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Abstract—The scope of the Formal System Design (ForSyDe)
methodology is high-level modeling and refinement of sys-
tems-on-a-chip and embedded systems. Starting with a formal
specification model, that captures the functionality of the system at
a high abstraction level, it provides formal design-transformation
methods for a transparent refinement process of the system model
into an implementation model that is optimized for synthesis.
The main contribution of this paper is the ForSyDe modeling
technique and the formal treatment of transformational design
refinement. We introduce process constructors, that cleanly sepa-
rate the computation part of a process from the synchronization
and communication part. We develop the characteristic function
for each process type and use it to define semantic preserving
and design decision transformations. These transformations are
characterized by name, the format of the original process network,
the transformed process network, and a design implication. The
implication expresses the relation between original and trans-
formed process network by means of the characteristic function.
The objective of the refinement process is a model that can be
implemented cost efficiently. To this end, process constructors and
processes have a hardware and software interpretation which shall
facilitate accurate performance and cost estimations. In a study
of a digital equalizer example, we illustrate the modeling and
refinement process and focus in particular on refinement of the
clock domain, communication refinement, and resource sharing.

Index Terms—Formal methods, hardware/software codesign,
modeling, system-on-a-chip (SoC).

I. INTRODUCTION

KEUTZER et al. [1] point out, that “to be effective a de-
sign methodology that addresses complex systems must

start at high levels of abstraction” and underline that an “essen-
tial component of a new system-design paradigm is the orthog-
onalization of concerns, i.e., the separation of various aspects
of design to allow more effective exploration of alternative so-
lutions.” In particular, a design methodology should separate:
1) function (what the system is supposed to do) from architec-
ture (how it does it) and 2) communication from computation.
They “promote the use of formal models and transformations in
system design so that verification and synthesis can be applied
to advantage in the design methodology” and believe that “the
most important point for functional specification is the under-
lying mathematical model of computation.”
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These arguments strongly support the formal system design
(ForSyDe) methodology, as many of their main requirements on
a system design methodology are not only part of our method-
ology, but establish the foundations of ForSyDe. We believe that
a future system design methodology must give support for the
integration of formal methods, since it is more and more un-
likely that the ever increasing functionality inside an SoC can
be verified with only simulation and emulation techniques.

We have developed the ForSyDe methodology with the de-
sign of SoC (system-on-a-chip) technologies in mind. However,
we are aware of the fact that ForSyDe, as a research project,
cannot handle all aspects of an SoC, since SoCs are of extreme
complexity and can include a variety of components, such as
analog parts, microcontroller cores, digital signal processor
cores, memories, IP blocks, and custom hardware. The design
of an SoC demands the development of a communication struc-
ture between these heterogeneous components on all layers,
from the physical layer to the application layer. Software has
to be developed not only for different processors, but also for
different operating systems.

The contribution of ForSyDe is a modeling and refinement
technique that can be used as part of the design process of an
SoC. Our goal is to develop these abstract techniques to such an
extent that they can be incorporated into future computer-aided
design methodologies and tools. The main objective is to move
design refinement from the implementation into the functional
domain. Starting with a formal specification model that captures
the functionality of the system at a high abstraction level, it pro-
vides formal design-transformation methods for a transparent
refinement process of the specification model into an implemen-
tation model. This implementation model is based on the same
semantics as the initial specification model, but is more detailed
and optimized for implementation after the stepwise application
of semantic preserving and design decisions transformations. At
this late stage in the design process, the implementation model
is mapped onto an implementation.

This paper presents the modeling and refinement technique
in ForSyDe. We exemplify these techniques by the case study
of a digital equalizer. The first part of this case study covers the
development of the specification model, while the second part
illustrates the potential for design refinement by the application
of transformations for the clock domain and communication re-
finement and resource sharing.

II. RELATED WORK

Skillicorn and Talia discuss models of computation for par-
allel architectures in [2]. Their community faces similar or even
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identical problems as are typical for SoC design, since an SoC
architecture often includes a number of parallel microproces-
sors. In fact, all typical parallel computer structures (SIMD,
MIMD) can be implemented on an SoC architecture. Recog-
nizing, that programming of a large number of communicating
processors is an extremely complex task, they try to define prop-
erties for a suitable model of parallel computation. They empha-
size that a model should hide most of the details (decomposition,
mapping, communication, synchronization) from programmers,
if they shall be able to manage intellectually the creation of soft-
ware. The exact structure of the program should be inserted by
the translation process rather than by the programmer. Thus,
models should be as abstract as possible, which means that the
parallelism has not even to be made explicit in the program text.
They point out that ad hoc compilation techniques cannot be ex-
pected to work on problems of this complexity, but advocate to
build software, that is correct by construction rather then veri-
fying program properties after construction. Programs should be
architecture independent to allow reuse. The model should sup-
port cost measures to guide the design process and should have
guaranteed performance over a useful variety of architectures.

Depending on what information is explicit in a model they
distinguish six levels, i.e.,

1) nothing explicit;
2) parallelism explicit;
3) parallelism and decomposition explicit;
4) parallelism, decomposition, and mapping explicit;
5) parallelism, decomposition, mapping, and communica-

tion explicit;
6) parallelism, decomposition, mapping, communication,

and synchronization explicit.
According to this scheme, the ForSyDe modeling approach

can both be classified: 1) with focus on modeling as “nothing
explicit,” since the designer is able to develop the specifica-
tion model without even being aware that the system will be
implemented on a parallel architecture and 2) with focus on
implementation as “parallelism” and “communication explicit,”
since the specification model can be interpreted as a concurrent
process model with a synchronous communication. However,
neither the process nor the communication structure is fixed,
since during the refinement phase, processes can be merged and
split and synchronous communication channels can be refined
into asynchronous channels as elaborated in this article.

Edwards et al. [3] believe, that the design approach should
be based on the use of one or more formal methods to describe
the behavior of the system at a high level of abstraction, before
a decision on its decomposition into hardware and software is
taken. The final implementation of the system should be made
by using automatic synthesis from this high-level of abstraction
to ensure implementations, that are “correct by construction.”
Validation through simulation or verification should be done at
the higher levels of abstraction.

