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Abstract. We develop a theory of almost periodic elements in
Banach algebras and present an abstract version of a noncommu-
tative Wiener’s Lemma. The theory can be used, for example, to
derive some of the recently obtained results in time-frequency anal-
ysis such as the spectral properties of the finite linear combinations
of time-frequency shifts.

1. Introduction

Wiener’s Tauberian Lemma [44] is a classical result in harmonic anal-
ysis which states that if a periodic function f has an absolutely con-
vergent Fourier series and never vanishes then the function 1/f also
has an absolutely convergent Fourier series. This result has many ex-
tensions which appear, for example, in [5, 8, 9, 10, 15, 16, 19, 20, 25,
27, 30, 34, 35, 38, 39, 40, 41, 42]. These extensions have found appli-
cations in frame theory [2, 6, 15, 18, 26, 36], time-frequency analysis
[20, 21, 26], sampling theory [1, 2, 37], pseudo-differential operators
[22, 24], finite-section method ([32, 23]), etc. The above list is by no
means exhaustive, it represents only the tip of the iceberg.

One of the key results of this paper is another Wiener’s lemma exten-
sion which is more general than most of the cited above. We also obtain
important spectral properties of operators with rationally independent
Bohr spectrum and apply the results to answer certain questions moti-
vated by the Heil-Ramanathan-Topiwala (HRT) conjecture [17]. Some
of the crucial techniques we use were developed in [9, 10, 12].

The paper is organized as follows. In the next section we introduce
almost periodicity in Banach algebras and define Fourier series with
respect to a representation. In Section 3 we derive the corresponding
extension of the Wiener’s Lemma. We use the developed technique to
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present a few interesting spectral properties of elements with certain
special types of Fourier series in Section 4. Finally, in Section 5 we
obtain some properties of a C∗-algebra generated by time-frequency
shifts which contribute to our understanding of the HRT conjecture.

2. Almost periodic Fourier series in Banach algebras

We begin with a brief introduction of almost periodicity in unital
Banach algebras. The proofs of the abstract statements in this section
may be found in [7, 11, 28, 31]. For the relevant theory of Fourier series
of linear operators (which is a special case) we cite [9, 13].

Let B be a unital Banach algebra with the unit element denoted by I.
As usually, the main example is the algebra EndX of all bounded linear
operators (endomorphisms) of a (complex) Banach space X. Let also

G be a locally compact Abelian (LCA-) group and Ĝ be its Pontryagin
dual (with the algebraic operation written additively on both). By Gd

we denote the group G endowed with discrete topology and by Ĝc its
dual – the Bohr compactification of Ĝ.

A continuous function ϕ : G → B is Bohr almost periodic if, for
every ε > 0, the set Ω(ε) = {ω ∈ G: sup

g∈G
‖ϕ(g + ω) − ϕ(g)‖ < ε} of

its ε-periods is relatively dense in G, i.e., there exists a compact set
K = Kε ⊂ G such that (g +K) ∩ Ω(ε) 6= ∅ for all g ∈ G.

Let T : Ĝ → EndB be an isometric representation of the group Ĝ
with the following properties:

• T (γ)I = I for all γ ∈ Ĝ;

• T (γ)(AB) = (T (γ)A)(T (γ)B) for all γ ∈ Ĝ, A,B ∈ B.

We refer the reader to Section 5 and [12] for a variety of examples of
representations with the above property.

Definition 2.1. We say that A ∈ B is T -almost periodic, or A ∈
AP T (B), if the function Â : Ĝ → B, Â(γ) = T (γ)A, is continuous (in
the topology of B) and Bohr almost periodic.

It is known, that for A ∈ AP T (B) the orbit {T (γ)A, γ ∈ Ĝ} is totally

bounded (precompact) and the function Â has a unique continuous

extension to the Bohr compactification Ĝc. We denote this extension
by the same symbol Â. Consider the Fourier series of the function Â

(2.1) Â(γ) ∼
∑
i∈Z

γ(gi)Ai, gi ∈ G,

where the elements Ai ∈ B are eigen-vectors of the representation T ,
that is T (γ)Ai = γ(gi)Ai, γ ∈ Ĝ. The series in (2.1) will be called the



AN ALMOST PERIODIC NONCOMMUTATIVE WIENER’S LEMMA 3

Fourier series of A and the elements Ai – the Fourier coefficients of
A. The set {gi} of the group elements in (2.1) will be referred to as the
Bohr spectrum of the element A and denoted by Λ(A). Instead, the
set σ(A) denotes the usual spectrum of A with respect to the algebra
B. Thus, λI − A is invertible in B for all λ ∈ ρ(A) = C \ σ(A), the
resolvent set of A.

