,p=2 0.08 0.1 340
C=1,p=2.5 0.1416 0.4333 0.125 C=100,p=2 0.0 0.2 9 0.(
RBF C=1,y=05 0.058 0.2667 0.03 C=1071.5 0.033 0.0667 0.04
C=1,y=1.5 0.025 0.5333 0.05 C=1pr1 0.025 0.1333 0.04
ERBF C=15=1.5 0.0167 0.0333 0.031 C=4:=0.5 0.008 0.0667 0.015
C=10,0 =2.5 0.0167 0.2667 0.03 C=10072 0.1667 0.1 0.06
GRBF C=10,0 =2 0.025 0.1333 0.03 C=16,=0.05 0.008 0.2333 0.12
C=10,06 =1.5 0.0167 0.4 0.03 C=106=0.05 0.008 0.2 0.28
Sigmoid C=1, k=1§=2 0.0583 0.2667 0.063 C=1000, k8153 0.0 0.2 0.218
C=1000, k =5p =2 0.3083 0.0333 0.016 C=1000,k8255 0.0 0.2667 0.313
Table 3.2 Training and Test Error Rate for Pentagon Daaset
Kernels Parameter One versus On_e Parameter One versus A".
TE CE Time (s) TE CE Time (s)
Linear C=10 0.0 0.25 0.015 Cc=10 0.013 0.05 0.109
C=100 0.0 0.25 0.03 C=1000 0.0 0.05 0.078
Polynomial | C=1000,p=3 0.0 0.25 0.0 C=100,p=1.5 0.0 0J1 0.1
C=1000,p=6 0.0 0.25 0.031 C=1000,p=1.5 0.0 0.1 0.1y
RBF C=10, y =0.005 0.0 0.4 0.0 C=109=0 .5 0.367 0.3 0.156
C=100,y =0.5 0.0 0.3 0.12 C=100,=6 0.025 0.1 0.09
ERBF C=100,6 =1.5 0.0 0.25 0.02 C=106,=0.5 0.0 0.05 0.046
C=1000,6 =0.5 0.02 0.8 0.016 C=ind, =2 0.0 0.1 0.109
GRBF C=100,6 =0.05 0.0 0.5 0.031 C=16,=0.5 0.101 0.45 0.031
C=1000,6 =2 0.04 0.3 0.015 C=in§ =0.5 0.316 0.25 0.031
Sigmoid C=10, k=15 =2 0.01 0.3 0.0 C=100,k=851 0.0 0.1 0.046
C=100, k=0.5p=1 0.03 0.25 0.031 C=inf, k=2 =0.5 0.0 0.1 0.187
Table 3.3 Training and Test Error Rate for Wine Dataset
Kernels Parameter One versus Ong Parameter One versus A".
TE CE Time(s) TE CE Time(s)
Linear Cc=1 0.0625 0.9412 1.288 C=10 0.528 0.8542 2.676
C=100 0.0694 0.9118 1.355 C=100 0.253 0.8574 2.897
Polynomial | C=10,p=2 0.1458 0.1471 0.687 C=10,p=2 0.319 0.0882.156
C=100,p=3 0.2656 0.1471] 0.153 C=100,p=2 0.319 @088 0.171
RBF C=100,y =0.0005 0.0486 0.4118 0.703 C=1G; 0.00005 0.09 0.6764 2.359
C=100,y =0.05 0.0069 0.0588 0.859 C=10§60.00005 0.09 0.6764 2.567
ERBF C=100,c =8 0.0277 0.5588 0.812 C=1090:6 0.006 0.705 1.987
C=100,6 =2.5 0.0138 0.2647 0.328 C=1@0710 0.006 0.6765 2.555
GRBF C=1000,c =8 0.0277 0.1765 0.593 C=10@07=8 0.013 0.8529 2.234
C=1000,6 =6 0.0208 0.0882 0.965 C=10@076 0.0 0.8876 1.187
Sigmoid C=100, k=25 =4 0.9 0.5902 0.562 C=10672,5=4 0.58 0.8532 1.234
C=100, k=25 =2 0.91 0.5902 0.531 C=100 k822 0.59 0.8532 1.25
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Table 4.1 Accuracy, Support Vector and Support Vecto% for Iris Dataset

Kernels Parameter One versus One Parameter One versus Al
SV SV% Accuracy% SV SV% Accuracy %
Linear C=10 16 13.33 50 C=10 70 58.33 66.67
