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Abstract

We address the problem of estimating the three-dimensional shape and radiance of a surface in space from images obtained
with different focal settings. We pose the problem as an infinite-dimensional optimization and seek for the global shape of the
surface by numerically solving a partial differential equation (PDE). Our method has the advantage of being global (so that
regularization can be imposed explicitly), efficient (we use level set methods to solve the PDE), and geometrically correct
(we do not assume a shift-invariant imaging model, and therefore are not restricted to equifocal surfaces).

1 Introduction

Shape from defocus (SFD) consists of reconstructing the three-dimensional shape and radiance (“texture”) of a scene from
a number of images taken with different focal settings. Under some simplifying assumptions on the imaging device, this
problem can be posed as the inversion of certain integral equations that describe the imaging process; having chosen an
optimality criterion, the problem can be solved uniquely under suitable conditions on the radiance of the scene.

What makes SFD possible is the fact that the image of a scene at a certain position on the image plane (a “pixel”) depends
upon the radiance on a region of the scene, as well as on the shape of such a region. What makes SFD possible, however,
also makes it difficult: the image at a given pixel is obtained by integrating the (unknown) radiance of the scene against an
(unknown) kernel that depends upon its shape. Given values of the integral at each pixel, one needs to estimate both the
radiance and the kernel, which is known to be a severely ill-posed inverse problem in its full generality.

Several approaches have been presented to address this problem, which is an instance of “blind deblurring”, or “blind
deconvolution” for the case of linear shift-invariant kernels, as we describe in Section 1.1. Typically, the depth of the scene
along a projection ray through each pixel is computed after approximating (locally) the radiance of the scene using various
classes of functions or filters1.

In this paper, rather than estimating depth at each pixel, we formulate shape from defocus within a variational framework
as the problem of estimating an infinite-dimensional surface in space. We derive the optimality conditions and design a
numerical algorithm to efficiently reach a (local) minimum. We do not make the assumption that the imaging kernel is
shift-invariant – one that is patently violated at occluding boundaries – and therefore can handle complex shapes easily.

1.1 Relation to previous work

In the literature of computational vision a number of algorithms have been proposed to estimate depth from focus and
accommodation information. The main assumption common to most algorithms available in the literature (overtly or covertly)
is that the scene is a plane parallel to the focal plane (the equifocal assumption) [1, 6, 7, 10, 12, 14, 15, 18, 19, 20, 21]. This
assumption allows one to describe the imaging process as a linear convolution; the price to pay, however, is a fundamental
tradeoff between noise and precision. In order to combat noise, one would want to integrate over regions that are as large as
possible; in order for the equifocal assumption to be valid, one would want regions to be as small as possible. In particular,
at occluding boundaries the equifocal assumption is violated altogether.

1Such approximation can be represented either in space or in frequency, but the representation does not change the nature of the method.
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On the other hand, several algorithms have been proposed to solve the problem in the shift-variant case. For instance, [4]
presents a handful of methods that range from usingblock-variant blur methods, where the assumption of local equifocal
imaging is corrected by taking into account contributions from the neighboring regions, to applying complex spectrogram
and Wigner distributions in aspace-frequencyframework, where regularization is imposed to assure depth smoothness, to
employing aMarkov random fieldmodel to obtain aMaximum a posterioriestimate of the blur parameter using simulated
annealing.

There is also a vast body of related literature in the signal processing community, where the problem is known as “blind
deconvolution” (or more generally “deblurring”). The equifocal assumption is equivalent to assuming a shift-invariant con-
volution kernel, which is also common to most of the literature. The interested reader can see the special issue [2] for
references.

1.2 Contributions of this paper

The equifocal assumption is a well-known limitation. First, the depth estimation results are directly affected by modeling
the shape with equifocal planes, since this is only a crude approximation of natural scenes. Second, as this assumption
usually goes together with choosing a support window, some other errors are introduced implicitly. Just to mention a few
we have: image overlapping, windowing effects, edge bleeding, etc. These are issues that impoverish the depth estimate,
and make depth from defocus less appealing as a technique to retrieve shape. In particular, to take into account disruptions
due to image overlapping, one has to choose images where the blurring is always small compared to the size of the window
patches (for instance no more than2 pixels when the image patch is of5 × 5 pixels). However, having small blurring
radii renders the estimation process more sensitive to noise, and thus high-precision cameras have to be employed. In our
approach we forgo the equifocal assumption, so that we can integrate visual information over the entire image. This results
in superior resistance to noise (as also noticed in [4]). Furthermore, in order to render the shape estimation well-posed, we
formulate the problem within a variational framework, so that we can regularize the reconstruction process via imposing
smoothness, and we do not make explicit approximations of the shape; rather, we estimate shape via optimization on the
infinite-dimensional space of (piecewise) smooth surfaces. We compute the necessary optimality conditions and numerically
implement a partial differential equation (PDE) to converge to a (local) minimum. Last, but not least, we achieve superior
computational efficiency by estimating global shape (as opposed to depth at each pixel) since the radiance on overlapping
regions does not need to be recomputed. Our current implementation takes in the order of minutes when properly initialized
(on a personal computer equipped with a 1GHz Pentium processor), as we describe in the experimental section.

