
SOME ELLIPTIC PDES

ON RIEMANNIAN MANIFOLDS WITH BOUNDARY

YANNICK SIRE AND ENRICO VALDINOCI

Abstract. The goal of this paper is to investigate some rigidity
properties of stable solutions of elliptic equations set on manifolds
with boundary.

We provide several types of results, according to the dimension
of the manifold and the sign of its Ricci curvature.
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1. Introduction

Let (M, ḡ) be a complete, connected, smooth, n + 1-dimensional
manifold with boundary ∂M, endowed with a smooth Riemannian
metric ḡ = {ḡij}i,j=1,...,n.
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The volume element writes in local coordinates as

(1.1) dVḡ =
√

|ḡ| dx1 ∧ · · · ∧ dxn,

where {dx1, . . . , dxn} is the basis of 1-forms dual to the vector basis
{∂i, . . . , ∂n} and we use the standard notation |ḡ| = det(ḡij) > 0.

We denote by divḡX the divergence of a smooth vector field X on
M, that is, in local coordinates,

divḡX =
1

√

|ḡ|
∂i

(

√

|ḡ|X i
)

,

with the Einstein summation convention.
We also denote by ∇ḡ the Riemannian gradient and by ∆ḡ the

Laplace-Beltrami operator, that is, in local coordinates,

(1.2) (∇ḡφ)i = ḡij∂jφ

and

∆ḡφ = divḡ(∇ḡφ) =
1

√

|ḡ|
∂i

(

√

|ḡ|ḡij∂jφ
)

,

for any smooth function φ : M → R.
We set 〈·, ·〉 to be the scalar product induced by ḡ.
Given a vector field X, we also denote

|X| =
√

〈X,X〉.
Also (see, for instance Definition 3.3.5 in [Jos98]), it is customary to

define the Hessian of a smooth function φ as the symmetric 2-tensor
given in a local patch by

(Hḡφ)ij = ∂2
ijφ− Γk

ij∂kφ,

where Γk
ij are the Christoffel symbols, namely

Γk
ij =

1

2
ḡhk (∂iḡhj + ∂j ḡih − ∂hḡij) .

Given a tensor A, we define its norm by |A| =
√
AA∗, where A∗ is the

adjoint.
The present paper is devoted to the study of special solutions of

elliptic equations on manifolds with boundary and is, in some sense, a
follow up to the paper by the authors and Farina (see [FSV08b]) where
the case without boundary was investigated. In an Euclidean context,
i.e. M = R

n+1
+ with the flat metric, the rigidity features of the stable

solutions has been investigated in [SV09, CS09].
Boundary problems are related (via a theorem of Caffarelli and Sil-

vestre [CS07]) to non local equations involving fractional powers of the
Laplacian. An analogue of the results of [CS07] has been obtained in a
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geometric context, by means of scattering theory (see [FG02, GJMS92,
GZ03]).

In this paper, we will focus on the following two specific models:

• product manifolds of the type
(

M = M × R
+, ḡ = g + |dx|2

)

where (M, g) is a complete, smooth Riemannian manifold with-
out boundary, and

• the hyperbolic halfspace, i.e.
(

M = H
n+1, ḡ =

|dy|2 + |dx|2
x2

)

where x > 0 and y ∈ Rn.

Notice that the above models comprise both the positive and the neg-
ative curvature cases.

We denote by ν the exterior derivative at points of ∂M.
We will investigate the two following problems

(1.3)

{

∆ḡu = 0 in M = M × R+,
∂νu = f(u) on M × {0} .

and

(1.4)

{

−∆ḡu− s(n− s)u = 0 in M = Hn+1,
∂νu = f(u) on ∂Hn+1.

where f is a C1(M) nonlinearity (in fact, up to minor modifications,
the proofs we present also work for locally Lipschitz nonlinearities).

The real parameter s in (1.4) is chosen to be

s =
n

2
+ γ,

where γ ∈ (0, 1).
We recall that the problem in (1.3) has been studied in the context of

conformal geometry and it is related to conformally compact Einstein
manifolds (see section 4.1 below for a further discussion).