The coefficients Ai can be obtained via

Ai =

∫
Ĝc
Â(γ)γ(−gi)µ̄(dγ),

where µ̄ is the normalized Haar measure on Ĝc. They may also be
computed using the notion of g-nets, see [12, §4] and references therein.

Definition 2.2. Let Ω be a filtered set. A bounded net of functions
fα ∈ L1(Ĝ), α ∈ Ω, is called a g-net for some g ∈ G if the following
two conditions are satisfied:

• f̂α(g) = 1 for all α ∈ Ω;

• limα fα ∗ f = 0 for every f ∈ L1(Ĝ) such that f̂(g) = 0.

Example 2.1. The simplest example of a 0-net in L1(Rd) is given by
the following family of step functions:

(2.2) fN(x) =

{
1

(2N)d
, x ∈ [−N,N ]d;

0, x /∈ [−N,N ]d.

We cite [12, Remark 4.5] for an example of a compactly supported

g-net in L1(Ĝ) for a general LCA-group G.

If (fα) is a gi-net in L1(Ĝ) and µ is the Haar measure on Ĝ, the
following formula can be used to find the Fourier coefficient Ai of an
element A ∈ AP T (B):

(2.3) Ai = lim
α

∫
Ĝ
fα(γ)Â(−γ)µ(dγ).

The Fourier coefficient is independent of the choice of a particular gi-
net.

Remark 2.1. Observe that if A ∈ AP T (B) is invertible in B then A−1 ∈
AP T (B). This follows from the property of precompactness of the orbit
and the inequalities∥∥∥Â−1(γ)− Â−1(τ)

∥∥∥ =
∥∥∥Â−1(γ)(Â(τ)− Â(γ))Â−1(τ)

∥∥∥
≤
∥∥A−1

∥∥2
∥∥∥Â(τ)− Â(γ)

∥∥∥ .
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Moreover, it can be shown [31] that the Bohr spectrum of the inverse
element A−1 is contained in the smallest subgroup of G generated by
Λ(A).

3. Wiener’s Lemma in AP.

As usual when Wiener’s Lemma is discussed, we are interested in
elements A ∈ B whose Fourier series are summable or summable with
a weight.

Definition 3.1. A weight is a function ν : G→ [1,∞) such that

ν(g1 + g2) ≤ ν(g1)ν(g2), for all g1, g2 ∈ G.
A weight is admissible if it satisfies the GRS-condition

lim
n→∞

n−1 ln ν(ng) = 0, for all g ∈ G.

For a weight ν, by AP T
ν (B) we will denote the subset of AP T (B) of

elements with ν-absolutely convergent Fourier series, i.e.

‖A‖ν =
∑
i∈Z

ν(gi) ‖Ai‖ <∞.

Lemma 3.1. The set AP T
ν (B) is a Banach algebra with respect to the

norm ‖·‖ν.

Proof. The proof is the same as in Lemma 2 in [9] or [10]. In particular,
AP T

ν (B) is obviously a closed subspace of `1
ν(Gd,B) and, hence, is itself

a Banach space. Moreover, it is easily verified that `1
ν(Gd,B) is an

algebra with respect to the discrete convolution and AP T
ν (B) is its

subalgebra. The Banach algebra property

‖AB‖ν ≤ ‖A‖ν ‖B‖ν
follows from the submultiplicativity of the weight. Observe that the
admissibility condition is not required for this result. �

The following is the main result of this section.

Theorem 3.2. Let ν be an admissible weight. Then the subalgebra
AP T

ν (B) ⊂ B is inverse closed, that is, if A ∈ AP T
ν (B) is invertible in

B then A−1 ∈ AP T
ν (B).

Careful examination of the proof of a less general result in [9, §2]
shows that it extends almost without change to the setting studied
in this paper. We will present a sketch of the proof for completeness.
Before doing so, however, we observe that by considering the left regular
representation of the algebra of almost periodic functions we obtain the
following classical version of the theorem.
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Corollary 3.3. [30]. Let f ∈ L∞(G) be an almost periodic function
that never vanishes and has summable Fourier coefficients. Then the
(almost periodic) function 1/f also has summable Fourier coefficients.