They advocate a design process, that is based on representa-
tions with precise mathematical meaning, so that both the verifi-
cation and the mapping from the initial description to the various
intermediate steps can be carried out with tools of guaranteed
performance. A formal model of a design should consist of the
following components:

1) a functional specification;
2) a set of properties, that the design has to satisfy;
3) a set of performance indexes that evaluate the design in

different aspects (speed, size, reliability, etc.);
4) a set of constraints on performance indexes.
The design process takes a model of the design at one level of

abstraction and refines it to a lower one. The refinement process
involves also the mapping of constraints, performance indexes,
and properties to the lower level.

Using the tagged signal model introduced by Lee and
Sangiovanni-Vincentelli [4], they classify and analyze several
models of computation, in particular discrete event models,
communicating finite state machines (FSMs), synchronous/re-
active models and data flow process networks. It appears that
different models fundamentally have different strength and
weaknesses, and that attempts to find their common features
result in models that are very low level and difficult to use.

According to the tagged signal model our system model
can be classified as synchronous computational model. The
ForSyDe system model is based on the perfect synchrony
hypothesis, that also forms the base for the family of the syn-
chronous languages. According to Benveniste and Berry, “the
synchronous approach is based on a relatively small variety of
concepts and methods based on deep, elegant, but simple math-
ematical principles.” [5] The basic synchronous assumption is
that the outputs of the system are synchronized with the system
inputs, while the reaction of the system takes no observable
time. The synchronous assumption implies a total order of
events and leads to a clean separation between computation
and communication. A global clock triggers computations
that are conceptually simultaneous and instantaneous. This
assumption frees the designer from the modeling of complex
communication mechanisms. These properties give a solid base
for formal methods.

A synchronous model can be implemented on a target ma-
chine, if this machine is “fast enough.” This design technique
has been used in hardware design for clocked synchronous cir-
cuits. A circuit behavior can be described determinately inde-
pendent of the detailed timing of gates, by separating combi-
national blocks from each other with clocked registers. An im-
plementation will have the same behavior as the abstract circuit
under the assumption, that the combinational blocks are “fast
enough.”

Data flow models [6], such as Kahn process networks [7] or
synchronous data flow (SDF) [8], are well suited for applica-
tions that do not require the expression of time, such as DSP
applications. Even though they excellently fit their application
domain, we have chosen a synchronous model to be able to ex-
press timing properties and constraints on a level that abstracts
from physical time.

Balarin et al. [9] argue that the synchronous assumption,
though very convenient from the analyzing point of view,
imposes a too strong restriction on the implementation, as it has
to be “fast enough.” They advocate a globally asynchronous
locally synchronous (GALS) approach and implement it in their
methodology as a network of Codesign FSMs communicating
via events. Each CFSM is a synchronous FSM, but the com-
munication is done by the emission of events by the CFSMs,
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which can happen at any time and independently. The CFSM
network is inherently nondeterministic. Balarin et al. argue,
that this enables them to easily model the unpredictability of
the reaction delay of a CFSM both at the specification and at the
implementation level, while they admit, that nondeterminism
makes the design and verification process more complex.

We argue, that the advantages of a deterministic synchronous
system model outweigh the disadvantages. Nondeterminism in
the system model implies, that all possible solutions have to
be considered, which makes both the design and verification
process more complex. We believe that the task to develop and
to verify a system model for an SoC application is so complex,
that a system model has to be deterministic. In our opinion, the
fact that SoC applications will be implemented on at least partly
asynchronous architectures does not justify a nondeterministic
approach. Following Skillicorn and Talia [2], we think that the
synthesis of the system model into a partly asynchronous im-
plementation should be part of the synthesis process and not al-
ready be decided at the system level.

The synchronous languages [10] are based on the perfect
synchrony hypothesis and have been developed for the design
of reactive systems, i.e., systems that maintain a permanent
interaction with the environment. All synchronous languages
are defined formally and lead to deterministic system models.
The family of synchronous languages can be divided into
two groups, one group targeting data flow applications, e.g.
Lustre [11] and Signal [12], the other targeting control oriented
applications, e.g., Statecharts, [13], Esterel [14], and Argos
[15]. However, there is no synchronous language covering both
application domains [5]. The clean mathematical formalism
has led to the development of several verification tools for these
languages. [16] give an overview over the techniques and tools
developed for the validation of reactive systems described in
Lustre. However, they point out, that these techniques can be
adapted to any synchronous language.

Hsieh et al. define another synchronous assumption in [17].
A cycle consists of an interaction phase (where the environment
interacts with the design) followed by a computation phase
(where the components in the design perform computation and
communicate internally). They do not assume a zero delay for
the computation phase, as in the case of the perfect synchrony
hypothesis. Using their definition they define synchronous
equivalence as: “Two implementations are synchronously
equivalent if and only if any two synchronous assumption
conforming runs of the two implementations that have the
same input traces also have the same output traces.” As long
as the primary outputs are the same at the end of every cycle,
the internal details of the execution do not matter. In ForSyDe,
synchronous equivalence can be shown with the characteristic
function. The use of the characteristic function is not restricted
to synchronous models, but can also be implied on models with
synchronous subdomains.

We base our approach on the same foundation as the syn-
chronous languages, the perfect synchrony hypothesis, but
extend it to cover both, control and data flow applications. We
achieve this by a formal system modeling technique which
models can be expressed with the purely functional program-
ming language Haskell [18]. While functional languages fit

naturally for data flow applications, Haskell provides a rich
variety of control constructs, making it suitable for control
dominated applications. Haskell is defined by a formal seman-
tics and is purely functional, i.e., a function has no side effects,
resulting in a system model, that in itself is a function with no
side effects and thus totally deterministic.

While these properties mainly support formal verification
methods, other properties support design correctness. Ac-
cording to Lee [19], type systems do more than any other
formal method to ensure software correctness. Haskell is not
only a strongly typed language, but its type system has also
the ability to infer the correct type for a function, which offers
another dimension of polymorphism compared to some popular
object oriented languages, such as C++ or Java.

While the high level of abstraction fits well for system level
specification, there is a gap between the system model and a pos-
sible implementation on an SoC architecture. We try to bridge
this gap by the concept of process constructors. Though the
system model is formulated as a function, the use of process
constructors implies that the functional model can be interpreted
as a network of synchronously communicating concurrent pro-
cesses. Such a process structure is almost fixed in other de-
sign languages (VHDL, SDL), but in ForSyDe processes can be
merged and split during the application of transformation rules
during the design transformation phase [20]. As each process
constructor has a hardware and software interpretation, the re-
fined implementation model can be interpreted into a structure
with hardware and software components.