We will consider weak solutions of (1.3) and (1.4). Namely, we say
that u is weak solution of (1.3) if, for every ξ ∈ C∞

0 (M × R), we have

(1.5)

∫

M
〈∇ḡu,∇ḡξ〉 =

∫

∂M
f(u)ξ.

Analogously, we say that u is weak solution of (1.4) if, for every ξ ∈
C∞(M), we have that

(1.6)

∫

M
〈∇gu,∇gξ〉 − s(n− s)

∫

M
uξ =

∫

∂M
f(u)ξ.
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We focus on an important class of solutions of (1.3) and (1.4), namely
the so called stable solutions.

These solutions play an important role in the calculus of variations
and are characterized by the fact that the second variation of the energy
functional is non negative definite. This condition may be explicitly
written in our case by saying that a solution u of either (1.3) and or
(1.4) is stable if

(1.7)

∫

M
|∇ḡξ|2dVḡ − s(n− s)ε

∫

M
ξ2 −

∫

∂M
f ′(u)ξ2 dVḡ > 0

for every ξ ∈ C∞
0 (M ×R) with ε = 0 in case of (1.3), and for every ξ ∈

C∞(M) and with ε = 1 in case of (1.4).

1.1. Results for product manifolds. Now we present our results in
the case of product manifolds M = M × R

+.

Theorem 1.1. Assume that the metric on M = M × R+ is given by
ḡ = g + |dx|2.

Assume furthermore that M is compact and satisfies

Ricg > 0

with Ricg not vanishing identically.
Then every bounded stable weak solution u of (1.3) is constant.

We remark that the assumption on the boundedness of u is needed
as the following example shows: the function u(x, y) = x is a stable
solution of

{

∆ḡu = 0 inM × R+,
∂νu = −1 onM × {0} .

From theorem 1.1, one also obtains the following Liouville-type theo-
rem for the half-Laplacian on compact manifolds (for the definition and
basic functional properties of fractional operators see, e.g., [Kat95]):

Theorem 1.2. Let (M, g) be a compact manifold and u : M → R be a
smooth bounded solution of

(1.8) (−∆g)
1/2u = f(u),

with

(1.9)

∫

M
(|∇gξ|2 + |∇xξ|2) −

∫

∂M
f ′(u)ξ2 > 0,

for every ξ ∈ C∞
0 (M).

Assume furthermore that

Ricg > 0
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and Ricg does not vanish identically.
Then u is constant.

Results for (−∆g)
α with α ∈ (0, 1) may be obtained with similar

techniques as well.

Theorem 1.3. Assume that the metric on M = M × R+ is given by
ḡ = g + |dx|2, that M is complete, and

Ricg > 0,

with Ricg not vanishing identically.
Assume also that, for any R > 0, the volume of the geodesic ball BR

in M (measured with respect to the volume element dVg) is bounded
by C(R + 1), for some C > 0.

Then every bounded stable weak solution u of (1.3) is constant.

Next theorem is a flatness result when the Ricci tensor of M vanishes
identically:

Theorem 1.4. Assume that the metric on M = M × R+ is given by
ḡ = g + |dx|2 and Ricg vanishes identically.

Assume also that, for any R > 0, the volume of the geodesic ball BR

in M (measured with respect to the volume element dVg) is bounded
by C(R + 1), for some C > 0.

Then for every x > 0 and c ∈ R, every connected component of the
submanifold

Sx = {y ∈M, u(x, y) = c}
is a geodesic.

1.2. Results for the hyperbolic space. The next theorem provides
a flatness result when the manifold M is H3.

Theorem 1.5. Let n = 2.
Let u be a smooth weak solution of (1.4) and let s = n

2
+ γ where

γ ∈ (0, 1).
Also, suppose that either

(1.10) ∂y2
u > 0

or

(1.11) f ′ 6 0 on ∂H
n+1.

