
Towards Performance-oriented Pattern-based Refinement of
Synchronous Models onto NoC Communication

Zhonghai Lu, Ingo Sander and Axel Jantsch

Department of Electronic, Computer and Software Systems
Royal Institute of Technology, Sweden
fzhonghai,ingo,axelg@imit.kth.se

Abstract

We present a performance-oriented refinement approach
that refines a perfectly synchronous communication model
onto Network-on-Chip (NoC) communication. We first
identify four basic forms of NoC process interaction pat-
terns at the process level, namely, producer-consumer,
peers, client-server, and multicast. We propose a three-
step top-down refinement method: channel refinement,
protocol refinement and channel mapping. For the
producer-consumer pattern, we describe it in detail. In
channel refinement, we deal with interfacing multiple
clock domains and use a stochastic process to model chan-
nel delay and jitter. In protocol refinement, we show
how to refine communication towards application require-
ments such as reliability and throughput. In channel map-
ping, we discuss channel convergence and channel merge
arising from channel overlapping. All the refinements
have been conducted and validated as an integral de-
sign phase towards implementation in ForSyDe, a formal
system-level design methodology based on a synchronous
model of computation.

1 Introduction

Network-on-Chip (NoC) is deemed to be a paradigm to
tackle System-on-Chip (SoC) design challenges in the bil-
lion transistor era. Due to lack of scalability, a bus-based
(single level or multi-level) architecture is becoming per-
formance bottleneck to interconnect tens or even hundreds
of microprocessor-sized heterogeneous resources. Most
probably a bus-based design will be used at the local re-
source level and complemented with a network platform
at the chip global level. Meanwhile the deep submicron
technology limits the maximum synchronous region on a
chip to a local resource area. Globally Asynchrony Lo-
cally Synchrony (GALS) is regarded as a future SoC syn-
chronization mechanism. From the design methodology
perspective, raising design abstraction to system level is

considered to be indispensable to cope with relentlessly
increasing design complexity.

Keutzer et al. discuss system-level design in [12]. They
point out, that “to be effective a design methodology that
addresses complex systems must start at high levels of
abstraction”. Particularly, a design methodology should
separate (1) function (what the system is supposed to do)
from architecture (how it does it) and (2) communication
from computation. They “promote to use formal models
and transformations in system design so that verification
and synthesis can be applied to the advantage of the de-
sign methodology”. These arguments not only support but
also establish the foundations of ForSyDe. The ForSyDe
[13, 14] methodology addresses the design of SoC appli-
cations. Starting with a formal system specification model
that captures the system functionality at a high abstraction
level, it provides formal transformation methods to refine
the system model into an implementation model , which
serves as a starting point for synthesis into HW and SW.

In this paper we present the top-down communica-
tion refinement method towards NoC communication in
ForSyDe, focusing on techniques to satisfy communica-
tion reliability and to leverage throughput and network uti-
lization. The related work is briefed in section 2. We then
introduce the ForSyDe methodology in section 3, and the
process communication patterns, our NoC platform and its
services in section 4. In section 5, we discuss our incre-
mental communication refinement steps,channel refine-
ment, protocol refinementandchannel mapping. A tuto-
rial example is shown in section 6, followed by conclusion
in section 7.

2 Related Work

Based on the isolation of communication from computa-
tion, a large body of work on communication refinement
exists in the literature. Through the Virtual Component
Interfaces (VCI) of the VSI Alliance [10], the COSY-
VCC design flow [3] supports communication refinement



from specification, to performance estimation and to im-
plementation. IPSIM [5] developed on top of SystemC
3.0 supports an object-oriented methodology and estab-
lishes two inter-module communication layers. The mes-
sage box layer concerns generic and system-specific com-
munication, while the driver layer implements higher
level application-dependent communications. The SpecC
methodology defines four levels of abstraction, namely at
the specification, architecture, communication and imple-
mentation level, and the refinement transformations be-
tween them [6]. In the course of communication refine-
ment, methods to allow architecture exploration and pro-
tocol selection can be found in [11] and [9], respectively.
These works do not assume a synchronous specification,
thus are not applicable to our context.

