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Abstract. We develop a matricial version of Rieffel’s Gromov-Hausdorff dis-
tance for compact quantum metric spaces within the setting of operator systems
and unital C∗-algebras. Our approach yields a metric space of “isometric” unital
complete order isomorphism classes of metrized operator systems which in many
cases exhibits the same convergence properties as those in the quantum metric
setting, as for example in Rieffel’s approximation of the sphere by matrix algebras
using Berezin quantization. Within the metric subspace of metrized unital C∗-
algebras we establish the convergence of sequences which are Cauchy with respect
to a larger Leibniz distance, and we also prove an analogue of the precompactness
theorems of Gromov and Rieffel.

1. Introduction

A compact quantum metric space, as defined by Marc Rieffel in [10], is an order-
unit space equipped with a certain type of semi-norm, called a Lip-norm, which
plays the role of a Lipschitz semi-norm on functions over a compact metric space.
The crucial part of the definition of a Lip-norm L on an order-unit space A is the
requirement that the metric

ρL(µ, ν) = sup{|µ(a)− ν(a)| : a ∈ A and L(a) ≤ 1}

on the state space of A give rise to the weak∗ topology. By applying Hausdorff
distance to state spaces, Rieffel defines a quantum analogue of Gromov-Hausdorff
distance and thereby synthetically obtains a complete separable metric space of
“isometric” order isomorphism classes of compact quantum metric spaces for which
a Gromov-type precompactness theorem holds [10]. The most immediate motivation
for introducing a theory of quantum Gromov-Hausdorff distance is the search for
an analytic framework for describing, or at least clarifying at a metric level, the
type of convergence of spaces that has recently begun to play an important role
in string theory (see the introduction to [10] for a discussion and references). The
main objects of study thus tend to be C∗-algebras, and so it is natural to ask,
as does Rieffel in [10], if it is possible to develop a matricial version of quantum
Gromov-Hausdorff distance. This is the goal of the present paper.

The key is to define metrics on matrix state spaces using a Lip-norm just as one
does for an order-unit state space as above, only now replacing the modulus by ma-
trix norms. We introduce this definition within a general operator system setting
in Section 2. We then define “complete” distance (Section 3) by using Hausdorff
distance at the matrix state space level in the same way that Rieffel does with re-
gard to order-unit state spaces in the formulation of quantum Gromov-Hausdorff
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distance. In fact many of the constructions and arguments involving quantum
Gromov-Hausdorff distance in [10, 11] are naturally suited to our matricial setting
and lead to similar estimates, as for instance in the proof of the triangle inequality
(Proposition 3.4) and the approximation of the sphere by matrix algebras via Berezin
quantization (Example 3.13). On the other hand a completely different approach
is required to show that complete distance zero implies “isometric” unital complete
order isomorphism (the subject of Section 4), and the proofs of the convergence
of sequences of metrized unital C∗-algebras which are Cauchy with respect to “f -
Leibniz complete distance” (Section 5) and our analogue of the Gromov and Rieffel
precompactness theorems (Section 6) ultimately rely on some arguments especially
attuned to the complete order context.

This work was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada. I thank Yasuyuki Kawahigashi and the operator algebra group at the
University of Tokyo for their hospitality and for the invigorating research environ-
ment they have provided. I am grateful to Hanfeng Li for making a careful critical
reading of an initial draft that prompted a number of clarifications and corrections,
and I also thank the referee for helpful comments and suggestions.

2. Lip-normed operator systems and matrix state space metrization

We begin by describing our operator system framework. For references see [3, 7,
17]. A (concrete) operator system is a closed unital self-adjoint linear subspace of a
unital C∗-algebra (for an abstract definition see [3]). Given an operator system X,
for each r > 0 we will denote by BX

r the closed norm ball {x ∈ X : ‖x‖ ≤ r} of
radius r. The state space of X will be denoted by S(X). We will denote by Xsa the
set of self-adjoint elements of X. The unit of X will be written 1, or sometimes 1X
for clarity. For x ∈ X we write Re(x) and Im(x) to refer to the self-adjoint elements
(x+ x∗)/2 and (x− x∗)/(2i) (the real and imaginary parts of x), respectively.

The C∗-algebra of n × n matrices over C will be written Mn. Given operator
systems X and Y we say that a linear map ϕ : X → Y is n-positive if the map
idn⊗ϕ : Mn⊗X →Mn⊗Y is positive, and if idn⊗ϕ is n-positive for all n ∈ N then
we say that ϕ is completely positive. A completely positive (resp. unital completely
positive) linear map will be referred to as a c.p. (resp. u.c.p.) map. If ϕ : X → Y is
a unital m-positive map with m-positive inverse for m = 1, . . . , n then ϕ is a unital
n-order isomorphism, and if ϕ is u.c.p. with c.p. inverse then ϕ is a unital complete
order isomorphism.

An operator system X is nuclear if the identity map on X lies in the point-
norm closure of the set of u.c.p. maps from X to itself which factor through matrix
algebras.

Given an operator system X and n ∈ N, there is a bijective linear map from c.p.
maps X → Mn to positive linear functionals on Mn ⊗ X [7, Thm. 5.1] defined as
follows. To each c.p. map ϕ : X → Mn we associate the positive linear functional
σϕ on Mn ⊗X given by

σϕ((xij)) =
1
n

∑
1≤i,j≤n

ϕ(xij)ij
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for all (xij) ∈ Mn(X) ∼= Mn ⊗ X. Conversely, to each positive linear functional σ
on Mn ⊗X we associate the c.p. map ϕσ : X →Mn given by

(ϕσ(x))ij = nσ(eij ⊗ x)

for all x ∈ X, where {eij : 1 ≤ i, j ≤ n} is the set of standard matrix units of Mn.
The maps ϕ 7→ σϕ and σ 7→ ϕσ are mutual inverses and are homeomorphisms with
respect to the point-norm topologies (for the space of positive linear functionals this
is the weak∗ topology) as well as with respect to the norm topologies. If ϕ : X →Mn

is u.c.p. then σϕ is a state on Mn ⊗X. However, if σ ∈ S(Mn ⊗X) then ϕσ need
not be unital, nor even contractive, although it is clear that ‖ϕσ‖ ≤ n3 (see the
discussion after Theorem 5.4 in [7]). We denote by SCPn(X) the collection of c.p.
maps ϕ : X → Mn such that σϕ is a state on Mn ⊗ X, and by UCPn(X) the
subcollection of SCPn(X) consisting of all u.c.p. maps from X into Mn (the matrix
state spaces).

We now introduce metrics into our picture via the notion of a Lip-norm, which
we recall from [10].

Definition 2.1 ([10, Defns. 2.1 and 2.2]). Let A be an order-unit space. A Lip-norm
on A is a semi-norm L on A such that

(1) for all a ∈ A we have L(a) = 0 if and only if a is a scalar multiple of the
order unit, and

(2) the metric ρL defined on the state space S(A) by

ρL(µ, ν) = sup{|µ(a)− ν(a)| : a ∈ A and L(a) ≤ 1}
induces the weak∗ topology.

A pair (A,L) consisting of an order-unit space A with Lip-norm L is called a compact
quantum metric space.

Important examples of order-unit spaces are real linear unital subspaces of self-
adjoint elements in an operator system, and in fact every order-unit space is isomor-
phic to one of these, as shown in Appendix 2 of [10]. We can thus apply the above
definition in a direct way to our setting. First we introduce some general notation.

Notation 2.2. Let X be an operator system and L a semi-norm on a linear subspace
of X or a real linear subspace of Xsa. We denote by D(L) the domain of L, or, if L
is permitted to take the value +∞, the set of elements in the domain of L on which
L is finite-valued. For r > 0 we denote by Dr(L) the set {x ∈ D(L) : L(x) ≤ r}.

Definition 2.3. By a Lip-normed operator system we mean a pair (X,L) where X
is an operator system and L is a Lip-norm on a dense order-unit subspace of Xsa

such that D1(L) is closed in Xsa. If X is a unital C∗-algebra then we will also refer
to (X,L) as a Lip-normed unital C∗-algebra. Any qualifiers preceding “Lip-normed”
will refer to the Lip-norm while those following it will refer to the operator system
or C∗-algebra (e.g., lower semicontinuous Lip-normed nuclear operator system).

A Lip-norm L on an order-unit space A is said to be closed if the set {a ∈ A :
L(a) ≤ 1} is closed in the completion of A [12, Defn. 4.5]. Thus the requirement in
Definition 2.3 that D1(L) be closed in Xsa is equivalent to asking that L be a closed
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Lip-norm. Given any Lip-norm L on an order-unit space A there is a largest lower
semicontinuous Lip-norm Ls smaller than L [12, Thm. 4.2], and Ls extends to a
closed Lip-norm Lc [12, Prop. 4.4]. The theorem and proposition from [12] cited in
the last sentence also show that ρLc = ρLs = ρL. Furthermore, the property of being
closed passes to order-unit quotients by [10, Prop. 3.3], and it also holds in natural
examples of interest—see for instance Example 2.6 and [12, Prop. 3.6]. Thus, in view
of the completeness of operator systems, it is natural to assume that our Lip-norms
are closed. This will also guarantee that complete distance zero is equivalent to the
existence of a unital complete order isomorphism which is bi-Lip-isometric in the
obvious sense:

Definition 2.4. Let (X,LX) and (Y,LY ) be Lip-normed operator systems. We will
say that a positive unital map Φ : X → Y is Lip-isometric if Φ(D(LX)) ⊂ D(LY )
and LY (Φ(x)) = LX(x) for all x ∈ D(LX). If Φ has a positive inverse then we say
that Φ is bi-Lip-isometric if both Φ and Φ−1 are Lip-isometric.

If we were to define a strict operator system analogue of a Lip-norm then the
conditions on the semi-norm L in the following proposition would seem to be the
most reasonable. Indeed many examples arise naturally in this way, as Example 2.6
illustrates.

Proposition 2.5. Let L be a semi-norm on an operator system X, permitted to
take the value +∞, such that D(L) is dense in X, D1(L) is closed in Xsa, and

(i) L(x∗) = L(x) for all x ∈ X (adjoint invariance),
(ii) for all x ∈ X we have L(x) = 0 if and only if x ∈ C1, and

(iii) the metric dL(σ, ω) = supx∈D1(L) |σ(x) − ω(x)| on S(X) induces the weak∗

topology.
Then the restriction L′ of L to the order-unit space D(L)∩Xsa is a Lip-norm, (X,L′)
is a Lip-normed operator system, and the restriction map from S(X) onto S(D(L′))
is a weak∗ homeomorphism which is isometric for dL and ρL′ .

Proof. First note that the fact that D(L) is closed in X immediately implies that
D(L′) is closed in Xsa. Next, if x ∈ Xsa and ε > 0 then by the density of D(L) we
can find a y ∈ D(L) with ‖x− y‖ < ε. Then

‖x− Re(y)‖ ≤ ‖x− y‖/2 + ‖(x− y)∗‖/2 < ε

while L′(Re(y)) = (L(y) + L(y∗))/2 = L(y) < +∞, and so D(L′) is dense in Xsa.
With this fact it is straightforward to show that the restriction map from S(X) onto
S(D(L′)) is a weak∗ homeomorphism. To see that this map is isometric, suppose
σ, ω ∈ S(X) and ε > 0. Then we can find an x ∈ D1(L) such that |σ(x) − ω(x)| ≥
dL(σ, ω) − ε, and so for some complex number µ of unit modulus we have σ(µx) −
ω(µx) ≥ dL(σ, ω)− ε. Since

L′(Re(µx)) ≤ (L(µx) + L(µ̄x∗))/2 = (L(x) + L(x∗))/2 = L(x) ≤ 1

we then have

ρL′(σ|D(L′), ω|D(L′)) ≥ σ(Re(µx))− ω(Re(µx))
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≥ dL(σ, ω)− ε,

from which we infer that the map in question is indeed an isometric weak∗ home-
omorphism. Since condition (ii) in the proposition statement immediately implies
condition (1) in Definition 2.1 for L′, it thus follows that L′ is a Lip-norm, and so
(X,L′) is a Lip-normed operator system in view of the density of D(L′) in Xsa. �

In the converse direction, given a Lip-normed operator system (X,L′) we can
extend L′ to a semi-norm L on X such that the conditions and conclusions in the
statement of Proposition 2.5 hold. Definition 4.2 and Proposition 4.3 indicate how
this can be done.

