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LONG MONOTONE PATHS IN ABSTRACT 
POLYTOPES* 

I. ADLER t AND R. SAIGAL$ 
As is now well known, the simplex method, under its various pivoting rules, is not a "good 

algorithm" in the sense of J. Edmonds, i.e., the number of pivots needed to solve a given 
linear programming problem by this method cannot be bounded by a polynomial function of 
the number of rows and columns defining it. Klee, Minty and Jerosolow have developed 
methods for constructing examples of such linear programs on polytopes. The aim of this 
paper is to extend these constructions to abstract polytopes. 

1. Introduction. In a recent paper, Klee and Minty [5] constructed a special class 
of linear programming problems and demonstrated that the simplex method (using 
certain pivot rules) is not a "good algorithm" in the sense of J. Edmonds. By this is 
meant that the number of pivots required for solving a given linear program cannot be 
bounded by a polynomial function of the parameters that determine it, namely the 
number of rows and columns. 

They constructed examples requiring a large number of pivots using the usual pivot 
rules, namely the "random pivot rule" where one moves to any better adjacent vertex, 
and the "min c rule," where one moves to the adjacent vertex which gives the best 
per-unit improvement. In a subsequent paper, Jerosolow [4] has shown that the 
constructive procedure used by Klee and Minty can be used to demonstrate similar 
behavior under the "best adjacent vertex" rule as well. 

Abstract polytopes provide a convenient framework for investigating the com- 
binatorial structure of simple polytopes (nondegenerate bounded systems of linear 
inequalities). An abstract polytope is a combinatorial system given by a set of three 
axioms (proposed by G. B. Dantzig). Many known results for simple polytopes have 
been shown (by combinatorial arguments) to hold for abstract polytopes. Some 
references in this area are Adler [1], Adler and Dantzig [2], Adler, Dantzig and Murty 
[3], Murty [7]. 

The aim of this paper is to introduce the notion of an objective function on an 
abstract polytope, and thus produce problems similar to those of Klee and Minty [5] 
and Jerosolow [4] on these structures. Since polytopes are abstract polytopes; our 
results are not new. Also, they cannot be readily extended to "geometrical" polytopes 
without added complexity, and thus, in no way diminish the significance of the 
methods of [4] and [5]. 

In ?2 of this paper, we introduce the axioms of an abstract polytope, and relate 
them to those of a simplicial complex and pseudomanifold. In ?3 we systematically 
introduce the notion of an objective function on an abstract polytope, and in ?4 we 
obtain results similar to those of [5] and [4] on these structures. 

2. Simplicial Complexes, Pseudomanifolds and Abstract Polytopes. In this section, 
we relate the concept of an abstract polytope to the well-studied concepts of simplicial 
complex and pseudomanifold. We shall follow the terminology of Spanier [9]. 
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Given a finite set T of symbols, called vertices, and a set V of finite nonempty 
subsets of T, called simplexes, P = (T, V) constitutes a simplicial complex if: 

(2.1) Any set consisting of exactly one vertex is a simplex. 
(2.2) Any nonempty subset of a simplex is a simplex. 

Any simplex consisting of q + 1 vertices is called a q dimensional simplex, or 
q-simplex for short, and any subset v' c v of r + 1 vertices is called an r-face of v. 

As we shall see subsequently, abstract polytopes are also simplicial complexes. We 
now give an example of a simplicial complex: T = { 1, 2, 3, 4} and the simplexes V are 
the subsets {1}, (2}, {3), (4), {1, 2), {1, 3), (2, 3}, {2, 4} (1, 2, 3). See Figure 2.1 as 
well. 

Another related concept is that of a pseudomanifold. Given a simplicial complex 
P = (T, V), we call it a pseudomanifold of dimension d if 

(2.3) Every simplex is a face of some d-simplex of P. 
(2.4) Every (d - 1)-simplex is a face of at most two d-simplexes of P. 
(2.5) If v and v' are d-simplexes, there is a finite sequence v = v, v2,. .., vm = v' of 

d simplexes of P such that vi and vi+ have a (d - 1)-face in common, for 1 < i < m. 
The boundary of a d-dimensional pseudomanifold P, denoted by aP, is defined to 

be the subcomplex of P generated by (d - 1)-simplexes which are faces of exactly one 
d-simplex of P. As we shall subsequently see, abstract polytopes are pseudomanifolds 
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without boundary. Pseudomanifolds have been studied in relation to mathematical 
programming structures; see for example Saigal [8], Lemke and Grotzinger [6]. 