With synchronous communication, latency insensitive
theory [4] targets synchronized HW design where syn-
chronization can still be achieved even if interconnecting
synchronous IP blocks experiences indefinite wire laten-
cies; De-synchronization for SW design was addressed in
[1]. Furthermore, some mathematical frameworks were
developed to support refinement-based design methods.
Benveniste et al. present a theoretical framework for mod-
eling heterogeneous systems, and derive sufficient con-
ditions to maintain semantic-preserving transformations
when deploying a synchronous specification onto GALS
and the loosely time-triggered architectures [2]. Another
theoretical framework is proposed in [8] concerning the
refinement of a polysynchronous specification, which al-
lows multiple clocks instead of a single clock. All these
works are complementary to our work but none of them
provides a detailed refinement approach targeting a NoC
platform. Furthermore, this paper concentrates on re-
finement techniques to satisfy performance requirements
based on process interaction patterns.

3 The ForSyDe Methodology

3.1 The Design Process

The ForSyDe [13, 14] design process starts with the devel-
opment of an abstract functional specification expressed
in the functional language Haskell. This model is then
refined inside the functional domain by a stepwise ap-
plication of well defined design transformations into an
efficient implementation model. As the implementation
model is a refined version of the specification model, the
same validation and verification methods can be applied
to both models. In the partitioning phase, the implemen-
tation model is partitioned into HW and SW blocks, which
are mapped on architectural components. Only now, in the
code generation phase, we leave the functional domain to
generate VHDL or C code for the HW and SW.

3.2 The Specification Model

The specification model follows the synchronous model-
ing paradigm. This paradigm is based on an elegant and
simple mathematical model, which is the ground of syn-
chronous languages such as Esterel, Signal, Argos and
Lustre. The basis is the perfect synchrony hypothesis, i.e.,
both computation and communication take no observable
time. In order to formally describe our synchronous com-
putational model, we follow the denotational framework
of Lee and Sangiovanni-Vincentelli [16]. They define sig-
nals as a set of events, where each evente has a tagt and
a valuev, i.e. e= (t;v) 2 T �V. As our system model
is synchronous,T is the set of natural numbers, and all
signals have the same set of tags. In order to model the
absence of an event, a data typeD can be extended into a
data typeD? by adding the special value?, which is used
to model the absence of a value. Absent values are used to
establish a total order of events when dealing with signals
with different or aperiodic event rates.

31
5 47 6

26 ?

Absent Value Value

TagEvent

32
5 47 6

37 ?

Signal

Inc?

Figure 1: Modeling of signals and processes

Figure 1 illustrates the modelling of signals and the be-
havior of processes. At the event cyclen a process eval-
uates the events of each signal with the tagn and outputs
the result at the same tagn.

We implement the synchronous computational model
with the concept ofprocess constructors. A process con-
structor is a higher order function that takescombina-
tional functions, i.e. functions that have no internal state,
and valuesas input and produces a process as output.
There is a clean separation betweensynchronization(cap-
tured by process constructors) andcomputation(imple-
mented by combinational functions). In addition, each
process constructor has a structuralhardwareand soft-
ware semantics which is used to translate the implemen-
tation model into a hardware/software implementation.

As an example, the process constructormealySYmod-
els a finite state machine of Mealy type. It takes a function
ns to calculate the next state as first argument, a function
out to calculate the output as second argument and a value
s0 for the initial state as last argument. Thus a process
Mealy= mealySY(ns;out;s0) implements the behavior of
a finite state machine.

Processes can be glued together to build a network of
processes. Such a network is called a block. Figure 2
shows how a block is formed by a network of processes.
The function of a block is expressed by a set of equations.



Block

P1 P2

P3

s1
s2

s3
s4

s5

Block(s1) = s5

where (s2;s3) = P1(s1)
s5 = P2(s2;s4)
s4 = P3(s3)

Figure 2: A network of processes

In the same way, blocks can be composed into higher level
blocks, subsystems and eventually a hierarchical system.

3.3 Refinement of the Specification Model

The specification model abstracts from implementation
details, such as buffer sizes and low-level communica-
tion mechanisms. This enables the designer to focus on
the functional behavior of the system rather than struc-
ture and architecture. This abstract nature leaves a wide
space for further design exploration and design refine-
ment, which is supported by our transformational refine-
ment technique. During the refinement phase the speci-
fication model is stepwise refined into a final optimized
implementation model.