Example 2.6 (ergodic actions of compact groups). As studied in [13], ergodic ac-
tions of compact groups give rise to important examples of Lip-normed unital C∗-
algebras, notably noncommutative tori (see Example 6.8). Let γ be an ergodic action
of a compact group G on a unital C∗-algebra A. Let e be the identity element of
G. We suppose that G is equipped with a length function `, that is, a continuous
function ` : G→ R≥0 such that, for all g, h ∈ G,

(1) `(gh) ≤ `(g) + `(h),
(2) `(g−1) = `(g), and
(3) `(g) = 0 if and only if g 6= e.

The group action γ and the length function ` together yield the semi-norm L on A
defined by

L(a) = sup
g∈G\{e}

‖γg(a)− a‖
`(g)

.

It is easily seen that L is adjoint-invariant and that L(a) = 0 if and only if a ∈ C1.
Furthermore, by [13, Thm. 2.3] the metric dL(σ, ω) = supx∈D1(L) |σ(x) − ω(x)|
on S(A) induces the weak∗ topology, by [13, Prop. 2.2] D(L) is dense in X, and
it is readily verified that D1(L) is closed in A (see [10, Prop. 8.1]), so that by
Proposition 2.5 we obtain a Lip-normed unital C∗-algebra by restricting L to D(L)∩
Asa.

Example 2.7 (quotients). Let (X,L) be a Lip-normed operator system, Y an op-
erator system, and Φ : X → Y a unital positive linear map such that Φ(D(L)) is
dense in Ysa (which is automatic if Φ is surjective). Then by [10, Prop. 3.1] L gives
rise to a Lip-norm LY on Φ(D(L)) via the prescription

LY (y) = inf{L(x) : x ∈ D(L) and Φ(x) = y}

for each y ∈ Y , and the induced map from (S(Y ), ρLY ) to (S(X), ρL) is an isometry.
Since LY is closed by [10, Prop. 3.3], (Y,LY ) is a Lip-normed operator system. We
say that L induces LY via Φ.

The following definition captures the observation that Lip-norms define metrics
on matrix state spaces in much the same way as they do on state spaces. We will
thereby be able to define a matrix version of quantum Gromov-Hausdorff distance
by applying Hausdorff distance to the matrix state spaces (Definition 3.2).
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Definition 2.8. Let (X,L) be a Lip-normed operator system and n ∈ N. We define
the metric ρL,n on UCPn(X) by

ρL,n(ϕ,ψ) = sup
x∈D1(L)

‖ϕ(x)− ψ(x)‖

for all ϕ,ψ ∈ UCPn(X),

Note that ρL,n is indeed a metric since it clearly satisfies the triangle inequality
and is symmetric, and it is non-zero at any pair of distinct points owing to the
density of D(L) in Xsa. That ρL,n is finite follows from the norm compactness of
D1(L) ∩ BX

r for any r > 0 (a consequence of [10, Thm. 4.5] by scaling) along with
Proposition 2.11 below.

Proposition 2.9. The diameters of UCPn(X) relative to the respective metrics
ρL,n are finite and coincide for all n ∈ N.

Proof. The restriction map from S(X) onto S(D(L)) is evidently a weak∗ homeo-
morphism which is isometric with respect to ρL,1 and ρL (Definition 2.1), and so the
diameter of S(X) with respect to ρL,1 is finite by [10, Thm. 4.5]. Now given n ∈ N,
ϕ,ψ ∈ UCPn(X), and x ∈ Xsa we can find a state σ on Mn such that

|(σ ◦ ϕ)(x)− (σ ◦ ψ)(x)| = ‖ϕ(x)− ψ(x)‖.
It follows that the diameter of UCPn(X) is bounded above by that of S(X) =
UCP1(X). On the other hand S(X) embeds into UCPn(X) via the map which
takes σ ∈ S(X) to x 7→ σ(x)1Mn , from which we see that the diameter of UCPn(X)
is at least that of S(X), so that the two are equal. �

Definition 2.10. Given a Lip-normed operator system (X,L) we define its diameter
diam(X,L) to be the common value of the diameters of UCPn(X) with respect to
ρL,n for n ∈ N.

The next proposition, in addition to showing the finiteness of the metrics ρL,n
(see the paragraph following Definition 2.8), will also be of use in Sections 3 and
6 since it will enable us to streamline the statement and verification of conditions
involving local approximation of elements of bounded Lip-norm.

Proposition 2.11. Let (X,L) be a Lip-normed operator system. Let x ∈ D(L)
and let r be any number in its spectrum. Then ‖x− r1‖ ≤ L(x)diam(X,L).

Proof. We can find σ, ω ∈ S(X) such that σ(x − r1) = ‖x − r1‖ and ω(x) = r,
whence

‖x− r1‖ = |σ(x− r1)− ω(x− r1)|
= |σ(x)− ω(x)|
≤ L(x)diam(X,L).

�

Since one of the requirements for a Lip-norm is that the associated metric on
the state space give rise to the weak∗ topology, one would hope that the associated
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metrics on the matrix state spaces give rise to the respective point-norm topologies.
The following result shows that this is indeed the case.

Proposition 2.12. The metric ρL,n gives rise to the point-norm topology on UCPn(X).

Proof. Let

Uϕ,Ω,ε = {ψ ∈ UCPn(X) : ‖ϕ(x)− ψ(x)‖ < ε for all x ∈ Ω}
be a basic open set in the point-norm topology, with ϕ ∈ UCPn(X), ε > 0, and Ω a
finite subset of A. For each x ∈ Ω pick yx,1, yx,2 ∈ D(L) with ‖yx,1 − Re(x)‖ < ε/6
and ‖yx,2 − Im(x)‖ < ε/6, and choose M > 0 so that M ≥ maxx∈Ω,j=1,2 L(yx,j).
Now if ψ ∈ UCPn(X) and ρL,n(ϕ,ψ) < (6M)−1ε then ‖ϕ(yx,j)− ψ(yx,j)‖ < ε/6 for
all x ∈ Ω and j = 1, 2, and hence

‖ϕ(Re(x))− ψ(Re(x))‖ ≤ ‖ϕ(Re(x))− ϕ(yx,1)‖+ ‖ϕ(yx,1)− ψ(yx,1)‖
+ ‖ψ(yx,1)− ψ(Re(x))‖

< ε/2

and similarly ‖ϕ(Im(x))−ψ(Im(x))‖ < ε/2, so that ‖ϕ(x)−ψ(x)‖ < ε. Thus Uϕ,Ω,ε
contains the open ρL,n-ball centred at ϕ with radius (6M)−1ε, from which it follows
that the metric topology is finer than the point-norm topology.

Suppose now that B(ϕ, ε) is the ρL,n-ball centred at some ϕ ∈ UCPn(X) with
radius some ε > 0. Note that D1(L)∩BX

diam(S(X)) is compact, since D1(L) is closed
by the definition of a Lip-normed operator system and by [10, Thm. 4.5] D1(L)∩BX

1

is totally bounded, which implies the total boundedness of D1(L) ∩BX
diam(S(X)) via

a scaling argument. Hence we can find a finite set Ω ⊂ D1(L)∩BX
diam(S(X)) which is

(ε/3)-dense in D1(L)∩BX
diam(S(X)). Thus if ψ ∈ UCPn(X) and ‖ϕ(x)−ψ(x)‖ < ε/3

for all x ∈ Ω then ‖ϕ(x)−ψ(x)‖ < ε for all x ∈ D1(L)∩BX
diam(S(X)), and so B(ϕ, ε)

contains the point-norm basic open set

{ψ ∈ UCPn(X) : ‖ϕ(x)− ψ(x)‖ < ε/3 for all x ∈ Ω}.
We conclude that the metric and point-norm topologies coincide on UCPn(X). �

We round out this section by showing that matrix state spaces embed isometrically
under quotient maps, as do state spaces in the quantum metric setting. This will be
crucial for the application of Hausdorff distance in formulating our matrix version
of quantum Gromov-Hausdorff distance.

Proposition 2.13. Let (X,L) be a Lip-normed operator system, Y an operator
system, n ∈ N, Φ : X → Y a unital n-positive map with Φ(D(L)) dense in Ysa, and
LY the quotient Lip-norm on Y induced by L via Φ. Then the map Γ : UCPn(Y )→
UCPn(X) given by Γ(ϕ) = ϕ ◦ Φ is an isometry with respect to ρL,n and ρLY ,n.

Proof. Suppose Φ is n-positive and let ϕ,ψ ∈ UCPn(Y ). Since Φ is Lip-norm-
decreasing, we have ρLY ,n(ϕ,ψ) ≥ ρL,n(ϕ ◦ Φ, ψ ◦ Φ). For the reverse inequality, let
ε > 0 and choose y ∈ D1(LY ) such that

ρLY ,n(ϕ,ψ) < ‖ϕ(y)− ψ(y)‖+ ε.
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We may assume L(y) < 1 for otherwise we can replace y with µy for some µ < 1
sufficiently close to 1. Then by definition of the quotient Lip-norm there is an
x ∈ D1(L) such that Φ(x) = y, and so

ρLY ,n(ϕ,ψ) < ‖(ϕ ◦ Φ)(x)− (ψ ◦ Φ)(x)‖+ ε

≤ ρL,n(ϕ ◦ Φ, ψ ◦ Φ) + ε.

Since ε was arbitrary, we conclude that ρLY ,n(ϕ,ψ) = ρL,n(ϕ ◦ Φ, ψ ◦ Φ), so that Γ
is an isometry with respect to ρLY ,n and ρL,n. �

3. n-distance and complete distance

The definition of quantum Gromov-Hausdorff distance [10] involves forming a
direct sum and considering Lip-norms thereupon which induce the given Lip-norms
on the summands. One then takes an infimum of the Hausdorff distances between
the state spaces under their isometric embeddings into the state space of the direct
sum. We will apply the same procedure here with regard to the matrix state spaces.

Notation 3.1. Let (X,LX) and (Y,LY ) be Lip-normed operator systems. We
denote by M(LX , LY ) the collection of closed Lip-norms on D(LX)⊕D(LY ) which
induce LX and LY via the quotient maps onto D(LX) and D(LY ), respectively.

Let (X,LX) and (Y,LY ) be Lip-normed operator systems and L ∈ M(LX , LY ).
Since the projection map X ⊕ Y → X is u.c.p., by Proposition 2.13 we obtain an
isometry UCPn(X) → UCPn(X ⊕ Y ) with respect to ρLX and ρL. Similarly, we
also have an isometry UCPn(Y ) → UCPn(X ⊕ Y ). For notational simplicity we
will thus identify UCPn(X) and UCPn(Y ) with their respective images under these
isometries.

Definition 3.2. Let (X,LX) and (Y, LY ) be Lip-normed operator systems. For
each n ∈ N we define the n-distance

distns (X,Y ) = inf
L∈M(LX ,LY )

distρL,nH (UCPn(X), UCPn(Y ))

where distρL,nH denotes Hausdorff distance with respect to the metric ρL,n. We also
define the complete distance

dists(X,Y ) = inf
L∈M(LX ,LY )

sup
n∈N

distρL,nH (UCPn(X), UCPn(Y )).

The reason for defining the complete distance as above and not by taking the
supremum over the n-distances is the desire for a closer conceptual and technical
affinity with Rieffel’s quantum Gromov-Hausdorff distance, whereby a single dis-
tance quantity (in our case a supremum of Gromov-Hausdorff distances) is gauged
for each L ∈M(LX , LY ) and then an infimum taken. Notice that

dists(X,Y ) ≥ sup
n∈N

distns (X,Y )

and in particular that zero complete distance implies zero n-distance for all n ∈ N.

Lemma 3.3. If (X,LX) and (Y, LY ) are Lip-normed operator systems and m >
n ≥ 1, then distns (X,Y ) ≤ distms (X,Y ).
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Proof. Let L ∈M(LX , LY ) and ϕ ∈ UCPn(X). Let ω be any state on X, and define
ϕ̃ ∈ UCPm(X) by setting ϕ′(x) = ϕ(x) + ω(x)p for all x ∈ X, where Mn has been
identified with the upper left-hand corner of Mm and p is the unit for the lower right
(m− n)× (m− n) corner. Choose ψ′ ∈ UCPm(Y ) with ρL,m(ϕ′, ψ′) ≤ distms (X,Y ).
If ψ is the cut-down of ψ′ to the upper-left hand n× n corner of Mm, then viewing
it as an element of UCPn(X) we evidently have

ρL,n(ϕ,ψ) ≤ ρL,m(ϕ′, ψ′).

