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Abstract

We consider the problem of how an agent creates a
discrete spatial representation from its continuous
interactions with the environment. Such represen-
tation will be theminimalone that explains the ex-
periences of the agent in the environment. In this
paper we take the Spatial Semantic Hierarchy as
the agent’s target spatial representation, and use a
circumscriptive theory to specify the minimal mod-
els associated with this representation. We provide
a logic program to calculate the models of the pro-
posed theory. We also illustrate how the different
levels of the representation assume different spa-
tial properties about both the environment and the
actions performed by the agent. These spatial prop-
erties play the role of “filters” the agent applies in
order to distinguish the different environment states
it has visited.

1 Introduction
The problem of map building –how an agent creates a dis-
crete spatial representation from its continuous interactions
with the environment– can be stated formally as an abduc-
tion task where the actions and observations of the agent are
explained by connectivity relations among places in the en-
vironment[Shanahan, 1996, Shanahan, 1997, Remolina and
Kuipers, 1998]. In this paper we consider the Spatial Seman-
tic Hierarchy (SSH)[Kuipers, 2000, Kuipers and Byun, 1988,
Kuipers and Byun, 1991] as the agent’s target spatial repre-
sentation. The SSH is a set of distinct representations for
large scale space, each with its own ontology and each ab-
stracted from the levels below it. The SSH describes the dif-
ferent states of knowledge that an agent uses in order to orga-
nize its sensorimotor experiences and create a spatial repre-
sentation (i.e. a map). Using the SSH representation, naviga-
tion among places is not dependent on the accuracy, or even
the existence, of metrical knowledge of the environment.
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In order to define thepreferred modelsassociated with the
experiences of the agent, we use a circumscriptive theory to
specify the SSH’s (minimal) models. Different models can
exist that explain the same set of experiences. This occurs
because the agent could associate the same sensory descrip-
tion to different environment states, or because the agent has
not completely explored the environment. The different SSH
levels assume different spatial properties about the environ-
ment and the actions performed by the agent. These spatial
properties play the role of “filters” the agent applies in order
to distinguish the different environment states it has visited.
For instance, at the SSH causal level two environment states
are considered the same if any sequence of actions started at
these states renders the same sequence of observations. At
the SSH topological level, two environment states are consid-
ered the same if they are at the same place along the same
paths. Finally, at the SSH metrical level, two environment
states are the same, if it is possible to assign to them the same
coordinates in any frame of reference available to the agent.
In sections 3 and 4 we make precise the claims above.

Finally, we use the SSH circumscriptive theory as the spec-
ification for a logic program used to implement the abduc-
tion task. In the paper we provide the logic program for the
SSH causal level theory and illustrate how to encode the min-
imality condition associated with this theory. We have im-
plemented the program using Smodels[Niemelä and Simons,
1997] and confirm that the theory yields the intended models.

2 Related Work
The SSH grew out of the TOUR model proposed in[Kuipers,
1977, Kuipers, 1978]. Other computational theories of the
cognitive map have been proposed:[Kortenkampet al., 1995,
McDermott and Davis, 1984, Leiser and Zilbershatz, 1989,
Yeap, 1988]. These theories share the same basic principles:
the use of multiple frames of reference, qualitative repre-
sentation of metrical information, and connectivity relations
among landmarks. They differ in how they define what a
landmark is, or the description (view, local 2D geometry) as-
sociated with a landmark. Except for McDermott and Davis,
none of the theories above has a formal account like the one
presented in this paper for the SSH.

Considering map building as a formal abduction task has
been proposed by Shanahan[Shanahan, 1996, Shanahan,
1997]. He proposes a logic-based framework (based on the



circumscriptive event calculus) in which a robot constructs
a model of the world through an abductive process whereby
sensor data is explained by hypothesizing the existence, lo-
cations, and shapes of objects. In Shanahan’s work, space is
considered a real-valued coordinate system. As pointed out
in [Shanahan, 1997], a problem of Shanahan’s approach is
the existence of many minimal models (maps) that explain
the agent’s experiences. We have alleviated this problem by
considering the SSH topological map instead of an Euclidean
space as the agent’s target spatial representation.