4 NoC Communication

4.1 Process Communication Patterns

A NoC application can be represented as a process net-
work with a set of functional equations in ForSyDe. Ac-
cording to the interactions among processes [7], we iden-
tify the basic forms of inter-process communication pat-
terns as follows:

� Producer-consumer. This is a one-to-one pattern
where a producer generates data which in turn are
consumed by a consumer. The consumer may or may
not send back acknowledgments depending on appli-
cation requirements.

� Peers. Similar to the producer-consumer, but both
processes send/receive data and perhaps acknowl-
edgments to/from each other.

� Client-server. This is a multiple-to-one pattern. Mul-
tiple clients send requests to a server which responds
with various services. It works in a request-response
manner in that a server will not respond to a client
until a valid request is asking for service. The server

may offer a uniform service or multiple services. For
example, a memory only serves data read/write ser-
vice. A microprocessor may provide various com-
puting services such as remote procedure calls.

� Multicast. This is a one-to-multiple pattern. The
group master actively reads/writes data to its multi-
cast group members.

Next, we will take the producer-consumer pattern to
demonstrate our communication refinement approach.

4.2 The NoC Platform and its Services

Our NoC platform [15] is a mesh structure composed of
switches where each switch is connected to a resource, as
shown in figure 3. The resources, which may work with
different clock rates, are placed on the slots formed by the
switches. The area of a resource is constrained within the
maximal synchronous region in a given technology. The
Resource-Network-Interfaces (RNIs) offer network com-
munication services to resources.

S

S

S

Resource

RNI

Resource

RNI

Resource

RNI

S

S

Resource

RNI

Resource

RNI

S

S

S

Resource

RNI

Resource

RNI

S

Resource

RNI

Resource

RNI

Figure 3: A NoC of mesh structure with 9 nodes

Our NoC platform provides two kinds of services. One
is best-effortor connection-less delivery of messages. The
other is connection-orientedvirtual circuit that provides a
resource-to-resource connectivity. In best-effort service,
messages are routed in the network. The data sequence is
maintained by re-ordering and data will not be lost. Nei-
ther the bandwidth nor the latency can be guaranteed. In
virtual circuit services, messages are reliably delivered in
order with guaranteed bandwidth. In terms of latency pre-
dictability, the services can be further classified as two
kinds:virtual circuit with latency commitmentandvirtual
circuit with relaxed latency commitment. In both cases,
there is a bounded range with minimum and maximum la-
tency value. For the second case, the upper bound is the
worst case latency along the virtual circuit path.

Our NoC architecture provides a message passing plat-
form. Processes communicate in the platform via chan-
nels which use one of the services. A message pass-
ing procedure between processes consists of three phases:



channel setup, data transmission and channel tear-down.
If a channel intends to use the best-effort service, the chan-
nel setup is handled locally relying on an admission proto-
col in order not to saturate the network. If a channel asks
for a virtual circuit service, the initiating process sends
a setup message using the best-effort service to negoti-
ate with the network for bandwidth and delay during the
channel setup phase. Once the request is granted, the cir-
cuit path is fixed, and the bandwidth is reserved. The data
transmission unit from process to process is message. A
message comprises a channel identity number and pay-
load. After the data transmission phase, the channel has
to be explicitly torn down.

5 NoC Communication Refinement

Domain
Interface

Domain
Interface Network

event rate: fnevent rate: f1 event rate: f2

Mapping

Resource R1 Resource R2

Producer Consumer

P Q
channel

Figure 4: The producer-consumer and the target NoC

In figure 4, the upper part shows a producer-consumer
pattern where the producerP communicates with the con-
sumerQ via a logical channel1. The lower part shows a
NoC instance with two resourcesR1, R2. In a GALS ar-
chitecture, the resourcesR1,R2 and the network may work
in different clock domainsf1, f2 and fn, respectively. We
assume that all clocks have the same phase. The time
structures from these clock domains have to be arbitrated
when cross-domain communication is incurred. To this
end we have explicitly highlighted the two domain inter-
faces, though they may be implemented as part of RNIs
on resources. Our task is to map the producer-consumer
onto the NoC. As for this pattern, the fundamental prob-
lem is data loss which occurs when the data-producing
speed is higher than the data-consuming speed. Our re-
finement is not solving this problem. Instead we assume
that the data-producing speed is not higher than the data-
consuming speed. Also, the only meaningful read scheme
for the consumer in this case is blocking read since the
consumer can not react if no data is received.