Hence distρL,nH (UCPn(X), UCPn(Y )) ≤ distρL,mH (UCPm(X), UCPm(Y )), and so we
conclude that distns (X,Y ) ≤ distms (X,Y ). �

The inequality distns (X,Y ) ≤ distms (X,Y ) in Lemma 3.3 can be strict. For in-
stance, consider any Lip-normed separable unital C∗-algebra (A,L) such that A
is not ∗-isomorphic to its opposite algebra Aop (see [8] for examples of such C∗-
algebras, and note that by Proposition 1.1 of [9] we can always Lip-norm a sep-
arable unital C∗-algebra). Then we obtain another Lip-normed unital C∗-algebra
(Aop, L) using the canonical isomorphism between A and Aop as order-unit spaces,
and dist1

s(A,A
op) = 0 by Theorem 12.11 of [10]. On the other hand, since A and

Aop are not ∗-isomorphic we have dist2
s(A,A

op) 6= 0 by Corollary 4.11(ii) in the next
section.

Proposition 3.4 (triangle inequality). If (X,LX), (Y,LY ), and (Z,LZ) are Lip-
normed operator systems then

distns (X,Z) ≤ distns (X,Y ) + distns (Y, Z),

for all n ∈ N, and

dists(X,Z) ≤ dists(X,Y ) + dists(Y,Z).

Proof. This follows by exactly the same argument used for quantum Gromov-Hausdorff
distance in [10], since in the last part of the proof of [10, Thm. 4.3] we can replace
the state spaces by matrix state spaces and the reference to [10, Prop. 3.1] by a
reference to our Proposition 2.13. �

In order to build a general framework for estimating distance between quantum
metric spaces, Rieffel formulates in [10, Defn. 5.1] the notion of a bridge, which we
now recall.

Definition 3.5. Let (A,LA) and (B,LB) be compact quantum metric spaces. A
bridge between (A,LA) and (B,LB) is a norm-continuous semi-norm N on A ⊕ B
such that

(i) N(1A, 1B) = 0 while N(1A, 0) 6= 0, and
(ii) for each a ∈ A and δ > 0 there exists a b ∈ B such that

max(LB(b), N(a, b)) ≤ LA(a) + δ,

with the same statement also holding upon interchanging A and B.
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Theorem 5.2 in [10] then shows that if N is a bridge between the compact quantum
metric spaces (A,LA) and (B,LB) then

L(a, b) = max(LA(a), LB(b), N(a, b))

defines a Lip-norm L on A⊕B which induces LA and LB via the respective quotient
maps. Since N is norm-continuous, L will be closed if LA and LB are both closed.

If (X,LX) and (Y, LY ) are Lip-normed operator systems then by a bridge between
(X,LX) and (Y, LY ) we will mean a bridge between the compact quantum metric
spaces (D(LX), LX) and (D(LY ), LY ). We begin by illustrating this notion with a
simple example which shows that if we scale a Lip-norm by a factor λ and let λ→∞
then we obtain convergence to a “point,” just as for ordinary metric spaces.

Example 3.6. Let (X,L) be a Lip-normed operator system. For each λ > 0 define
the Lip-normed operator system (X,Lλ) by setting Lλ = λL. Let (C, P ) be the
“one-point” Lip-normed operator system, with P (µ) = 0 for all µ ∈ C. Then

dists((X,L), (C, P )) ≤ Cλ−1

where C = diam(X,L). To show this we define a bridge on D(LX)⊕ C by

Nλ(x, µ) = C−1λ‖x− µ1X‖.
To see that this is indeed a bridge we verify condition (ii) in Definition 3.5 by
observing that Nλ(µ1X , µ) = 0 for all µ ∈ C while if x ∈ D(LX) then letting r
denote the infimum of the spectrum of x we have by Proposition 2.11

‖x− r1X‖ ≤ diam(X,L)LX(x) = Cλ−1Lλ(x).

LetMλ be the Lip-norm in M(Lλ, P ) given byMλ(x, µ) = max(Lλ(x), P (µ), Nλ(x, µ)).
Let n ∈ N and let ψ be the unique element in UCPn(C). If ϕ ∈ UCPn(X) and
(x, µ) ∈ D1(M) then

‖ϕ(x)− ψ(µ)‖ = ‖ϕ(x− µ1X)‖ ≤ ‖x− µ1X‖ ≤ Cλ−1,

yielding the desired complete distance estimate. Hence (X,Lλ) converges to (C, P )
as λ→∞ for complete distance.

As in the quantum metric setting [10, Prop. 5.4] we can apply the concept of a
bridge to show that the complete distance (and hence also the n-distance) is always
finite.

Proposition 3.7. If (X,LX) and (Y, LY ) are Lip-normed operator systems then

dists(X,Y ) ≤ diam(X,LX) + diam(Y,LY ).

Proof. As in the proof of [10, Prop. 5.4], for arbitrary γ > 0, σ0 ∈ S(X), and
ω0 ∈ S(Y ) we can construct a bridge

N(x, y) = γ−1|σ0(x)− ω0(y)|.
Let L be the Lip-norm in M(LX , LY ) given by L(x, y) = max(LX(x), LY (y), N(x, y)).
Then if (x, y) ∈ D1(L), ϕ ∈ UCPn(X), and ψ ∈ UCPn(Y ) we can find a σ ∈ S(Mn)
such that ‖ϕ(x)− ψ(y)‖ = |(σ ◦ ϕ)(x)− (σ ◦ ψ)(x)| whence

‖ϕ(x)− ψ(y)‖ ≤ |(σ ◦ ϕ)(x)− σ0(x)|+ |σ0(x)− ω0(y)|+ |ω0(y)− (σ ◦ ψ)(y)|
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≤ ρLX ,1(σ ◦ ϕ, σ0) + γ + ρLY ,1(ω0, σ ◦ ψ).

Since γ was arbitrary the proposition follows. �

Propositions 3.8 and 3.9 yield estimates on the complete distance in situations
involving bridges constructed via the norm.

Proposition 3.8. Let (X,LX) and (Y,LY ) be Lip-normed operator systems, and
suppose X and Y are operator subsystems of an operator system Z. Let ε > 0 and
suppose that N(x, y) = ε−1‖x − y‖ defines a bridge between (X,LX) and (Y, LY ).
Then dists(X,Y ) ≤ ε.

Proof. Let L be the Lip-norm in M(LX , LY ) given by

L(x, y) = max
(
LX(x), LY (y), ε−1‖x− y‖

)
for all (x, y) ∈ D(LX) ⊕ D(LY ). Let n ∈ N and ϕ ∈ UCPn(X). By Arveson’s
extension theorem we can extend ϕ to a u.c.p. map ϕ̃ : Z → Mn. Then if (x, y) ∈
D1(L) we have

‖ϕ(x)− ϕ̃(y)‖ ≤ ‖x− y‖ < ε

and thus ρL,n(ϕ, ϕ̃|Y ) < ε. We can interchange the roles of X and Y and apply the
same argument to conclude that dists(X,Y ) ≤ ε. �

Proposition 3.9. Let (X,LX) be a Lip-normed operator system, Y an operator
system, Φ : X → Y a surjective unital positive map, and LY the quotient Lip-norm
induced by LX via Φ. Let Z be an operator system containing X as an operator
subsystem and let Γ : Y → Z be a unital map such that ‖(Γ ◦ Φ)(x) − x‖ ≤ ε for
all x ∈ D1(L). If Φ and Γ are n-positive then distns (X,Y ) ≤ ε, and if Φ and Γ are
completely positive then dists(X,Y ) ≤ ε.

Proof. Given η > 0 we define the bridge N between (X,L) and (Y,LY ) by N(x, y) =
η−1‖Φ(x)− y‖ for all (x, y) ∈ X ⊕Y (to verify condition (ii) of Definition 3.5, given
x ∈ X and δ > 0 we can choose y = Φ(x), while if y ∈ Y and δ > 0 we can take
any x ∈ X such that Φ(x) = y and LX(x) ≤ LY (y) + δ). Let L be the Lip-norm in
M(LX , LY ) given by

L(x, y) = max(LX(x), LY (y), N(x, y))

for all (x, y) ∈ X ⊕ Y . Suppose that Φ is n-positive. Then if ϕ ∈ UCPn(Y )
we have ϕ ◦ Φ ∈ UCPn(X), and so if L(x, y) ≤ 1 then ‖Φ(x) − y‖ ≤ η so that
‖(ϕ ◦ Φ)(x) − ϕ(y)‖ ≤ η, whence ρL,n(ϕ ◦ Φ, ϕ) ≤ η. On the other hand if ϕ ∈
UCPn(X) then, extending ϕ to a u.c.p. map ϕ̃ : Z → Mn by Arveson’s extension
theorem, we have ϕ̃ ◦ Γ ∈ UCPn(Y ), and so if L(x, y) ≤ 1 then

‖ϕ(x)− (ϕ̃ ◦ Γ)(y)‖ ≤ ‖ϕ̃(x− (Γ ◦ Φ)(x))‖+ ‖(ϕ̃ ◦ Γ)(Φ(x)− y)‖
≤ ε+ η,

yielding ρL,n(ϕ, ϕ̃◦Γ) ≤ ε+η. Since η was arbitrary we conclude that distns (X,Y ) ≤
ε. In the case that Φ is completely positive we can apply the above argument over
all n ∈ N to obtain dists(X,Y ) ≤ ε. �
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The following three propositions guarantee approximability by Lip-normed well-
behaved finite-dimensional operator systems under conditions on the given operator
system or C∗-algebra which hold in a wide range of situations.

Proposition 3.10. Let (X,LX) be a Lip-normed nuclear operator system. Then
for every ε > 0 there is a Lip-normed operator system (Y,LY ) such that Y is an
operator subsystem of a matrix algebra and dists(X,Y ) ≤ ε.

Proof. Let ε > 0. Proposition 2.11 implies that

D1(LX) =
(
D1(LX) ∩BX

diam(X,LX)

)
+ R1,

and thus, since X is nuclear and the set D1(LX) ∩BX
diam(X,LX) is compact (see the

second half of the proof of Proposition 2.12), we can find a matrix algebra Mk and
u.c.p. maps Φ : X → Mk and Γ : Mk → X such that ‖(Γ ◦ Φ)(x) − x‖ ≤ ε for all
x ∈ D1(LX). Consider the image Y of Φ and the resulting quotient Lip-norm LY
on Y . Then by Proposition 3.9 we have dists(X,Y ) ≤ ε, yielding the result. �

By a proof similar to that of Proposition 3.10, we also have the following.

Proposition 3.11. Let (A,L) be a Lip-normed unital exact C∗-algebra. Then for
every ε > 0 there is a Lip-normed operator system (Y,LY ) such that Y is an operator
subsystem of a matrix algebra and dists(A, Y ) ≤ ε.

A separable C∗-algebra A is said to be a strong NF algebra if it is the inductive
limit of a generalized inductive system (An, φn,m) with each An a finite-dimensional
C∗-algebra and each φn,m a complete order embedding [1, Defn. 5.2.1] (a complete
order embedding from a C∗-algebra B to a C∗-algebra A is a c.p. isometry Φ : A→ B
such that Φ−1 : Φ(A)→ B is a c.p. map).

Proposition 3.12. Let (A,L) be a Lip-normed unital strong NF algebra. Then for
every ε > 0 there is a Lip-normed finite-dimensional C∗-algebra (B,LB) such that
dists(A,B) ≤ ε.

Proof. Since the set D1(L)∩BX
diam(A,L) is compact (see the second half of the proof of

Proposition 2.12) and A is strong NF, by [1, Thm. 6.1.1] and the fact that D1(LX) =(
D1(LX) ∩ BX

diam(X,LX)

)
+ R1 (which follows from Proposition 2.11) we can find a

finite-dimensional C∗-algebra B, a unital complete order embedding Γ : B → A, and
a (surjective) u.c.p. map Φ : A→ B such that Φ ◦ Γ = idB and ‖(Γ ◦Φ)(a)− a‖ ≤ ε
for all a ∈ D1(L). Then L induces a Lip-norm LB on B via Φ, and dists(A,B) ≤ ε
by Proposition 3.9. �

Proposition 3.12 applies for instance to noncommutative tori Lip-normed via the
ergodic action of ordinary tori, as described in Example 6.8. In this situation,
however, one would hope to be able to approximate by finite-dimensional C∗-algebras
Lip-normed via models of the original action, as in the following example.