While we advocate to use a single unified-system model in
the ForSyDe methodology, a lot of work is done using mixed
models of computation. This approach has the advantage, that
a suitable model of computation can be used for each part of
the system. On the other hand, as the system model is based on
several computational models, the semantics of the interaction
of fundamentally different models has to be defined, which is
not a simple task. This even amplifies the verification problem,
because the system model is not based on a single semantics.
There is little hope that formal verification techniques can help,
and we are left with simulation as the only means of validation.
In addition, once a heterogeneous system model is specified, it
is very difficult to optimize systems between different models
of computation. In summary, cross domain verification and op-
timization will remain elusive for many years for any heteroge-
neous modeling approach.

The MASCOT methodology [21] integrates data and control
flow at the system specification level, using the two languages
Matlab and SDL. The dataflow parts are described in Matlab.
and the control flow parts in SDL. The system is then cosimu-
lated using a library of wrappers and communication functions.
The computational model is elaborated in [22].

The Ptolemy project [23] “studies heterogeneous modeling,
simulation, and design of concurrent systems. The objective in
Ptolemy II is to “support the construction and interoperability of
executable models that are build under a wide variety of models
of computation.”

Internal representations like the SPI model [24] and FunState
[25] have been developed to integrate a heterogeneous system
model into one internal representation. The SPI model “shall
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enable the analysis and synthesis of mixed reactive/transforma-
tive systems described in several languages with possible differ-
ences in the underlying models of computation. All information
relevant to synthesis is abstracted from the input languages and
transformed into the semantics of the SPI model.”

Declarative languages have been used in other research
projects in electronic design.

Reekie [26] has used Haskell to model digital signal-pro-
cessing applications. Similar to us, he modeled streams as in-
finite lists and used higher-order functions to operate on them.
Finally, correctness-preserving methods were applied to trans-
form a model into a more efficient representation. This repre-
sentation was not synthesized to hardware or software.

Ruby is a declarative language that has mainly been used
for hardware design. In [27], a declarative framework for
hardware/software codesign based on Ruby has been proposed.
Ruby also supports transformations based on equational
reasoning and supports data type refinement.

Lava [28] is a hardware description language based on
Haskell. Similar to Ruby it focuses on the structural represen-
tation of hardware and offers a variety of powerful connection
patterns. Lava descriptions can be translated into VHDL and
there exist interfaces to formal method tools.

Mycroft and Sharp have used the languages statically allo-
cated functional language (SAFL) and SAFL+ [29], mainly
for hardware design but extended their approach in [30] to
hardware/software codesign. They transform SAFL programs
by means of meaning-preserving transformations and compile
the resulting program in a resource-aware manner, i.e., a
function that is called more than once will be a shared resource.

The Hawk language [31] embedded in Haskell is used for
building executable specifications of microprocessors. The
Hawk project addresses the need for verification of complex
modern microprocessors, which is supported by the formal
nature of a Hawk specification. Hawk has been used to specify
and simulate the integer part of a pipelined DLX processor.

Hardware ML (HML) [32] is a hardware-description lan-
guage that is based on the functional programming language
Standard ML [33]. Though HML uses some features of Stan-
dard ML, such as polymorphic functions and its type system, it
is mainly an improvement of VHDL—there is a direct mapping
from HML constructs into the corresponding VHDL constructs.

ForSyDe is most similar to Reekie’s approach and we view
ForSyDe as an extension and further development of Reekie’s
work. Mycroft and Sharp follow with their SAFL language a
similar intention as ForSyDe as they also intend to move re-
finement to a higher level. However, they restrict themselves to
semantic preserving transformations. Lava, Ruby and HML are
different in that they perform hardware modeling and design at
a lower level than we do. While their modeling concepts can
be seen as competitors to VHDL and Verilog, in ForSyDe these
languages are target languages and hardware synthesis tools are
back-end tools. Hawk is different in that it addresses modeling
and verification of instruction sets and processor architectures.
Our targets are more general hardware architectures and em-
bedded software running on a processor, but not the processor
design itself.

A good overview about program transformation in general
is given in [34] and for transformation of functional and log-

ical programs in [35]. One of the most well-known transforma-
tion systems is the computer-aided, intuition-guided program-
ming (CIP) project [36]. Inside CIP, program development is
viewed as an evolutionary process that usually starts with a
formal problem specification and ends with an executable pro-
gram for the intended target machine. The individual transfor-
mations are done by semantic preserving transformation rules,
which guarantees that the final version of the program still satis-
fies the initial specification. Such an approach has the following
advantages [36].

• The final program is correct by construction.
• The transitions can be described by schematic rules and,

thus, be reused for a whole class of problems.
• Due to formality, the whole process can be supported by

the computer.
• The overall structure is no longer fixed throughout the de-

velopment process, so the approach is quite flexible.
However, in order to allow for a successful transformation of a
specification into an effective implementation, a transformation
framework has to provide a sufficient number of transformation
rules and there must also exist a transformation strategy in order
to choose a suitable order of transformation rules. This strategy
ideally interacts with an estimation tool that shows if an imple-
mentation is more efficient than another. Since program trans-
formation requires a well-developed framework, it has, so far,
been mainly used for small programs or modules inside a larger
program, where software correctness is critical.

Most of the transformational approaches are concerned with
software programs, where concepts of synchronous subdomains
and resource sharing, as discussed in this paper, have no rele-
vance. There are also a number of other transformational ap-
proaches targeting hardware design (e.g., [37] and [38]), but
none of them explicitly develops the concept of design deci-
sions or addresses the refinement of a synchronous model into
multiple synchronous subdomains as we attempt in this article.
In particular, our approach allows us to use the large amount of
work that exists for high-level synthesis [39], [40] by defining
design decision transformations for refinement techniques like
retiming or resource sharing.

Voeten points out that each transformational design that is
based on a general purpose language will suffer from funda-
mental incompleteness problems [41]. This means that the ini-
tial model to a large extent determines whether an effective and
satisfying implementation can be obtained or not, since only
a limited part of the design space can be explored. The same
problem is known in the context of high-level synthesis as syn-
tactic variance problem [42], which in general is unsolvable.