In ForSyDe this pattern is initially modeled with a net-
work of two processes,P and Q, as shown in figure 5.
ProcessP models the producerP. ProcessQ models the
consumerQ. The two processes communicate in a per-
fectly synchronous manner via the signald. A signal in
the specification is to be mapped to aservice channel.

1For convenience, we also call an arc connecting a pair of interacting
processes achannel. It is logical and not associated with a service yet.

Q

Consumer Q

P
sin soutd

Producer P

sout = QP(sin)
where d = P(sin)

sout = Q(d)

Figure 5: The producer-consumer model in ForSyDe

5.1 Refinement Overview

Our objective is to refine this perfectly synchronous
producer-consumer model onto the NoC communication
services. The service selection is subject to the chan-
nel characteristics. The resultant producer and consumer
model should fulfill application requirements such as re-
liability and throughput. For reliability, the producer asks
from the consumer for acknowledgment for each mes-
sage sent. For throughput, the producer-consumer has to
make full use of the channel bandwidth honored during
the channel setup. If the channel is not established, noth-
ing will happen. Therefore we concentrate our refinement
on the data transmission phase.

ConsumerChannel
PN

Producer

(2) Multiple clock domain com.

(1) Synchronous communication

(3) Model channel delay/jitter

(4) Refinement for reliability

(6) Mapping to NoC services

(5) Refinement for throughput

Consumer QProducer P

InrIrn

Resource R2Resource R1 Network

PN1

PN2PN2

PN1

Producer ConsumerChannel
PN

PnP

QP

Inr QP Irn

Q

Figure 6: Refinement to NoC communication services

From now on we assume that the channel in figure 4
is granted with either of the two virtual circuit services.
During the refinement steps we focus on how the process
networks (PNs) will evolve. The overall refinement steps
and the resultant process networks are illustrated in figure
6. The initial model (figure 5) is the perfectly synchronous
model where there is only one clock domain. In step (2)
we consider different clock domains and interfacing the
clock domains. The processIrn models the domain inter-
face connecting a resource to the network. The process
Inr models the domain interface connecting the network
to a resource. In step (3) we model the channel delay
and jitter with the processPn. We call the steps (2) and
(3) channel refinementcovered in section 5.2. In fact the
channel refinement builds the channel model for refining
the producerP and the consumerQ. In steps (4) and (5)



the process networks are refined to satisfy the reliability
and throughput, respectively. We call the steps (4) and (5)
protocol refinementcovered in section 5.3. In step (6) cov-
ered in section 5.4 we discuss channel convergence and
channel merge while mapping the channel to NoC com-
munication services.

5.2 Channel Refinement

5.2.1 The clock domain interfaces

First of all we build models for the two clock domain in-
terface processesIrn and Inr. Introducing a synchronous
sub-domain into the system model was presented in [13]
where the clock rate of the sub-domain is1

n (n is a positive
integer) of the main domain. Here we consider a generic
domain interface that connects a clock domain with even-
t/clock ratef1 to another clock domain with event ratef2.
The simplest form of the fractionf1f2 is m

n . The generic in-
terface is constructed asI f1! f2 = Pdn(m) ÆPup(n), where
Æ is the composition operator. The processes,Pup(n) and
Pdn(m), are formally defined as follows:

Pup(n)(fx1;x2; : : :g) = f?; : : : ;?
| {z }

n�1

;x1;?; : : : ;?
| {z }

n�1

;x2; : : :g

Pdn(m)(fx1;x2; : : : ;xm
| {z }

m

;xm+1;?; : : : ;?
| {z }

m

; : : :g) = fxm;xm+1; : : :g

The up-samplingprocessPup(n) samples outn times of
the input events, and does not result in event loss. The
down-samplingprocessPdn(m) samples out1m times of
the input events. At each down-sampling cycle,m� 1
events are discarded and only the last valid event value
(non-absent value) is kept. The interface first does up-
sampling and then down-sampling. Iff1 � f2, no event
drop, hence no data is lost. Iff1 > f2, events are cycli-
cally dropped. But data may or may not be lost because
the data rate may not match the event rate. If there is no
data at an event cycle, only an event with absent value?
is inserted into the signal.