Let us now begin the sketch of the proof of Theorem 3.2. We start
by quoting the celebrated Bochner-Phillips theorem [14]. Let B be a
unital Banach algebra with the following properties

• There exist a closed subalgebra F ⊂ B and a closed commuta-
tive subalgebra A from the center of B such that the elements

(a, f) =
n∑
k=1

akfk a = (a1, . . . , an) ∈ An, f = (f1 . . . , fn) ∈ Fn,

are dense in B.
• ‖a0f0‖ = ‖a0‖ ‖f0‖ for all a0 ∈ A, f0 ∈ F .

•
∥∥∥∥ n∑
k=1

χ(ai)fi

∥∥∥∥ ≤ ‖(a, f)‖ for all a = (a1, . . . , an) ∈ An, f =

(f1 . . . , fn) ∈ Fn and any character (complex algebra homo-
morphism) χ from the spectrum SpA of the algebra A.

An algebra homomorphism χ̄ : B→ F is called a generalized character
if there exist a complex character χ ∈ SpA such that χ̄(af) = χ(a)f
for all a ∈ A, f ∈ F . The set of all generalized characters will be
denoted by Sp(B,F).

Theorem 3.4. (Bochner-Phillips). An element b ∈ B has a left (right)
inverse if and only if for every generalized character χ̄ ∈ Sp(B,F) the
element χ̄(b) ∈ F has a a left (right) inverse in F .

We need the following special case of the above theorem. Let B =
Lν(Gd,B) be the algebra of B-valued functions on Gd summable with
the weight ν with the algebraic operation given by (discrete) convo-
lution and the unit element denoted by δ0. Then the subalgebras
A = {fI, f ∈ Lν(Gd) = Lν(Gd,C)} and F = {Aδ0 : A ∈ B} are
easily seen to satisfy the conditions of Theorem 3.4. Moreover, since ν
is an admissible weight, all generalized characters in Sp(B,F) are de-
termined by the Fourier transform on B. Hence, we have the following
result.

Corollary 3.5. An element f ∈ Lν(Gd,B) is invertible in Lν(Gd,B)
if and only if all elements in B of the form

f̂(γ) =
∑
g∈Gd

f(g)γ(−g), γ ∈ Ĝc,

are invertible in B.
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We are now ready to complete the proof of Theorem 3.2.

Proof. Let A ∈ AP T
ν (B) be invertible in B. Consider the function

f : Gd → B defined by f(gi) = Ai, gi ∈ Gd, where Ai are the Fourier
coefficients of A (we set f(g) = 0 if g /∈ Λ(A)). Clearly, f ∈ Lν(Gd,B)

and f̂(γ) = Â(−γ). Moreover, these operators are invertible:

f̂(γ)−1 = (Â(−γ))−1 = (T (−γ)A)−1 = T (−γ)(A−1), γ ∈ Ĝc.

Hence, by Corollary 3.5, f is invertible in Lν(Gd,B) and for B = A−1

we have

B̂(γ) = T (γ)B =
∑
g∈Gd

f−1(g)γ(−g).

Therefore, B = A−1 ∈ AP T
ν (B). �

Suppose now that G = Rd ' Ĝ, Â(x) =
∑
j∈Rd

e2πi〈x,j〉Aj ∈ B, and the

Fourier coefficients of A satisfy

(3.1) ‖A‖νρ =
∑
j∈Rd

eρ|j| ‖Aj‖ <∞

for some ρ > 0. Note, the exponential weight νρ(j) = eρ|j|, j ∈ Rd,
is submultiplicative but does not satisfy the GRS condition from Def-
inition 3.1, and, hence, is not admissible. The conclusion of Theorem
3.2 fails for AP T

νρ(B), however, it is possible to prove a slightly weaker

result. Observe that the algebra AP T
νρ(B) is different from the algebra

of operators with exponential decay of Fourier coefficients considered
in [9, 10], which is, essentially,

⋃
ρ>0

AP T
νρ(B). The latter algebra is not a

Banach algebra since it is not complete. Also, if Λ(A) is bounded, the
Fourier coefficients of A ∈ AP T

νρ(B) do not necessarily have exponential
decay.