Then, for every x > 0 and c ∈ R, each of the submanifold

Sx =
{

y ∈ R
n, | u(x, y) = cxn−s

}

is a Euclidean straight line.
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As discussed in details in section 4.2, the proof of theorem 1.5 con-
tains two main ingredients:

(1) We first notice that the metric on Hn+1 is conformal to the flat
metric on R

n+1
+ .

(2) We then use some results by the authors in [SV09] (see also
[CS09] for related problems) to get the desired result.

The rest of this paper is structured as follows. In section 2 we prove
a geometric inequality for stable solutions in product manifolds, from
which we obtain the proofs of theorems 1.1–1.4, contained in section 3.
Then, in section 4, we consider the hyperbolic case and we prove the-
orem 1.1.

2. The case of product manifolds and a weighted

Poincaré inequality for stable solutions of (1.3)

Now we deal with the case of product manifolds M × R+.
In order to simplify notations, we write ∇ instead of ∇ḡ for the gra-

dient on M ×R
+ but we will keep the notation ∇g for the Riemannian

gradient on M .
Recalling (1.2), we have that

(2.12) ∇ = (∇g, ∂x).

In the subsequent theorem 2.1, we obtain a formula involving the ge-
ometry, in a quite implicit way, of the level sets of stable solutions of
(1.3).

Such a formula may be considered a geometric version of the Poincaré
inequality, since the L2-norm of the gradient of any test function bounds
the L2-norm of the test function itself. Remarkably, these L2-norms
are weighted and the weights have a neat geometric interpretation.

These type of geometric Poincaré inequalities were first obtained
by [SZ98a, SZ98b] in the Euclidean setting, and similar estimates have
been recently widely used for rigidity results in PDEs (see, for in-
stance, [FSV08a, SV09, FV09]).

Theorem 2.1. Let u be a stable solution of (1.3) such that ∇gu is
bounded.

Then, for every ϕ ∈ C∞
0 (M × R), the following inequality holds:

∫

M×R+

{

Ricg(∇gu,∇gu) + |Hgu|2 − |∇g|∇gu||2
}

ϕ2

6

∫

M×R+

|∇gu|2|∇ϕ|2.
(2.13)

Notice that only the geometry ofM comes into play in formula (2.13).
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Proof. First of all, we recall the classical Bochner-Weitzenböck formula
for a smooth function φ : M → R (see, for instance, [BGM71, Wan05]
and references therein):

(2.14)
1

2
∆ḡ|∇ḡφ|2 = |Hḡφ|2 + 〈∇ḡ∆ḡφ,∇ḡφ〉 +Ricḡ(∇ḡφ,∇ḡφ).

The proof of theorem 2.1 consists in plugging the test function ξ =
|∇gu|ϕ in the stability condition (1.7): after a simple computation, this
gives

∫

M
ϕ2|∇|∇gu||2 +

1

2
〈∇|∇gu|2,∇ϕ2〉 + |∇gu|2|∇ϕ|2

−
∫

M

f ′(u)|∇gu|2ϕ2 > 0.

(2.15)

Also, by recalling (2.12), we have

(2.16) 〈∇|∇gu|2,∇ϕ2〉 = 〈∇g|∇gu|2,∇gϕ
2〉 + ∂x|∇gu|2∂xϕ

2.

Moreover, since M is boundaryless, we can use on M the Green formula
(see, for example, page 184 of [GHL90]) and obtain that

∫

M
〈∇g|∇gu|2,∇gϕ

2〉 =

∫

R+

∫

M

〈∇g|∇gu|2,∇gϕ
2〉

= −
∫

R+

∫

M

∆g|∇gu|ϕ2 = −
∫

M
∆g|∇gu|ϕ2.

(2.17)

Hence, using (2.14), (2.16) and (2.17), we conclude that

1

2

∫

M
〈∇|∇gu|2,∇ϕ2〉 =

1

2

∫

M
∂x|∇gu|2∂xϕ

2

−
∫

M
ϕ2

{

|Hgu|2 + 〈∇g∆gu,∇gu〉 +Ricg(∇gu,∇gu)
}

.