Pup(3) Pdn(2)
f1;2; : : :g f?;1;2; : : :gf?;?;1;?;?;2; : : :g

Figure 7: A clock domain interface

Figure 7 shows the interface process network for con-
necting the clock domainf1 to the clock domainf2 with
the ratio f1

f2
= 2

3. Knowing the clock rates of the re-
sources and the network, we can similarly build the inter-
face processesIrn andInr. Our assumption is that the data-
producing speed is not higher than the data-consuming
speed. Besides, the NoC communication services guar-
antee that no data will be lost at the network. The two
conditions guarantee that there is no data loss at the inter-
facesIrn andInr.

5.2.2 Model channel delay/jitter

We have assumed that the channel uses either of the two
virtual circuit services fulfilling the bandwidth require-
ment. If viewing from a process’s perspective, the net ef-
fect of delivering messages is delay and delay variances
called jitter. To model the channel delay/jitter, we intro-
duce stochastic characteristics to the network processPn.
The stochastic processD[min;max] generates a random de-
lay within a given range[min;max] for each event. A delay
is modeled as an event with the absent value?. Figure 8
shows a stochastic delay process with the jitter range[0;3].

D[0;3]
f1;2;3; : : :g f?;1;?;?;2;?;3; : : :g

Figure 8: A stochastic delay process

After inserting the stochastic process, we receive a
channel-refined producer-consumer, as shown in figure 9.

P
P

d QInrIrn D[min;max]
data

Q
data

Figure 9: The channel-refined producer-consumer model

5.3 Protocol Refinement

5.3.1 The acknowledged producer-consumer

Although the channel is lossless and errorless, the con-
sumer may be out of function or experience buffer over-
flow. In such a case, it is necessary for the producer to
receive an acknowledgment before sending the next mes-
sage in order to prevent the producer from overloading
the network. This results in a feedback loop from the con-
sumer to the producer shown in figure 10. If no acknowl-
edgment is received, the producer will wait and not feed
more data to the network, and the incoming data from the
processP will be silently dropped.

Inr

Irn

Irn

Inr

D[min;max]

D[min;max]
ack

data Qα Q

Q

a

P d Pα

ack

d̃ data

P

Figure 10: The acknowledged producer-consumer model

The processesPα and Qα in figure 10 implement the
acknowledgment protocol. The processPα has two states,
Idle andWait. It is modeled as a mealy FSM with the
process constructormealySY as follows:

d̃ = Pα(d;a)
where Pα = mealySY(ns;out; Idle)



The processQα receives data from the channel, then
passes the data to the processQ and generates acknowl-
edgment.

At this step, the producerP is refined into the two pro-
cessesP andPα. The consumerQ is refined into the two
processesQ andQα. The reliability is achieved through
acknowledgment.

5.3.2 Buffering

In figure 10, during waiting for acknowledgment, the next
incoming data will be silently dropped. To avoid this, a
bounded FIFO buffer processPbuffer is inserted between
the processP and the processPα. Data produced by the
processP is first pushed into the buffer. The processPα
is refined into the processPβ that has an additional signal
readBuf to read the buffer, as shown in figure 11. When
the previously sent data is acknowledged, the processPβ
reads the buffer until successfully fetching data.

Inr

Irn

Irn

Inr

D[min;max]

D[min;max]

data

ack

data

ack

readBu f
P d

a

PβPbuffer

data rate: r

P

Qα Q

Q

Figure 11: The acknowledged producer-consumer after
buffering

It is easily seen that, if the data-emitting speed is higher
than that of receiving acknowledgment, any bounded
buffer will eventually overflow. The fastest data-emitting
speedrmaxwithout buffer overflow is governed by the fol-
lowing formula:

9 rmax: rmax=
f

1+2�Dmin � f

whereDmin is the minimum channel delay andf the pro-
ducer’s clock frequency. The minimum buffer size is 1.