The problem of distinguishing environment states by out-
puts (views) and inputs (actions) has been studied in the
framework of automata theory[Basyeet al., 1995]. In this
framework, the problem we address here is the one of finding
the smallest automaton (w.r.t. the number of states) consistent
with a given set of input/output pairs. Without any particular
assumptions about the environment or the agent’s perceptual
abilities, the problem of finding this smallest automaton is
NP-complete[Basyeet al., 1995].

The SSH[Kuipers, 2000, Kuipers and Byun, 1988, Kuipers
and Byun, 1991] abstracts the structure of an agent’s spa-
tial knowledge in a way that is relatively independent of its
sensorimotor apparatus and the environment within which it
moves. At theSSH control level, the agent and its environ-
ment are modeled as continuous dynamical systems whose
equilibrium points are abstracted to a discrete set ofdistinc-
tive states. A distinctive state has associated aviewdescribing
the sensory input obtained at that distinctive state. The con-
trol laws, whose executions define trajectories linking these
distinctive states, are abstracted toactions, giving a discrete
causal graph representation for the state space. The causal
graph of states and actions can in turn be abstracted to a topo-
logical network ofplaces, pathsandregions(i.e. thetopolog-
ical map). Local metrical models, such as occupancy grids,
of neighborhoods of places and paths can then be built on the
framework of the topological network while avoiding global
metrical consistency problems. In the next sections we for-
mally describe the SSH causal and topological levels.

3 SSH Causal level
We use a first order sorted language in order to describe the
SSH causal level. The sorts of this language includedistinc-
tive states, views, actionsandschemas. The sort of distinctive
states corresponds to the names given by the agent to the fix-
points of hill-climbing control strategies. It is possible for
the agent to associate different distinctive state names with
the same environment state. This is the case since the agent
might not know at which of several environment states it is
currently located. A distinctive state has an associated view.
We use the predicateV iew(ds; v) to represent the fact that
v is a view associated withdistinctive stateds. We assume
that a distinctive state has a unique view. However, we donot
assume that views uniquely determine distinctive states (i.e.
V iew(ds; v) ^ V iew(ds0; v) 6! ds = ds0). This is the case
since the sensory capabilities of an agent may not be suffi-
cient to distinguish distinctive states.

An action has a unique type, eithertravel or turn, asso-
ciated with it. We use the predicateAction type(a; type)

to represent the fact that the type of actiona is type. Turn
actions have associated a unique turn description, either
turnLeft, turnRight or turnAround. We use the predicate
Turn desc(a; desc) to indicate thatdescis the turn descrip-
tion associated with the turn actiona.

A schema represents an action execution performed by the
agent in the environment. An action execution is character-
ized in terms of the distinctive states the agent was at before
and after the action was performed.1 We use the predicate
CS(s; ds; a; ds0) to denote the fact that according to schema
s, actiona was performed starting at distinctive stateds and
ending at distinctive stateds0. While schemas are explicit ob-
jects of our theory, most of the time it is convenient to leave
them implicit. We introduce the following convenient nota-
tion:

hds; a; ds0i �def 9s CS(s; ds; a; ds
0)

hds; type; ds0i �def 9a
�
hds; a; ds0i ^ Action type(a; type)

	
hds; desc; ds0i �def 9a

�
hds; a; ds0i ^ Turn desc(a; desc)

	

Example 1

Consider a robot moving in the environment depicted in fig-
ure 1. The robot moves from distinctive statea to distinctive
stateb by performing a follow-midline action,ml. Then the
robot performs the same action to move to distinctive state
c. We assume that all corridor intersections look alike (v+).
This set of experiences can be described by the formulae:

Action type(ml; travel) ; CS(s1; a;ml; b) ; CS(s2; b;ml; c) ;

V iew(a; v+) ; V iew(b; v+) ; V iew(c; v+) :

a�� ���� ��cb a b dc�� ���� �� ��

(a) (b)

Figure 1: (a) Distinctive statesa, b andc are not distinguishable
at the causal level. Topological information is needed in order to
distinguish them. (b) All distinctive states are distinguished at the
causal level given the new informationhc; travel; di.