III. ForSyDe METHODOLOGY

The design process in ForSyDe starts in the functional do-
main with the development of an abstract and formal specifica-
tion model according to the ForSyDe modeling guidelines. The
designer verifies the functionality of the design by either sim-
ulation of the executable specification model, which is the ver-
ification technique we use today, and/or by formal verification
techniques, which are planned to be incorporated into ForSyDe.

Design refinement starts after the functional verification of
the design. Here, the designer refines the specification model
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into an implementation model by a stepwise application of de-
sign transformations, which are selected from a transformation
library. The task of the refinement process is to optimize the
specification model and to add the necessary implementation
details in order to allow for an efficient mapping of the imple-
mentation model onto the chosen architecture. Every process
must either be directly mappable or be part of mappable process
network, provided with a mapping function onto an architec-
ture component or IP. If a concurrent process structure shall be
implemented on a single processor with operating system and
memory, the refinement process must transform the specifica-
tion model into an implementation model that includes a sched-
uling process. Only at this stage, the design process leaves the
functional domain and enters the implementation domain by the
mapping of the implementation model onto architecture com-
ponents. The scheduling process is mapped onto services of the
operating system and the concurrent processes are mapped to
software processes.

So far, ForSyDe is restricted to a small number of transforma-
tions and mapping rules for hardware and software processes
(Section IV-E), which however allow to show the potential of
ForSyDe, but are far from sufficient to target realistic designs.
In order to make ForSyDe applicable for larger designs, the fol-
lowing is necessary.

• New transformation rules have to be developed which
capture the characteristics of a possible architecture
component.

• A rich set of mappable processes and process networks has
to be provided.

• Mapping rules between process, channels, and the archi-
tecture components have to be formulated in the same way
as the hardware and software semantics.

The rest of the paper discusses the current state of ForSyDe
and is structured as follows. Section IV presents the compu-
tational model and explains the ForSyDe modeling technique.
Section V presents the foundations for refinement in ForSyDe.
In particular, we show how the characteristic function is used for
the development of new design transformations. Section VI uses
the example of a digital equalizer to illustrate the development
of a specification model and shows how three different refine-
ment techniques can be used to optimize the specification model
and to refine it into a more efficient implementation model.

IV. ForSyDe SYSTEM MODEL

A. Computational Model

In order to formally describe the computational model of
ForSyDe, we use a similar definition as used by Lee and San-
giovanni-Vincentelli [4].

A signal is defined as a sequence of events

where each event has a tag and a value
, i.e., .

The ForSyDe methodology uses two kinds of system model.
The specification model is used in the specification phase and

P1 P2

 →s1

s2
P3

→
→

s3
PN

 →
i

o
→

Fig. 1. System model is a hierarchical network of concurrent processes.

complies with the perfect synchrony hypothesis [5], i.e., all pro-
cesses are infinitely fast and all signals have the same set of tags,
for which we use the set of natural numbers . We define the
term event cycle , which defines the “distance” between
the tags of two adjacent events in a signal as

and the event rate of a signal as .
All signals in the specification model have an event rate of 1,

while a signal in the implementation model may have an event
rate that is different from 1. However, in both
models all signals have a constant event rate and have their first
event at tag 0, so that there is a total order of all events in all
signals in the model.

In order to model the absence of a value at a certain tag, a
data type can be extended into a data type by adding the
special value . These absent values are used to establish a total
order of events when modeling signals with a slower data rate or
an aperiodic behavior, such as a reset signal. Note, that the term
data rate expresses the rate of useful, i.e., nonabsent, values in
a signal and is not identical to our definition of event rate.

A system model is hierarchical network of concurrent pro-
cesses. The processes communicate with each other by means of
signals. The process network of Fig. 1 is, in itself, a process
and can be expressed as the following set of equations:

where

In the following, we define the terms process (Def. 1), syn-
chronous process (Def. 2), and domain interface (Def. 3).

Definition 1: A process is a functional mapping of input

signals into output signals .

The set of processes is designated as .
Definition 2: A synchronous process is a functional

mapping of input signals into output signals
, where all input and output signals have the same

event rate .

The set of synchronous processes is designated as .
Definition 3: A domain interface is a functional mapping

of input signals into output signals ,
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R(o1) ≠ R(o2)  →→

Fig. 2. Compositions of processes and domain interfaces may lead to
processes that are neither synchronous processes nor domain interfaces.

where all input signals have the event rate and all output sig-
nals have another event rate

where

The set of domain interfaces is designated as .
The specification model is a process network of synchronous

processes and, thus in itself, a synchronous process. The imple-
mentation model is a composition of synchronous processes and
domain interfaces and in itself a process that may not fall into
the category of synchronous processes or domain interfaces as
illustrated in Fig. 2.

B. Specification Model

The specification model reflects the design principles of the
ForSyDe methodology. In order to allow for formal design on a
high abstraction level, the specification model has the following
characteristics.

• It is based on a synchronous computational model, which
cleanly separates computation from communication.

• It is purely functional and deterministic.
• It uses ideal data types such as lists with infinite size.
• It uses the concept of well-defined process constructors

which implement the synchronous computational model.
• It is based on a formal semantics and can be expressed in

a modeling language. We have chosen to embed ForSyDe
in the functional language Haskell [18].

The specification model abstracts from implementation details,
such as buffer sizes and low-level communication mechanisms.
This enables the designer to focus on the functional behavior on
the system rather than structure and architecture. This abstract
nature leaves a wide design space for further design exploration
and design refinement, which is supported by our transforma-
tional refinement techniques (Section V).

Fig. 3 illustrates signals and processes inside the specification
model. At tag a process processes the events of each signal
with the tag and outputs the result at the same tag .

As we use the perfect synchrony hypothesis [5], all input
and output signals have the same set of tags. We implement the
synchronous computational model with the concept of process
constructors. A process constructor is a higher-order function
that takes combinational functions, i.e., functions that have no
internal state, and values as input and produces a process as
output. The ForSyDe methodology obliges the designer to use
process constructors for the modeling of processes. This leads to

31

5 47 6

32

5 47 6

26 ⊥ 

Absent Value Value

TagEvent

37  ⊥

Signal

Inc⊥

Fig. 3. Modeling of signals and processes.

Fig. 4. Combinational process constructors mapSY and zipWithSY .

a well-defined specification model, where all processes are con-
structed by process constructors. There is a clean separation be-
tween synchronization (process constructors) and computation
(combinational function). In addition, each process constructor
has a structural hardware and software semantics, which is used
to translate the implementation model into a hardware/software
implementation [43].