Theorem 3.6. Let νρ(j) = eρ|j|, j ∈ Rd, be an exponential weight and
A ∈ AP T

νρ(B) be invertible in B. Then there exists ρ̄ > 0 such that

A−1 ∈ AP T
νρ̄(B).

Proof. In this case, the function Â extends holomorphically to the in-
terior of the closed band

Cd
ρ = {z = x+ iy : x, y ∈ Rd, |y| ≤ ρ}.

We call this extension Ā,

Ā(z) =
∑
j∈Rd

e2πi〈z,j〉Aj.
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Note Ā(x) = Â(x), for all x ∈ Rd.

We assume that A ∈ AP T
νρ(B) is invertible in B. Hence, Â(x) is

invertible in B for all x ∈ Rd. Moreover, since

Ā(x+iy) = Â(x)+Ā(x+iy)−Â(x) = Â(x)(I+(Â(x))−1(Ā(x+iy)−Â(x))),

Ā(x+iy) is invertible in B as soon as
∥∥∥Ā(x+ iy)− Â(x)

∥∥∥
B
<
∥∥∥Â(x)−1

∥∥∥−1

B
=

‖A−1‖−1
B . Let |y| ≤ ρ̄ for some ρ̄ > 0. Then∥∥∥Ā(x+ iy)− Â(x)

∥∥∥
B

=

∥∥∥∥∥∥
∑
j∈Rd

e2πi〈x+iy,j〉Ak −
∑
j∈Rd

e2πi〈x,j〉Aj

∥∥∥∥∥∥ ≤∑
j∈Rd

∣∣e2πi〈x+iy,j〉 − e2πi〈x,j〉∣∣ ‖Aj‖ ≤∑
j∈Rd

∣∣e−2π〈y,j〉 − 1
∣∣ ‖Aj‖ .

For a compact subset K ⊂ Rd let

A(K) =
∑
j∈K

Aj and A(K̄) = A− A(K) =
∑

j∈Rd\K

Aj.

Since A ∈ AP T
νρ(B) ⊂ AP T

1 (B), we can choose K so that
∥∥A(K̄)

∥∥
1
≤∥∥A(K̄)

∥∥
νρ
< 1

4
‖A−1‖−1

. Then from the above inequalities for ρ̄ ≤ ρ
2π

we get∥∥∥Ā(x+ iy)− Â(x)
∥∥∥
B
≤
∑
j∈K

∣∣e−2π〈y,j〉 − 1
∣∣ ‖Aj‖+ ∑

j∈Rd\K

∣∣e−2π〈y,j〉 − 1
∣∣ ‖Aj‖

≤ sup
j∈K

∣∣e−2πρ̄|j| − 1
∣∣ ∥∥A(K)

∥∥
1

+ 2
∥∥∥A(K̄)

∥∥∥
νρ
.

The above quantity is clearly less than ‖A−1‖−1
for sufficiently small ρ̄

which depends only on ‖A‖νρ , ‖A
−1‖B, and Λ(A).

Hence, if B = A−1, the function B̂ admits a bounded holomorphic
extension

(3.2) B̄(z) =
(
Ā(z)

)−1
=
∑
j∈Rd

e2πi〈z,j〉Bj ∈ AP T
1 (B), z ∈ Cd

ρ̄.

To see that B̄(z) indeed has the above series representation, observe,
first, that B̄(z) ∈ AP T

1 (B) for all z ∈ Cd
ρ̄ due to Theorem 3.2. Hence,

for every j ∈ Rd and z ∈ Cd
ρ̄ there exists the Fourier coefficient

Bj(z) = lim
N→∞

1

(2N)d

∫
[−N,N ]d

e−2πi〈t,j〉T (−t)B̄(z)dt.

Moreover, since convergence of the above limit and integral is abso-
lute and uniform in z, the functions Bj(z) are holomorphic in Cd

ρ̄.
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Finally, since Bj(x) = e2πi〈x,j〉Bj, where Bj, j ∈ Rd, are the Fourier
coefficients of B, and the holomorphic extension is unique, we get the
series representation in (3.2). This representation clearly implies that
A−1 ∈ AP T

νρ̄(B). �

Since ρ̄ in the above theorem depends only on ‖A‖νρ , ‖A
−1‖B, and

Λ(A), we have the following slightly stronger result. We let dist(g, S) =
inf{|g − x| , x ∈ S} denote the distance between g and a set S.