Given this set of experiences, at the SSH causal level
distinctive statesa, b and c are not distinguishable. Any
known sequence of actions renders the same set of views.
However, at the SSH topological level all these distinctive
states are distinguishable since the robot has traveled froma
to b and then toc following the samepath (see example 3).
Should the robot continue the exploration and visit distinctive
stated, with view=, then by relying just on known actions
and views the agent can distinguish all distinctive states it
has visited (see example 2).fend of exampleg

The agent’s experiences in the environment are described
in terms ofCS, View, Action typeandTurn descatomic for-
mulae. Hereafter we useE to denote a particular agent’s
experience formulae. ByHS(E) we denote the formulae

1An action execution also has metrical information associated
with it. This metrical information represents an estimate of, for ex-
ample, the distance or the angle between the distinctive states asso-
ciated with the action execution.



stating that the sorts of schemas, distinctive states, views
and actions are completely defined by the sets ofschema,
distinctive states, view and action constant symbols occur-
ring in E respectively.2 By DT we denote our domain the-
ory, the formulae stating that: (-) the setsfturn, travelg,
fturnLeft,turnRight,turnAroundg, completely define the sorts
of action typesandturn descriptions; (-) an action has asso-
ciated a unique action type ; (-) distinctive states have asso-
ciated a unique view; (-) the description associated with an
action is unique; (-) turn actions have associated a turn de-
scription; (-) the type of actions as well as the qualitative de-
scription of turn actions is the one specified inE. The SSH
causal theoryCT(E) defines when two distinctive states are
indistinguishable at the SSH causal level. We use the pred-
icate ceq(ds; ds0) to denote this fact. We will assume that
actions aredeterministic: 3

hds; a; ds0i ^ hds; a; ds00i ! ds
0 = ds

00

: (1)

CT(E) is the following nested abnormality theory[Lifschitz,
1995]:

CT (E) = E; HS(E); DT; Axiom 1; CEQ block

whereCEQ block is defined as

f max ceq :

ceq(ds; ds0)! ceq(ds0; ds);

ceq(ds; ds0) ^ ceq(ds0; ds00)! ceq(ds; ds00);

ceq(ds; ds0)! V iew(ds; v) � V iew(ds0; v); (2)

ceq(ds1; ds2)^hds1; a; ds
0

1i^hds2; a; ds
0

2i!ceq(ds01; ds
0

2)(3)

g

It can be proved that the predicateceqdefines an equiva-
lence relation on the sort of distinctive states. Axiom 2 states
that indistinguishable distinctive states have the same view.
Axiom 3 states that if distinctive statesds andds0 are indis-
tinguishable and actiona has been performed for bothds and
ds0, then the action links these states with indistinguishable
states. By maximizingceq we identify distinctive states that
cannot be distinguished by actions and/or views, and thereby
minimize the set of states represented by the model.

Axioms 2 and 3 allow us to prove the following useful
lemma:
Lemma 1 Let A denote a sequence of action symbols. Let
A(ds) denote the distinctive state symbol resulting of starting
the sequenceA at distinctive stateds or ? if A is not defined
for ds.4 Then,

ceq(ds; ds0) ^A(ds) 6=? ^A(ds0) 6=?

! V iew(A(ds); v) � V iew(A(ds0); v) :

Example 2
2That sort is completely defined by the constant symbols

s1; : : : ; sn means that an interpretation forsort is theHerbrandin-
terpretation defined by the setfs1; : : : ; sng.

3Throughout this paper we assume that formulas are universally
quantified.

4Given an action symbolA and distinctive stateds,A(ds) = ds0

if the schemahds;A; ds0i has been observed, otherwise,A(ds) =?.
Moreover,A(?) =?. The definition is then extended to action se-
quences in the standard way. Notice thatA(ds) being well-defined
relies on our assumption that actions are deterministic (Axiom 1).