At this step, the producerP is refined into the three pro-
cessesP, Pbuffer andPβ shown in figure 11. The consumer
Q has no change.

5.3.3 Data pipelining

In figures 10 and 11, each message is individually ac-
knowledged. The data transmission speed is limited by
the variable channel delay. This leads to a waste of chan-
nel bandwidth, and, in some cases, data loss at the pro-
ducer due to the buffer overflow. To solve this problem we
elaborate the protocol. Instead of generating one acknowl-
edgment for one received message, we can acknowledge
a batch of data altogether. After sending a batch of data
with size w, the producer waits for an acknowledgment
from the consumer. Upon receiving the acknowledgment
for thew data, the producer starts to emit the next batch of
data into the channel. In this way, the channel utilization is

largely improved. The maximum allowable data-emitting
speed without buffer overflow can be increased with a fac-
tor of nearlyw, but no more than the channel capacity.
The window sizew is affected by the channel delay and
bandwidth, and the consumer buffer size. It is initially de-
termined during the channel setup phase. Later it may be
dynamically adjusted in case of network congestion con-
trol. Further, we can even improve the channel throughput
by prediction. We assume an acknowledgment will come
at the right time, thus we can first emit 2�w size of data
before waiting for the acknowledgment. If the acknowl-
edgment for the firstw data comes in time, the producer
starts to emit the third batch, and so forth. Otherwise, the
producer has to wait. Compared with the previous pipelin-
ing, this will improve the channel throughput by up to a
factor of two leading to a fully data-pipelined channel.

To accomplish the data pipelining, we need a counter
process at both the producer and the consumer side, shown
in figure 12. The counter processQcounterat the consumer
side counts up to the window sizew and generates one
acknowledgment. The counter processPcounterRstat the
producer side counts the number of sent data. If the win-
dow sizew or 2w is not reached, more data can be fetched
from the buffer. In contrast to the processQcounter, the
processPcounterRstis reset upon receiving an acknowledg-
ment. That means, if an acknowledgment comes, it re-
starts to count from 0.

D[min;max] Inr

D[min;max] IrnInr

Irn

PcounterRst Qcounter
ack

Qα
datadata

ack

readBu fdP Q

start

PβPbuffer

P Q

Figure 12: The acknowledged producer-consumer after
windowing

At this step, the producer is refined into the four pro-
cesses, and the consumer is refined into the three pro-
cesses, shown in figure 12. Now the acknowledged
producer-consumer can efficiently use the channel band-
width. Our protocol refinement objective is thus achieved.

5.4 Channel Mapping

5.4.1 Channel convergence

After the protocol refinement, the producer and the con-
sumer are mapped to their allocated resources. The chan-
nel uses the network communication services via theRNIs
on the resources. Figure 13 shows two pairs of the non-
acknowledged producer-consumer,P1 andQ1, P2 andQ2.
The two producersP1 andP2 are mapped to the resource
R1. The two consumersQ1 andQ2 are mapped to the re-
sourceR2. The two channelsch1 andch2 use the virtual
circuitsvc1 andvc2 viaRNI1 andRNI2, respectively.



One pre-condition for message passing is that the chan-
nel has to be established before communicating. Since no
NoC platform can provide unlimited bandwidth, the num-
ber of channels which can be opened simultaneously is al-
ways limited. The channel setup may become the commu-
nication bottleneck. On the other hand, during the map-
ping of the producers and the consumers onto the NoC
platform, some producers may be mapped to one resource
and some consumers may be mapped to another resource,
leading to overlapped channels. In some cases, if one vir-
tual circuit can satisfy the latency requirement of these
channels, and can provide enough bandwidth, the produc-
ers and the consumers can in fact share the virtual cir-
cuit. We call thischannel convergence. In figure 13, if
the latency of the virtual circuitvc1 or vc2 satisfies the la-
tency requirements of the two channels,ch1 andch2, and
its bandwidth is not less than the sum of the two channel
bandwidth, the two channels can share the virtual circuit
vc1 or vc2.

domain
interface

domain
interface

ch1

ch2

ch1

ch2

Resource R2

ch2

vc1

vc2

D[min1;max1]