Theorem 3.7. Let νρ(j) = eρ|j| be an exponential weight. Then for
every A ∈ AP T

νρ(B) and ε > 0 there exists ρ̄ > 0 such that (λI−A)−1 ∈
AP T

νρ̄(B) for every λ ∈ C such that dist(λ, σ(A)) ≥ ε.

In the case when the spectrum of A admits a disjoint decomposition
σ(A) = S1 ∪ S2 into two nonempty separated components (this means
that there exists a closed Jordan curve contained in the resolvent set
that separates S1 from S2) then holomorphic functional calculus (see
[33]) can be used to show the following

Corollary 3.8. Let νρ(j) = eρ|j| be an exponential weight, and A ∈
AP T

νρ(B) be such that its spectrum (in B)) admits a decomposition

σ(A) = S1 ∪ S2 into two nonempty separated components. Let γ :
[0, 1]→ ρ(A) be a closed Jordan curve separating S1 from S2. Then

(3.3) P =
1

2πi

∫
γ

(zI − A)−1dz

is a nontrivial idempotent in AP T
νρ̄(B) for some ρ̄ > 0, that is, P 2 = P

and P ∈ AP T
νρ̄(B)\{0, I}. Furthermore, when B is a C∗-algebra then

P ∗ = P .

4. Some spectral properties of AP elements.

In [13] there is a detailed study of the spectral properties of elements
with two-point Bohr spectrum. We begin this section by presenting a
similar result for elements with rationally independent Bohr spectrum.

Definition 4.1. We say that the spectrum Λ(A) = {gk; k ∈ N} of an
element A ∈ AP T (B) is (finitely) rationally independent if∑
k∈Ω

rk ·gk 6= 0 for all (finite) Ω ⊂ N and r = (r1, . . . , rn, . . .) ∈ Z∞\{0}.

Here rk · gk =
∑rk

i=1 gk ∈ G if rk > 0, rk · gk = −((−rk) · gk) if rk < 0,
and 0 · gk = 0 ∈ G.

The proposition below follows immediately from [11, Theorem 3.6.11].
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Proposition 4.1. Assume that A ∈ AP T (B) has finitely rationally
independent Bohr spectrum. Then the Fourier series of A converges
unconditionally to A with the constant of unconditional convergence
equal to one.

The following theorem is the key result of the section.

Theorem 4.2. Assume that A ∈ AP T (B) has finite rationally indepen-
dent Bohr spectrum Λ(A) = {g1, g2, . . . , gn}, n ∈ N. Then the spectrum
σ(A) in the Banach algebra B (or AP T

1 (B)) is invariant under rotations
around the origin in C.

Proof. Let Gk be the smallest subgroup of Gd that contains gk ∈ Λ(A),

GA =
n⊕
k=1

Gk, and AA = {B ∈ AP T
1 (B) : Λ(B) ∈ GA}. Obviously, GA

is the smallest subgroup of Gd that contains Λ(A) and AA is inverse
closed by Remark 2.1. Observe also that, because of rational indepen-
dence, a general element B ∈ AA has a unique representation of the
form

B =
∑
g∈GA

Bg =
∑
k∈Zn

Bk·Λ(A),

where k · Λ(A) =
∑n

i=1 ki · gi. Hence, we can define a representation
TA: Tn → EndAA by

TA(θ)B =
∑
k∈Zn

θkBk·Λ(A),

where θ = (θ1, . . . , θn) ∈ Tn and θk = θk1
1 · . . . · θknn . It is easily verified

that this representation satisfies the assumptions preceding Definition
2.1. Hence, for every θ ∈ Tn and λ /∈ σ(A)

TA(θ)(A− λI)−1 = (TA(θ)A− λI)−1 ∈ AA ⊂ AP T
1 (B)

and it remains to take θ = (θ0, . . . , θ0) for all θ0 ∈ T to obtain

TA(θ0, . . . , θ0)(A− λI)−1 = (θ0A− λI)−1 ∈ AA

and complete the proof. �

Remark 4.1. A theorem similar to the above lies at the core of the paper
[13] and leads to results on exponential dichotomy for certain abstract
differential and difference equations. Clearly, Theorem 4.2 can be used
in a similar way, however, we prefer to develop these results elsewhere.
Certain generalizations of Theorem 4.2 for elements with rationally
dependent Bohr spectrum are also possible. For related results see [3].
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Using Proposition 4.1, we obtain the following stronger version of
Theorem 4.2. In the proof we shall use the notation

R(λ;B) = (B − λI)−1

for the resolvent of the element B ∈ B, λ /∈ σ(B).