Consider the situation depicted in Figure 1b, with the
corresponding schemas and views as in example 1. Using
lemma 1 one can conclude that all distinctive statesa,
b and c are distinguishable by actions and views alone.
For instance,fml;mlg(a) = c, fml;mlg(b) = d,
V iew(fml;mlg(a); v+), V iew(fml;mlg(b);=), and con-
sequently,:ceq(a; b). fend of exampleg

The Herbrand models ofCT (E) are in a one to one corre-
spondence with the answer sets[Gelfond and Lifschitz, 1991]
of the logic program in Figure 2.5 In this program, theX and
Y variables range over distinctive states and the variableV
ranges over views inE. The sets of rules 4 and 5 are the facts
corresponding to the agent’s experiences. Rules 6-8 require
ceq to be an equivalence class. Rules 8 and 9 are the coun-
terpart of axiom 2. Rule 11 is the counterpart of axiom 3.
In order to define the maximality condition ofceq, the aux-
iliar predicatep(X;Y;X1; Y 1) is introduced. This predicate
reads as“If X andY were the same, thenX1 andY 1 would
be the same”. The predicatedist(X;Y ) defines when dis-
tinctive statesX andY are distinguishable. Constraint 12 es-
tablishes the maximality condition onceq: ceq(X;Y ) should
be the case unlessX andY are distinguishable.6

fcs(ds; a; ds0) : : cs(ds; a; ds0) 2 Eg (4)

fview(ds; v) : : view(ds; v) 2 Eg (5)

ceq(X; Y );:ceq(X; Y ) :

p(X; Y;X; Y ) :

p(X; Y;X2; Y 1) p(X;Y;X1; Y 1); ceq(X1;X2):

p(X; Y;X1; Y 2) p(X;Y;X1; Y 1); ceq(Y 1; Y 2):

p(X; Y;X2; Y 2) p(X;Y;X1; Y 1); cs(X1; A;X2); cs(Y 1; A; Y 2):

p(X; Y;Y 1;X1) p(X;Y;X1; Y 1):

p(X; Y;X1; Y 2) p(X;Y;X1; Y 1); p(X;Y; Y 1; Y 2):

dist(X; Y ) p(X; Y;X1; Y 1); view(X1; V ); not view(Y 1; V ):

dist(X; Y ) p(X; Y;X1; Y 1); not view(X1; V ); view(Y 1; V ):

 not ceq(X;X): (6)

 ceq(X; Y ); not ceq(Y;X): (7)

 ceq(X; Y ); ceq(Y; Z); not ceq(X;Z): (8)

 ceq(X; Y ); view(X; V ); not view(Y; V ): (9)

 ceq(X; Y ); not view(X; V ); view(Y; V ): (10)

 not ceq(X1; Y 1); ceq(X; Y ); cs(X;A;X1); cs(Y;A; Y 1): (11)

 not ceq(X; Y ); not dist(X; Y ): (12)

Figure 2:Logic program associated with CT(E).

5See extended version of this paper[Remolina and Kuipers,
2001] for a proof.

6We have implemented this logic program in Smodels[Niemelä
and Simons, 1997]. In the implementation, one has to add variable
domain restrictions to the different rules. For example, rule

ceq(X;Y );:ceq(X;Y ) :

becomes

ceq(X;Y );:ceq(X;Y ) dstate(X); dstate(Y )

wheredstate is our predicate to identify the sort of distinctive states.



4 SSH Topological Level
We are to define the SSH topological theory,TT(E), associ-
ated with a set of experiencesE. The language of this theory
is a sorted language with sorts forplaces, pathsandpath di-
rections.7 The main purpose ofTT (E) is to minimize the
set of paths and places consistent with the given experiences
E. A place can be atopological place(hereafter place) or a
region. A place is a set of distinctive states linked by turn ac-
tions. A region is a set of places. We use the predicatestplace
andis regionto identify these subsorts. A path defines an or-
der relation among places connected by travel with no turn
actions. They play the role of streets in a city layout. We use
the predicatetpath to identify the sort of paths. By minimiz-
ing the extent oftplace, is region andtpath we minimize
the sort of places and paths respectively.8 The language of
the SSH topological level includes the following other predi-
cates:teq(ds,ds’)– distinctive statesds andds0 aretopolog-
ically indistinguishable;at(ds,p)– distinctive stateds is at
placep; along(ds,pa,dir)–distinctive stateds is along path
pa in direction dir; OnPath(pa,p)–placep is on pathpa;
PO(pa,dir,p,q)–placep is before placeq when facing direc-
tion dir on pathpa (PO stands for Path Order).