The process constructor takes a combinational func-
tion and constructs a process with one input and output signal,
where is applied on all values of the input signal. The process
constructor corresponds to , but creates
processes with multiple input signals. There is the short nota-
tion for and for . Both processes
are illustrated in Fig. 4.

We denote the processes created by and a function
as the name of the function in capital letters, in this case .

The process of Fig. 3 is modeled by means of the process
constructor , that maps a function on all values of
a signal. The function differs from the increment function

as it is able to process absent values. The function can
be generated by the higher-order function . It takes a function

and extends domain and range in order to cope with
absent values . is defined by

where

otherwise

In the following, we define process constructors for sequen-
tial processes, i.e., processes that have an internal state.

The basic sequential process constructor (short no-
tation ) constructs a process that delays a signals event cy-
cles. The process constructor takes a function and
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Fig. 5. Sequential process constructors delaySY , scandSY , and
mooreSY .

a value for the initial state to construct the basic FSM process.
Using the function composition operator , where

we define the process constructor for the modeling
of Moore FSMs (Fig. 5).

C. Implementation Model

The implementation model is a result of the refinement
process (Section V). In contrast to the specification model,
which is a network of concurrent synchronous processes,
it may also conclude domain interfaces (Def. 3) in order
to establish synchronous subdomains that comprise a local
synchronous process network with a different event rate. These
subdomains will be implemented in an own-clock domain.
Domain interfaces are illustrated in Fig. 6.

Since synchronous subdomains violate the synchronous as-
sumption, they are not allowed in the specification model, but
are introduced by well-defined transformations during the re-
finement process. Inside a synchronous subdomain, the syn-
chronous assumption is still valid and the same formal tech-
niques can be used as for the initial system model. Due to the
formal definition of domain interfaces, we can also reason about
a refined model with synchronous subdomains as further elab-
orated in Section V.

In Fig. 7, we define domain interfaces for up- and down-
sampling.

Next, we define interfaces for serial/parallel conversion
(Fig. 8).

PD2

Main Synchronous Main

(Rate: r)
Domain Sub-Domain

(Rate: r′) (Rate:r)
Domain

PD1

→
i1
→
im

→o1

→on

Domain Interface

Process
Network

Fig. 6. Synchronous subdomains are introduced by domain interfaces.

Fig. 7. Domain interfaces for up- and down-sampling.

Fig. 8. Domain interfaces for parallel/serial conversion.

D. Modeling Language

In principle, all languages that are able to express our compu-
tational model may be used as modeling language for ForSyDe.
Since we started from a research perspective, we have chosen
the functional language Haskell [18] as modeling language, be-
cause it is free from side effects and supports many of our con-
cepts, such as higher-order functions and laziness, and has a
formal semantics. Thus, the implementation of signals, process
constructors, domain interfaces, and is straightforward and
allows us to express ForSyDe models in a clean way with min-
imal effort. For examples of ForSyDe expressed in Haskell, see
[44].

In contrast to Haskell, imperative languages, such as C++,
Java, or VHDL, do not directly support all concepts of ForSyDe,
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in particular not the concept of higher-order functions. Hence, a
system model expressed in these languages will be not as elegant
as a Haskell model.

On the other hand, industrial system designers are used to im-
perative languages and may have difficulties to accept Haskell
as their modeling language. However, for a future industrializa-
tion of ForSyDe, there are at least two possible approaches in
order to make it more appealing.

• An incorporation of a more accepted modeling language
would enable the designer to use ForSyDe, without
learning a new language paradigm. However, the use of
that language should be restricted in accordance to the
ForSyDe principles. A similar idea has been used suc-
cessfully in using VHDL for logic synthesis, where the
synthesis semantics differ from the simulation semantics.
Such an approach would allow us to gradually introduce
new concepts into industrial design practice. It seems that
C++ together with System C [45] is a good candidate,
since it allows the development of a class library for
process constructors. However, in contrast to Haskell, it
is weak typed and not free from side effects. Thus, C++
will not aid the designer to the same extent.

• The development of a graphical user interface for
ForSyDe would allow us to “hide” Haskell from the
designer. The designer would be able to pick process
contructors, which may have more intuitive names like

or , instead of and ,
and only to formulate the corresponding combinational
functions and initial values in order to specify a process.
The specification model can then be developed by
drawing signals between processes. Such a GUI could
also assist the designer during design refinement, where
the tool ideally would highlight possible transformations
together with estimation data and the designer selects one
of the proposed transformations.

Naturally, both approaches can be combined.

E. Hardware and Software Semantics

Processes constructed by process constructors and domain
interfaces have a hardware and software interpretation. Since
synthesis is not the topic of this article, we only exemplify
the hardware and software semantics by a single example,
the process constructor . Hardware synthesis in
ForSyDe has been discussed in [46] and [47], while [43] covers
a case study on the synthesis of the ForSyDe model of a digital
equalizer into VHDL and C.

Processes constructed as are translated
into a finite state machine as illustrated in Fig. 9. The FSM con-
sists of two combinational blocks and registers. The next state
decoder is implemented by a combinational block with in-
puts, where is read as the hardware implementation of the
combinational function . The output decoder is implemented
by another combinational block that implements . Finally,
there is a register that has the size of the data type of that
contains the reset state .

The process is implemented as a soft-
ware process that has a local state and input parameters. In-
side this process, a software function , the software inter-

Fig. 9. Hardware semantics of mooreSY .

M0
T1

M1 Mn
Tn

Fig. 10. Transformational refinement.

pretation of , takes the input parameters and the current state
and calculates the new state, while the function takes the
current state and calculates the output value.

If multiple operations are defined in the system model, the
hardware semantics imply that multiple resources also have to
be generated in the implementation. The decision if resources
are to be shared can be taken during the refinement process. This
is in contrast to SAFL [30], where two equally named operations
in the specification are mapped into one single resource in the
implementation.

V. REFINEMENT

One main idea of the ForSyDe methodology is to move large
parts of the synthesis, which traditionally is part of the imple-
mentation domain, into the functional domain. This is done in
the refinement phase, where the specification model is step-
wise refined by well-defined design transformations into a
final implementation model (Fig. 10). Only, at this late
stage, the implementation model is translated using the ForSyDe
hardware and software semantics into a synthesizable imple-
mentation description.