Theorem 4.3. Assume that A ∈ AP T (B) has finitely rationally inde-
pendent Bohr spectrum Λ(A) = {g1, g2, . . . , gn, . . .}. Then the spectrum
σ(A) in the Banach algebra B is invariant under rotations around the
origin in C.

Proof. Let A =
∑

k∈ZAk, where the series converges unconditionally
by Proposition 4.1, and fix λ /∈ σ(A). For m ∈ N we define A(m) and
D(m) via

A(m) =
∑
|k|≤m

Ak and D(m) = A− A(m).

Below we assume thatm ∈ N is big enough so that
∥∥D(m)

∥∥ ≤ 1
2
‖R(λ;A)‖−1.

Then we have∥∥R(λ;A(m))
∥∥ ≤ ‖R(λ;A)‖ ·

∥∥(I −R(λ;A)D(m))
−1
∥∥

≤ ‖R(λ;A)‖
∞∑
k=0

‖R(λ;A)‖k
∥∥D(m)

∥∥k ≤ 2 ‖R(λ;A)‖ .

Since Λ(A(m)) is finite for any m ∈ N, we can use Theorem 4.2 together
with Proposition 4.1 to obtain∥∥R(θλ;A(m))

∥∥ ≤ 2 ‖R(λ;A)‖ , for all θ ∈ T.

Using the above inequality, we get for big m,n ∈ N
‖R(θλ;A(m))−R(θλ;A(n))‖

≤
∥∥R(θλ;A(m))

∥∥ · ∥∥R(θλ;A(n))
∥∥ · ∥∥D(m) −D(n)

∥∥
≤ 4 ‖R(λ;A)‖2 (

∥∥D(m)

∥∥+
∥∥D(n)

∥∥), θ ∈ T.

Hence, the sequence {R(θλ;A(m))}m∈N is Cauchy for every θ ∈ T and,
therefore, converges to R(θλ;A). Thus, θλ /∈ σ(A) and the theorem is
proved. �

The following theorem presents a class of elements that cannot be
idempotent. We shall use it in the next section to derive some spectral
properties of so-called causal operators.

Theorem 4.4. Let A ∈ AP T (B) and assume that there exists λ ∈ Λ(A)
such that λ 6= λ1 + λ2 for all λ1, λ2 ∈ Λ(A). Then A2 6= A.
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Proof. Let A ∈ AP T (B) and λ ∈ Λ(A) have the above property. It is
immediate (see also [12, Corollary 7.8]), that

(4.1) Λ(MN) ⊂ Λ(M) + Λ(N) for all M,N ∈ AP T (B).

Hence, λ /∈ Λ(A2) and, therefore, A2 6= A. �

5. Time-frequency shifts and the HRT conjecture.

Here we illustrate the significance of the above results in time-frequency
analysis and their connection with the HRT conjecture. In this section
the algebra B is assumed to be EndLp(G), p ∈ [1,∞).

The standard examples of representations are typically provided by
translations

S : G→ B, (S(g)f)(x) = f(x− g), x, g ∈ G, f ∈ Lp(G),

and modulations

M : Ĝ→ B, (M(γ)f)(x) = 〈γ, x〉f(x), x ∈ G, γ ∈ Ĝ, f ∈ Lp(G).

The representation T is then assumed to be either

T : G→ EndB, T (g)A = S(g)AS(−g), A ∈ B,
or

T : Ĝ→ EndB, T (γ)A = M(γ)AM(−γ), A ∈ B.
We, however, are more interested in the time-frequency analysis. For

this reason, we consider an LCA-group G×Ĝ and a Weyl representation
T : Ĝ×G→ EndB defined by

(5.1) T (γ, g)A = S(g)M(γ)AM(−γ)S(−g), g ∈ G, γ ∈ Ĝ, A ∈ B.
It is immediate that this is a representation that satisfies the assump-
tions preceding Definition 2.1. For brevity, we will denote Uλ = Ug,γ =
M(γ)S(g) and refer to these operators as time-frequency shifts. Below
we shall always assume the following.

Assumption 5.1. The group G is such that any eigen-vector of T is
a constant multiple of some Uλ.