C=100 11 7.5 36.67 C=10000 63 52.5 70
Polynomial C=1,p=15 23 19.1 66.67 C=10,p=2 15 12.5 90
C=1,p=25 16 13.33 56.67 C=100,p=2 10 8.3 80
RBF C=1,y=05 40 33.33 73.33 C=19=15 20 16.67 93.33
C=1,y=15 31 25.8 46.67 C=19~1 23 19.1 86.67
ERBF C=15=15 47 39 96.67 C=5=0.5 31 25.8 93.33
C=10,6 =2.5 28 23.33 73.33 C=1060-=2 17 14.16 90
GRBF C=10,6 =2 31 25.8 86.67 C=16,=0.05 45 37.5 76.67
C=10,6 =1.5 26 21.6 60 C=100,=0.05 44 36.67 80
Sigmoid C=1, k=1,6=2 46 38.3 73.33 C=1000, k=373 | 12 10 83.33
C=1000, k=5 =2 40 33.33 96.66 C=1000,k=275 11 9.16 76.67
Table 4.2 Accuracy, Support Vector and Support Vecto% for Pentagon Dataset
Kernels Parameter One versus One Parameter One versus Al
SV SV% | Accuracy% SV SV% | Accuracy%
Linear C=10 25 31.65 75 C=10 50 63.3 95
C=100 20 25.32 75 C=1000 A( 50.683 95
Polynomial | C=1000,p=3 18 22.78 75 C=100,p=1.5 19 24.05 90
C=1000,p=6 15 18.99 75 C=1000,p=1.5 17 21.61 90
RBF C=10,y =0.005 15 18.98 60 C=10p=0 .5 43 54.43 70
C=100,y =0.5 20 25.32 70 C=100,=6 21 26.58 90
ERBF C=100,6 =1.5 21 26.58 75 C=106,=0.5 30 37.97 95
C=1000,6 =0.5 28 35.44 20 C=in§ =2 19 24.05 90
GRBF C=100,0 =0.05 38 48.1 50 C=16,=0.5 32 40.5 55
C=1000,6 =2 18 22.78 70 C=infy =0.5 17 21.51 75
Sigmoid C=10, k=1, =2 28 35.44 70 C=100,k=851 20 25.32 90
C=100, k=0.5p =1 20 25.32 75 C=inf, k=3,=0.5 19 24.05 90
Table 4.3 Accuracy, Support Vector and Support Vecto% for Wine Dataset
Kernels Parameter One versus One Parameter One versus Al
SV SV% | Accuracy% SV SV% | Accuracy%
Linear C=1 33 22.91 5.88 C=10 35 24.3 14.58
C=100 31 21.52 8.882 C=100 39 27.08 14.26
Polynomial C=10,p=2 44 30.55 85.29 C=10,p=2 g 5.5 91.18
C=100,p=3 45 31.25 85.29 C=100,p=2 3 5.55 91.18
RBF C=100,y =0.0005 68 47.22 58.82 C=1005 0.00005 65 45.13 32.35
C=100,y =0.05 75 52.08 94.12 C=100050.00005| 55 38.19 32.35
ERBF C=100,0 =8 70 48.6 44.12 C=1006,=6 78 54.16 29.45
C=100,6 =2.5 85 59.02 73.53 C=106~10 72 50 32.35
GRBF C=1000,c =8 80 55.55 82.35 C=1006,=8 90 62.5 14.71
C=1000,c =6 80 55.55 91.18 C=1006,=6 100 69.44 11.24
Sigmoid C=100, k=25 =4 112 77.77 40.98 C=10672,6=4 122 84.72 14.68
C=100, k=25 =2 110 76.38 40.98 C=100 k822 122 84.72 14.68
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Fig.12 OAA- Accuracy for Pentagon dataset. Fig.13 OAA- Accuracy for Wine dataset

Figure (8-10) represent OAO multiclass SVM Accuracyor Iris,Pentagon and Wine.Figure (11-13) represenOAA multiclass SVM
Accuracy for Iris,Pentagon and Wine.
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