Example 3.13. In [11] Rieffel shows, in the context of Berezin quantization, that the
sphere S2 is a limit of matrix algebras with respect to quantum Gromov-Hausdorff
distance. In fact a more general statement applying to integral coadjoint orbits of
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a compact Lie group is established. We will briefly indicate how Rieffel’s approach
leads to precisely the same estimates for complete distance, adopting the same no-
tation as in [11], to which we refer the reader for more details.

Given a compact group G consider the C∗-algebra B of all bounded operators
on a Hilbert space on which G is irreducibly and unitarily represented. Given a
rank-one projection P ∈ B we define for each T ∈ B the Berezin covariant symbol
σT with respect to P by σT (x) = τ(Tαx(P )) where τ is the unnormalized trace on
B and α is the action of G on B given by conjugation. Denoting by H the stability
subgroup of P for α, we thereby obtain a map σ from B to A = C(G/H) which is
unital and positive, and hence u.c.p. since the range is a commutative C∗-algebra.
The action α along with a length function ` give rise to a Lip-norm LB on B as
in Example 2.6, and similarly the action of G on G/H by left translation combines
with ` to produce a Lip-norm LA on A (permitting the value +∞ for convenience).
Corollary 2.4 of [11] shows that, for some γ > 0, there is a bridge between (A,LA)
and (B,LB) of the form

N(f, T ) = γ−1‖f − σT ‖∞.

Proposition 1.3 of [11] then shows that S(A) is in the γ-neighbourhood of S(B) under
the metric defined by the Lip-norm L on A⊕B associated to N . But the argument
there also applies at the matrix level: given ϕ ∈ UCPn(A) we have ϕ◦σ ∈ UCPn(B)
since σ is u.c.p., and if L(f, T ) ≤ 1 then ‖f − σT ‖∞ ≤ γ so that

‖ϕ(f)− (ϕ ◦ σ)(T )‖ = ‖ϕ(f − σT )‖ ≤ ‖f − σT ‖∞ ≤ γ,

showing that UCPn(A) lies in the γ-neighbourhood of UCPn(B) with respect to
the metric ρL,n. Now on the other hand if ψ ∈ UCPn(B) then we can consider the
adjoint operator σ̆ : A → B and take the composition ψ ◦ σ̆, which is in UCPn(A)
since σ̆ is unital and positive and hence u.c.p. because its domain is a commutative
C∗-algebra. Then if L(f, T ) ≤ 1 we have ‖f − σT ‖∞ ≤ γ from which we obtain the
estimate

‖(ψ ◦ σ̆)(f)− ψ(T )‖ = ‖ψ(σ̆f − T )‖
≤ ‖σ̆f − T‖
≤ ‖σ̆f − σ̆(σT )‖+ ‖σ̆(σT )− T‖
≤ ‖f − σT ‖∞ + ‖σ̆(σT )− T‖
≤ γ + ‖σ̆(σT )− T‖

exactly as in the case n = 1 in the discussion following [11, Cor. 2.4]. When G
is a compact Lie group Rieffel shows that, by replacing B with the C∗-algebra of
bounded operators on the mth tensor power of the original Hilbert space, both
the bridge constant γ and the term ‖σ̆(σT ) − T‖ can be made arbitrarily small by
taking m sufficiently large (see Theorem 3.2 and Sections 3–5 of [11]), yielding an
asymptotically vanishing bound on the quantum Gromov-Hausdorff distance as a
result of the estimates in the two previous displays for the case n = 1. But since
these estimates apply equally well for all n we get the same bounds for complete
distance.
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4. Distance zero

This section is aimed at establishing that distns (X,Y ) = 0 (resp. dists(X,Y ) =
0) is equivalent to the existence of a bi-Lip-isometric unital n-order isomorphism
(resp. bi-Lip-isometric unital complete order isomorphism) between X and Y (The-
orem 4.10). One direction is straightforward:

Proposition 4.1. Let (X,LX) and (Y,LY ) be Lip-normed operator systems. If
there is a bi-Lip-isometric unital n-order isomorphism betweenX and Y then distns (X,Y ) =
0. If there is a bi-Lip-isometric unital complete order isomorphism between X and
Y then dists(X,Y ) = 0.

Proof. This follows from Proposition 3.9, taking Φ there to be a bi-Lip-isometric uni-
tal n-order isomorphism (resp. bi-Lip-isometric unital complete order isomorphism)
from X onto Y and taking Γ to be its inverse. �

For the converse, it will be convenient to extend our Lip-norms in an adjoint-
invariant way (Definition 4.2) and to introduce a collection of matrix semi-norms
(Definition 4.4).

Definition 4.2. Let (X,L) be a Lip-normed operator system. We define the semi-
norm Le on X by

Le(x) = sup
{
|σ(x)− ω(x)|
ρL,1(σ, ω)

: σ, ω ∈ S(X) and σ 6= ω

}
for all x ∈ X (permitting the value +∞).

Proposition 4.3. The set of self-adjoint elements on which the semi-norm Le in
Definition 4.2 is finite coincides with the domain of L, and on this set Le = L.

Proof. By Proposition 6.1 of [10], D(L) corresponds to the subspace of affine func-
tions on S(D(L)) which are Lipschitz for ρL. This, along with the fact that the
restriction map from S(X) to S(D(L)) is a weak∗ homeomorphism which is isomet-
ric for ρL,1 and ρL (see the proof of Proposition 2.5), implies the result. �

Definition 4.4. Let (X,L) be a Lip-normed operator system and n ∈ N. We define
the semi-norm Ln on Mn ⊗X by

Ln(x) = max
1≤i,j≤n

Le(xij)

for all x = (xij) ∈Mn(X) ∼= Mn ⊗X.

For the meaning of the notation D(·) and Dλ(·), as will be applied to the semi-
norms Le and Ln, see Notation 2.2.

Lemma 4.5. Let (X,L) be a Lip-normed operator system. Then D(Le) is dense in
X and D(Ln) is dense in Mn ⊗X for all n ∈ N.

Proof. Since Le is adjoint-invariant and coincides with L on the dense real subspace
D(L) of Xsa by Proposition 4.3, using the decomposition of elements into real and
imaginary parts we see that D(Le) is dense in X. As a direct consequence D(Ln) is
dense in Mn ⊗X for all n ∈ N. �
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Lemma 4.6. Let (X,LX) and (Y, LY ) be Lip-normed operator systems, and let
L ∈M(LX , LY ) and n ∈ N. Set r = distρL,nH (UCPn(X), UCPn(Y )). Then for every
ψ ∈ SCPn(Y ) there is a ϕ ∈ SCPn(X) such that, for all (x, y) ∈ D(Le),

‖ϕ(x)− ψ(y)‖ ≤ 2n3Le(x, y)r.

Proof. To prove the lemma we may assume that ψ(1) has full support in Mn, for
otherwise for every k ∈ N we can perturb ψ to a convex combination (1− k−1)ψ +
k−1α where α(x) = ω(x)1Mn for some ω ∈ S(Y ) and all x ∈ X (in which case the
corresponding state σψ on Mn⊗Y is perturbed to another a state), find a suitable ϕk
as in the lemma statement with respect to ψk, and then take a point-norm limit point
of {ϕk}k∈N to obtain the desired φ. We can thus consider the map ψ′ ∈ UCPn(Y )
given by

ψ′(y) = ψ(1)−
1
2ψ(y)ψ(1)−

1
2 .

for all y ∈ Y . By assumption we can find a ϕ′ ∈ UCPn(X) such that

ρL,n(ϕ′, ψ′) ≤ r.
Let ϕ : Y →Mn be the c.p. map given by

ϕ(x) = ψ(1)
1
2ϕ′(x)ψ(1)

1
2

for all x ∈ X. Then ϕ(1) = ψ(1), which implies that σϕ is a state on Mn ⊗X, so
that ϕ ∈ SCPn(Y ). Since σψ is a state on Mn ⊗ Y we must have ‖ψ(1)‖ ≤ n3, and
thus if (x, y) ∈ D(Le) then

‖ϕ(x)− ψ(y)‖ = ‖ψ(1)
1
2 (ϕ′(x)− ψ′(y))ψ(1)

1
2 ‖

≤ ‖ψ(1)
1
2 ‖‖ϕ′(x)− ψ′(y)‖‖ψ(1)

1
2 ‖

≤ n3(‖ϕ′(Re(x))− ψ′(Re(y))‖+ ‖ϕ′(Im(x))− ψ′(Im(y))‖)
≤ n3(L(Re(x),Re(y)) + L(Im(x), Im(y)))ρL,n(ϕ′, ψ′)

≤ 2n3Le(x, y)ρL,n(ϕ′, ψ′)

≤ 2n3Le(x, y)r

with the second last inequality following from the adjoint invariance of Le and the
fact that Le = L on D(L) by Proposition 4.3. �

Definition 4.7. Let (X,LX) and (Y,LY ) be Lip-normed operator systems, and let
L ∈M(LX , LY ) and n ∈ N. For each λ ≥ 0, x ∈ D(LnX), and y ∈ D(LnY ) we set

Nλ
Ln,Y (x) = {z ∈Mn ⊗ Y : (x, z) ∈ Dλ(Ln)} ,

Nλ
Ln,X(y) = {z ∈Mn ⊗X : (z, y) ∈ Dλ(Ln)} ,

Lemma 4.8. Let (X,LX) and (Y, LY ) be Lip-normed operator systems, and let
L ∈ M(LX , LY ) and n ∈ N. Set r = distρL,nH (UCPn(X), UCPn(Y )). If x ∈ D(LnX)
and λ > 2LnX(x) then

(i) Nλ
Ln,Y (x) is non-empty and closed,
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(ii) the norms of elements of Nλ
Ln,Y (x) are bounded by 4(‖x‖+λn4r), and if x and

y ∈ Nλ
Ln,Y (x) are self-adjoint then the norm of y is bounded by ‖x‖+ 2λn4r,

(iii) the norm diameter of Nλ
Ln,Y (x) is bounded by 8λn4r,

(iv) if x′ is another element of D(LnX) and λ is also strictly larger than LnX(x′)
then the Hausdorff distance between Nλ

Ln,Y (x) and Nλ
Ln,Y (x′) is bounded by

8λn4r + 4‖x− x′‖, and
(v) if x ≥ 0 then there is a (self-adjoint) y ∈ Nλ

Ln,Y (x) with y ≥ −2λn4r.

Statements (i)–(v) also hold for y ∈ D(LnY ) and λ > 2LnY (y) if LX and Nλ
Ln,Y (x) are

replaced by LY and Nλ
Ln,X(y), respectively.

Proof. Since symmetry will take care of the last sentence of the proposition state-
ment, we prove (i)–(v) as written for x ∈ D(Ln) and λ > 2LnX(x). We begin with
(i). For 1 ≤ i, j ≤ n we have max(LX(Re(xij)), LX(Im(xij))) < Le(xij) < λ/2. We
can thus find (yij) ∈ N

λ/2
Ln,Y (Re((xij))) and (zij) ∈ N

λ/2
Ln,Y (Im((xij))) since LX is the

quotient Lip-norm induced by L. Then

Ln((xij), (yij) + i(zij)) ≤ Ln((Re((xij))), (yij)) + Ln((Im((xij))), (zij))
< λ

so that N
λ/2
Ln,Y (x) contains (yij)+ i(zij) and is in particular non-empty. That this set

is also closed follows from the lower semicontinuity of Le, which is easily checked.
For (ii), let y = (yij) ∈ Nλ

Ln,Y (x) and ψ ∈ SCPn(Y ). By Lemma 4.6 there is a
ϕ ∈ SCPn(X) such that ‖ϕ(z) − ψ(w)‖ ≤ 2n3Le(z, w)r for all z, w ∈ D(Le). We
then have

|σϕ(x)− σψ(y)| = 1
n

∣∣∣∣∣∑
i,j

(ϕ(xij)ij − ψ(yij)ij)

∣∣∣∣∣
≤ 1
n

∑
i,j

|ϕ(xij)ij − ψ(yij)ij |

≤ 1
n

∑
i,j

‖ϕ(xij)− ψ(yij)‖

≤ 2n2
∑
i,j

Le(xij , yij)r

≤ 2n4Ln(x, y)r

≤ 2λn4r.