Observe that the group Rd naturally satisfies the above assumption
because the only bounded linear operators on Lp(Rd), p ∈ [1,∞), that
commute with all translations and modulations are scalar multiples of
the identity.

From the results in Section 3, we immediately get the following two
corollaries (see [5] for analogous results).

Corollary 5.2. The algebra of all ν-summable time-frequency shifts
coincides with AP T

ν (B) and, therefore, is inverse closed.
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Corollary 5.3. Let ν(λ) = νρ(λ) = eρ|λ| be an exponential weight,
G = Rd and A ∈ AP T

νρ(B) be an invertible operator. Then there exists

ρ̄ > 0 such that A−1 ∈ AP T
νρ̄(B).

In the case p = 2, B is a C∗-algebra and Corollary 3.8 implies the
following result (for the definition of the pseudoinverse see [33]).

Corollary 5.4. Let ν(λ) = νρ(λ) = eρ|λ| be an exponential weight,
G = Rd and A ∈ AP T

νρ(EndL
2(G)) be an operator with closed range.

Then both its pseudoinverse A# ∈ AP T
νρ̄(EndL

2(G)) and the orthogonal

projection onto its range PRanA ∈ AP T
νρ̄(EndL

2(G)), for some ρ̄ > 0.

Remark 5.1. Similar to [6, 21, 26] one can obtain localization results
for canonical duals of Weyl-Heisenberg frames immediately from the
above corollaries. We will explore these consequences elsewhere.

Next, we address the question of the faithful tracial state on the
C∗-algebra

U = AP T (End(L2(G))).

It is known (see, e.g., [5]) that Γ : U → C, Γ(
∑

λ cλUλ) = c0 defines
such a state. We, however, can give a more explicit formula using (2.3).
As an immediate consequence of [12, Theorem 4.19(i)] we obtain

τ(A) =

∫
(Ĝ×G)c

Â(−γ,−g)µ̄(d(γ, g))

= lim
α

∫
Ĝ×G

fα(γ, g)T (−γ,−g)Aµ(d(g, γ)) = c0I,

(5.2)

where the limit and the integrals converge in the uniform operator
topology. Hence, the faithful tracial state Γ admits a representation

Γ(A) =

∫
(Ĝ×G)c

〈Â(−γ,−g)x, x〉µ̄(d(g, γ))

= lim
α

∫
Ĝ×G

fα(γ, g)〈(T (−γ,−g)A)x, x〉µ(d(g, γ)),

where (fα) is a 0-net in L1(Ĝ×G) and x ∈ L2(G) has norm 1.
The following analog of Theorem 5.5.8 in [43] is now immediate.

Theorem 5.5. Let G satisfy Assumption 5.1. Then the C∗-algebra U
contains no proper (closed) C∗-ideals.

Proof. Indeed, if I is a closed C∗-ideal and 0 6= A∗A ∈ I then, ob-

viously, Â∗A(−γ,−g) ∈ I for all (γ, g) ∈ (Ĝ × G)c and, therefore,
0 6= τ(A∗A) = c0I ∈ I by (5.2). �
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Corollary 5.6. If G is an infinite group (satisfying Assumption 5.1),
the algebra U contains no non-trivial compact operators.

Corollary 5.7. If G is an infinite group (satisfying Assumption 5.1),
the algebra U contains no non-trivial finite rank projections.

Proof. The result is, of course, immediate since finite rank projections
are compact, but we find it instructive to show that if P is a rank-one
projection on L2(Rd) then Γ(P ) = 0. Let Px =< x, f > f , f ∈ L2(Rd),
‖f‖ = 1, and choose the representation of Γ via the 0-net in (2.2):

Γ(P ) = lim
N→∞

1

(2N)2d

∫
[−N,N ]d

∫
[−N,N ]d

< T (−ω,−t)Px, x > dtdω.

An easy computation using Plancherel’s formula shows that∫
R2d

< T (−ω,−t)Px, x > dtdω =

∫
R2d

< PMωStx,MωStx > dtdω =

∫
R2d

| < f,MωStx > |2dtdω =

∫
Rd

(∫
Rd

∣∣∣∣∫
Rd
f(u)(Stx)(u)e−2πiω·udu

∣∣∣∣2 dω
)
dt

=

∫
Rd

(∫
Rd
|f(u)|2|(Stx)(u)|2du

)
dt =

∫
Rd
|f(u)|2

(∫
Rd
|x(u+ t)|2dt

)
du

= ‖f‖2 ‖x‖2 <∞.
Hence, Γ(P ) = 0 and, since γ is a faithful state, we conclude that

P = 0. �

Next, we consider certain subalgebras of U which we call causal fol-
lowing [12].