(2.18)

Using the equation in (1.3), we obtain that

∆gu = −∂xxu,

so (2.18) becomes

1

2

∫

M
〈∇|∇gu|2,∇ϕ2〉 =

1

2

∫

M
∂x|∇gu|2∂xϕ

2

−
∫

M
ϕ2|Hgu|2 +

∫

M
ϕ2〈∇g∂xxu,∇gu〉 −

∫

M
ϕ2Ricg(∇gu,∇gu).

(2.19)
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Furthermore, Integrating by parts, we see that
∫

M
∂x|∇gu|∂xϕ

2 =

∫

M

∫ +∞

0

∂x|∇gu|∂xϕ
2

= −
∫

M

(

∂x|∇gu|ϕ2
)

|x=0 −
∫

M

∫ +∞

0

∂xx|∇gu|ϕ2

= −
∫

M

(

∂x|∇gu|ϕ2
)

|x=0 −
∫

M
∂xx|∇gu|ϕ2.

Consequently, (2.19) becomes

1

2

∫

M
〈∇|∇gu|2,∇ϕ2〉 =

−
∫

M
ϕ2

{1

2
∂xx|∇gu|2 + |Hgu|2 +Ricg(∇gu,∇gu)

}

(2.20)

+

∫

M
ϕ2〈∇g∂xxu,∇gu〉 −

1

2

(

∂x|∇gu|2ϕ2
)

|x=0.

Now, we use the boundary condition in (1.3) to obtain that, on M ,

f ′(u)∇gu = ∇g(f(u)) = ∇g∂νu = −∇g∂xu.

Therefore,

− 1

2

∫

M

(

∂x|∇gu|2ϕ2
)

|x=0 −
∫

M

〈∇gux,∇gu〉ϕ2

=

∫

M

f ′(u)|∇gu|2ϕ2.

(2.21)

All in all, by collecting the results in (2.15), (2.20), and (2.21), we
obtain that

∫

M
ϕ2|∇|∇gu||2 −

∫

M
ϕ2

{1

2
∂xx|∇gu|2 + |Hgu|2 +Ricg(∇gu,∇gu)

}

+

∫

M
ϕ2〈∇g∂xxu,∇gu〉 +

∫

M
|∇gu|2|∇ϕ|2 > 0.

(2.22)

Also, we observe that

|∂x|∇gu||2 + 〈∇g∂xxu,∇gu〉 −
1

2
∂xx|∇gu|2 =

|∂x|∇gu||2 − |∂x∇gu|2 6 0

by the Cauchy-Schwarz inequality.
Accordingly,

|∇|∇gu||2 = |∇g|∇gu||2 + |∂x|∇gu||2 6
1

2
∂xx|∇gu|2 − 〈∇g∂xxu,∇gu〉.
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This and (2.22) give (2.13). �

3. Proof of theorems 1.1–1.4

With (2.13) at hand, one can prove theorems 1.1–1.4.
For this scope, first, we recall the following lemma, whose proof can

be found in section 2 of [FSV08b].

Lemma 3.1. For any smooth φ : M → R, we have that

(3.23) |Hḡφ|2 >
∣

∣∇ḡ|∇ḡφ|
∣

∣

2
almost everywhere.

Moreover, we have the following result:

Lemma 3.2. Let u be a bounded solution of (1.3). Assume that

Ricg > 0

and that Ricg does not vanish identically on M .
Suppose that

(3.24) Ricg(∇gu,∇gu) vanishes identically on M.

Then, u is constant on M.

Proof. By assumption, we have that Ricg is strictly positive definite in
a suitable non empty open set U ⊆M .

