
Optimal Utilization Bounds for the Fixed-priority Scheduling of Periodic Task
Systems on Identical Multiprocessors∗

Sanjoy K. Baruah

Abstract

In fixed-priority scheduling the priority of a job, once assigned, may not change. A new
fixed-priority algorthm for scheduling systems of periodic tasks upon identical multiprocessors
is proposed. This algorithm has an achievable utilization of (m + 1)/2 upon m unit-capacity
processors. It is proven that this algorithm is optimal from the perspective of achievable uti-
lization, in the sense that no fixed-priority algorithm for scheduling periodic task systems upon
identical multiprocessors may have an achievable utilization greater than (m + 1)/2.

Keywords: Real-time systems; Periodic task systems; Identical multiprocessors; Fixed-priority
scheduling; Utilization bounds

1 Introduction

A periodic task τi = (Ci, Ti) is characterized by two parameters: an execution requirement Ci

and a minimum inter-arrival separation parameter Ti (often referred to as the period of the task).
A periodic task generates an infinite number of jobs, each having an execution requirement of Ci

and a deadline Ti time units after its arrival time. The first job may arrive at any time-instant;
successive arrivals are separated by at least Ti time units. We use the notation U(τi) to denote the
utilization of task τi — U(τi)

def= Ci/Ti. A periodic task system consists of several such periodic
tasks. Let τ = {τ1, τ2, . . . , τn} denote a periodic task system. For any such periodic task system
τ , Usum(τ) will denote the cumulative utilizations of all tasks in τ (Usum(τ) def=

∑n
i=1 U(τi)), and

Umax(τ) will denote the largest utilization of any task in τ (Umax(τ) def= maxn
i=1 U(τi)). We will

use the notation I(τ) to denote any collection of jobs generated by the periodic tasks in periodic
task system τ . We assume that each job is independent in the sense that it does not interact in
any manner (accessing shared data, exchanging messages, etc.) with other jobs of the same or
another task. We also assume that the model allows for job preemption; i.e., a job executing on
a processor may be preempted prior to completing execution, and its execution may be resumed
later, at no cost or penalty. (Note that what we call a periodic task here is sometimes referred to
in the literature as a sporadic task.)

In this paper, we study the scheduling of periodic task systems on platforms that are comprised
of m (≥ 1) identical multiprocessors. We assume that interprocessor migration of jobs is permitted
— i.e., a job that is executing upon a processor may be preempted and may later resume execution
on a different processor. We do not permit job-level parallelism, i.e., a job executes on at most one
processor at any instant of time. (In the remainder of this paper, we will assume that all processors
have unit computing capacity; i.e., the amount of execution completed by executing a job for one
unit of time is equal to one unit of execution. We will also assume that Umax(τ) ≤ 1 for all task
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systems τ , since a task system τ with Umax(τ) > 1 cannot be scheduled to meet all deadlines upon
unit-capacity processors.)

Run-time scheduling is the process of determining, during the execution of a real-time application
system, which job[s] should be executed at each instant in time. Run-time scheduling algorithms
for identical multiprocessor platforms are often categorized along two orthogonal axes: the priority-
assignment axis and the inter-processor migration axis.

Priority assignment. Run-time scheduling algorithms are typically implemented as follows: at
each time instant, assign a priority to each active job, and allocate the available processors
to the highest-priority jobs. In fixed-priority scheduling, each job is assigned exactly one
priority throughout its lifetime — the priority of a job, once assigned, cannot change. (We
distinguish between such fixed-priority algorithms and static priority algorithms — static
priority scheduling algorithms are fixed-priority algorithms with the additional constraint
that all the jobs generated by each periodic task have the same priority. Thus, the earliest
deadline first scheduling algorithm (EDF) [8, 2] is a fixed-priority scheduling algorithm but not
a static-priority one; the rate-monotonic scheduling algorithm [8] is a static-priority algorithm
for periodic tasks; and the least-laxity algorithm [11] is neither static- nor fixed-priority.)

It can be shown that the total number of processor preemptions (and interprocessor migra-
tions, if permitted) in a schedule generated by any fixed-priority algorithm is bounded from
above by the total number of jobs being scheduled. Hence, the preemption and migration
costs in fixed-priority scheduled systems can be amortized across all the jobs in the system,
by simply inflating the execution requirement of each job by the amount of work needed to
perform one preemption and one inter-processor migration — this is indeed a very important
advantage of fixed-priority scheduling schemes over schemes that are not fixed-priority.