2 Optimal shape from defocus

SupposeP is a generic point on the surfaces with coordinatesX ∈ R3. By exploiting the additive nature of energy transport
phenomena, we model the image formation process as an integral of the form

I(x) =
∫
hs(X)dR (1)

wherex = π(X) is the projection ofP on the image plane (π depends on the geometry of the optics). The measureR
indicates the radiance of the scene and the kernelhs depends upon the shape of the scene as well as on the geometry of the
imaging device. The imageI is defined on a compact setD ⊂ R2. Our goal is to reconstruct both the radianceR and the
shape of the scene from a collection of images.

2.1 Image formation and notation

Suppose we haveLmeasurements, i.e.L images with different focal setting:u1, . . . uL. If we collect and organize them into
an arrayI

.= [Iu1 , . . . , IuL ]T , and so for the kernelshsul , we can get rid of the subscriptu and write againI(x) =
∫
hs(X)dR.

The right-hand side can be interpreted as the “virtual image” of a given surfaces radiating energy with a given (spatial)
distributionR, R(X̃):

∫
hs(X, X̃)dR(X̃). For scenes made with opaque objects, the integral is restricted to their surface,

and therefore it is to be interpreted in the Riemannian sense [3]. With a suitable choice of coordinates we can express the
shapes = s(x, y) and the radiancer = r(x, y) as graphs and write the integral as

∫
hs(x, y, x̃, ỹ)r(x̃, ỹ)dx̃dỹ for π(X) ∈ D
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with X = [x y s(x, y)]T . We callr the radiant density2. However, in Section 2.3 we show that the choice of parameterization
is not crucial in our algorithm.

2.2 Cost functional

The problem of inverting integrals of the form (1) is well-known to be ill-posed. Furthermore, often (1) is only an approx-
imation of the model that generates the data. We will therefore look for solutions that minimize a suitableoptimization
criterion. In his seminal paper [5], Csiszár presents a derivation of “sensible” optimization criteria for the problem above,
and concludes that the only two that satisfy a set of consistency axioms are theL2-norm – when the quantities at play are
unconstrained – and the information-divergence – when both the radiance and the kernel are constrained to be non-negative,
such as in our case, where the radiance represents an energy density and the kernel represents surface area. Therefore, with-
out further discussion, we adopt information-divergence (or I-divergence) as a cost functional for the discrepancy between
measured imagesI and the images generated by the image modelJ :

Ψ(I|J) =
∫

Φ(I(x)|J(x))dA (2)

where

Φ(I(x)|J(x)) = I(x) log
I(x)
J(x)

− I(x) + J(x) (3)

x = π(X), X belongs to the shapes anddA is the area form of thes defined for eachX. To emphasize the dependence of
J on the shapes and the radiancer, we write, with an abuse of notation,J = J(s, r). Hence, the problem of retrieving both
shapes and radiancer from a collection of imagesI

.= [Iu1 , . . . , IuL ]T can be formulated as the problem of minimizing the
I-divergence betweenI andJ = J(s, r):

ŝ, r̂ = arg min
s,r

Ψ
(
I|J(s, r)

)
. (4)

2.3 Radiance and shape estimation

Tackling the problem of minimizing the above cost functional involves solving a nonlinear and infinite-dimensional optimiza-
tion problem. Also, the simultaneous minimization of both shapes and radiancer is not an easy issue. Hence, we choose
to divide the optimization into two sub-problems through analternating minimizationtechnique. Suppose we are given an
initial guess for the radiancer0 and the surfaces0 (see Section 3.3 for more details), then the algorithm can be written as:{

r̂k+1 = arg min
r

Ψ(I|J(ŝk, r))

ŝk+1 = arg min
s

Ψ(I|J(s, r̂k+1)). (5)

The key to use such an alternating minimization relies on having two iterations that independently lower the value of the cost
functional, so that their combination leads towards the (local) minimum. For the first part we employ an iterative formula
on the radiancer, which is constrained to be strictly positive, obtained from the Kuhn-Tucker conditions [9] on the cost
functional, while for the second part we use a gradient descent flow implemented using level set methods.