Then, (3.24) gives that ∇gu vanishes identically in U × R+.
This means that, for any fixed x ∈ R+, the map U 3 y 7→ u(x, y)

does not depend on y. Accordingly, there exists a function ũ : R
+ → R

such that u(x, y) = ũ(x), for any y ∈ U .
Thus, from (1.3),

0 = ∆ḡu = ũxx in U × R+

and so there exist a, b ∈ R for which

u(x, y) = ũ(x) = a + bx for any x ∈ R+ and any y ∈ U .

Since u is bounded, we have that b = 0, so u is constant in U × R+.
By the unique continuation principle (see Theorem 1.8 of [Kaz88]),

we have that u is constant on M × R+. �

3.1. Proof of theorem 1.1. Points in M will be denoted here as (x, y),
with x ∈ R

+ and y ∈M .
Take ϕ in (2.13) to be the function

ϕ(x, y) = φ(
x

R
)

where R > 0 and φ is a smooth cut-off, that is φ = 0 on |x| > 2 and
φ = 1 on |x| 6 1.
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We remark that this is an admissible test function, since M is as-
sumed to be compact in theorem 1.1. Moreover, we remark that

(3.25) |∇ϕ(x, y)| 6
‖φ‖C1(R) χ(0,2R)(x)

R
.

Also, since u is bounded, elliptic regularity gives that ∇u is bounded
in M × R+.

Therefore, using (2.13), lemma 3.1 and (3.25), we obtain

(3.26)

∫

M×R+

{

Ricg(∇gu,∇gu)
}

ϕ2 6
C

R2

∫

M×(0,2R)

dVḡ 6
C

R

for some constant C > 0.
Sending R → +∞ and using the fact that Ricg > 0, we conclude

that Ricg(∇gu,∇gu) vanishes identically.
Thus, by lemma 3.2, we deduce that u is constant.

3.2. Proof of theorem 1.2. We put coordinates x ∈ R+ and y ∈ M
for points in M = M × R+.

Given a smooth and bounded uo : M → R, we can define the har-
monic extension Euo : M × R+ → R as the unique bounded function
solving

(3.27)

{

∆ḡ(Euo) = 0 in M × R+,
Euo = uo on M × {0}.

See Section 2.4 of [CSM05] for furter details.
Then, we define

(3.28) Luo := ∂ν(Euo)
∣

∣

x=0
.

We claim that, for any point in M → R,

(3.29) −∂x(Euo) = E(Luo).

Indeed, by differentiating the PDE in (3.27),

∆ḡ∂x(Euo) = 0.

On the other hand,

−∂x(Euo)(0, y) = ∂ν(Euo)(0, y) = Luo,

thanks to (3.28).
Moreover, ∂x(Euo) is bounded by elliptic estimates, since so is uo.
Consequently, −∂x(Euo) is a bounded solution of (3.27) with uo re-

placed by Luo.
Thus, by the uniqueness of bounded solutions of (3.27), we ob-

tain (3.29).
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By exploiting (3.28) and (3.29), we see that

L2uo = ∂ν

(

E(Luo)
)
∣

∣

x=0
= −∂x

(

E(Luo)
)
∣

∣

x=0

= −∂x

(

− ∂x(Euo)
)
∣

∣

x=0
= ∂xx(Euo)

∣

∣

x=0
.

(3.30)

On the other hand, using the PDE in (3.27),

0 = ∆ḡ(Euo) = ∆g(Euo) + ∂xx(Euo),

so (3.30) becomes

L2uo(y) = ∂xx(Euo)(0, y) = −∆g(Euo)(0, y) = −∆guo(y),

for any y ∈M , that is

(3.31) L = (−∆g)
1/2.

With these observations in hand, we now take u as in the statement of
theorem 1.2 and we define v := Eu.

From (3.28) and (3.31),

∂νv
∣

∣

x=0
= ∂ν(Eu)

∣

∣

x=0
= Lu = (−∆g)

1/2u.

Consequently, recalling (1.8), we obtain that v is a bounded solution
of (1.3).

Furthermore, the function v is stable, thanks to (1.9).
Hence v is constant by theorem 1.1, and so we obtain the desired

result for u = v|x=0.