Interprocessor migration. There have been two approaches towards scheduling of periodic tasks
on multiprocessors: partitioning and global scheduling . In the partitioning approach, the tasks
are statically partitioned among the processors, i.e., each task is assigned to a processor and is
always executed on it. On the other hand, in global scheduling the tasks are not partitioned
and all jobs are put in a single global queue. At each instant, the scheduler selects the
m highest priority jobs for execution, where m is the number of processors. Under global
scheduling, it is permitted that a job that has previously been preempted from one processor
resume execution later upon a different processor.

Utilization-based schedulability test. The schedulable utilization of algorithms designed for
scheduling periodic task systems is defined as follows:

Definition 1 (Schedulable utilization) “A scheduling algorithm can [correctly] schedule any
set of periodic tasks [...] if the total utilization of the tasks is equal to or less than the schedulable
utilization of the algorithm.” [9, page 122].

If the schedulable utilization of a scheduling algorithm is known, then a sufficient (albeit not
necessary) test for determining whether a given periodic task system is correctly scheduled by this
algorithm is easily designed: simply determine whether the utilization of the task system is equal to
or less than the schedulable utilization of the algorithm. With respect to uniprocessor systems, it
has been shown [8] that the schedulable utilization of EDF is one; and the schedulable utilization of
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the rate-monotonic algorithm is ln 2≈ 0.69. (It has also been shown that these are optimal values, in
the sense that the schedulable utilization of EDF cannot exceed one and that of the rate-monotonic
algorithm cannot exceed ln 2.) For multiprocessor scheduling using the partitioned approach, it has
been shown that the schedulable utilization cannot exceed (m+1

2 ) upon m processors; if the largest
utilization Umax(τ) of any task in τ is known, then a somewhat better bound of (βm+1

β+1 ) was proven
by Lopez et al. [10], where β = b1/Umax(τ)c.

This paper. In this paper, we propose a new fixed-priority scheduling algorithm to be used for
the global scheduling of periodic task systems on multiprocessors. We prove that our algorithm has
a schedulable utilization equal to (m + 1)/2) on m identical processors — as m → ∞, this bound
approaches m/2 from above; hence, it follows that our algorithm successfully schedules any periodic
task system with cumulative utilization at most m/2 on m identical processors. Furthermore, we
prove that no fixed-priority scheduling algorithm can have a schedulable utilization greater than
(m + 1)/2 upon m identical processors; from the perspective of schedulable utilization, therefore,
our scheduling algorithm is provably optimal .

Organization. The remainder of this paper is organized as follows. In Section 2, we briefly
describe some prior results from the real-time scheduling literature that we need in order to prove
the correctness of our proposed new algorithm. In Section 3, we present our new algorithm and
prove several important properties, including its schedulable utilization and the fact that this
schedulable utilization is the best possible. We conclude in Section 4 with a brief summary of the
results presented here.

2 Background

In this section, we briefly review some results from multiprocessor real-time scheduling theory
that we will need later in this paper. These results concern EDF scheduling upon mutiprocessor
platforms, and the predictability of scheduling algorithms.

The Earliest Deadline First scheduling algorithm (EDF) is one of the most popular run-time
scheduling algorithms. In EDF, jobs are assigned priorities in inverse proportion to their deadlines —
the earlier the deadline, the higher the priority. EDF is known to be an optimal scheduling algorithm
upon uniprocessors in the following sense: if any periodic task system can be correctly scheduled
upon a given preemptive uniprocessor by any scheduling algorithm, then EDF will correctly schedule
this task system on the given processor. Unfortunately, EDF is not optimal on multiprocessors
in the same sense. There are nevertheless significant advantages to using EDFfor scheduling on
multiprocessors if possible; consequently, the EDF-scheduling of periodic task systems upon identical
multiprocessor platforms has recently attracted much attention (e.g., [10, 12, 4, 1]). The following
theorem from [4] (which is independently derived, using different techniques, in [1]) will be used by
us later in this paper.

Theorem 1 ([4]) Periodic task system τ is scheduled to meet all deadlines by EDF on an identical
multiprocessor platform comprised of m unit-capacity processors, provided

Usum(τ) ≤ m− (m− 1) Umax(τ) (1)

Ha and Liu [6, 7, 5] have studied the issue of predictability in the multiprocessor scheduling
of real-time systems from the following perspective.
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Definition 2 (Predictability) Let us define a job Jj = (rj , ej , dj) as being characterized by an
arrival time rj , an execution requirement ej , and a deadline dj , with the interpretation that this
job needs to execute for ej units over the interval [rj , dj).