TT(E) , is the following nested abnormality theory:
8p; tplace(p) � :is region(p) ; 8pa; tpath(pa) ; (13)

fmin is region :

CT (E) ; T block ; AT block g

The first line in Axioms 13 says that topological places and
regions are the two subsorts of places, and that the predicate
tpath represents the sort of paths. The blockCT(E) is the
one defined in the previous section. The blockT block de-
fines the predicatesdturn, dtravel, and ~travel such thatdturn
is the equivalence closure of the schemash�; turn; �i; dtravel
and ~travel are the equivalence and transitive closure of the
schemash�; travel; �i.

The blockAT block (Figure 3) is the heart of our theory.9

The purpose of this block is to define the extent of the pred-
icatestpath, tplace, at, along, PO andteq, while identifying
a minimum set of places and paths that explainE. The block
has associated the circumscription policy10

circ tpath � along � PO � OnPath � tplace var ~SSHpred

where ~SSHpred stands for the tuple of predicatesat, teq,
travel eq, and turn eq.11 This circumscription policy states

7The sort of directions is completely defined by the symbolspos
andneg.

8Notice that our logic has sorts forplacesandpathsbut in order
to minimize these sorts we have to explicitly have predicates repre-
senting them.

9Notice that the predicateis region is not mentioned in the
theory of figure 3. In the next section we will add to this theory
axioms dealing with regions. For the purpose of this section, the
minimization of is region in conjunction with8p; tplace(p) �
:is region(p) implies (the default)8p tplace(p).

10The symbol� indicates prioritized circumscription (see[Lifs-
chitz, 1994] section 7.2).

11Block 19 in Figure 3 states that the predicateturn eq corre-
sponds to the relationdturnmoduloteq. Block 31 definestravel eq
to be the relationdtravel moduloteq.

(among others) that a minimum set of paths is preferred over
a minimum set of places. Next we discuss the axioms in
AT block.

f :

teq(ds; ds0) � 9p
�
ceq(ds; ds0) ^ at(ds; p) ^ at(ds0; p)

	
; (14)

at(ds; p)! tplace(p); (15)

9!p at(ds; p); (16)

hds; turn; ds0i ^ at(ds; p)! at(ds0; p); (17)

at(ds; p) ^ at(ds0; p)! turn eq(ds; ds0); (18)

fmin turn eq : (19)

teq(ds; ds0) ^ teq(dr; dr0) ^dturn(ds0; dr0)! turn eq(ds; dr);

turn eq(ds; ds0) ^ turn eq(ds0; ds00)! turn eq(ds; ds00) g

along(ds; pa; dir)! tpath(pa); (20)

at(ds; p) ^ at(ds0; q) ^ ~travel(ds; ds0)! (21)

9pa; dir
�
PO(pa; dir; p; q) ^ along(ds; pa; dir) ^ along(ds0; pa; dir)

	
;

along(ds; pa; dir) ^ along(ds; pa1; dir1)! pa = pa1; (22)

at(ds; p) ^ at(ds
0

; p) ^ along(ds; pa; dir) ^ (23)

along(ds
0

; pa; dir)! teq(ds; ds
0

);�
hds; turn desc; ds

0

i ^ turn desc 6= turnAround ^ (24)

along(ds; pa; dir) ^ along(ds0; pa1; dir1)
	
! pa 6= pa1;

hds; turnAround; ds0i ! along(ds; pa; dir) � along(ds0; pa;�dir); (25)

PO(pa; pos; p; q) � PO(pa; neg; q; p); (26)

:PO(pa; dir; p; p); (27)

PO(pa; dir; p; q) ^ PO(pa; dir; q; r)! PO(pa; dir; p; r); (28)