As an example of a pseudomanifold P = (T, V), consider T= {1, 2, 3, 4, 5, 6) and 
the 2-simplexes (1, 2, 3), (2, 3, 5), (2, 4, 5), (3, 5, 6). This is a pseudomanifold with 
a boundary, the boundary being the subsimplicial complex P'= {T, V') T 
= {1, 2, 3, 4, 5, 6), where the simplexes V' are {1), (2), {3), (4), {5), (6), (1, 2), 
{2, 4), (4, 5), (5, 6}, (3, 6), (1, 3). It can be readily confirmed that P' is a 
pseudomanifold without boundary. 

We now introduce the concept of an abstract polytope in this setting. Given a 
(d- l)-dimensional pseudomanifold P = (T, V), we call it a d-dimensional abstract 
polytope if: 

(2.6) it has no boundary; 
(2.7) in the sequence of axiom (2.5) we require, in addition, that v n v' c vi for each 

i- 1 ... ,m. 
Any triangulation (including the six triangles shown) of surface of the object in Figure 
2.3 is a two dimensional pseudomanifold without boundary and violates the axiom 
(2.7) for the simplexes marked A and B. 

We now relate this development to that of Dantzig. To do so, consider a graph 
whose vertices are the (d - 1)-simplexes of the abstract polytopes. An edge connects 
two vertices (in the graph) if and only if these (d - 1) simplexes share a common 
(d- 2) dimensional face. (From the axioms, this graph is well defined.) In the 
standard development of an abstract polytope [1], (d - 1) simplexes are referred to as 
"vertices," and thus the system given by the following axioms can be readily seen 
equivalent to one developed above: 

(2.8) Every vertex of P has cardinality d. 
(2.9) Any subset of (d - l)-elements of T is either contained in no vertices of P or 

in exactly two (called neighbors or adjacent vertices). 
(2.10) Given any pair of vertices v, v' in V, there exists a sequence of vertices 

v = vV, v2, . ., vm = v' such that 
(a) vi, vi+l are neighbors, i = 1, m - 1, 
(b) v n v' c vi, i= 1, .. ., m. 
To be consistent with other works in the area and as axioms (2.8)-(2.10) are more 

suggestive of the connection with linear programming, we will use these to define an 
abstract polytope in the subsequent developments. We will also assume that T= 
U v : v E V). 

Given an abstract polytope P = (T, V) and an arbitrary set U c T with UI = k 
< d, if F(P I U) = (v E V U c v) is nonempty, we say F(P I U) is a face of P. It 
can be easily shown that v\ U I v E F(P I U)) is a (d - k)-dimensional abstract 
polytope, and thus we call F(P I U) a (d - 1)-dimensional face of P. We define the 
0, 1 and (d - 1)-dimensional faces of P as vertices, edges and facets respectively. 
Hence, if ITI = n, P has n-facets. 

Let P(d, n) be the class of all d-dimensional abstract polytopes with n-facets. In 
addition, for the ease of exposition, we shall misuse notation to represent P E P(d, n) 
as an abstract polytope as well as its vertices whenever there is no chance of 
confusion. 

Following Adler [1], given P e P(d,, nl) and Q E P(d2, n2), we define P ? Q 
E P(dI + d2, nI + n2) as the abstract polytope P ? Q = {(u, v) I u E P, v E Q), 
where (u, v) = u u v. Also, F is a face of P 0 Q if there are faces Fp of P and FQ of 
Q such that F = Fp 0 FQ. 

3. Objective Functions on Abstract Polytopes. We are now ready to define an 
objective function on an abstract polytope. 
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Given a d-dimensional abstract polytope P, we define a sequence of distinct vertices 
v0, v, ..., v. of P as a path of length I from v0 to v1 if the vertices vi and vi+, are 
adjacent for each i = 0, ... , - 1. In addition, for ease of notation, by p,(v, vl) or 
q,(v, v1) we shall represent a specific path of length I between v and v1, and by 
p(v, vl) or q(v, vl) a specific path of some length between v and v1. We shall drop the 
subscript I on p or q whenever the length is clear from the context. 

Given a real valued one-to-one map 4 : P - R, and a face F of P, we define: 
(3.1) v E F as a 4)-max vertex if 0(i5) > +(v) for all v E F, 
(3.2) v E F as a 4-min vertex if 0(_v) < +(v) for all v E F, 
(3.3) pl(vo, vl) as a 4-increasing path of length / if ((v0) < (vl) < ?* * < )(v); a 

+-decreasing path of length I if 4(v0) > 4(vl) > ?* * > p(vl); a strict ?-increasing path 
of length 1 if it is a 4-increasing path and f(vi+ l) > <((v) for all v E N(vi), where N(v,) 
are the vertices adjacent to vi, i = 1, 2, ... ., - 1; and a strict 4-decreasing path of 
length I if it is +-decreasing and 4(vi+ 1) < ?(v) for all v E N(v), i = 1, 2, ..., - 1. 