D[min2;max2]

B CA D

ch1

RNI1 RNI2

P1

P2

Q1

Q2

P1

P2

Q1

Q2

Resource R1 Network

Figure 13: Channel mapping and channel convergence

5.4.2 Channel merge

Merge

: : :a3;a2;a1: : :a3;a2;a1

: : :b3;b2;b1

: : : : : :

: : : b3;b2;b1

P1

P2

Q1

Q2

RNI1
vc

RNI2

: : :

Split
b1

a1a2
b2

a3
b3

: : : b1

a1a2
b2

a3
b3

Figure 14: Channel merge and split

Further, if the message format can contain the payloads
from the two channels,ch1 andch2, there is a possibility
of merging the two channels into one channel. One ad-
ditional requirement is that the merged message format
should be transparent to the destination processes, and
be correctly split. In our refinement, we use the process
Merge to realize merge, and the processSplit to realize
split, as illustrated in figure 14. This may decrease the
overhead of arbitrating resource sharing, for example, at
RNI1. In particular, it may benefit for synchronizing the
two consumersQ1 andQ2. And one virtual circuit suf-
fices.

6 A Tutorial Example

6.1 The Audio Amplifier

We use an audio amplifier as a tutorial example to illus-
trate our refinement steps. The amplifier regulates the
audio input signal in response to the button levels. It is
structurally decomposed into three functional blocks illus-
trated in figure 15. The audio sampling rate is 64K bps.
There are two buttons “+” (Up) and “-” (Down) used to
increase and decrease the amplification ratio, respectively.
The maximum rate of button press is once per second.

Amplification

AudioSampling

ButtonControl

AudioIn

Buttons

AudioOut

ch2

ch1

P2

Q

P1

audio stream

button signal

Figure 15: The audio amplifier and its process network

There are two channelsch1 and ch2. Both work as
the producer-consumer pattern. The system requires ac-
knowledgment for the audio channelch1. The button
channelch2 does not need acknowledgment, but the but-
ton signals must be delivered in order (to keep causal-
ity) within tolerable period. In the system specification
model, the audio output responds to the button press syn-
chronously.

6.2 The Distributed Amplifiers

Analyzing the channel characteristics, we know that the
two channels,ch1 andch2, need to use a virtual circuit ser-
vice. As we have refined the general producer-consumer
model onto the virtual circuit services, we can choose one
of the refined models for both channels. According to
the system requirements, we adopt the producer-consumer
model after channel refinement (figure 9) for the button
channelch1, and the acknowledged producer-consumer
with windowing (figure 12) for the audio channelch2.

Then we map the two refined producer-consumer mod-
els onto a NoC. Since the button channel uses less band-
width, and the button signals contain less information bits,
we assume that it is possible to converge and merge it with
the audio channel. As a result, there are four choices for
channel mapping:

(1) Map the producersP1, P2 and the consumerQ to
three resourcesR1, R2 andR3, respectively. Both
channels,ch1 andch2, have their own virtual circuit,
vc1 andvc2, respectively.

(2) Map the producersP1 andP2 to the resourceR1, the
consumerQ to another resourceR2. Both channels,
ch1 andch2, maintain their own virtual circuit,vc1

andvc2, respectively.



(3) Mapping is the same as in case (2). But the two chan-
nels share one virtual circuit.

(4) Mapping is the same as in case (2). But the two chan-
nels are merged into one channel.

We only take case (2) to show the whole refined system
model in figure 16. Ideally the model should be plugged
into the interface models offered by the network service
layer, specifically theRNI’s model and the switch’s model.
Different models yield different results. In our experi-
ments, we choose a parallel-to-serial conversion process
P=S if there is a need to arbitrate resource sharing, the
pointsA andC. We choose a one-input two-output router
processR to separate channel messages according to the
channel id, the pointsB andD. The refined models for the
other three cases can be derived accordingly.