PO(pa; dir; p; q) ! OnPath(pa; p) (29)

OnPath(pa; p) ^ OnPath(pa; q) ^ tpath(pa) ! (30)

9ds; ds0 fat(ds; p) ^ at(ds0; q) ^ travel eq(ds; ds0)g;

fmin travel eq : (31)

teq(ds; ds0) ^ teq(dr; dr0) ^ dtravel(ds0; dr0)! travel eq(ds; dr);

travel eq(ds; ds0) ^ travel eq(ds0; ds00)! travel eq(ds; ds00) g

circ tpath � along � PO � OnPath � tplace var ~SSHpred

g

Figure 3:AT block.

Predicateteq is the equivalence relation defined by axiom
14. teq(ds; ds0) is the case wheneverds andds0 cannot be
distinguished by views and actions (i.e.ceq(ds; ds0)) and
it is consistent to groupds andds0 into the same place. If
we assume that views uniquely identify distinctive states (e.g.
V iew(ds; V ) ^ V iew(ds0; V ) ! ds = ds0), then predicates
ceq andteq will reduce to equality. This is expected since all
that is required to identify a distinctive state is its view.

Every distinctive state is at a unique place (Axiom 16).
Whenever the agentturns, it stays at the same place (Axiom
17). Distinctive states grouped into a topological place should
beturn connected (moduloteq) (Axiom 18). Travelactions
among distinctive states are abstracted to topological paths
connecting the places associated with those distinctive states
(Axiom 21). A distinctive state is along at most one path (Ax-
iom 22). At each place there is at most one distinctive state
along a given path direction (Axiom 23). Turn actions other
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Figure 4:The environment in (a) illustrates a case where different
paths intersect at more than one place. (b) depicts the topological
map associated with this environment.

thanturnAroundchange the path the initial and final distinc-
tive states are at (Axiom 24).TurnAroundactions relate dis-
tinctive states being in the same path but opposite directions
(Axiom 25). The order of places in a given path direction is
the inverse of the order of places in the other path direction
(Axiom 26). Axioms 27 and 28 requirePO(pa; dir; �; �) to
be a non-reflexive transitive order for the places onpa. Places
ordered by a path should belong to that path (Axiom 29). Ax-
iom 30 requires the agent to have traveled among the places
on a same path.

Our theory does not assume a “rectilinear” environment
where paths intersect at most in one place. It is possible for
different paths to have the same order of places (see Figure
4). Topological information can distinguish distinctive states
not distinguishable by view and actions.

Example 3

Consider the scenario of example 1. Since the same view
is experienced ata, b andc, the extent ofceq is maximized
by declaringceq = true. Using the topological theory,
from axiom 16 we conclude that there exist placesP and
Q, such thatat(a; P ) and at(c;Q). Since it is the case
that ~travel(a; c), from axioms 21 and 27 we conclude,
for instance, thatP 6= Q. Distinctive statesa and c are
topologically distinguishable though they are “causally
indistinguishable” (i.e. ceq(a; c) ^ :teq(a; c)). fend of
exampleg

Given a minimal modelM of TT (E), the SSH topological
map is defined by the extent inM of tpath, tplace, along, PO
andat. Since the positive and negative direction of a path are
chosen arbitrarily (Axiom 21), there is not a unique minimal
model forTT (E). We will consider these “up to path direc-
tion isomorphic” models to be the same. However, it is still
the case that the theoryTT (E) has minimal models that are
not isomorphic up to path direction (see Figure 5).

5 SSH Boundary Regions
In addition to connectivity and order among places and paths,
the topological map includes topological boundary relations:
assertions that a place lies to the right of, to the left of, or on
a path. In order to determine boundary relations we formally
state the following default heuristic. Suppose the agent is at
an intersection on a given path, and it then turns right. If the
agent now travels, any place it finds while traveling with no
turns will be on the right of the starting path. When conflict-
ing information exists about whether a place is to the right or

f e

a dcb
A C D

EF

A CB B D

EF

(a) (b) (c)