(3.4) 4-as an objective function on P if for each face F of P, and each v E F there 
exists a 4-increasing path p(v, v) in F and a 4-decreasing path p(v, v) in F where 3 
and v are respectively the 4)-max and 4-min vertices in F. Let ?(P) be the set of all 
objective functions on P. 

We say that an abstract polytope P E P(d, n) is reversible of length 1 if there is a 4 
in 4(P) and a pair of vertices vo and v, for which there exists a strict p-increasing path 
of length / p(vo, v,) = v0, v1 ... , v, and a strict 4-decreasing path of length I 
qz(v1, vo) = v(= wo), w1, , . ? , w/(= vo). Given an objective function > in ((P), follow- 
ing Klee and Minty [5], we define the 4-height of P as the maximum of lengths of the 
various 4)-increasing paths in P, and the height of P as the maximum (-height of over 
all 4 in ?(P). Also, we define the strict +-height of a reversible polytope P E P(d, n) 
as its maximal reversible length and the strict height as the maximum strict 4)-height as 
4 ranges over all of ?(P). Now, by Ha(d, n) we represent the maximum height over 
all P in P(d, n), and Ma(d, n) as the maximum strict height as P ranges over P(d, n). 

Given a path p(vo, v1) in a face F of some abstract polytope P, and a vertex u of 
some abstract polytope Q, we define u? p(vo, v) as the path (u, Vo), (u, 
v ),..., (u, v) in the face u) 0 F of Q 0 P; and p(v, vl) 0 u as the path 
(v0, u), (v1, u), . . , (vt, u) in the face F 0 {u) of the abstract polytope P ? Q. 

We now prove a lemma which establishes a result on objective functions on 
abstract polytopes. 

LEMMA. Let P E P(d, n), 4 E ?(P) with 0 < +(v) < 1 for all v E P, and Q 
= (u1, 2, . ., Uk} E P(2, k) (where u,, ui,+ are adjacent vectices of Q). Iff(ui), g(ui), 
i = 1, .. ., k, are two strict monotone sequences of real numbers with g(ui) # f(uj) for 
all i,j then 4(u, v) = (1 - f(v))f(u) + c(v)g(u) is in 1(Q 0 P). 

PROOF. Let F be a face of Q ? P. From [1], F = FQ 0 F, where FQ and Fp are 
faces of Q and P respectively. Let v, v, p(v, v), p(v, v) be the 4)-max, the 4f-min, a 
4-increasing path and a 4-decreasing path respectively in Fp. These paths exist since 
4 E 4?(P). Also, define 

wi v if g(u,) >f(u,), 
= v if not. 

_wi= v if g(u,) > f(ui), 
= u if not. 

We now consider the three cases depending on whether FQ is a vertex, an edge or the 
whole polytope Q. 
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Case (i). FQ is a vertex. Let FQ = {ui}. It is easily verified that (ui, Vi) and (ui, Wi) 
are respectively the 4-max and 4-min vertices in F. Also, from an arbitrary vertex 
(ui, v) in F, ui 0p(v, i) and ui 0p(v, wi) are the +-increasing and +-decreasing 
paths in F. 

Case (ii). FQ is an edge. Let FQ = {ui, ui+l}. Then (ui, wi) and (ui+l, wi+l) are 
respectively the b-min and 4-max vertices of F. Also, from an arbitrary vertex (ui, v) 
in F, (ui, v), (ui+1, v), ui+I Op(v, wi+l) and u,i p(v, wi) are respectively the 4- 
increasing and i-decreasing paths in F. Similarly, one can construct the required 
paths from an arbitrary vertex (ui+1, v). 

Case (iii). FQ = Q. Then (ul, wi) and (Uk, wk) are the 4-min and 4-max vertices 
respectively in F. Let (ui, v) be an arbitrary vertex in F. Define p(u,, uk) 
= Ui Ui+l,' . . Uk, andp(ui, l) = Ui, Ui-1,.. ., u1. Thenp(ui, uk) ?v, Uk ?p(v, wk) 
and p(ui, u1) 0 v, uI 0 p(v, wl) are respectively the +-increasing and 4-decreasing 
paths in F. 

4. Long Monotone Paths in Abstract Polytopes. In this section, we display a 
special class of abstract polytopes for which there exist "long" 4-increasing paths and 
strict ?-increasing paths. We recall that Ha(d, n) bounds the length of a )-increasing 
path on any P in P(d, n) and Ma(d, n) bounds the length of a strict +-increasing path 
on any reversible polytope P in P(d, n). In analogy with linear programming Ha(d, n) 
represents the maximal number of pivots required to solve a problem when the 
"random pivot rule" is used, Ma(d, n) represents the number of pivots required when 
the "best adjacent vertex" pivot rule is used. 