It follows that |σψ(y)| ≤ 2(‖x‖+λn4r), and so |σψ(Re(y))| and |σψ(Im(y))| are both
bounded by 2(‖x‖+ λn4r), from which we conclude that

‖y‖ ≤ ‖Re(y)‖+ ‖Im(y)‖ ≤ 4(‖x‖+ λn4r).

If x and y ∈ Nλ
Ln,Y (x) are self-adjoint then the above argument shows that the norm

of y is in fact bounded by ‖x‖+ 2λn4r.
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To establish (iii), suppose y, y′ ∈ Mn ⊗ Y are such that (x, y), (x, y′) ∈ Dλ(Le).
Let ψ ∈ SCPn(Y ). Arguing as in the proof of (ii), there exists by Lemma 4.6
a ϕ ∈ SCPn(X) such that ‖ϕ(z) − ψ(w)‖ ≤ n3Le(z, w)r for all z, w ∈ D(Le),
so that both |σϕ(x) − σψ(y)| and |σϕ(x) − σψ(y′)| are bounded by 2λn4r, whence
|σψ(y − y′)| ≤ 4λn4r. It follows that ‖y − y′‖ ≤ 8λn4r, and so we obtain (iii).

For (iv), suppose y ∈ Nλ
Ln,Y (x) and y′ ∈ Nλ

Ln,Y (x′). Then as in the proof of (ii)
we can find a ϕ ∈ SCPn(X) such that both |σϕ(x) − σψ(y)| and |σϕ(x′) − σψ(y′)|
are bounded by 2λn4r, and the triangle inequality yields

|σψ(y)− σψ(y′)| ≤ 4λn4r + |σϕ(x)− σϕ(x′)|
≤ 4λn4r + 2‖x− x′‖.

Hence ‖y − y′‖ ≤ 8λn4r + 4‖x− x′‖, from which (iv) follows.
Finally, to prove (v) we suppose x ≥ 0. By part (i) there is a y = (yij) ∈ Nλ

Ln,Y (x).
We then have, for 1 ≤ i, j ≤ n,

L(xij , (Re(y))ij) ≤
1
2
Le(xij , yij) +

1
2
Le(x∗ji, y

∗
ji)

=
1
2
Le(xij , yij) +

1
2
Le(xji, yji)

≤ Ln(x, y)

using the adjoint invariance of Le, and so Re(y) is a self-adjoint element of Nλ
Ln,Y (x).

Suppose now that y is an arbitrary self-adjoint element of Nλ
Ln,Y (x). If ψ ∈ SCPn(Y )

then as in the proof of (ii) there is a ϕ ∈ SCPn(X) such that |σϕ(x)−σψ(y)| ≤ 2λn4r,
and thus since σϕ(x) ≥ 0 and y is self-adjoint we infer that σϕ(y) ≥ −2λn4r. Hence
we conclude that y ≥ −2λn4r. �

Proposition 4.9. Let (X,LX) and (Y,LY ) be Lip-normed operator systems, and
suppose distns (X,Y ) = 0 for some n ∈ N. Then there is a unital order isomorphism
Φ : Mn ⊗ X → Mn ⊗ Y , and in the case n = 1 we may arrange that D(LY ) =
Φ(D(LX)) and LY (Φ(x)) = LX(x) for all x ∈ D(LX).

Proof. By assumption there is a sequence {Lk}k∈N of Lip-norms in M(LX , LY ) such
that limk→∞ rk = 0 where rk = dist

ρLk,n
H (UCPn(X), UCPn(Y )). Let x ∈ D(LnX)

and λ > 2LnX(x). Set s = 4(‖x‖+ 2λn4). In view of Lemma 4.8(ii) we may assume
(by removing finitely many of the Lk’s and reindexing the sequence if necessary) that
the sets Nλ

Lnk ,X
(x) for k ≥ 1 are all contained in Ds(LnY )∩BMn⊗Y

s . This latter set is
compact, since it is closed by the lower semicontinuity of LnY and for any t > 0 the
set Dt(LY ) ∩ BY

t is compact (see the second half of the proof of Proposition 2.12),
which implies the compactness of the set Dt(LeY ) ∩ BY

t (use the decomposition of
elements into real and self-adjoint parts) and hence also the total boundedness of
the subset of Mn(Y ) ∼= Mn ⊗ Y of n × n matrices with entries in Dt(LeY ) ∩ BY

t .
Since by Lemma 4.8(iii) the diameters of Nλ

Lnk ,X
(x) converge to zero as k → ∞,

this implies the existence of a subsequence of
{
Nλ
Lnk ,X

(x)
}
k∈N which converges in

Hausdorff distance to some singleton {Φ(x)}. This singleton must in fact be the
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same for each λ > 2LnX(x) because for each k ∈ N we have

Nλ
Lnk ,X

(x) ⊂ Nλ′
Lnk ,X

(x)

whenever λ ≤ λ′. Using a diagonal argument and relabeling indices we may assume
that, for all x in a countable dense subset D of D(LnX), the sets Nλ

Lnk ,X
(x) for

λ > 2LnX(x) converge in Hausdorff distance as k → ∞ to some singleton {Φ(x)}.
Then in fact for any x ∈ D(LnX) and λ > 2LnX(x) the relabeled sets Nλ

Lnk ,X
(x)

converge as k → ∞ to some singleton {Φ(x)}, since for any ε > 0 we can take an
x′ ∈ D with ‖x − x′‖ ≤ ε/16 and 2LnX(x′) < λ (since we may assume that D was
chosen so that D ∩Dq(LnX) is dense in Dq(LnX) for all positive rational numbers q)
and a k0 ∈ N such that, for all k ≥ k0, Nλ

Lnk ,X
(x′) is within Hausdorff distance ε/2

of {Φ(x′)} and 8λn4rk ≤ ε/2, from which it can be seen using Lemma 4.8(iv) that
for all k ≥ k0 the set Nλ

Lnk ,X
(x) lies inside the ball of radius ε centred at Φ(x′).

Now if µ ∈ C and x, x′ ∈ D(LnX) then for any λ ≥ 0 it is easily seen that

N
(|µ|+1)λ
Lnk ,Y

(µx+ x′) ⊃ {µy + y′ : y ∈ Nλ
Lnk ,Y

(x) and y′ ∈ Nλ
Lnk ,Y

(x′)}.

Thus if λ > 2 max(|µ|LnX(x), LnX(x′)) the sequence of sets Nλ
Lnk ,Y

(µx+ x′), which we
know to converge after the relabeling of the previous paragraph, must converge to
{µΦ(x) + Φ(x′)} as k → ∞. Also, for every x ∈ D(LnX) and λ > LnX(x) we have
y∗ ∈ Nλ

Lnk ,Y
(x∗) if and only if y ∈ Nλ

Lnk ,Y
(x), so that {Φ(x∗)} is equal to the limit of

{y∗ : y ∈ Nλ
Lnk ,Y

(x)}, which by the continuity of the involution must be {(Φ(x))∗}.
Hence we have defined a ∗-linear map Φ : D(LnX) → Mn ⊗ Y . Note also that Φ is
unital since 1Y ∈ Nλ

Lnk ,Y
(1X) for all λ > 0. We furthermore have by Lemma 4.8(ii)

that the norm of Φ is bounded by 4 on D, and thus, since D is dense in D(LnX)
which in turn is dense in Mn ⊗X by Lemma 4.5, Φ extends uniquely to a bounded
∗-linear map from Mn ⊗X to Mn ⊗ Y , which we will again denote by Φ.

Now by another diagonal argument and index relabeling we may assume that
Nλ
Lnk ,X

(y) converges in Hausdorff distance as k → ∞ to a singleton {Γ(y)} for all
y in a countable dense subset of D(LnY ) which contains Φ(D). We thus obtain, as
above, a bounded unital ∗-linear map Γ : D(LnY ) → D(LnX). We will show that Φ
and Γ are mutual inverses. Suppose x ∈ D(L) and λ > 2 max(LnX(x), LnY (Φ(x))).
For each k ∈ N choose x′k ∈ Nλ

Lnk ,X
(Φ(x)) and yk ∈ Nλ

Lnk ,Y
(x). Let ε > 0 and

ϕ ∈ SCPn(Y ). Pick k0 ∈ N large enough so that, for all k ≥ k0, 2λn4rk ≤ ε and
‖yk − Φ(x)‖ ≤ ε. Then as in the proof of Lemma 4.8(i) for any k ≥ k0 we can find
a ψ ∈ SCPn(X) such that

|σϕ(x)− σψ(yk)| ≤ 2n4Le(x, yk)rk ≤ 2n4λrk ≤ ε

and similarly |σϕ(x′k)− σψ(Φ(x))| ≤ ε, whence by the triangle inequality

|σϕ(x)− σϕ(x′k)| ≤ 2ε+ |σψ(yk)− σψ(Φ(x))|
≤ 3ε.
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Therefore ‖x− x′k‖ ≤ 6ε, and so we have limk→∞ x
′
k = x. Hence

Γ(Φ(x)) = Γ
(

lim
k→∞

yk

)
= lim

k→∞
Γ(yk) = lim

k→∞
x′k = x.

By a similar argument Φ(Γ(y)) = y for all y ∈ D(LnY ), and hence by continuity we
conclude that Φ and Γ are mutual inverses.

Next we show that Φ and Γ are positive. If x ∈ D(LnX), x ≥ 0, and λ > 2LnX(x),
then Lemma 4.8(v) yields, for all k ∈ N, a yk ∈ Nλ

Lnk ,Y
(x) with yk ≥ −2λn4rk. Then

y is the limit as k → ∞ of the positive elements yk + 2λn4rk and hence y itself is
positive. Thus Φ is positive, and by a symmetric argument so is Γ. Hence Φ is a
unital order isomorphism.

It remains to show that if n = 1 then Φ is isometric with respect to LX and
LY , that is, D(LY ) = Φ(D(LX)) and LY (Φ(x)) = LX(x) for all x ∈ D(LX). Let
x ∈ D(LX) and λ > max(1, 2LX(x)). Suppose σ, σ′ ∈ S(Y ), and let ε > 0. Choose
k ∈ N large enough so that we can find ω, ω′ ∈ S(X) with λρLk,1(σ, ω) ≤ ε and
λρLk,1(σ′, ω′) ≤ ε, as well as a yk ∈ Nλ

L1
k,X

(x) with ‖Φ(x)− yk‖ ≤ ε. Then

|σ(Φ(x))− ω(x)| ≤ |σ(Φ(x))− σ(yk)|+ |σ(yk)− ω(x)|
≤ ε+ λρLk,1(σ, ω)
≤ 2ε

and similarly |σ′(Φ(x))− ω′(x)| ≤ 2ε. Thus, since

ρLY ,1(ω, ω′) ≤ ρLk,1(ω, σ) + ρLX ,1(σ, σ′) + ρLk,1(σ′, ω′)

≤ ρLY ,1(σ, σ′) + 2ε,

we have

|σ(Φ(x))− σ′(Φ(x))| ≤ |σ(Φ(x))− ω(x)|+ |ω(x)− ω′(x)|+ |ω′(x)− σ′(Φ(x))|
≤ 4ε+ ρLX ,1(ω, ω′)LX(x)

≤ 2ε(2 + LX(x)) + ρLY ,1(σ, σ′)LX(x).

Dividing by ρLY ,1(σ, σ′) and letting ε → 0+, we conclude that LY (Φ(x)) ≤ LX(x).
Since the above argument also applies to Γ we must in fact have D(LY ) = Φ(D(LX))
and LY (Φ(x)) = LX(x) for all x ∈ D(LX). �

Theorem 4.10. Let (X,LX) and (Y, LY ) be Lip-normed operator systems.
(i) If n ∈ N then distns (X,Y ) = 0 if and only if there is a bi-Lip-isometric unital

n-order isomorphism between X and Y .
(ii) We have dists(X,Y ) = 0 if and only if there is a bi-Lip-isometric unital

complete order isomorphism between X and Y .