Figure 5: (a) The robot goes around the block visiting places
A,: : :,F ,C in the order suggested in the figure. IntersectionsB and
C look alike to the agent. Two minimal models can be associated
with the set of experiences in (a) (see (b) and (c)). Topological infor-
mation is not enough to decide whether the agent is back toB orC.
Notice that if the agent accumulates more information, by turning
at c and traveling tod, then it can deduce that the topology of the
environment is the one in (b). In addition, when available, metrical
information can be used to refute the incorrect topology.

left of a path, we deduce no boundary relation (see Figure 6).
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Figure 6: Different environments illustrating how our default to
determine boundary relations works. In (a), we conclude by default
that placeC is to the left of the path fromA to B. In (b) we conclude
nothing about the location of placeD with respect to the path from
A to B. In (c), we conclude that placeD is to the left of the path from
A to B. This is the case since there is no information to conclude
otherwise.

We use the predicates
TotheRightOf=TotheLeftOf(p1; pa; dir; pa1; dir1)
to represent the facts that (i)p1 is aplaceon both paths,pa
andpa1, and (ii) when the agent is atplace p1facing in the
directiondir of pa, after executing a turn right (left) action,
the agent will be facing on the directiondir1 of pa1 (see
Figure 7). The predicatesTotheLeftOfandTotheRightOfare
derived from the actions performed by the agent at a place:

hds; turnRight; ds1i ^ at(ds; p) ^ along(ds; pa; dir) ^ (32)

along(ds1; pa1; dir1)! TotheRightOf(p; pa; dir; pa1; dir1)

We use the predicatesLeftOf(pa; dir; lr) and
RightOf(pa; dir; rr) to denote thatregion lr (rr) is
the left (right) region of pathpa with respect to the path’s
direction dir. The left/right regions of a path are unique,
disjoint, and related when changing the path direction (i.e
LeftOf(pa; dir; r) � RightOf(pa;�dir; r)). From the
relative orientation between paths at a place, we deduce the
relative location of places with respect to a path (see Figure
7): 12

TotheRightOf(p1; pa; dir; pa1; dir1)^PO(pa1; dir1; p1; p)^

RightOf(pa; dir; rr) ^ :Ab(pa; p)! in region(p; rr) (33)



p

p1

Pa, dir
Pa1, dir1

Figure 7:PathPa1 is to the right of pathPa at placep1. Placep is
after placep1 on pathpa1. By default, we conclude that placep is
to the right of pathpa.

The predicateAb is the standard “abnormality” predicate
used to represent defaults in circumscriptive theories[Lifs-
chitz, 1994]. Axiom 33 states that“normally” , if at place
p1 path pa1 is to the right of pathpa, and placep is after
p1 on pathpa1, then it should be the case thatp is on the
right of pa (Figure 7). In order to capture this default, bound-
ary regions domain theory axioms13 are added to the block
AT block (see Figure 3). Since we are interested in the extent
of the new predicatesin region, LeftOf, RightOf, TotheLeftOf
andTotheRightOf, we allow them to vary in the circumscrip-
tion policy. The new circumscription policy becomes

circ tpath � along � PO � Onpath � Ab � is region �

in region� tplace var ~newSSHpred

where ~newSSHpred stands for the tuple of predicates
at, along, teq , travel eq, turn eq, LeftOf , RightOf ,
TotheLeftOf , andTotheRightOf. The circumscription pol-
icy states that boundary relations should be established even
at the expense of having more places on the map. In addition,
by minimizing the predicatesis regionandin region, we re-
quire the models of our theory to have only the regions that
are explicitly created by the agent, and not arbitrary ones.

Example 4

Boundary relations determine distinctions among environ-
ment states that could not be derived from the connectivity
of places alone. Consider an agent visiting the different cor-
ners of a square room in the order suggested by Figure 8a.
In addition, suppose the agent definesviewsby characterizing
the direction of walls and open space. Accordingly, the agent
experiencesfour different views,v1-v4, in this environment.