Let A denote a scheduling algorithm, and I = {J1, J2, . . . , Jn} any set of n jobs, Jj = (rj , ej , dj).
Let fj denote the time at which job Jj completes execution when I is scheduled using some schedul-
ing algorithm A.

Now, consider any set I ′ = {J ′
1, J

′
2, . . . , J

′
n} of n jobs obtained from I as follows. Job J ′

j has an
arrival time rj , an execution requirement e′

j ≤ ej , and a deadline dj (i.e., job J ′
j has the same arrival

time and deadline as Jj , and an execution requirement no larger than Jj ’s). Let f ′
j denote the time

at which job J ′
j completes execution when I ′ is scheduled using algorithm A. Scheduling algorithm

A is said to be predictable if and only if for any set of jobs I and for any such I ′ obtained from
I, it is the case that f ′

j ≤ fj for all j, 1 ≤ j ≤ n.

Informally, Definition 2 recognizes the fact that the specified execution-requirement parameters
of jobs are typically only upper bounds on the actual execution-requirements during run-time, rather
than the exact values. For a predictable scheduling algorithm, one may determine an upper bound
on the completion-times of jobs by analyzing the situation under the assumption that each job
executes for an amount equal to the upper bound on its execution requirement; it is guaranteed
that the actual completion time of jobs is no later than this determined value.

Since a periodic task system generates a set of jobs, Definition 2 may be extended in a straight-
forward manner to algorithms for scheduling periodic task systems. An algorithm for scheduling
periodic task systems is predictable iff for any periodic task system τ = {τ1, τ2, . . . , τn}, the job
completion time in the case when each job of τi has an execution requirement exactly equal to
Ci is an upper bound on the completion time of that job when every job of τi has an execution
requirement of at most Ci, for all i, 1 ≤ i ≤ n.

The result from the work of Ha and Liu [6, 7, 5] that we use can be stated as follows.

Theorem 2 (Ha and Liu) Any fixed-priority scheduling algorithm is predictable.

3 Algorithm fpEDF

In this section, we present Algorithm fpEDF, a fixed-priority scheduling algorithm for scheduling
periodic task systems, and derive a utilization-based sufficient feasibility condition for it. In partic-
ular, we prove that any periodic task system with utilization at most (m+1)/2 can be scheduled by
Algorithm fpEDF to meet all deadlines on m unit-speed processors. Before presenting the algorithm,
however, we need to prove a preliminary result (Theorem 3 below).

Theorem 3 Any periodic task system τ satisfying the following two properties

Property P1: Usum(τ) ≤ m + 1
2

Property P2: Umax(τ) ≤ 1
2

is correctly scheduled to meet all deadlines on m processors by EDF.

Proof: By Theorem 1 (Condition 1), a sufficient condition for EDF-schedulability of τ is that

Usum(τ) ≤ m− (m− 1) Umax(τ)
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Algorithm fpEDF
Task system τ = {τ1, τ2, . . . τn} to be scheduled on m processors
(It is assumed that U(τi) ≥ U(τi+1) for all i, 1 ≤ i < m)

for i = 1 to (m− 1) do
if (U(τi) > 1

2)
then τi’s jobs are assigned highest priority (ties broken arbitrarily)
else break

the remaining tasks’ jobs are assigned priorities according to EDF

Figure 1: Algorithm fpEDF’s priority-assignment rule

≡
(

m + 1
2

≤ m− (m− 1) Umax(τ)
)

(By Property P1, above)

≡
(

m + 1
2

≤ m− (m− 1) · 1
2

)
(By Property P2, above)

≡
(

m + 1
2

+
m− 1

2
≤ m

)
≡ (m ≤ m)

and the theorem is proved.

3.1 Algorithm fpEDF: Description

We are now ready to describe Algorithm fpEDF, our fixed-priority scheduling algorithm for schedul-
ing periodic task systems, and to derive a utilization-based sufficient feasibility condition for it.

Suppose that task system τ is to be scheduled by Algorithm fpEDF upon m unit-capacity pro-
cessors, and let {τ1, τ2, . . . , τn} denote the tasks in τ indexed according to non-increasing utilization:
U(τi) ≥ U(τi+1) for all i, 1 ≤ i < n. Algorithm fpEDF first considers the (m − 1) “heaviest” (i.e.,
largest-utilization) tasks in τ . All the tasks from among these heaviest (m − 1) tasks that have
utilization greater than one-half are treated specially in the sense that all their jobs are always
assigned highest priority (note that this is implemented trivially in an EDF scheduler by setting
the deadline parameters of these jobs to −∞). The remaining tasks’ jobs — i.e., the jobs of the
tasks from among the heaviest (m − 1) with utilization ≤ one-half, as well as of the (n −m + 1)
remaining tasks — are assigned priorities according to their deadlines (as in “regular”EDF). This
priority-assignment rule is presented in pseudo-code form, in Figure 1.