Proof. Proposition 4.1 takes care of the “if” in each part, and so we need only worry
about the “only if” direction. Suppose distns (X,Y ) = 0 for some n ∈ N. Then by
Lemma 3.3 we have distms (X,Y ) = 0 for each m = 1, . . . , n. Applying the proof of
Proposition 4.9 successively for each m = 1, . . . , n so that we can apply a diagonal
argument across these values of m, we can find, for each m = 1, . . . , n, a unital
order isomorphism Φm : Mm ⊗X →Mm ⊗ Y such that, for each x ∈Mm ⊗X and
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λ > 2LmX(x), the singleton {Φ(x)} is the limit of Nλ
Lmk ,Y

(x) as k →∞ with respect to
Hausdorff distance for a sequence of Lip-norms Lk ∈M(LA, LB). By Proposition 4.9
we may also arrange that D(LY ) = Φ(D(LX)) and LY (Φ1(x)) = LX(x) for all
x ∈ D(LX). We will show that Φm = idm⊗Φ1 for each m = 2, . . . , n. Suppose then
that x ∈ D(LX). For each k ∈ N choose yk ∈ Nλ

L1
k,Y

(x). If eij is a standard matrix

unit in Mm then Lmk (eij ⊗ x, eij ⊗ yk) = Lek(x, yk) so that eij ⊗ yk ∈ Nλ
Lmk ,Y

(eij ⊗ x).
Thus Nλ

Lmk ,Y
(eij ⊗ x) must converge to the singleton containing

lim
k→∞

eij ⊗ yk = eij ⊗ lim
k→∞

yk = (idm ⊗ Φ1)(eij ⊗ x),

whence Φm(eij⊗x) = (idm⊗Φ1)(eij⊗x). Since by Lemma 4.5 the span of elements of
the form eij⊗x with x ∈ D(LeX) is dense inMm⊗X, we conclude that Φm = idm⊗Φ1,
so that Φ1 is a bi-Lip-isometric n-order isomorphism. We thus obtain (i).

For (ii) we can use essentially the same proof (note that dists(X,Y ) = 0 implies
distns (X,Y ) = 0 for all n ∈ N), with the diagonal arguments now extended across
all n ∈ N. �

Corollary 4.11. Let A and B be unital C∗-algebras with Lip-norms LA and LB,
respectively.

(i) We have dist1
s(A,B) = 0 if and only if there is a bi-Lip-isometric unital order

isomorphism between A and B.
(ii) If n ≥ 2 then distns (A,B) = 0 if and only if there is a bi-Lip-isometric

∗-isomorphism between A and B.
(iii) We have dists(A,B) = 0 if and only if there is a bi-Lip-isometric ∗-isomorphism

between A and B.

Proof. The corollary is an immediate consequence of Theorem 4.10 and the fact that
a unital 2-order isomorphism between A and B is automatically a ∗-isomorphism
[2]. �

We remark that a unital order isomorphism between unital C∗-algebras need not
be a ∗-isomorphism. For instance, a unital C∗-algebra A is always unitally order
isomorphic to its opposite algebra Aop, but these need not be ∗-isomorphic, as the
examples in [8] demonstrate.

5. f-Leibniz complete distance and convergence

Let (R,dists) be the metric space, under complete distance, of equivalence classes
of Lip-normed operator systems with respect to bi-Lip-isometric unital complete
order isomorphism. For economy we will simply refer to the elements of R as Lip-
normed operator systems. We have not been able to determine whether the metric
space (R,dists) is complete (cf. Theorem 12.11 of [10]). However, we will establish
in this section a kind of relative completeness within the metric subspace of Lip-
normed unital C∗-algebras which asserts the convergence, with respect to complete
distance, of sequences which are Cauchy with respect to a larger distance (“f -Leibniz
complete distance”) the Lip-norms in whose definition are required to satisfy a type
of weak Leibniz property (“f -Leibniz”) which introduces some control with respect
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to products. Let f : R4
+ → R+ be a continuous function. Given a Lip-normed unital

C∗-algebra (A,L), the Lip-norm L is said to be f -Leibniz if it satisfies the f -Leibniz
property

max(L(Re(xy)), L(Im(xy))) ≤ f(L(x), L(y), ‖y‖, ‖x‖)
for all x, y ∈ D(L). If L is the restriction of an adjoint-invariant semi-norm L′ on A
which is finite on a dense ∗-subalgebra and satisfies the usual Leibniz rule

L′(xy) ≤ L′(x)‖y‖+ ‖x‖L′(y)

for all x, y ∈ D(L), then L is f -Leibniz for the function f(a, b, c, d) = ac + bd and
we simply say that L is Leibniz. The Lip-normed unital C∗-algebras of Example 2.6
are Leibniz, as are those obtained from Lipschitz semi-norms on functions over a
compact metric space. We denote by Ralg the subset of R consisting of Lip-normed
unital C∗-algebras, and for (A,LA) and (B,LB) in Ralg we define the f -Leibniz
complete distance dists,f (A,B) in the same way that the complete distance is defined
(Definition 3.2) except that the infimum is now taken over the f -Leibniz Lip-norms
in M(LA, LB) (if no such f -Leibniz Lip-norm exists we set dists,f (A,B) =∞). Note
that dists,f might not satisfy the triangle inequality without further hypotheses on f ,
but that will not be of consequence for our application here, and we can still speak
of Cauchy sequences with respect to dists,f in the obvious sense. It can be seen
that the estimates in Example 3.13 for complete distance also apply to f -Leibniz
complete distance for suitable f (although f may depend on the matrix algebra),
and if N is a bridge between two Leibniz Lip-normed C∗-algebras of the form that
appears in Proposition 3.8 then the resulting Lip-norm on the direct sum is Leibniz
(see Section 6 for examples of the use of bridges like those in Proposition 3.8).

I would like to thank Narutaka Ozawa for suggesting the idea behind the proof of
the following lemma. Given a sequence {Ak}k∈N of C∗-algebras we denote by

∏
Ak

the C∗-algebra of bounded sequences with the supremum norm and by
⊕
Ak the

C∗-subalgebra of sequences converging to zero.

Lemma 5.1. Let {Ak}k∈N be a sequence of unital C∗-algebras and X a separable
operator subsystem of

∏
Ak
/⊕

Ak, and let n ∈ N. Suppose that, for each z ∈
Mn ⊗X, at least one lift (and hence every lift)

∑
eij ⊗ (zijk )k ∈Mn ⊗

(∏
Ak
)

of z
with respect to the quotient

(
Mn⊗

(∏
Ak
))/(

Mn⊗
(⊕

Ak
)) ∼= Mn⊗

(∏
Ak
/⊕

Ak
)

satisfies
lim
k→∞

∥∥∥∑ eij ⊗ zijk
∥∥∥ = ‖z‖.

Then for every ϕ ∈ UCPn(X) there are ϕk ∈ UCPn(Ak) for k ∈ N such that for all
(xk)k +

⊕
Ak ∈ X we have

ϕ
(
(xk)k +

⊕
Ak
)

= lim
k→∞

ϕk(xk).

Proof. First we consider an arbitrary finite-dimensional operator subsystem Y of X
and show that the conclusion of the lemma holds with respect to elements of Y .
Letting π :

∏
Ak →

∏
Ak
/⊕

Ak be the quotient map, there exists, by elementary
linear algebra, a unital linear map x

α7→ α(x) = (α(x)k)k from X to
∏
Ak such that

π ◦ α = idX . We may assume that α is Hermitian for otherwise we can replace it
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with its real part (α+ α∗)/2. Since Y is finite-dimensional the unit ball of Mn ⊗ Y
is compact, and so by our assumption on lifts of elements of Mn ⊗ X we can find
a sequence δ1, δ2, . . . of positive real numbers with limk→∞ δk = 0 such that, for all∑
eij ⊗ xij in the unit ball of Mn ⊗ Y and k ∈ N,∥∥∥∑ eij ⊗ xij

∥∥∥− δk < ∥∥∥∑ eij ⊗ α(xij)k
∥∥∥ < ∥∥∥∑ eij ⊗ xij

∥∥∥+ δk.

This implies in particular that for each sufficiently large k ∈ N the map πk ◦ α is
injective on Y , where πk :

∏
Ak → Ak is the projection map. Let ϕ ∈ UCPn(Y ).

For each sufficiently large k ∈ N we can define the linear map ψk : (πk ◦α)(Y )→Mn

by
ψk(a) = ϕ((πk ◦ α)−1(a))

for all a ∈ (πk◦α)(Y ). Then ψk is unital and Hermitian, and ‖idn⊗ψk‖ ≤ (1−δk)−1.
By [14, Thm. 2.10] the completely bounded norm ‖ψk‖cb is equal to ‖idn⊗ψk‖ and
hence is at most (1 − δk)−1. By the Wittstock extension theorem (see [17]) there
is an extension of ψk to Ak with the same completely bounded norm. We denote
this extension also by ψk. By the Wittstock decomposition theorem (see [17]) there
exist completely positive maps ψ+

k and ψ−k from Ak to Mn such that ψk = ψ+
k −ψ

−
k

and ‖ψk‖cb ≥ ‖ψ+
k + ψ−k ‖. We then have

ψ+
k (1) = ψk(1) + ψ−k (1) = 1 + ψ−k (1) ≥ 1

and
‖ψ+

k (1)‖ = ‖ψ+
k ‖ ≤ ‖ψ

+
k + ψ−k ‖ ≤ ‖ψk‖cb ≤ (1− δk)−1.

Also,
‖ψ+

k − ψk‖ = ‖ψ+
k (1)− ψk(1)‖ = ‖ψ+

k (1)− 1‖ ≤ (1− δk)−1 − 1.
Since ψ+

k (1) > 0 we can define the u.c.p. map ϕk : Ak →Mn by

ϕk(a) = ψ+
k (1)−

1
2ψ+

k (a)ψ+
k (1)−

1
2

for all a ∈ Ak. Then

‖ψk − ϕk‖ ≤ ‖ψk − ψ+
k ‖+ ‖ψ+

k − ϕk‖

≤ ((1− δk)−1 − 1) + ‖1− ψ+
k (1)−

1
2 ‖‖ψ+

k ‖(1 + ‖ψ+
k (1)−

1
2 ‖)

≤ ((1− δk)−1 − 1) + 2(1− (1− δk)
1
2 )(1− δk)−1,

and this last expression tends to zero as k → ∞. It follows that, for all (xk)k +⊕
Ak ∈ Y ,

ϕ
(
(xk)k +

⊕
Ak
)

= lim
k→∞

ψk(xk) = lim
k→∞

ϕk(xk).

Now suppose that X1 ⊂ X2 ⊂ · · · is an increasing sequence of finite-dimensional
operator subsystems of X with union dense in X. Let ϕ ∈ UCPn(X). Then for
each j ∈ N there exists by the first paragraph u.c.p. maps ϕk on Ak for sufficiently
large k (and hence for all k) such that

ϕ
(
(xk)k +

⊕
Ak
)

= lim
k→∞

ϕk(xk)

for all (xk)k +
⊕
Ak ∈ Xj . By applying a diagonal argument over j ∈ N we can

assume that the equality in the above display holds for all (xk)k +
⊕
Ak ∈

⋃
j∈NXj .
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A straightforward approximation argument then shows that this equality in fact
holds for all (xk)k +

⊕
Ak ∈ X, completing the proof. �

Lemma 5.2. Let (Z,LZ) be a Lip-normed operator system, X and Y operator
systems, Φ : Z → X and Γ : Z → Y u.c.p. maps with Φ(D(LZ)) and Γ(D(LZ))
dense in Xsa and Ysa, respectively, and LX and LY the quotient Lip-norms induced
via Φ and Γ, respectively. Then

dists(X,Y ) ≤ sup
n∈N

dist
ρLZ,n
H (UCPn(X), UCPn(Y )),

with UCPn(X) and UCPn(Y ) considered as subsets of UCPn(Z).

Proof. Set r = supn∈N dist
ρLZ,n
H (UCPn(X), UCPn(Y )) (as can be seen from the proof

of Proposition 2.9, this supremum is bounded by diam(Z,LZ)). As in [10, Example
5.6] for any γ > 0 we can construct a bridge between two copies of (Z,LZ) by setting
N(z, z′) = γ−1‖z − z′‖. Let M be the Lip-norm

M(z, z′) = max(LZ(z), LZ(z′), N(z, z′))

on D(LZ)⊕D(LZ) and L the quotient Lip-norm induced by M via the u.c.p. map
(z, z′) 7→ (Φ(z),Γ(z′)). Then L ∈M(LX , LY ). Denote the projections of Z⊕Z onto
the first and second direct summand by π1 and π2, respectively.