Radiance iteration

Since there is no closed-form solution for the Kuhn-Tucker conditions, we seek for an iterative procedure such that the
radiance will converge to a fixed point. Following Snyder et al. [17] we define the iteration as:

r̂k+1(x, y) = r̂k(x, y)
1∫

hŝ(x, y, x̃, ỹ)dx̃dỹ∫
hŝ(x, y, x̃, ỹ)I(π(X̃))dx̃dỹ∫
hŝ(x̃, ỹ, x̄, ȳ)r̂k(x̄, ȳ)dx̄dȳ

(6)

whereX̃ = [x̃ ỹ s(x̃, ỹ)]T . It can be shown that this iteration provably minimizes the chosen cost functional (with respect to
r) even when the kernelhŝ is not provided with the correct shapes [17].

2Strictly speaking,r is the Radon-Nikodym derivative ofR and, as such, it is not an ordinary function but, rather, a distribution of measures. In what
follows we will ignore such technicalities and assume that we can compute integrals and derivatives in the sense of distributions.
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Gradient descent flow

Away from discontinuities, the surface can be locally approximated by its tangent plane. Thus, the model imageJ can be
computed in the tangent space:

J(π(X)) =
∫
h(X,K(x, y))r(K(x, y))dxdy (7)

whereK is the transformation bringing points from the tangent space to the scene space, which explicitly depends on the
(inward) surface normalN .

Faugeras and Keriven [8] prove that the Euler-Lagrange equation for (2) takes the following form:

κΦ− ΦX ·N − κ(ΦN ·N) + Tr ((ΦXN )TS + dN(ΦNN )TS ) (8)

whereTr(·) denotes the trace andTs the tangent space ofs at P ; κ is the mean curvature, andΦX and ΦN stand for
derivatives ofΦ with respect toX andN respectively.ΦNN andΦXN are the second order derivatives ofΦ. (ΦNN )TS and
(ΦXN )TS are their restrictions to the tangent planeTs. dN is the differential of the Gauss map of the surface, which involves
the second fundamental form. For more details, refer to [8].

By directly computing the gradient flow of the cost function, it can be shown that the following geometric flow minimizes
(2):

Pt = (κΦ− ΦX ·N − κ(ΦN ·N)+
+Tr ((ΦXN )TS + dN(ΦNN )TS ))N. (9)

Then, since the flow is intrinsic, the minimization does not depend on the parameterization that has been chosen.

3 Implementation

3.1 Level set iteration

We implement the flow (9) using level set methods. The level set methods were originally developed by Osher and Sethian
[13]. Since then, the methods have gained more and more popularity in various fields. Many fast numerical schemes have
been proposed based on it. For a complete account refer to [16].

The level set implementation of any geometric flow begins by embedding the initial interfaceP (X, 0), as a level set of a
scalar functionψ0(X) which is then taken to be the initial condition for a function over timeψ(X, t):

ψ0 : R3 → R, ψ : R3 × R+ → R, ψ(X, 0) = ψ0(X)

The choice of a particular level set is arbitrary but is typically taken to be zero. The key point is that the interface is
continuously embedded within the same fixed level set ofψ during all the time. Thus, choosing the zero level set we have

ψ0(P (X, 0)) = 0, and ψ(P (X, t), t) = 0.

Differentiating with respect tot therefore yields

ψt +∇ψ · Pt = 0 or ψt = −Pt · ∇ψ (10)

an evolution equation forψ (where∇ψ = ψX) which evolves the interfaceP (X, t) described implicitly byψ(X, t) = 0 for
all t.