Note that Algorithm fpEDF reduces to “regular” EDF when scheduling τ upon m processors if

1. Umax(τ) ≤ (1/2), in which case the “break” statement in the for-loop is executed for i = 1
and all tasks’ jobs get EDF-priority; or

2. m = 1, in which case (m− 1) = 0 and the for-loop is not executed at all.

5



Computational complexity. The runtime computational complexity of Algorithm fpEDF is
identical to that of “regular” EDF, in the sense that, once it is determined which tasks’ jobs always
get highest priority, the runtime implementation of fpEDF is identical to that of EDF.

The process of determining which tasks’ jobs always get highest priority would be performed
according to the “for” loop in Figure 1 in time linear in m, if the tasks in τ are presented sorted
according to utilization. If the tasks are not presorted according to utilization, then the (m − 1)
heaviest tasks can be determined in time linear in n using the standard median-find algorithm.
Since m ≤ n, in either case the computational complexity of the pre-runtime phase is thus O(n),
where n denotes the number of tasks in τ .

3.2 Algorithm fpEDF: Properties

The following theorem states that Algorithm fpEDF correctly schedules on m processors any periodic
task system τ with utilization Usum(τ) ≤ (m + 1)/2.

Theorem 4 Algorithm fpEDF has a schedulable utilization (see Definition 1) of m+1
2 upon m

processors.

Proof: The proof is by induction on the number of processors m; we will prove (as a base case)
that the theorem is true for m = 1, assume (as an inductive hypothesis) that it is true for k − 1
processors and then prove that it must then be true for k processors as well.

Base (m = 1): In this case, the utilization bound implied by the statement of the theorem is
(1 + 1)/2 = 1; by the optimality of EDF on uniprocessors [8], we know that EDF can schedule any
task system τ with Usum(τ) ≤ 1 upon a single processor.

Inductive Hypothesis (m = (k − 1)): Assume that the statement of the theorem is true; i.e.,
Algorithm fpEDF correctly schedules upon k−1 processors any periodic task system with cumulative
utilization at most ((k − 1) + 1)/2 = k/2.

Induction Step (m = k): Consider now the case of k processors. Consider any periodic task
system τ satisfying Usum(τ) ≤ (k+1)/2. We consider two separate cases: (i) when Umax(τ) ≤ (1/2),
and (ii) when Umax(τ) > (1/2).

(i) If Umax(τ) ≤ 1/2, then τ satisfies Properties P1 and P2 of Theorem 3. Therefore, it follows
from Theorem 3 that τ is scheduled to meet all deadlines upon k processors by EDF. Since
Algorithm fpEDF reduces to EDF when no task has utilization > (1/2), we conclude that
Algorithm fpEDF correctly schedules τ upon k processors.

(ii) Since Umax(τ) > (1/2), Algorithm fpEDF assigns highest priority to all the jobs of τ1.

Consider the system τ ′ obtained from τ by removing the task τ1 = (e1, p1) of maximum
utilization:

τ ′ def= (τ \ {τ1})

Observe that

Usum(τ ′) = Usum(τ)− U(τ1)
= Usum(τ)− Umax(τ)
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≤ k + 1
2

− 1
2

⇒ Usum(τ ′) ≤ k

2

By our inductive hypothesis above, Algorithm fpEDF therefore can successfully schedule τ ′

on k − 1 processors.

Consider now the task system τ ′′, comprised of τ ′ plus a task τ̂1 = (p1, p1) with utilization 1
and period equal to the period of τ1:

τ ′′ def= (τ \ {τ1})
⋃

{τ̂1 = (p1, p1)}

A schedule for τ ′′ on k processors can be obtained from the fpEDF schedule for τ ′ on k − 1
processors (which, according to our inductive hypothesis, is guaranteed to exist), by simply
devoting one processor exclusively to the additional task τ̂1, and scheduling the remaining
(k − 1) exactly as in the fpEDF-schedule.

