C for Java Programmers

CS 414/ CS 415

Niranjan Nagarajan
Department of Computer Science
Cornell University

niranjan@cs.cornell.edu
Original Slides: Alin Dobra

Why use C instead of Java |

e Intermediate-level language:

— Low-level features like bit operations
— High-level features like complex data-structures

e Access to all the details of the implementation

— Explicit memory management
— Explicit error detection

e Better performance than Java

All this make C a far better choice for system programming.

Goals of Tutorial |

e Introduce basic C concepts:
— need to do more reading on your own
e Warn you about common mistakes:

— more control in the language means more room for mis-
takes

— C programming requires strict discipline
e Provide additional information to get you started

— compilation and execution
— printf debugging

Hello World Example |

[* Hello World program */
#include <stdio.h>

void main(void){
printf("Hello World.\n");
}

$./hello
Hello World.

Primitive Types |

—char : used to represent characters or one byte data
(not 16 bit like in Java)

—int ,short andlong : versions of integer (architecture
dependent)

— can be signed or unsigned

e Integer types:

e Floating point types: float and double like in Java.
e NoO boolean type, int or char used instead.

— 0 = false
— # (0 = true

Primitive Types Examples |
char c="A’;

char c¢=100;
int 1=-2343234;
unsigned int ui=100000000;

float pi=3.14;
double long pi=0.31415e+1,;

Arrays and Strings |

[* declare and allocate space for array A */
int A[10];
for (int i=0; i<10; i++)

Ali]=0;

e Arrays:

e Strings: arrays of char terminated by \0

char[] name="CS415",
name[4]='5";

— Functions to operate on strings in string.h
x strcpy, strcmp, strcat, strstr, strchr

printf function |

e Syntax: printf(formating_string, paraml, ...

e Formating string: text to be displayed containing special mark-
ers where values of parameters will be filled:
— %dfor int
— %cfor char
— %f for float
— %lIf for double
— %sfor string

e Example:

printf("The number of students in %s is %d.\n",
"CS415", 80);

enum: enumerated data-types |

enum months{
JANUARY,
FEBRUARY,
MARCH

%

e Each element of enum gets an integer value and can be
used as an integer.

enum months{
JANUARY=1,
FEBRUARY=3,
MARCH

Pointers |

e address of variable: index of memory location where vari-
able is stored (first location).

e pointer: variable containing address of another variable. type*
means pointer to variable of type type .
e Example:

int i
int* ptr_int; /* ptr_int points to some random location */

ptr_int = &i; /* ptr_int points to integer i */
(*ptr_int) = 3; /* variable pointed by ptr_int takes value 3 */

e & address operator, * dereference operator.

e Similar to references in Java.

Pointers (cont.) |

e Attention: dereferencing an uninitialized pointer can have
arbitrary effects (including program crash).

e Good programming advice:
— if a pointer is not initialized at declaration, initialize it with
NULL, the special value for uninitialized pointer
— before dereferencing a pointer check if value is NULL

int* p = NULL;

if (p == NULL){
printf("Cannot dereference pointer p.\n");
exit(1);

Structures |

e The record type of C, like Java classes with only members:

struct birthday {
char* name;
enum months month;
int day;
int year;

3

struct birthday mybirthday = {"xyz",1,1,1990},
char FirsLetter = mybirthday.namelO];
mybirthday.month = FEBRUARY;

Structures (cont.) |

e Structures can have as elements types already defined.
e Structures can refer to pointer to themselves:

struct list_elem{
int data;
struct list_elem* next;

I3
e -> is syntax sugaring for dereference and take element:

struct list_elem le={ 10, NULL };
struct list_elem* ptr_le = ≤
printf("The data is %d\n", ptr_le->data);

Data-type Synonyms

e Syntax: typedef type alias;
e Example:

typedef int Bool;
Bool bool var;

typedef int* Intptr;
Intptr p; /* p is a pointer to int */

typedef struct list_el list_el; /* list_el is alias for struct list el */
struct list_el {

int data;

list_el* next; /* this is legal */

h

e Advantage: easier to remember, cleaner code.

void* and Type Conversion

e Type conversion syntax: (new_type)expression_old_type
e Examples:

float f=1.2;

int i = (int)f; /* i assigned value 1 *

char c=i; /* implicit conversion from int to char */
float g=i; /* implicit conversion; g=1.0 */

e Extremely useful conversion is to and from void* (pointer
to unspecified type):
#include <string.h>
char str1[100];
char str2[100];

memcpy((void*) str2, (void*) strl, 100);

e Always do explicit conversions.

Common Syntax with Java |

e Operators:

— Arithmetic:
x +,-.% /%
x ++ - *= ...
— Relational; <,>,<=>=== 1=
— Logical: &&, ||, !, ? :

— Bit: &,,7,!,<<,>>

Common Syntax with Java (cont.) |

e Language constructs:

—1if(){ } else {}
_ while(){ }

—do { } while()

— for(i=0; i<100; i++){ }
—switch() { case 0. ... }
— break, continue, return

e NO exception handling statements.