Now suppose ϕ ∈ UCPn(X). Then by assumption for some ψ ∈ UCPn(Y ) we
have ρLZ ,n(ϕ ◦ Φ, ψ ◦ Γ) ≤ r. Also, if (z, z′) ∈ D1(M) then ‖z − z′‖ ≤ γ so that
‖(ψ ◦ Γ)(z)− (ψ ◦ Γ)(z′)‖ ≤ γ and hence ρM,n(ψ ◦ Γ ◦ π1, ψ ◦ Γ ◦ π2) ≤ γ (where to
avoid confusion we have included the compositions with the projection maps π1 and
π2, contrary to our usual practice). Thus, since ρL,n is the restriction of ρM,n via
the identification arising from the quotient map, we have by the triangle inequality

ρL,n(ϕ,ψ) ≤ ρM,n(ϕ ◦ Φ, ψ ◦ Γ) + ρM,n(ψ ◦ Γ ◦ π1, ψ ◦ Γ ◦ π2)
≤ r + γ.

Hence dists(X,Y ) ≤ r + γ, which yields the result since γ was arbitrary. �

In the proof of the following theorem, we will abbreviate expressions of the form
distρL,nH (UCPn(X), UCPn(Y )) to ρL,n(UCPn(X), UCPn(Y )) to reduce the number
of subscripts, and whenever we have a quotient Lip-norm then we will identify the
state space of the quotient operator system with a subset of the state space of the
original operator system under the induced isometry (Proposition 2.13) as is our
usual practice in the case of projections onto direct summands.

Theorem 5.3. Let {(Ak, Lk)} be a sequence in Ralg which is Cauchy with respect to
f -Leibniz complete distance for a given continuous f : R4

+ → R+. Then {(Ak, Lk)}
converges in Ralg with respect to complete distance.

Proof. To show that {(Ak, Lk)} converges it suffices to show the convergence of a
subsequence, and so we may assume that dists,f (Ak, Ak+1) < 2−k for all k ∈ N.
Then there exist f -Leibniz Lip-norms Lk,k+1 ∈M(Lk, Lk+1) with

ρLk,k+1,n(UCPn(Ak), UCPn(Ak+1)) < 2−k
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for all n, k ∈ N. Let Z be the set of sequences (xk)k with xk ∈ D(Lk) such that, for
some λ > L1(x1), xk+1 ∈ Nλ

Lk,k+1,Ak+1
(xk) for all k ∈ N (see Definition 4.7). We will

show that Z is a subset of the direct product
∏
Ak. Let Jk be the semi-norm on∏k

j=1 D(Lj) given by

Jk((xj)j) = sup
1≤j≤k−1

Lj,j+1(xj , xj+1).

By [10, Lemma 12.2] Jk is a Lip-norm. Denote by Qk the quotient Lip-norm on
D(L1)⊕D(Lk) induced by Jk via the projection map. Then

ρQk,1(S(A1), S(Ak)) ≤ 2−1 + 2−2 + · · ·+ 2−k < 1.

Suppose (xk)k ∈ Z, and let λ > L1(x1) be such that xk+1 ∈ Nλ
Lk,k+1,Xk+1

(xk) for all
k ∈ N. Then, for each k ∈ N, xk is an element of Nλ

Qk,Ak
(x1) and hence by Lemma 4.8

has norm bounded by ‖x1‖ + 2λρQk,1(S(A1), S(Ak)) ≤ ‖x1‖ + 2λ. Therefore (xk)k
is a bounded sequence and so belongs to

∏
Ak, as we wished to show.

We define the semi-norm LZ on Z by

LZ((xk)k) = sup
k∈N

Lk,k+1(xk, xk+1)

(which is finite by the definition of Z). Theorem 12.9 of [10] then shows that LZ is
a Lip-norm on Z. Now since the elements of Z are bounded sequences (xk)k with
Lk,k+1(xk, xk+1) uniformly bounded over k, it follows that by the f -Leibniz property
that if (xk)k, (yk)k ∈ Z then Re((xkyk)k), Im((xkyk)k) ∈ Z whence (xkyk)k ∈ Z+iZ.
Thus Z + iZ is closed under multiplication, and so the operator system B obtained
by taking the closure of Z + iZ in

∏
Ak must in fact be a C∗-algebra.

Let A be the C∗-subalgebra of
∏
Ak
/⊕

Ak which is the image of B under the
quotient map π :

∏
Ak →

∏
Ak
/⊕

Ak, and let L be the quotient Lip-norm on
A induced by LZ . Then (A,L) is a Lip-normed unital C∗-algebra. Our goal now
is to show that {(Ak, Lk)} converges to (A,L) with respect to complete distance.
By Lemma 5.2 it suffices to show that, for all n ∈ N, UCPn(A) coincides with
the Hausdorff limit Hn ⊂ UCPn(B) of {UCPn(Ak)}k∈N, which exists due to the
completeness, in the Hausdorff metric, of the set of closed subspaces of the compact
set UCPn(B). Note that for each k′ ∈ N the image of Z under the projection
onto D(Lk′) is surjective (any element of D(Lk′) can be recursively extended to a
sequence in Z ⊂

∏
Ak using the fact that Lk and Lk+1 are quotients of Lk,k+1 for

every k ∈ N) so that we may indeed view each UCPn(Ak) as subset of UCPn(B).
Note also that the convergence of {UCPn(Ak)}k∈N to Hn is uniform over n because
the Cauchy condition is uniform over n by assumption.

If {ϕk}k∈N is a sequence such that ϕk ∈ UCPn(Ak) and {ϕk◦πk}k∈N is point-norm
convergent (necessarily to an element of Hn), then setting

ϕ
(
(xk)k +

⊕
Ak
)

= lim
k→∞

ϕk(xk)

for (xk)k +
⊕
Ak ∈ X we obtain a map ϕ : X →Mn. This map is u.c.p. in view of

the identification Mn⊗
(∏

Ak
/⊕

Ak
) ∼= (Mn⊗

(∏
Ak
))/(

Mn⊗
(⊕

Ak
))

and the
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fact that positive elements in quotients lift to positive elements. We thus see that
Hn ⊂ UCPn(A).

It remains to show that Hn ⊃ UCPn(A). With a view to applying Lemma 5.1,
we will show that every x ∈ Mn ⊗ A has a lift (xk)k ∈ Mn ⊗

∏
Ak satisfying

limk→∞ ‖xk‖ = ‖x‖. Notice first that if (zk)k ∈ Mn ⊗ Z then for some λ not
depending on j we have

∣∣‖zj‖ − ‖zj+1‖
∣∣ ≤ 2−j+1n4λ by Lemma 4.8(ii) (since each

zj is self-adjoint), so that {‖zk‖}k∈N is a Cauchy sequence and hence ‖π((zk)k)‖ =
limk→∞ ‖zk‖. Now suppose x ∈Mn⊗A and let (xk)k be a lift of x to Mn⊗B. Then
(x∗kxk)k ∈Mn ⊗B, and so there exists a (yk)k ∈Mn ⊗Z such that ‖x∗kxk − yk‖ < ε
for all k ∈ N, and from above we have ‖π((yk)k)‖ = limk→∞ ‖yk‖. Let ε > 0, and
choose k0 ∈ N such that, for all j, k ≥ k0,

∣∣‖yj‖ − ‖yk‖∣∣ < ε. Then, for all j, k ≥ k0,∣∣‖xj‖2 − ‖xk‖2∣∣ =
∣∣‖x∗jxj‖ − ‖x∗kxk‖∣∣

≤
∣∣‖x∗jxj‖ − ‖yj‖∣∣+

∣∣‖yj‖ − ‖yk‖∣∣+
∣∣‖yk‖ − ‖x∗kxk‖∣∣

< 3ε.

It follows that {‖xk‖2}k∈N is a Cauchy sequence and hence converges. Thus limk→∞ ‖xk‖
exists, and it must equal ‖x‖. We can therefore apply Lemma 5.1, so that given ϕ ∈
UCPn(A) there exist ϕk ∈ UCPn(Ak) for k ∈ N such that for all (xk)k +

⊕
Ak ∈ A

we have
ϕ
(
(xk)k +

⊕
Ak
)

= lim
k→∞

ϕk(xk),

whenceHn ⊃ UCPn(A). ThusHn and UCPn(A) coincide, completing the proof. �

Using the arguments of this section we might hope to show that the metric space
(R,dists) is complete. However, without the sharp control on the norms of non-self-
adjoint elements that the f -Leibniz property provides in Theorem 5.3, we would not
be able to apply Lemma 5.1.

6. Total boundedness

We will establish a version of Theorem 13.5 in [10] (“the quantum Gromov com-
pactness theorem”) for complete distance using approximation by Lip-normed op-
erator subsystems of matrix algebras. As before (R, dists) is the metric space of
equivalence classes of Lip-normed operator systems with respect to bi-Lip-isometric
unital complete order isomorphism.

Notation 6.1. For a Lip-normed operator system (X,L) and ε > 0 we denote
by AfnL(ε) the smallest integer k such that there is a Lip-normed operator system
(Y,LY ) with Y an operator subsystem of the matrix algebra Mk and dists(X,Y ) ≤ ε.
If no such integer k exists we write AfnL(ε) =∞. We denote by Rfa the subset of R

consisting of Lip-normed operator systems (X,L) for which AfnL(ε) is finite for all
ε > 0.

We remark that every Lip-normed nuclear operator system and Lip-normed unital
exact C∗-algebra is contained in Rfa by Propositions 3.10 and 3.11, respectively. Note
also that Rfa is a closed subset of R under the complete distance topology.
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Lemma 6.2. Let X be a finite-dimensional operator system and C ≥ 0. Then the
set C = {(X,L) ∈ R : diam(X,L) ≤ C} is totally bounded.

Proof. Proposition 13.13 and the proof of Proposition 13.14 in [10] show that, given
ε > 0, there is a finite subset S ⊂ C such that for every (X,L) ∈ C there is a (X,L′) ∈
S and a bridge N between (X,L) and (X,L′) of the form N(x, y) = ε−1‖x− y‖. Let
M be the Lip-norm in M(L,L′) given by

M(x, y) = max(L(x), L′(y), N(x, y)).

Now if φ ∈ UCPn(X) and (x, y) ∈ D1(M) then ‖x−y‖ ≤ ε so that ‖φ(x)−φ(y)‖ ≤ ε,
and so by Proposition 2.10 we have ρM,n(φ ◦π1, φ ◦π2) ≤ ε, where π1 and π2 are the
projections of X⊕X onto the first and second direct summands, respectively. Hence
dists((X,L), (X,L′)) ≤ ε, from which we conclude that C is totally bounded. �

Theorem 6.3. Let C be a subset of Rfa. Then C is totally bounded if and only if
(i) there is an M > 0 such that the diameter of every element of C is bounded

by M , and
(ii) there is a function F : (0,∞)→ (0,∞) with AfnL(ε) ≤ F (ε) for all (X,L) ∈

C.

Proof. For the “only if” direction, suppose that C is a totally bounded subset of Rfa.
If there did not exist an M > 0 bounding the complete diameter of every element
of C, then we could find a sequence {(Xk, Lk)}k∈N such that diam(Xk+1, Lk+1) ≥
diam(Xk, Lk) + 1 for every k ∈ N, in which case dists(Xk, Xk′) ≥ 1 for all k, k′ ∈ N,
contradicting total boundedness. To verify condition (ii), we can find a finite (ε/2)-
dense subset G of C and set

G(ε) = max{AfnL(ε/2) : (X,L) ∈ G}.

