Introduction to
Markov Chain Monte Carlo

* Monte Carlo: sample from a distribution
- to estimate the distribution
- to compute max, mean

* Markov Chain Monte Carlo: sampling using
“local” information

- Generic “problem solving technique”
- decision/optimization/value problems
- generic, but not necessarily very efficient

Based on - Neal Madras: Lectures on Monte Carlo Methods; AMS 2002



Lecture Outline

Markov Chains notation & terminology
- fundamental properties of Markov Chains
Sampling from prob. distributions using MCMC

— uniform
- desired target distribution

Problem solving using MCMC
- optimization
Relevance to Bayesian Networks



Markov Chains
Notation & Terminology

* Countable (finite) state space Q2 (e.g. N)

 Sequence of random variables {X} on () for
t=0,1,2,...

o Definition: {X } is a Markov Chain if
PIX.,=yIX=x,...X =x ]=P[X_ =y|X=x]
o Notation: P[X =i|X=j]= P,

- time-homogeneous



Markov Chains
Examples

e Markov Chain

- Drawing a number from {1,2,3} with replacement.

Xt= last number seen at time ¢

e NOT a Markov Chain

- Drawing a number from {1,2,3} WITHOUT
replacement. X= last number seen at time ¢



Markov Chains
Notation & Terminology

Let P = (pi) — transition probability matrix
- dimension |Q|x|Q)]
Let ﬂt(i) = P[Xt =]
- n_ — initial probability distribution
Then
r) = 3,7, (), = (x_P)) = (. PY)()

Example: graph vs. matrix representation



Markov Chains
Fundamental Properties

e Theorem:

- Under some conditions (irreducibility and
aperiodicity), the limit im__ P’ij exists and is

independent of j; call it #(j). If Qis finite, then
2 71() = 1and (zP)(j) = =(j)

and such 7 is a unique solution to xP=x (x is called
a stationary distribution)

* Nice: no matter where we start, after some time,
we will be in any state j with probabillity ~ 7 (j)

DEMO



Markov Chains
Fundamental Properties

* Proposition:

- Assume a Markov Chain with discrete state space
). Assume there exist positive distribution 7 on Q)
(7())>0 and } n(i) = 1) and for every jj:

ﬂ(i)pij= n(/)pﬁ (detailed balance property)

then r is the stationary distribution of P
e Corollary:
- If transition matrix P is symmetric and Q) finite, then
the stationary distribution is 7(i)=1/]Q)|

DEMO



Markov Chain Monte Carlo

* Random Walk on {0,1}"
- 0={0,1)"

- generate chain: pick Je{1,...,m} uniformly at random
and setX (z z zm) where (Z1,...,Zm)=X

e Markov Chain Monte Carlo basic idea:

- Given a prob. distribution 7 on a set ), the problem
Is to generate random elements of Q) with
distribution . MCMC does that by constructing a
Markov Chain with stationary distribution 7 and
simulating the chain.



MCMC: Uniform Sampler

* Problem: sample elements uniformly at random
from set (large but finite) Q2

* |dea: construct an irreducible symmetric Markov
Chain with states ) and run it for sufficient time

- by Theorem and Corollary, this will work

* Example: generate uniformly at random a
feasible solution to the Knapsack Problem



MCMC: Uniform Sampler Example
Knapsack Problem
e Definition

- Given: m items and their weight w and value v,
knapsack with weight limit b

- Find: what is the most valuable subset of items that
will fit into the knapsack?

* Representation:
- z=(z,,...,z )€{0,1}", z means whether we take item /
- feasible solutions Q = { z€{0,1}"; > w.z < b}

— problem: maximize ) v z subject to ze()

I 1 1



MCMC Example:
Knapsack Problem

* Uniform sampling using MCMC: given current
X=(z,...,.z ), generate X _Dby:

(1) choose Je{1,...,m} uniformly at random

(2)flipz,ielety=(z,.,1-z,..,z )

(3) if y is feasible, then set X =y, else set X =X
* Comments:

- Pij IS symmetric LI uniform sampling

- how long should we run it?
- can we use this to find a “good” solution?



MCMC Example:
Knapsack Problem

* Can we use MCMC to find good solution?