3.3. Proof of theorem 1.3. Given p = (m, x) ∈ M × R
+, we de-

fine dg(m) to be the geodesic distance of m in M (with respect to a
fixed point) and

d(p) :=
√

dg(m)2 + x2.

Let also B̂R := {p ∈ M × R+ s.t. d(p) < R}, for any R > 0. Notice

that |∇gu| ∈ L∞(M ×R+), by elliptic estimates, and that B̂R ⊆ BR ×
[0, R], where BR is the corresponding geodesic ball in M .

As a consequence, by our assumption on the volume of BR, we obtain
∫

B̂R

|∇gu|2 dVḡ 6 ‖∇gu‖2
L∞(M×R+)

∫

BR×[0,R]

dVḡ

= R ‖∇gu‖2
L∞(M×R+)

∫

BR

dVg 6 CR(R + 1) ‖∇gu‖2
L∞(M×R+).

That is, by changing name of C,

(3.32)

∫

B̂R

|∇gu|2 dVḡ 6 CR2 for any R > 1.
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Also, since dg is a distance function on M (see pages 34 and 123
of [Pet98]), we have that

(3.33) |∇d(p)| =

∣

∣

(

dg(m)∇gdg(m), x
)
∣

∣

d(p)
6 1.

Also, given R > 1, we define

φR(p) :=







1 if d(p) 6
√
R,

(log
√
R)−1

(

logR − log(d(p))
)

if d(p) ∈ (
√
R,R),

0 if d(p) > R.

Notice that (up to a set of zero Vḡ-measure)

|∇φR(p)| 6
χB̂R\B̂√

R
(p)

log
√
R d(p)

,

due to (3.33).
As a consequence,

(log
√
R)2

∫

M×R+

|∇gu|2|∇φR|2 dVḡ 6

∫

B̂R\B̂√
R

|∇gu(p)|2
d(p)2

dVḡ(p)

=

∫

B̂R\B̂√
R

|∇gu(p)|2
( 1

R2
+

∫ R

d(p)

2 dt

t3

)

dVḡ(p)

6
1

R2

∫

B̂R

|∇gu(p)|2 dVḡ(p) +

∫ R

√
R

∫

B̂t

2|∇gu(p)|2
t3

dVḡ(p) dt.

Therefore, by (3.32),

(log
√
R)2

∫

M×R+

|∇gu|2|∇φR|2 dVḡ 6 C

(

1 +

∫ R

√
R

2 dt

t

)

6 3C logR.

Consequently, from (2.13),
∫

M×R+

{

Ricg(∇gu,∇gu) + |Hgu|2 − |∇g|∇gu||2
}

φ2
R 6

12C

logR
.(3.34)

From this and (3.23), we conclude that
∫

M×R+

Ricg(∇gu,∇gu)φ
2
R 6

12C

logR
.

By sending R → +∞, we obtain that Ricg(∇gu,∇gu) vanishes identi-
cally.

Hence, u is constant, thanks to lemma 3.2, proving theorem 1.3.
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3.4. Proof of theorem 1.4. The proof of theorem 1.3 can be carried
out in this case too, up to formula (3.34).

Then, (3.34) in this case gives that
∫

M×R+

{

|Hgu|2 − |∇g|∇gu||2
}

φ2
R 6

12C

logR
.

By sending R → +∞, and by recalling (3.23), we conclude that |Hgu|
is identically equal to |∇g|∇gu|| on

(

M × {x}
)

∩ {∇gu 6= 0}, for any
fixed x > 0.

Consequently, by lemma 5 of [FSV08b], we have that for any k =
1, . . . , n there exist κk : M → R such that

∇g

(

∇gu
)k

(p) = κk(p)∇gu(p) for any p ∈
(

M × {x}
)

∩ {∇gu 6= 0}.

From this and [FSV08b] (see the computation starting there on for-
mula (23)), one concludes that every connected component of {y ∈
M, u(x, y) = c} is a geodesic.