Then by the triangle inequality AfnL(ε) ≤ G(ε) for any (X,L) ∈ C.
To prove the converse, suppose that conditions (i) and (ii) hold. By (ii) we see

that it is sufficient to prove, for k ≥ j ≥ 1 and M > 0, the total boundedness
of the collection of Lip-normed operator systems (X,L) where X is an operator
subsystem of the matrix algebra Mk with Xsa of real linear dimension j (in which
case we will say that X has Hermitian dimension j) and diam(X,L) ≤ M . Since
the closed unit ball of the self-adjoint part of Mk is compact, the set of closed unit
balls of the self-adjoint parts of operator subsystems of Mk of Hermitian dimension
j is totally bounded in the Hausdorff metric. Also, by Lemma 6.2, for every M > 0
and operator subsystem X of Mk of Hermitian dimension j the set of Lip-normed
operator systems (X,L) with diam(X,L) ≤ M is totally bounded. Thus we need
only show that, for every ε > 0 and M > 0, if X and Y are operator subsystems of
Mk of Hermitian dimension j the closed unit balls of the self-adjoint parts of which
are within Hausdorff distance (4k)−1εmin(M−1, 1), and LX is a Lip-norm on X with
diam(X,LX) ≤M , then there is a Lip-norm LY on Y with dists((Y,LY ), (X,LX)) ≤
ε and diam(Y,LY ) ≤M + ε. So let X and Y be such operator systems and LX such
a Lip-norm on X for given ε > 0 and M > 0. We may assume that ε < 1/2. Set
δ = (4k)−1εmin(M−1, 1). By [1, Lemma 3.2.3] there is a (real linear) projection P
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from (Mk)sa onto Ysa of norm ≤ k. The restriction Q of P to Xsa is a bijection, for
if x ∈ Xsa with ‖x‖ = 1 then we can find a y ∈ Ysa with ‖y − x‖ < δ ≤ ε/k so that

‖Q(x)‖ ≥ ‖y‖ − ‖Q(x− y)‖ ≥ 1− ε > 1
2
,

yielding injectivity and hence also bijectivity since Xsa and Ysa are of equal finite
dimension. The above display also shows that the norm of Q−1 is bounded by 2. We
next define a semi-norm LX on Q−1(Y ) by LX(x) = LY (Q(x)) (note that D(LY )
is equal to Ysa by finite-dimensionality). Since the restriction of Q to X is bijective
and LY is a Lip-norm we must have LX(x) = 0 if and only if x ∈ R1. Thus LX is a
Lip-norm in view of the finite-dimensionality of Xsa, and (X,LX) is a Lip-normed
operator system since D(LX) = Xsa and D1(LX) is closed in Xsa by the bijectivity
and continuity, respectively, of Q.

On D(LX) ⊕ D(LY ) we define the semi-norm N by N(x, y) = ε−1‖x − y‖. We
will argue that N is a bridge. For this it suffices to show that, for all x ∈ D(LX),

N(x,Q(x)) ≤ LY (Q(x)),

for then in condition (ii) of Definition 3.5 given x ∈ D(LX) we can take Q(x), and
given y ∈ D(LY ) we can take Q−1(y). So let x ∈ D(LX). Then we can find a y ∈ Ysa

such that ‖x− y‖ ≤ δ‖x‖, so that

‖x−Q(x)‖ ≤ ‖x− y‖+ ‖Q(x− y)‖ ≤ (1 + k)‖x− y‖ ≤ 2kδ‖x‖ ≤ 4kδ‖Q(x)‖.
Applying this estimate with x replaced by x − λ1 where λ is the infimum of the
spectrum of Q(x), we have

‖x−Q(x)‖ = ‖x− λ1−Q(x− λ1)‖ ≤ 4kδ‖Q(x− λ1)‖
= 4kδ‖Q(x)− λ1‖
≤ 4kMδLY (Q(x)− λ1)

= 4kMδLY (Q(x))

≤ εLY (Q(x))

with Proposition 2.11 yielding the second inequality in the string. We thus conclude
that N is a bridge. Let L be the Lip-norm in M(LX , LY ) given by

L(x, y) = max(LX(x), LY (y), N(x, y)).

It remains to show that distρL,nH (UCPn(X), UCPn(Y )) ≤ ε for all n ∈ N, for then
dists(X,Y ) ≤ ε and hence also diam(X,LX) ≤ diam(Y, LY ) + ε ≤ M + ε. Let
ϕ ∈ UCPn(X). By Arveson’s extension theorem we can extend ϕ to a u.c.p. map
ϕ′ : Mk →Mn. We then have

ρL,n(ϕ,ϕ′|Y ) = sup{|ϕ′(x)− ϕ′(y)| : (x, y) ∈ D1(L)}
≤ sup{|ϕ′(x)− ϕ′(y)| : (x, y) ∈ X ⊕ Y and ‖x− y‖ ≤ ε}
≤ ε.

Similarly, if ϕ ∈ UCPn(Y ) then extending it by Arveson’s theorem to a u.c.p. map
ϕ′ : Mk → Mn we have ρL,n(ϕ,ϕ′|Y ) ≤ ε. Thus distρL,nH (UCPn(X), UCPn(Y )) ≤ ε,
as desired. �
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An immediate consequence of Theorem 6.3 is the separability of Rfa.

Corollary 6.4. The metric space Rfa is separable.

Question 6.5. Given n > 1 and M > 0, is the set of all n-dimensional Lip-normed
operator systems of diameter at most M totally bounded and/or separable?

We may think of log AfnL(ε) as an analogue of Kolmogorov ε-entropy. From the
computational viewpoint, however, the value of this quantity seems to be limited
by the apparent difficulty in establishing lower bounds. Using local approximation
we will next define a quantity RcpL(ε) which is more amenable to obtaining esti-
mates than AfnL(ε) and provides a ready means for obtaining upper bounds for
AfnL(ε) (see Proposition 6.7) with a view to the application of Theorem 6.3, as we
will illustrate in the case of noncommutative tori in Example 6.8. It can also be
shown (by suitably adjusting the proof of [5, Prop. 3.9] for instance) that by taking
lim supε→0+ log RcpL(ε)/ log(ε−1) we obtain a generalization of the Kolmogorov di-
mension of a compact metric space, whose utility depends on our ability to estimate
log RcpL(ε) from below. We will not be concerned here with obtaining lower bounds
for log RcpL(ε), but we point out that this can often be done by using the Hilbert
space geometry implicit in the given operator system or C∗-algebra as in [5].

For a Lip-normed nuclear operator system (X,L) and ε > 0 we denote by CPAL(ε)
the collection of triples (α, β,B) where B is a finite-dimensional C∗-algebra and
α : X → B and β : B → X are u.c.p. maps with ‖(β ◦ α)(x) − x‖ < ε for all
x ∈ D1(L). This collection is non-empty by Proposition 2.11. Conversely, if (X,L)
is any Lip-normed operator system (X,L) and CPAL(ε) is non-empty for each ε > 0,
then X is nuclear owing to the density of D(L) in Xsa.

Definition 6.6. Let (X,L) be a Lip-normed nuclear operator system. For ε > 0 we
set

RcpL(ε) = inf{rank(B) : (α, β,B) ∈ CPAL(ε)}
where rank refers to the cardinality of a maximal set of pairwise orthogonal minimal
projections.

Proposition 6.7. If (X,L) is a Lip-normed nuclear operator system and ε > 0 then
RcpL(ε) ≥ AfnL(ε).

Proof. Let ε > 0. Then there is a triple (α, β,B) ∈ CPAL(ε) with rank(B) =
RcpL(ε). Set Y = α(X), and let LY be the Lip-norm on Y induced by L via α.
Then dists(X,Y ) ≤ ε by Proposition 3.9, and since B unitally embeds into a matrix
algebra of the same rank we obtain AfnL(ε) ≤ RcpL(ε). �

Example 6.8 (Noncommutative tori). Let ρ : Zd × Zd → T be an antisymmetric
bicharacter and for 1 ≤ i, j ≤ k set

ρij = ρ(ei, ej)

with {e1, . . . , ed} the standard basis for Zd. We call the universal C∗-algebra Aρ
generated by unitaries u1, . . . , ud satisfying

ujui = ρijuiuj



MATRICIAL QUANTUM GROMOV-HAUSDORFF DISTANCE 29

a noncommutative d-torus. Given a noncommutative d-torus Aρ with generators
u1, . . . , ud there is an ergodic action γ : Td ∼= (R/Z)d → Aut(Aρ) determined on the
generators by

γ(t1,...,td)(uj) = e2πitjuj

(see [6]). Let ` be a length function on Td (for instance, we could take the distance
to 0 with respect to the metric induced from the Euclidean metric on Rd). By
Example 2.6 we then obtain a Lip-norm L arising from the action γ and length
function `. Let τ be the tracial state on Aρ defined by

τ(a) =
∫

Td
γ(t1,...,td)(a) d(t1, . . . , td)

for all a ∈ Aρ, where d(t1, . . . , td) is normalized Haar measure.
Let A(d, `) be the subset of R consisting of all noncommutative d-tori Lip-normed

as above with respect to the length function `. This is in fact a subset of Rfa

by Proposition 3.10, since noncommutative tori are nuclear. We will show using
Theorem 6.3 that A(d, `) is totally bounded.

For (n1, . . . , nd) ∈ Nd we denote by R(n1, . . . , nd) the set of points (k1, . . . , kd) in
Zd such that |ki| ≤ ni for i = 1, . . . , d. For a ∈ Aρ, we define for every (n1, . . . , nd) ∈
Nd the partial Fourier sum

s(n1,...,nd)(a) =
∑

(k1,...,kd)∈R(n1,...,nd)

τ(au−kdd · · ·u−k11 )uk11 · · ·u
kd
d

and for each n ∈ N the Cesàro mean

σn(a) = (n+ 1)−d
∑

(n1,...,nd)∈R(n,n,...,n)

s(n1,...,nd)(a).

As in classical Fourier analysis (see for example [4]) it can be shown that if Kn is
the Fejér kernel

Kn(t) =
n∑

k=−n

(
1− |k|

n+ 1

)
e2πikt =

1
n+ 1

(
sin((n+ 1)t/2)

sin(t/2)

)2

then for all a ∈ Aρ and n ∈ N we have

‖a− σn(a)‖ ≤
d∑

k=1

∫
T
‖a− γrk(t)(a)‖Kn(t) dt

where rk(t) denotes the d-tuple which is t at the kth coordinate and 0 elsewhere,
and dt is normalized Haar measure (see for example the proof of [16, Thm. 22]). It
follows that if a ∈ D1(L) then

‖a− σn(a)‖ ≤
d∑

k=1

∫
T
`(rk(t))Kn(t) dt.

In particular the Cesàro means of elements of D1(L) converge at a rate which does
not depend on ρ, a fact which we will use below.
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Now by [10, Lemma 9.4] there is a constant M > 0 such that diam(Aρ, L) ≤ M
for all (Aρ, L) ∈ A(d, `). Hence to obtain the total boundedness of A(d, `) we need
only check condition (ii) in Theorem 6.3. Let ε > 0. If B is a finite-dimensional C∗-
algebra and α : Aρ → B and β : B → Aρ are u.c.p. maps with ‖(β ◦ α)(x)− x‖ < ε

for all x ∈ D1(L) ∩ B
Aρ
M , then it is readily seen that Proposition 2.11 implies that

the triple (α, β,B) lies in CPAL(ε). From the previous paragraph there is an n ∈ N
which does not depend on ρ such that each element of D1(L)∩B

Aρ
M is within ε of its

nth Cesàro mean, which is a linear combination of elements in {uk11 · · ·u
kd
d : |ki| ≤ n}

with coefficients bounded in modulus by M (since the operation of taking a Cesàro
mean decreases the moduli of Fourier coefficients, which are bounded by the norm of
the given element). Thus in view of Proposition 6.7 it suffices to show the existence
of a finite-dimensional C∗-algebra B and u.c.p. maps α : Aρ → B and β : B → Aρ
such that ‖(β ◦ α)(x)− x‖ < ε for all x ∈ {uk11 · · ·u

kd
d : |ki| ≤ n} with the rank of B

not depending on ρ, and this is a consequence of [15, Lemma 5.1].
Hanfeng Li has informed me that he can show that the map from the space of

antisymmetric bicharacters on Zd to A(d, `) determined by ρ 7→ Aρ is continuous
(as Rieffel showed for quantum Gromov-Hausdorff distance in [10, Thm. 9.2]). In
fact, given any field of strongly continuous ergodic actions of a compact group on
a continuous field of unital C∗-algebras over a compact metric space X, at any
point of X the continuity of complete distance is equivalent to the local constancy
(or, equivalently, the lower semicontinuity) of the function on X which records the
multiplicity of the action in the fibre algebras. This is a result of the fact that Li
(unpublished notes) has worked out a general version of Rieffel’s result on coadjoint
orbits as described in Example 3.13.
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