- Yes: keep generating feasible solutions uniformly at
random and remember the best one seen so far.

* this may take very long time, if number of good solutions
Is small

- Better: generate "good” solutions with higher
probability => sample from a distribution where
“good” solutions have higher probabilities

n(z) =Cexp(Yvz)

I 1



MCMC: Target Distribution Sampler

* et (Q be a countable (finite) state space
* Let Q be a symmetric transition prob. matrix

* et 7 be any prob. distribution on Q s.t. 7(i)>0

- the target distribution

 we can define a new Markov Chain {X } such
that its stationary distribution is «

- this allows to sample from Q according to «



MCMC: Metropolis Algorithm

e Given such Q, r,Q creates a new MC {Xt}:

(1) choose “proposal” y randomly using Q
PIY=j| X =i]=q,

(2) let = min{7, n(Y)/n(i)} (acceptance probability)

(3) accept y with probability ¢, i.e. X =Y with prob. «,
X ., =X otherwise

o Resulting o
pij=qijmin{1 , m(N/m(0)} for i #j
p=1-2.pP.

JETf



MCMC: Metropolis Algorithm

* Proposition (Metropolis works):

- The P,-,-'S from Metropolis Algorithm satisfy detailed
balance property w.r.t z i.e. n(i)pij= ﬂa')pﬁ

[] the new Markov Chain has a stationary distr.

e Remarks:

- we only need to know ratios of values of n
- the MC might converge to m exponentially slowly



MCMC: Metropolis Algorithm
Knapsack Problem

* Target distribution:
n(z) = Cﬁ"exp( B3v.z)
* Algorithm:

(1) choose Je{1,...,m} uniformly at random
(2)lety=(z,..,1-z,...,z )
(3) if y is not feasible, then X

X
t
(4) if y is feasible, set X . =y with prob. ¢, else X =X
where a = min{1, exp( S Z,-V,- (yi-zl_)}



MCMC: Optimization

* Metropolis Algorithm theoretically works, but:

- needs large § to make “good” states more likely
- Its convergence time may be exponential in 5

[1 try changing 8 over time

* Simulated Annealing
- for Knapsack Problem: a = min{7, exp( 8(f) 2.v.(y-z)}

- B(t) increases slowly with time (e.g. =log(t), =(1.001)")



MCMC: Simulated Annealing

* General optimization problem: maximize function
G(z) on all feasible solutions ()

- let Q be again symmetric transition prob. matrix on Q

* Simulated Annealing is Metropolis Algorithm with
p,=q,min{1, exp( A(t) (G()-G(i)]) } for i #
p,=1-2,pP,

)
* Effect of B(f): exploration vs. exploitation trade-off



MCMC: Gibbs Sampling

 Consider a factored state space

- zeQ s a vector z=(z_,...,z_)
- notation: z =(z_,....z_,z__,... ,Z_)

e Assume that target nis s.t. P[Z,-|Z-,-] IS Known

* Algorithm:
(1) pick a component ie{1,...,m}
(2) sample value of z from P[Z |z_], set X=(z ,...,z )

* A special case of generalized Metropolis
Sampling (Metropolis-Hastings)



MCMC: Relevance to
Bayesian Networks

* [n Bayesian Networks, we know
PlZ |z ] = P[Z | MarkovBlanket(Z )]

« BN Inference Problem: compute P[Z=z |E=€]

- Possible solution:
(1) sample from worlds according to P[Z=z|E=e]
(2) compute fraction of those worlds where Z=z
- Gibbs Sampler works:
o let 7(z) = P[Z=z|E=e], then P[Z |z_] satisfies detailed
balance property w.r.t 7(z) U n(z) is stationary



MCMC: Inference in BN
Example
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MCMC: Inference in BN
Example

Smoking and Breathing difficulties are fixed



MCMC: Inference in BN
Example

e Pz | MB(Z)] ocP[z|Par(Z )] ] P[y|Par(Y)]

YeChld(Z)

= PJh gets picked].P[~h|MB(H)]

= % P[-h|l.s,b]
= %.aP[~h|s].P[b|~h,I]

* p(h,l) (7h,l)