Definition 4 (Transformation Rule): A transformation rule
is a functional mapping of a process network onto another
process network with the same input signals and the same
number of output signals. A transformation rule is denoted by

or .
Definition 5 (Transformation): A transformation

is a functional mapping of a system model
onto another system model with the same input

signals and the same number of output signals. Using the
transformation rule the internal process network in

is replaced by to yield . A transformation is
denoted by or

, where reads as
is replaced by .
In order to classify transformations and to compare process

networks, we introduce the term characteristic function, which
characterizes the functional behavior of a process network.

Definition 6 (Characteristic Function): The characteristic

function of a process network with

the input signals and the output signals
expresses the dependence of the output events at tag on the
input signals
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The characteristic function of a process network is often
expressed indirectly by the characteristic tag function and
the characteristic value function .

The characteristic function can be derived for any process
network including domain interfaces. Processes based only on
combinatorial process constructors have a characteristic func-
tion that only depends on current input events. Here we give
the characteristic function for the basic combinatorial processes

and .

Sequential processes have a characteristic function that de-
pends also on past input values. A process constructed with

has the following characteristic function:

if

otherwise.
The characteristic functions for FSM processes like
are more complex since they depend on past values and include
an internal feedback loop.

...
...

We classify transformations into semantic preserving and de-
sign decision according to the following definitions.

Definition 7 (Semantic Preserving Transformation): A

transformation is semantic preserving, if

.
Definition 8 (Design Decision): A transformation

is a design decision, if

.
Semantic preserving transformations do not change the

meaning of the model and are mainly used to optimize the
model for synthesis. In contrast, design decisions change the
meaning of a model. A typical design decision is the refinement
of an infinite buffer into a fixed-size buffer with elements.
While such a design decision clearly modifies the semantics,
the transformed model may still behave in the same way as
the original model. For instance, if it is possible to prove, that
a certain buffer will never contain more than elements, the
ideal buffer can be replaced by a finite one of size .

The designer applies transformations to a system model by
choosing transformation rules from the transformation library.

The transformation rules are characterized by a name, the re-
quired formatandconstraintsof theoriginalprocessnetwork, the
format of the transformed process network and the implication
for the design, i.e., the relation between original and transformed
process network expressed by the characteristic function.

We exemplify transformation rules by a combinatorial
process with inputs. If the process has a regular structure
such as an -input adder or multiplier, where
the process can be transformed into a balanced network of

2-input processes. This transformation
is defined in the transformation library as

Transformation Rule

Original Process Network

is associative

Transformed Process Network

Implication

This transformation can be used for all processes that comply
to the format and constraints given in the original process net-
work, here, multiple -input processes, where the operator is
associative. From the Implication we see that is
semantic preserving since the characteristic function of the orig-
inal and transformed process network is identical.

There is another transformation that
pipelines a balanced tree structure of possibly different 2-input
processes into a pipelined tree structure.

Transformation Rule

Original Process Network

Transformed Process Network

Implication
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Fig. 11. Transformation into balanced pipelined structure.

As expressed in the Implication, is a design
decision, since it introduces a delay of cycles. Since such im-
plications are part of the transformation rule, the designer is al-
ways aware of the consequences of a transformation. During
the refinement process he chooses transformations from the li-
brary and applies them successively as visualized in Fig. 11,
where a 4-input addition process is transformed into a pipelined
structure.

A direct translation of a computation intensive algorithm
such as an th-order FIR filter results in an implementa-
tion with a large amount of multipliers and adders. Using
the concept of synchronous subdomains the transformation

transforms a combinatorial processes of
a regular structure into a structure with two clock domains that
uses an FSM process to schedule the operations into several
clock cycles. This transformation which is illustrated in Fig. 12
and formally given below is very efficient, if there are identical
operations which can be shared.

Transformation Rule

Original Process Network

Transformed Process Network

Implication

SerialClockDomain

  o 
im

 
i1

 
im

Main Domain Main DomainSynchronous Sub-Domain

Rate:r Rate: nr Rate:r

i1

o

 m( f )

p2sDI
(m)

downDI
(m)

PFSM

Fig. 12. Transformation into FSM using two clock domains.

The transformed process network works as follows. During
an input event cycle the domain interface (parallel
to serial) reads all input values at event rate and outputs them
at event rate one by one in the corresponding output cy-
cles. The process is based on and executes the
combinational function of the original process in cycles. In
state 0 the first input value (operand ) is stored as intermediate
value . In the following states, a function is applied
to the new input value and the intermediate value. At tag

the process produces the output value, otherwise
the output has the value . The domain interface
down-samples the input signal to the event rate and outputs
only each th input value starting with tag 0, thus suppressing
the absent values from the output of .

As domain interfaces can be characterized by a characteristic
function, it means, though not shown here, that the characteristic
function for the whole transformed process network can be de-
veloped. It follows that delays the output
of the transformed process network one event cycle compared
to the original process network, which is given as Implication.

This transformation can e.g. be applied to the 4-input adder
of Fig. 11, where is the identity function and is
an add operation, resulting in a circuit with two clock domains
using a single adder.

VI. CASE STUDY: A DIGITAL EQUALIZER

The following case study illustrates system modeling and de-
sign refinement inside the ForSyDe methodology by means of a
digital equalizer. Our specification model is based on the orig-
inal MASCOT specification [21], where the control flow parts
are expressed in SDL and the data flow parts in Matlab.

The task of the equalizer is to adjust an audio signal
according to the current bass and treble levels. These levels
are adjusted with four control buttons, which are modeled by

means of the control signals , , and

. In addition the equalizer shall assure that the bass

level of the output signal does not exceed a prede-
fined threshold in order to prevent damage to the speakers.

We have developed a hierarchical specification model as il-
lustrated in Fig. 13.

Based on Fig. 13, we discuss the specificaton model of the
equalizer in Section VI-A and refinement in Section VI-B. The
boxed numbers point out the locations for refinement.
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Fig. 13. Specification model of the equalizer.