The set of experiencesE in the environment are:

V iew(ds1; v1) V iew(ds2; v2) V iew(ds3; v1)
V iew(ds4; v2) V iew(ds5; v1) hds1; turnRight; ds2i
hds2; travel; ds3i hds4; travel; ds5i hds3; turnRight; ds4i

Suppose that the agent does not use boundary regions when
building the topological map. Then the minimal topological
model associated withE has two paths14 and two places. In
this model,teq(ds1; ds5) is the case. The environment looks
perfectly symmetric to the agent (Figure 8b).!!

Suppose now that the agent relies on boundary regions.
Let P, Q, R, be the topological places associated with

12The predicatein region(p,r)states thatplacep is in regionr.
13In the spirit of axioms 32-33.
14Notice that fromhds3; turnRight; ds4i and Axiom 24 we can

deduce thatPa 6= Pb in Figure 8b.

P ds1
ds3

ds4

ds5

ds2

Pa

R

Pb

Q

S

Q
Pa

P=R

Pb

Q

R

Pa

Pb

P

(a) (b) (c)

Figure 8: (a) The figure shows the sequence of actions followed
by an agent while navigating a square room. Starting at distinctive
state ds1, distinctive states are visited in the order suggested by their
number. Dashed lines indicate Turn actions. Solid lines indicate
Travel actions. (b) and (c) depict the topological map associated
with the environment in (a) without and using boundary regions,
respectively.

ds1, ds3 and ds5 respectively. From Axiom 21, letPa,
Pb, dira and dirb be such thatPO(Pa; dira; P;Q),
along(ds2; Pa; dira), along(ds3; Pa; dira),
PO(Pb; dirb; Q;R), along(ds4; P b; dirb), and
along(ds5; P b; dirb) hold. From Axiom 32 we can
conclude thenTotheRightOf(Q;Pa; dira; P b; dirb). In
the proposed model, the extent ofAb is minimized by
declaring Ab = false and consequently from Axiom
33 we conclude in region(R; right(Pa; dira)) where
right(Pa; dira) denotes the right region ofPa when facing
dira. Finally, since a path and its regions are disjoint, and
OnPath(Pa; P ) is the case, we concludeP 6= R and so
6= teq(ds1; ds5). The resulting topological map is depicted
in Figure 8c.fend of exampleg

If the agent’s sensory capabilities are so impoverished that
many distinctive states are perceived to be similar, then metri-
cal information could be used to distinguish different environ-
ment states. Figure 9 summarizes different representations an
agent could build depending on the spatial properties it relies
on.

6 Conclusions
Starting with an informal description of the SSH we have
formally specified its intended models. These models corre-
spond to the models of the circumscriptive theoryTT(E). The
formal account of the theory allows us to illustrate the de-
ductive power of the different SSH ontologies. For instance,
example 4 shows how the use of boundary relations allows
the agent to determine distinctions among environment states
that could not be derived from the connectivity of places and
paths alone.

The theoryTT(E)is rather complex so it may be difficult to
determine the effect of the different defaults in combination.
However, it is possible to translate this theory into a logic pro-
gram whose answer sets determine the models ofTT(E). We
have illustrated the case for the SSH causal theoryCT(E), but
the same techniques apply forTT(E). The major subtleties in
the translation are the minimality and maximality conditions
associated with the theory. We have used Smodels to calcu-
late the models ofTT(E) and confirm that the theory yields
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Figure 9:Consider the same environment and agent as in figure 8.
Assumes the agent keeps turning right and following the left wall
until it is back to distinctive stateds1, at placeP . Only two kind
of views j! and!j are observed by the agent. Next we summa-
rizes different maps the agent could build depending on the spatial
properties it relies on. (a) If the agent only relies on causal infor-
mation, the map consists of two states. (b) When topological infor-
mation is used, but without boundary relations, the map consists of
four states and two places. (c) When boundary relations are used,
the map consists of six states and three places. There is no fixed
correspondence between the three places in the map and the four in-
distinguishable places in the real world. (d) If metrical information
is accurate enough to refute the hypothesisP = S, the map will
consist of eight states and four places.

the intended models. However, when the number of distinc-
tive states is big, Smodels may not be able to ground the the-
ory as the number of rules associated with the program grows
exponentially. We are still working on solving this problem.
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