We now establish a result on Ha(d, n). 
THEOREM 1. Ha(d + 2, n + k) > kHa(d, n) + k - 1. 

PROOF. Let P E P(d, n) such that there is a ) E 4>(P) and a 4-increasing path 
p(v, vl) = v vo, Vl..., vl, of length l = Ha(d, n). Let Q = {ul, u2, . . ., u} E P(2, k), 
with ui and ui,+ neighbors. Define f(ui), g(ui), i = 1, ..., k, as two strictly monotone 
sequences of distinct real numbers, such that g(ui)-f(ui) = (- 1), i = 1, .. , k. 
Also, assume without loss of generality, that 0 < )(v) < 1 for all v E P. Hence, from 
Lemma, 4((u, v) = (1 - ((v))f(u) + 0(v)g(u) is in ((Q 0 P). 

Now p(vi, vo) = vu, vl_ 1 . . ., v0 is a +-decreasing path. Then, for k-odd, 

u, I p(Vo, Vu), u2 & p( V,, Vo),. . . , Uk p( (Vo, V,) 
and for k-even 

UiP(o,2 v ,) , vo, * * o, ...Uk p(, Vo) 

is a C-increasing path in Q x P of length kl + k - 1. Hence, the result. 
The following theorem establishes a similar result for Ma(d, n). 
THEOREM 2. M(d + 2, n + 4k + 1) > 2kMa(d, n) + 4k - 2. 

PROOF. Let P E P(d, n) and be reversible of length l= Ma(d, n); Q 
={ul, u2, ... , 4k+} E P(2, 4k + 1) with ui, ui,+ as neighbors; 4 E (P) which 
achieves the reversible length l with 0 < +(v) < 1 with ( (v) = 0, 4(vU) = 1 where v and 
iv are respectively the 4-min and 4-max vertices in P. Letp(vo, vl) = v0, vu, ... , vu and 
q(vl, v0)= v1(= wo), wl, ..., wl(= vo) be the strict 4-increasing and strict 4- 
decreasing paths of length / = Ma(d, n) respectively in P. 

Define 0 > 0, 8 > 0 so that 0 < 4(vi+ ) - (vi) for i = 0, . .., and 0 < f(wi)- 
4P(wi+ ), i= 0, ..., 1. Also, assume that 4(vo) < 0, 1 - (vt) < 0. Define 6 > 0 such 
that 8 < 0 - 4(vo). 
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FIGURE 4.1 

Assign the following pairs f(ui), g(ui), of real numbers to the vertices of Q : f(ul) 
= -, f(u2), i= 1,2, . . . , 2k, be the sequence 0,3,4,7,8, 11, . . . f( i) 
=f(U2) + 9, i = 1, .. , 2(k - 1), f(u4k+l) = f(u4k) + /2; and g(u1) =1 - 3, g(u2), 

i = 1, ... , 2(k - 1), be the sequence 1, 2, 5, 6, 9, 10, . . . , with g(u4) =f(u4) + 3, 
g(u2+1) = g(u2) + 9, i = 1, . . ., 2(k - 1), and g(u4+1) = g(u4k) + S. 

It can be readily verified that f, g and u satisfy the conditions of the Lemma, and 
thus 4(u, v) = (1 - 0(v))f(u) + 4(v)g(u) is in F(Q 0 P). We now demonstrate that 
Q 0 P is a reversible polytope of length 2kl + 4k - 2 in P(d + 2, n + 4k + 1), from 
which the result follows. 

It can be readily checked (see Figure 4.1) that the strict 0-increasing path from 
(u2, V0) to (u4k, u,) is 

U2 )p (V2, V), (U3, V) (, u4 0 q(v, Vo), (U6, VO), . ( U , U4 (1 0, V(), 

(4k g(u1), (, 1 1 2 2+ 5 5+) 7+ 7+2 

and its length is 2kl + 4k - 2. 
Also, the strict p-decreasing path from (uk, )o to (u2, v er is (u f ), Uk - 

q(=-, v ()k,(u4k-2,0), U4k-3 p(, ,..., u3 0 q(v, v0), (U4, v0), and has length 
2kl + 4k - 2. 

Now, lw = (u2, i ) and i = (u14k1, i) are the - -min and g(-max vertices in Q x P. 
Note that 

(s () = (1( - (v))f(u) - (v)g(u) s i (Q X P) 

and that there is a r > 0 and 8 > 0 as was required for the - E ( (P). 
Thus, the result follows. 
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