Definition 5.1. Let A ∈ U and SA ⊂ Ĝ×G be the smallest semigroup
of Ĝ×G that contains Λ(A). The element A is called causal if −SA ∩
SA = {0} and hypercausal if, in addition, 0 /∈ Λ(A). We denote the set
of all causal and hypercausal elements by C and HC, respectively. If
S ⊂ Ĝ×G is a semigroup with −S∩ S = {0} then we let C(S) = {B ∈
C : Λ(B) ⊆ S} and HC(S) = {B ∈ HC : Λ(B) ⊆ S}.

It is not hard to see [12] that C(S) is a closed subalgebra of U and
HC(S) is a proper two-sided ideal in C(S). The causal spectrum σS(A)
is the spectrum of A ∈ C(S) in the Banach algebra C(S).

Theorem 5.8. Let G satisfy Assumption 5.1 and A ∈ C be such that
(Λ(A) − λ) ∩ (Λ(A) ∪ {0}) = {0} for some λ ∈ Λ(A). Then A2 6= A
unless A ∈ {0, I}.
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Proof. Let A ∼
∑

λ cλUλ ∈ U satisfy the assumptions of the theorem
and assume for the contrary that A2 = A /∈ {0, I}. From (4.1) we infer
that c2

0 = c0, and, hence, either A ∈ HC or I − A ∈ HC. It remains to
apply Theorem 4.4 to get a contradiction. �

Remark 5.2. If SA is a finitely generated semigroup then the only pro-
jections in C are 0 and I. This can be proved using the technique
developed in [12, §8].

Corollary 5.9. Let A ∈ C and assume the semigroup SA satisfies at
least one of the following conditions:

(1) SA is a finitely generated semigroup;
(2) SA satisfies

(SA\{0}) + (SA\{0}) 6= SA\{0}.

Then the causal spectrum σS(A) is connected. In particular, any contour
in the infinite connected component ρ∞(A) of the resolvent set ρ(A)
does not separate the spectrum σ(A).

Proof. Assume for the contrary that σS(A) is not connected. Then there
exists a non-trivial Riesz projection P ∈ C(SA) and we get a contradic-
tion with Theorem 5.8 or Remark 5.2. �

The above results are interesting not only in themselves but also in
view of the following long-standing conjecture.

HRT Conjecture. Let A ∈ End(L2(Rd)) be a finite linear combina-
tion of time-frequency shifts. Then A has no eigen-vectors.

The conjecture has been proved for many special cases (see in [5]),
but the general case, to the best of our knowledge, remains open. Below
are a few relevant propositions that can be inferred easily from the
above results.

Proposition 5.10. Let A ∈ End(L2(Rd)) be a finite linear combina-
tion of time-frequency shifts. Then A has no isolated eigen-values with
finite-dimensional eigen-spaces.

Proof. Follows immediately from Corollary 5.7. �

Proposition 5.11. If HRT fails, then there is a counterexample A ∈ C
such that the causal spectrum σS(A) is connected. In particular, any
contour in the infinite connected component ρ∞(A) of the resolvent set
ρ(A) does not separate the spectrum σ(A).

Proof. Follows immediately from Corollary 5.9. �
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Proposition 5.12. Let A ∈ End(L2(Rd)) be a finite linear combi-
nation of time-frequency shifts with the rationally independent Bohr
spectrum Λ(A). Then σ(A) is invariant under rotations around 0 in
C. In particular, 0 is the only possible isolated point in σ(A).

Proof. Follows immediately from Theorem 4.2. �

Example 5.1. Let A ∈ End(L2(R)) be such that

Λ(A) ⊂ {(1, 0), (0, 1), (
√

2,
√

2)}.

To the best of our knowledge it is not known if such an operator satisfies
HRT. From the above proposition we infer that 0 could be the only
isolated eigen-value of A. However, since HRT holds in the lattice case
(by Linnell’s proof [29]), 0 is not an eigen-value of A. Hence, σ(A) has
no isolated eigen-values.
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