Memory Allocation and Deallocation |

Global variables:
e Characteristic: declared outside any function.
e Space allocated statically before program execution.
e Initialization done before program execution if necessary also.
e Cannot deallocate space until program finishes.

e Name has to be unique for the whole program (C has flat
name space).

Memory Allocation and Deallocation(cont.) |

Local variables:
e Characteristic: are declared in the body of a function.
e Space allocated when entering the function (function call).
e Initialization before function starts executing.
e Space automatically deallocated when function returns:

— Attention: referring to a local variable (by means of a
pointer for example) after the function returned can have
unexpected results.

e Names have to be unique within the function only.

Memory Allocation and Deallocation(cont.) |

Heap variables:
e Characteristic: memory has to be explicitly:

— allocated: void* malloc(int) (similar to new in Java)
— deallocated: void free(void*)
e Memory has to be explicitly deallocated otherwise all the

memory in the system can be consumed (no garbage col-
lector).

e Memory has to be deallocated exactly once, strange behav-
lor can result otherwise.

Memory Allocation and Deallocation(ex.)

#include <stdio.h>
#include <stdlib.h>

int no_alloc_var; /* global variable counting number of allocations */

void main(void){
int* ptr; /* local variable of type int* */

/* allocate space to hold an int */
ptr = (int*) malloc(sizeof(int));
no_alloc_var++;

/* check if successfull */
if (ptr == NULL)
exit(1); /* not enough memory in the system, exiting */

ptr = 4; [use the memory allocated to store value 4 */

free(ptr); /* dealocate memory */
no_alloc_var--;

Functions |

e Provide modularization: easier to code and debug.

e Code reuse.

e Additional power to the language: recursive functions.
e Arguments can be passed:

— by value: a copy of the value of the parameter handed to
the function

— by reference: a pointer to the parameter variable is handed
to the function

e Returned values from functions: by value or by reference.

Functions — Basic Example

#include <stdio.h>

int sum(int a, int b); /* function declaration or prototype */
int psum(int* pa, int* pb);

void main(void){
int total=sum(2+2,5); /* call function sum with parameters 4 and 5 */

printf("The total is %d.\",total);
}

/* definition of function sum; has to match declaration signature */
int sum(int a, int b){ /* arguments passed by value */
return (a+b); /* return by value */

}

int psum(int* pa, int* pb){ /* arguments passed by reference */
return ((*a)+(*b));
}

Why pass by reference?

#include <stdio.h>
void swap(int, int);

void main(void){
int num1=5, num2=10;
swap(numl, numa2);
printf("num1=%d and num2=%d\n", numl, numz2);

}
void swap(int nl, int n2){ /* pass by value */
int temp;
temp = nil;
nl = n2;
n2 = temp;

}

$./swaptest
numl=5 and num2=10 NOTHING HAPPENED

Why pass by reference?(cont.)

#include <stdio.h>
void swap(int*, int*);

void main(void){
int num1=5, num2=10;
int* ptr = &numl,
swap(ptr, &num2);
printf(*num1=%d and num2=%d\n", numl, num2);

}
void swap(int* pl, int* p2){ /* pass by reference */
int temp;
temp = *pil;
(*p1) = *p2;
(*p2) = temp;
}

$./swaptest2
numl=10 and num?2=5 CORRECT NOW

Pointer to Function |

e Goal: have variables of type function.
e Example:

#include <stdio.h>

void myproc(int d){
/* do something */

}

void mycaller(void (*f)(int), int param){
f(param); /* call function f with param */

}

void main(void){
myproc(10); /* call myproc */
mycaller(myproc, 10); /* call myproc using mycaller */

The Preprocessor

e Module support

/* include standard library declaration */
#include <stdio.h>

/* include custom declarations */
#include "myheader.h"

e Symbol definition (behaves like final in Java)

#define DEBUG 0
#define MAX_LIST LENGTH 100

if (DEBUG)
printf("Max length of list is %d.\n", MAX_LIST_LENGTH);

e Conditional compilation

#ifdef DEBUG
printf"DEBUG: line " _LINE_ " has been reached.\n");
#endif

Programs with Multiple Files

e File mypgm.h:

void myproc(void); /* function declaration */
int mydata; /* global variable */

e Usually no code goes into header files, only declarations.
e File mypgm.c:

#include <stdio.h>
#include "myproc.h"

void myproc(void){
mydata=2;
... I* some code */

Programs with Multiple Files (cont.) |

e File main.c :

#include <stdio.h>
#include "mypgm.h"

void main(void){
myproc();
}
e Have to compile files mpgm.c and main.c to produce ob-
ject files mpgm.obj and main.obj (mpgm.o and main.o on
UNIX).

e Have to link files mpgm.obj , main.obj and system libraries
to produce executable.

e Compilation usually automated using nmake on Windows
and make on UNIX.

Things to remember |

e Initialize variables before using, especially pointers.

e Make sure the life of the pointer is smaller or equal to the life
of the object it points to.

— do not return local variables of functions by reference

— do not dereference pointers before initialization or after
deallocation

e C has no exceptions so have to do explicit error handling.

e Need to do more reading on your own and try some small
programs.