3.2 Intersection with the surface

In the radiance iteration it is necessary to determine which point on the shapes corresponds to which point on the image
plane, in order to establish the blurring radius of the kernelhs. To this end one needs to compute the intersection of a line
coming from the image with the shapes. Obtaining explicitly all the possible intersections with a discretized representation
of the shape, turns out to be computationally expensive. Rather, it is possible to do this very efficiently by exploiting the
advantage of an implicit formulation of the shape, i.e. the level set functionψ or the signed distance function. Let the line
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be defined by a pointX0 and a directionv. LetX be the intersection we are looking for.X satisfies the following ordinary
differential equation: {

dX
dt = c(X) · v
X(0) = X0

(11)

wherec(·) is a scalar function defined as follows

c(X) =
{

sign(ψ(X)) if |ψ(X)| > 1
ψ(X) if |ψ(X)| ≤ 1 (12)

The rationale behind is that we moveX according toc(·) so thatX is lead towards the shape. WhenX crosses the surface,
c(X) will change sign accordingly, and thereforeX will be forced to come back. Hence,X will oscillate around the
intersection of the line with the shape, reducing the overshoot at each step. Finally, we decide forX to be the intersection,
when the oscillation remains within a fixed band around the shape. This happens typically within a few (3-5) iterations.

3.3 Initialization

As we have noticed in previous sections, to start the alternating minimization one needs to have an initial guess for both
radiance and shape. Since we have no prior knowledge on either unknown, we proceed as follows: choose one of the input
imagesIu1 , taken with focal settingu1; define the initial shape as a plane parallel to the focal plane passing through the focal
depthu1; compute the radiance by back-projecting the imageIu1 onto the defined shape. As we see in our experiments, such a
choice is not crucial to the estimation process. However, we also noticed that a good initialization speeds up the minimization
procedure considerably. Therefore, during the first steps of our algorithm we perform the shape estimation using a simple
search of the minimum of the cost functional computed over a small grid of possible depths, using the equifocal assumption.
This initial shape is then used for the radiance iteration step. After a few iterations, we substitute the search step with the
level set iteration and proceed with the minimization as described in the previous sections.

4 Experiments

In this section, we report some experiments in estimating the shape from the images shown in Figure 1. The images are
obtained by changing the position of the image plane along the optical axis, and keeping the lens position fixed with respect
to the scene. Moving the image plane necessarily involves scaling the images, which we avoid by employing telecentric
optics (see [11]). The two images are taken with focal depths of approximately0.9m and1.1m respectively. The focal length
is 30mm and the lens aperture isF/8. The scene has been chosen so as to test the performance of the proposed algorithm
when the usual equifocal assumption does not hold. It can be noticed that the scene presents significant depth variations and
several occluding boundaries. In particular, at the occluding boundaries of the statues and in the folds of the skirts, the planar
approximation fails. Furthermore, the blurring radii are up to4− 5 pixels, so that the window size would have to be at least
of 10 pixels, which is beyond the usual patch size and does not allow for fine depth retrieval. Figure 2 shows three steps of
the radiance iteration during the alternating minimization procedure. In Figure 3 we show the corresponding shape evolution
from the level set iteration. (An MPEG movie of the evolution has been uploaded for reviewers’ benefit). Then, in Figure 4
we show the final estimation of the shape coded in gray level (256 values) and three views of the final shape which has been
texture-mapped with the final radiance.

5 Conclusion

In estimating shape from defocus, the equifocal assumption is a well-known limitation. It introduces several disruptions in
the reconstruction process such as image overlapping, windowing effects, edge bleeding, etc. We present a novel approach
to shape from defocus based on an alternating minimization algorithm which does not make use of the equifocal assumption
so as to overcome the above limitations. The radiance of the scene is estimated through an iterative equation which provably
converges to a (local) minimum, while the shape is estimated using a gradient descent flow, which is then implemented
numerically (efficiently) using level set methods. We show that the combination of these two steps leads to a (local) minimum
of the discrepancy between the measured image and the modeled image. Also, by implementing the shape estimation with
level set methods we implicitly impose smoothness on the estimated shape while preserving depth discontinuities at the
occluding boundaries. These would be lost in a shift-invariant imaging model.
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Figure 1:Original images: the left image is near-focused (0.9m). The right image is far-focused (1.1m). As it can be noticed,
in both images the blurring is quite consistent, the shape is non-trivial and presents several discontinuities due to occluding
boundaries.
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Figure 3: Twelve snapshots of the shape evolution: the surface is gradually converging to the final shape, starting from a
plane placed at depth 0.9m. An MPEG movie of the evolution has been uploaded for reviewers’ benefit.
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Figure 4: Top: depth rendered in gray levels (256 values); middle, bottom-left and bottom-right : three views of the final
estimated shape, texture-mapped using the final estimated radiance.
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