A. Specification Model of the Equalizer

At the highest level, the equalizer is composed of four subsys-
tems. The Button Control subsystem monitors the button inputs
and the override signal from the subsystem Distortion Control
and adjusts the current bass and treble levels. This informa-
tion is passed to the subsystem Audio Filter, which receives
the audio input, and filters and amplifies the audio signal ac-
cording to the current bass and treble levels. This signal, the
output signal of the equalizer, is analyzed by the Audio Ana-
lyzer subsystem, which determines whether the bass exceeds a
predefined threshold. The result of this analysis is passed to the
subsystem Distortion Control, which decides if a minor or major
violation is encountered and issues the necessary commands to
the Button Control subsystem.

This level of the equalizer is expressed as a set of equations.
The insertion of a delay process is necessary since the feedback
needs an initial value to stabilize. Zero-delay feedback loops
are critical in synchronous specifications. The modeling guide-
lines of ForSyDe forbid the designer to use zero-delay feedback
loops, which is the same approach as taken in the synchronous
languages Lustre. Other approaches to address the zero-delay
feedback problem are discussed in [48]. Esterel uses a unique
fixed-point and Signal a relational approach. Since ForSyDe at
present is embedded in Haskell, the semantics of Haskell pro-
hibit a more advanced treatment of zero-delay feedback loops.

where

The subsystems Button Control and Distortion Control, are
control dominated (dark shaded in Fig. 13), while the Audio
Filter and the Audio Analyzer are data flow dominated subsys-
tems (light shaded). We exemplify the modeling of data flow

oriented subsystems by the Audio Filter, and of control flow ori-
ented subsystems by the Distortion Control.

The task of the Audio Filter is to amplify different frequencies
of the audio signal independently according to the current bass
and treble levels. The audio signal is split into three identical
signals, one for each frequency region. The signals are filtered
and then amplified according to the assigned amplification level.
As the equalizer in this design only has a bass and treble control,
the middle frequencies are not amplified. The output signal from
the Audio Filter is the addition of the three filtered and amplified
signals. This level is also modeled as set of equations.

where

The subsystems of the Audio Filter are implemented as
processes. We use a parametric process , that models a

-filter to implement all filter functions, i.e., for the low
pass, band pass and high pass filter. A -filter is described
by the equation

We model the -filter (shown in Fig. 14), a composition of
a shift register with parallel outputs which cap-
tures the current state of the filter and a combinational process

that calculates the inner product of the outputs
of the shiftregister and the coefficient vector

The shift register has two parameters for size and
initial values and consists of two parts.

creates a process which
models a shiftregister with a vector of size , where all
elements have the initial value . However, since we use

, the output of the shiftregister is a signal of a vector
with elements, which has to be converted into parallel
signals. This conversion is done be the process .
The process has the coefficient vector
as paramenter. It is modeled with the process constructor

. The supplied function calculates the
inner product of the coefficient vector and the given state vector

where

The band pass filter in the equalizer is expressed as
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Fig. 14. FIR-filter.

We develop the Distortion Control directly from the SDL-
specification, that has been used for the MASCOT-model [21].
The specification is shown in Fig. 15.

The Distortion Control is a single FSM, which can be mod-
eled by means of the process constructor . The global
state is not only expressed by the explicit states—Passed, Failed,
and Locked—but also by means of the variable . The state
machine has two possible input values, Pass and Fail, and three
output values, Lock, Release, and CutBass. It takes two func-
tions, to calculate the next state, and to calculate the
output. The state is represented by a pair of the explicit state
and the variable . The initial state is the same as in the SDL-
model, given by the tuple (Passed, 0). The function uses pat-
tern matching. Whenever an input value matches a pattern of
the function the corresponding right hand side is evaluated,
giving the next state. An event with an absent value leaves the
state unchanged. The output function is modeled in a similar
way. The output is absent, when no output message is indicated
in the SDL-model.

The ForSyDe model for the Distortion Control is given below.

where

B. Refinement of the Equalizer

In this section, we use the equalizer model to discuss three
refinement techniques as indicated in Fig. 13.

1) refinement of the Clock Domain;
2) communication Refinement;
3) resource Sharing.

Process DistortionCtrl 1(1)

dcl Cnt integer := 0;
dcl Lim integer := 3;

Passed

Pass Fail

Passed Lock

Cnt := Lim

Failed

Pass Fail

Locked CutBass

Fail Pass Failed

Cnt := Lim Cnt :=
Cnt – 1

Failed Cnt

Release Locked

Passed

0

ELSE

Fig. 15. SDL-description of distortion control.

In addition, ForSyDe includes data type and memory refine-
ment, which are beyond the scope of this paper.

1) Refinement of the Clock Domain: Fig. 16 shows the
Audio Analyzer subsystem, which includes a Fast-Fourier
Transform (FFT) algorithm. This function takes a
vector of samples and produces the corresponding
FFT result in form of a vector of size that is denoted as

. The FFT algorithm is used to determine the
frequency spectrum of a signal. It is implemented in the process

. The process Power Spectrum calculates
the power spectrum. The process Check Low Frequencies
analyzes if the power of the low frequencies exceeds a threshold
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Fig. 16. Audio analyzer.

and issues a warning in this case, which is sent to the Distortion
Control. The process Group Samples reads samples
and groups them into a vector of size . The computation of
this vector takes event cycles and serves as input for the
FFT. However, since we use a synchronous computational
model in the specification model the grouping process has to
produce an output event for each input event. This results in the
output of absent values for each output of a grouped
vector. is based on the process constructor
and formally defined as

where

if
otherwise

if
otherwise.

Since all processes , , are constructed with
the combinational process constructor we can replace
them by

where

We designate the specification model of the Audio Analyzer
as

if

if

otherwise

The process has to process all absent values. While
this is not a drawback for the specification phase, a direct im-
plementation as shown in Fig. 17 can make no use of the fact,
that the FFT has only to be calculated at each th clock cycle.

Such an implementation will be very slow, since the compu-
tation of the FFT function is clearly the most time consuming
one and will determine the overall system performance.

In order to get a more efficient specification, the ForSyDe
methodology allows to introduce synchronous subdomains into
the system model during the refinement process.

Using the special characteristic of the grouping process
we can derive the identity

and, finally,

Power
Spectrum Low Freq.FFT

Check
Samples

Group

C1

Fig. 17. Direct implementation of the audio analyzer.

which can be used as a refined model

The original process is replaced by since
does not produce any absent values.

The identity can be proven by the characteristic
function of , but is not given here.

Analyzing we conclude that the process pro-
cesses events only at each th tag and thus can be implemented
with a slower clock. Based on these considerations we define
the transformation , that introduces a syn-
chronous subdomain and can be applied on all processes of the
form .