4. The case of the hyperbolic space

We now come to problem (1.4). Notice that up to now we assumed
for the manifold M to be positively curved. We deal here with spe-
cial equations on negatively curved manifolds. As a consequence, the
geometric formula (2.13) is not useful since the Ricci tensor does not
have the good sign and so we need a different strategy to deal with the
hyperbolic case.

For this, we will make use here of the fact that the manifold H
n+1

with the metric ḡ |dy|2+|dx|2
x2 is conformal to R

n+1
+ with the flat metric,

and, in fact, (Hn+1, ḡ) is the main example of conformally compact
Einstein manifold, as we discuss in section 4.1 here below.

4.1. Motivations and scattering theory. In order to justify the
study of problem (1.4), we describe the link between problem (1.4) and
fractional order conformally covariant operators.

Let M be a compact manifold of dimension n. Given a metric h on
M , the conformal class [h] of h is defined as the set of metrics ĥ that

can be written as ĥ = fh for a positive conformal factor f .
Let M be a smooth manifold of dimension n + 1 with boundary

∂M = M .
A function ρ is a defining function of ∂M in M if

ρ > 0 in M, ρ = 0 on ∂M, dρ 6= 0 on ∂M
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We say that g is a conformally compact metric on X with conformal
infinity (M, [h]) if there exists a defining function ρ such that the man-
ifold (M̄, ḡ) is compact for ḡ = ρ2g, and ḡ|M ∈ [h].

If, in addition (Mn+1, g) is a conformally compact manifold and
Ricg = −ng, then we call (Mn+1, g) a conformally compact Einstein
manifold.

Given a conformally compact, asymptotically hyperbolic manifold
(Mn+1, g) and a representative ĝ in [ĝ] on the conformal infinity M ,
there is a uniquely defining function ρ such that, on M × (0, ε) in M,
g has the normal form g = ρ−2(dρ2 + gρ) where gρ is a one parameter
family of metrics on M (see [GZ03] for precise statements and further
details).

In this setting, the scattering matrix of M is defined as follows.
Consider the following eigenvalue problem in (M, g), with Dirichlet
boundary condition,

(4.35)

{

−∆gus − s(n− s)us = 0 in M
us = f on M

for s ∈ C and f defined on M .
Problem (4.35) is solvable unless s(n − s) belongs to the spectrum

of −∆g.
However,

σ(−∆g) =
[

(n/2)2,∞
)

∪ σpp(∆g)

where the pure point spectrum σpp(∆g) (i.e., the set of L2 eigenvalues),
is finite and it is contained in (0, (n/2)2).

Moreover, given any f on M , Graham-Zworski [GZ03] obtained a
meromorphic family of solutions us = P(s)f such that, if s 6∈ n/2 + N,
then

P(s)f = Fρn−s +Hρs.

And if s = n/2 + γ, γ ∈ N,

P(s)f = Fρn/2−γ +Hρn/2+γ log ρ

where F,H ∈ C∞(X), F |M = f , and F,H mod O(ρn) are even in ρ.
It is worth mentioning that in the second case H|M is locally deter-

mined by f and ĝ. However, in the first case, H|M is globally deter-
mined by f and g. We are interested in the study of these nonlocal
operators.

We define the scattering operator as S(s)f = H|M , which is a mero-
morphic family of pseudo-differential operators in Re(s) > n/2 with
poles at s = n/2 + N of finite rank residues. The relation between f
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and S(s)f is like that of the Dirichlet to Neumann operator in standard
harmonic analysis. Note that the principal symbol is

σ (S(s)) = 2n−2s Γ(n/2 − s)

Γ(s− n/2)
σ

(

(−∆g)
s−n/2

)

The operators obtained when s = n/2 + γ, γ ∈ N have been well
studied. Indeed, at those values of s the scattering matrix S(s) has a
simple pole of finite rank and its residue can be computed explicitly,
namely

Ress=n/2+γS(s) = cγPγ, cγ = (−1)γ[22γγ!(γ − 1)!]−1

and Pγ are the conformally invariant powers of the Laplacian con-
structed by [FG02, GJMS92].