Furthermore, this schedule is exactly equivalent to the one that would be generated if Algo-
rithm fpEDF were scheduling τ ′′ on k processors — this follows from the observations that

• since task τ̂1 has the highest utiliation of any task in τ ′′, its jobs would be assigned
highest priority by Algorithm fpEDF;

• jobs of the remaining tasks in τ ′′ would be assigned exactly the same priorities as they
would in the (k − 1)-processor fpEDF-schedule of τ ′; and

• the jobs of τ̂1 completely occupy one processor (since U(τ1) = 1).

Thus, Algorithm fpEDF successfully schedules task-system τ ′′ upon k processors. Since Al-
gorithm fpEDF is a fixed-priority algorithm, it follows by Theorem 2 that it is predictable;
by the definition of predictability, it follows that Algorithm fpEDF successfully schedules τ ,
since τ may be obtained from τ ′′ by reducing the execution requirement of each of τ̂1’s jobs
by a quantity (p1 − e1).

We show below (Theorem 5) that no scheduling algorithm that belongs to the family of al-
gorithms to which EDF and fpEDF belong — fixed-priority scheduling algorithms — can have a
greater schedulable utilization than Algorithm fpEDF.

Recall that a fixed-priority scheduling algorithm satisfies the condition that for every pair of
jobs Ji and Jj , if Ji has higher priority than Jj at some instant in time, then Ji always has higher
priority than Jj . In other words, individual jobs are assigned fixed priorities (although different
jobs of the same task may have very different priorities).

Theorem 5 No m-processor fixed-priority scheduling algorithm has a schedulable utilization greater
than m+1

2 .

Proof: Consider the periodic task system comprised of m+1 identical tasks, each with execution
requirement 1 + ε and period 2, where ε is an arbitrarily small positive number. Each task releases
its first job at time-instant zero. Any fixed-priority schedule must assign these jobs fixed priorities
relative to each other and the task whose job is assigned the lowest priority at time-instant zero
misses its deadline. Note that as ε → 0, Usum(τ) → m+1

2 ; thus, the required result follows.
As with partitioned scheduling [10], we can obtain better bounds upon schedulable utilization

if the largest utilization Umax(τ) of any task in τ is known:
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Theorem 6 Algorithm fpEDF correctly schedules any periodic task system τ satisfying

Usum(τ) ≤ max
(

m− (m− 1)Umax(τ),
m

2
+ Umax(τ)

)
(2)

upon m unit-capacity processors. (The bound of Equation 2 is depicted graphically in Figure 2.)

Proof: We consider two cases separately: (i) when Umax(τ) ≤ (1/2), and (ii) when Umax(τ) >
(1/2). For Umax(τ) ≤ (1/2), observe that the first term in the “max” above is ≥ the second, while
for Umax(τ) < (1/2), the second term in the “max” is ≥ the first.

(i): For Umax(τ) ≤ (1/2), it is the first term in the “max” that defines the schedulable utilization
for task systems τ satisfying Umax(τ) ≤ 1/2. That is,

Usum(τ) ≤ m− (m− 1)Umax(τ) (3)

for such systems.

However we have already observed in Section 3.2 that Algorithm fpEDF behaves exactly as
EDF does when Umax(τ) ≤ 1/2. The correctness of the theorem follows from the observation
that the bound of Equation 3 above is the EDF-bound of Theorem 1 (Equation 1).

(ii): As in the proof of Theorem 4, let τ ′ denote the task system obtained from τ by removing the
task τ1 of maximum utilization:

τ ′ def= (τ \ {τ1})

As explained in the proof of Theorem 4, a sufficient condition for τ to be correctly scheduled
on m processors by Algorithm fpEDF is that τ ′ be correctly scheduled on (m− 1) processors
by Algorithm fpEDF. That is

τ is correctly scheduled on m processors
⇐ τ ′ is correctly scheduled on m− 1 processors

⇐ Usum(τ ′) ≤ (m− 1) + 1
2

≡ (Usum(τ)− Umax(τ)) ≤ m

2
≡ Usum(τ) ≤ Umax(τ) +

m

2

which is as stated in the theorem.

4 Conclusions

We have presented a new a fixed-priority scheduling algorithm for scheduling periodic task systems
upon identical multiprocessors. We have proved that our algorithm is optimal from the perspective
of schedulable utilization in the sense that it successfully schedules any periodic task system with
utilization ≤ (m + 1)/2 upon m identical processors, and no fixed-priority scheduling algorithm
can have a greater schedulable utilization than our algorithm does. We have also determined the
schedulable utilization as a function of the maximum utilization of the task system being scheduled.
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Figure 2: Utilization bounds for an m-processor system, with each processor having unit com-
puting capacity. Utilization bounds are plotted on the y-axis, and the maximum utilization on
the x-axis.
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