Transformation Rule

Original Process Network

Transformed Process Network

Implication

We implement the synchronous subdomain with a clock fre-
quency that is times slower than the clock fre-
quency of the main synchronous domain. The implemen-
tation of this transformation of the Audio Analyzer is illustrated
in Fig. 18.

2) Communication Refinement: The specification model
uses the same synchronous communication mechanism be-
tween all its subsystems. This is a nice feature for modeling
and analyzing, since partitioning issues and special interfaces
between subsystems have not to be taken into account in this
phase. However, large systems are usually not implemented
as one single unit, but are partitioned into hardware and
software blocks communicating with each other via a dedicated
communication protocol. The ForSyDe methodology offers
transformations of a synchronous communication into other
protocols. Looking at the equalizer example, we observe, that
the aperiodic data rate of the Button Control and the Distortion
Control subsystem is much lower than the data rate of the Audio
Filter and Audio Analyzer. We decide to implement the Button
Control and Distribution Control in software and the Audio
Filter and Audio Analyzer in hardware. For the communication
between these parts we implement a handshaking protocol with
Send and Receive processes.

We focus on the refinement of the synchronous interface
between the Button Control and the Audio Filter subsystems,
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which is shown in Fig. 19. The figure shows the data types of
the signals. Please note, that all the data types , ,
are extended data types, containing absent values. Such signals
have a lower data rate as the corresponding signals with the
data types , , since they do not carry a value in each event
cycle. The block Hold Level outputs the last present value,
when receiving an absent value.

The refinement is done in two steps. First, we move the block
Hold Level out of the subsystem Button Control in order to im-
plement the interface between the block Level Control and the
block Hold Level since this communication channel has a signif-
icantly lower data rate as expressed by the data type of the signal

. The second step is to refine the interface into a hand-
shake protocol. We do this by the transformation of the channel
between Level Control and HoldLevel by means of the transfor-
mation which is given below.

Transformation Rule

Original Process Network

Transformed Process Network

where

Implication

see text in paper
The transformation introduces a FIFO, a Send and a Receive

process. When Send is idle, it tries to read data from the FIFO
on . Then it sends the message on to the

 →r

 → 
i

(Buffer = ∞)

FIFO
  →
i  → o

FIFO
(Buffer = n) → r

 → o

RestrictFIFOBuffer(n)

Fig. 20. Refinement of FIFO buffer.

Receiver and after receiving the message on , it sends
the data on . The Receiver sends a message on , when
the data is received.

The handshake protocol implies a delay of several cycles for
each event, as Send and Receive are synchronous processes. This
means that the timing behavior of the refined interface is dif-
ferent from the original interface. This also means that the Audio
Filter will not process exactly the same combination of values
in each event cycle as in the system model.

These consequences have to be taken into account, when in-
terfaces are refined. In this case, it can be shown that the refined
interface still behaves in practice as the system model, if we
make two assumptions.

1) The average data rate of the block Level Control is much
lower than the data rate of the Audio Filter. If the FIFO
is correctly dimensioned, there will be no buffer overflow
in the FIFO and all values reach the Audio Control after a
small number of event cycles.

2) The output function of the Audio Filter does not change
significantly if the input signals of the Level Control are
delayed. That is clearly the case, as a small delay of the
level signal only delays the change of the amplitude for
the same small time, but does not effect the signals shape.

These assumptions point to obligations on other design activi-
ties. A further formalization of the design decisions will allow to
make all assumptions and obligations explicit. The FIFO buffers
have to be dimensioned sufficiently large based on a separate
analysis. This will imply a further design decision transforma-
tion as illustrated in Fig. 20. Assumptions about the environment
and the application, such as the kind of expected input signal, in
this case the data rate, have to be validated to justify the applied
design decisions.

We can now synthesize the interface using the hardware se-
mantics of ForSyDe. The sole purpose of our transformation is
to prepare for an asynchronous implementation. Note, however,
that the model we have derived is not truly asynchronous in the
sense that it is still completely deterministic without nondeter-
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Fig. 21. Transformation of a FIR-filter.

ministic channel delays. Of course, the channel can be modeled
more realistically, if desired. In the ForSyDe methodology, we
suggest to avoid a nondeterministic model but to use a stochastic
channel model instead, which ForSyDe supports with stochastic
process constructors [49].

3) Resource Sharing: Fig. 21 shows the application of the
design decision on the -filter of
Fig. 14. Since the process is defined as

It complies to the input process network format of the transfor-
mation rule , where

We can use this rule to apply the transformation
on

the FIR-filter model in order to receive a model ,
where remains unchanged and the -filter is
realized with two clock domains and only one multiplier and
one adder (Fig. 21).

We have used the ForSyDe hardware semantics to translate
both the original model and the transformed model for an
eighth-order FIR-filter with sample and coefficient size of
10-bit into VHDL and synthesized it for the CLA90K library.
The results (for 8 MHz) show that the area for the trans-
formed model (4030 gates) is as expected clearly less than for
the original model (10 482 gates).

VII. CONCLUSION

This article presents the modeling and transformational re-
finement technique of the ForSyDe methodology. Due to a care-
fully chosen computational model and a modeling technique
that is based on well-defined process constructors ForSyDe al-
lows the refinement of the specification model into a more ef-
ficient implementation model through the stepwise application
of formally defined design transformations.

By using the formal definition of process constructors and
domain interfaces, we can develop characteristic functions for
process networks in order to define transformations that can
be classified as either semantic preserving or design decision.
Each transformation rule is well defined by the original process
network and the transformed process network. Each rule also

shows the consequences for the design by an implication part,
expressed with the characteristic function.

The article shows the potential of ForSyDe. Traditional and
powerful synthesis techniques can now be formulated as trans-
formation rules and applied inside the functional domain. By
selecting transformation rules from the transformation library,
the designer is able to perform a transparent and documented
refinement process inside the functional domain.

In order to apply ForSyDe on larger applications, the practical
framework together with additional transformation rules and
transformation strategies has to be developed. Future research
will show to what extent ForSyDes transformational approach
is able to generate implementation models that contain the nec-
essary details to result in an effective implementation. We be-
lieve that at least for application-specific areas it is possible to
develop a sufficient number of transformation rules, which will
lead to an improved and transparent design process.
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