In particular, when γ = 1 we have the conformal Laplacian,

P1 = −∆ +
n− 2

4(n− 1)
R

and when γ = 2, the Paneitz operator

P2 = ∆2 + δ (anRg + bnRic) d+ n−4
2
Qn

We can similarly define the following fractional order operators on
M of order γ ∈ (0, 1) as

Pγf := dγS(n/2 + γ)f, dγ = 22γ Γ(γ)

Γ(−γ) .

It is important to mention that these operators are conformally covari-

ant. Indeed, for a change of metric gu = u
4

n−2γ g0, we have

P gu

γ f = u−
n+2γ

n−2γP g0

γ (uf) .

The following result, which can be found in [CG08], establishes a link
between scattering theory on M and a local problem in the half-space.
We provide the proof for sake of completeness.

Lemma 4.1. Fix 0 < γ < 1 and let s = n
2

+ γ. Assume that u is a
smooth solution of

(4.36)

{

−∆ḡu− s(n− s)u = 0 in Hn+1,
∂νu = v on ∂Hn+1.

for some smooth function v defined on ∂Hn+1.
Then the function U = xs−nu solves

(4.37)







div (x1−2γ∇U) = 0 for y ∈ Rn, x ∈ (0,+∞)
U(0, .) = u|x=0, in Rn

− limx→0 x
1−2γ∂xU = Cv
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for some constant C.

Proof. By the results in [GZ03], one has the following representation
of u in Hn+1

u = xn−su|x=0 + xs∂νu.

From this we deduce that

U = u|x=0 + x2s−n∂νu.

Since s = n
2

+ γ, we have 2s− n = 2γ > 0 and then

U |x=0 = u|x=0

and

− lim
x→0

x1−2γ∂xU = C∂νu = Cv.

We now prove that U satisfies the desired equation. This only comes
from the conformality of the metric on Hn+1 to the flat one in the
half-space. Indeed, the conformal Laplacian is given by

Lḡ = −∆ḡ +
n− 1

4n
Rḡ

where Rḡ is the scalar curvature of Hn+1, which is equal to −n(n+ 1).
On the other hand, if we have h = e2wḡ for some function w (i.e. the
metrics h and g are conformal) then the conformal law of Lḡ is given
by

Lhψ = e−
n+3

2
wLḡ(e

n−1

2
wψ)

for any smooth ψ.
In our case, we have h = |dx|2 + |dy|2 the flat metric on R

n+1
+ and

ew = x. Thus, using the conformal law, we have

−∆ḡψ = −x2∆ψ + (n− 1)∂xψ

for any ψ smoothly on R
n+1
+ .

Plugging ψ = u and using equation (4.36) leads

s(n− s)u = −x2∆u+ (n− 1)x∂xu.

Finally, plugging U = xs−nu leads to the equation

∆U +
1 − 2γ

x
∂xU = 0,

which is equivalent to div (x1−2γ∇U) = 0. �
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4.2. Proof of theorem 1.5. Let u be a solution as requested in The-
orem 1.5. By Lemma 4.1, the function U satisfies in a weak sense

(4.38)







div (x1−2γ∇U) = 0 for y ∈ R2, x ∈ (0,+∞)
U(0, .) = u|x=0,

− limx→0 x
1−2γ∂xU = f(U).

Notice that either ∂y2
U > 0 or f ′ 6 0, thanks to (1.10) and (1.11).

Furthermore, since u is bounded, U is bounded close to x = 0. Addi-
tionally, we have

U = xγ−1u.

This gives that U is bounded inside H
n+1
+ . So, since U agrees with u

on ∂H
n+1
+ , we obtain that U is bounded in all of H

n+1
+ .

Therefore, by theorem 3 in [SV09], we have that U(x, y) = Uo(x, ω·y),
for suitable Uo : [0,+∞) × R → R and ω ∈ S1. This gives directly the
desired result.
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