Inr

QcounterPcounterRst

Q

Inr Irn

IrnreadBu f

P1

P2 Qα

ch1

ch2

ch1

D[min2;max2]

D[min2;max2]

D[min1;max1]

d

P=S P=SR R

Pβ
ch2Pbuffer

A CB

vc2

vc2

vc1

D

R1 R2Network

ch2 ch2

Figure 16: The refined amplifier model (Case (2))

Given the same set of parameters such as channel de-
lays and window sizes, we have compared the four cases
in terms of the average response delay of a button press
to the amplification. In cases (1) and (2), the button sig-
nals may arrive ahead of the audio stream sampled dur-
ing the buttons pressed, resulting in amplifying the pre-
vious sent audio data. This is because the two channel
messages are delivered in different virtual circuits inde-
pendently. In cases (3) and (4) the two channels can be
synchronized since they share one virtual circuit. We can
at least conclude that sharing virtual circuit may facilitate
synchronization between channels. However, the virtual
circuit bandwidth has to be high enough (case (3)), and
the message format must be able to contain enough in-
formation (case (4)). Alternatively, data compression and
de-compression may be introduced.

7 Conclusion

With the producer-consumer interaction pattern, this pa-
per presents refinement procedures from perfectly syn-
chronous communication onto NoC communication. Dur-
ing the refinements, application requirements such as re-
liability and throughput are satisfied. In ForSyDe, all the
refinements are conducted within the functional domain,
and are an integral design phase towards implementation.

The future work will focus on the refinements for the
other three process interaction patterns defined in section

4.1, and consider the mixed effects in an application pro-
cess network comprising two or more of the four process
interaction patterns.

References
[1] A. Benveniste, B. Caillaud, and P. L. Guernic. Compositionality

in dataflow synchronous languages: specification and distributed
code generation. Information and Computation, 163:125–171,
2000.

[2] A. Benveniste, L. Carloni, P. Caspi, and A. Sangiovanni-
Vincentelli. Heterogeneous reactive systems modeling and correct-
by-construction deployment. InProc. of 2003 Conference on Em-
bedded Software.

[3] J.-Y. Brunel, W. Kruijtzer, H. Kenter, F. Petrot, L. Pasquier,
E. de Kock, and W. Smits. COSY communication IP’s. InPro-
ceedings of the 37th Design Automation Conference, June 2000.

[4] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
20(9):18, September 2001.

[5] M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia. IP-
SIM: SystemC 3.0 enhancements for communication refinement.
In Proceedings of Design Automation and Test in Europe, 2003.

[6] R. Dömer, D. D. Gajski, and A. Gerstlauer. SpecC methodology
for high-level modeling. InProceedings of the Ninth IEEE/DATC
Electronic Design Processes Workshop, April 2002.

[7] G. R. Andrews. Foundations of Multithreaded Parallel and Dis-
tributed ProgrammingAddison Wesley Longman, Inc., 2000.

[8] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. Polychrony for
system design. Journal of Circuits, Systems and Computers,
12(3):261–303, December 2003.

[9] P. Knudsen and J. Madsen. Integrating communication protocol
selection with hardware/software codesign.IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
18(8):1077 – 1095, 1999.

[10] C. Lennard, P. Schaumont, G. de Jong, A. Haverinen, and
P. Hardee. Standards for system-level design: practical reality or
solution in search of a question? InProceedings of Design Au-
tomation and Test in Europe, March 2000.

[11] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Depretter. System
level design with SPADE: an M-JPEG case study. InProceedings
of the IEEE/ACM International Conference on Computer-Aided
Design, 2001.

[12] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design: Orthogonaliza-
tion of concerns and platform-based design.IEEE Transaction
on Computer-Aided Design of Integrated Circuits and Systems,
19(12):1523–1543, December 2000.

[13] I. Sander and A. Janstch. Transformation Based Communication
and Clock Domain Refinement for System Design. InProc. of the
39th Design Automation Conference, 20(1):281–286, June 2002.

[14] I. Sander and A. Jantsch. System modeling and transformational
design refinement in ForSyDe.IEEE Tran. on Computer-Aided
Design of Integrated Circuits and Systems, 23(1):17-32, Jan. 2004.

[15] S. Kumar et. al.. A Network on Chip Architecture and Design
Methodology, InIEEE Computer Society Annual Symposium on
VLSI, 2002.

[16] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for com-
paring models of computation.IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 17(12):1217–
1229, December 1998.


