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Preface

These lecture notes are intended as a reference for a 3rd year, 20 hours ”Control Engi-
neering” course at the EEE Department of Imperial College London. In addition, they
can be partly used as support material for a 50 hours ”Automatic Control” course at the
University of Rome Tor Vergata. (The reason why similar topics are taught in such a
diverse time range is, and will probably remain, a mistery to me, even after various years
of experience with students and courses from both institutions!)

In both cases, this is the second control-like course taken by the students. The main
goal of these notes is to provide a self-contained and rigorous background on systems
theory and an introduction to state space analysis and design methods for linear systems.
In preparing these notes I was deeply influenced by the approach pursued in the book
”Teoria dei sistemi”, by A. Ruberti and A. Isidori (Boringheri, 1985) and by my research
experience on nonlinear control theory. Different approaches can be pursued, and the
so-called behavioural approach, developed by J. Willems, is (in my opinion) the best
alternative.

These notes are organized as follows. I start giving an abstract mathematical description
of the notion of system, illustrated by several pratical examples (Chapter 1). I then move
to the study of properties of autonomous systems (Chapter 2), and then to the study of
the input-to-state, the state-to-output, and the input-to-output interactions (Chapter 3).
Finally, I discuss a few basic design tools (Chapter 4). I try to deal at the same time
with continuous- and discrete-time systems, pointing out similarities and differences. The
reader should be familiar with standard calculus and linear algebra.

I hope the reader will find these notes a valuable starting point to proceed in more advanced
areas of systems and control theory. In particular, these notes should provide the necessary
tools for the 4th year control courses and the Control M.Sc. course at Imperial College
London. I am aware that there are several excellent books where the same topics are dealt
with in detail. The idea of these notes is to provide a condensed, yet precise, introduction
to systems and control theory amenable for a short second (even first) undergraduates
systems and control course, and not to be a substitute for more in-depth study.

vii
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2 CHAPTER 1. INTRODUCTION

1.1 Introduction

Aim of this chapter is to introduce the notion of system. In the (abstract) definition of
system, we follow a simple and natural approach, the so-called input-output approach,
which is motivated by the study of simple systems. Among the various mathematical
representations we give particular emphasys to the one based on the introduction of an
auxiliary variable, the state variable, which is denoted as state space representation. This
representation plays a fundamental role in systems and control theory, hence we discuss
in detail its properties and the conditions under which it can be introduced.

1.2 Examples

In this section we consider a few motivating examples, which are instrumental to introduce
the notion of (abstract) system.

1.2.1 Growth of a family of rabbits

The number of pairs of rabbits n months after a single pair begins breeding (and newly
born bunnies are assumed to begin breeding when they are two months old) is given by
the so-called Fibonacci numbers, which are recursively defined as

F0 = 0 F1 = 1 Fn = Fn−1 + Fn−2. (1.1)

Interestingly

• the Fibonacci number Fn+1 gives the number of ways for 2× 1 dominoes to cover a
2 × n checkerboard;

• the Fibonacci number Fn+2 gives the number of ways of picking a set (including the
empty set) from the numbers 1, 2, ... n, without picking two consecutive numbers;

• the probability of not getting two heads in a row in n tosses of a coin is Fn+2

2n .

Finally, given a resistor network of 1Ω resistors, each incrementally connected in series
or parallel to the preceeding resistors, the net resistance is a rational number having
maximum possible denominator equal to Fn+1.

This example shows that the same mathematical object models several physical situations
or properties. This justifies therefore the study of the feature of the abstract object (1.1)
without reference to the real situation that it represents.

1.2.2 Model of an infectious disease

There are several mathematical models which describe the interactions between HIV and
immunocytes in human body. The most commonly used model for long-term excitement
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of the immune response, and hence for medication purposes, is described by the equations

ẋ = λ− dx− ηβxy ẏ = ηβxy − ay − yI, (1.2)

where x denotes the population of uninfected CD4 T-helper cell (in a unit volume of
blood), y denotes the population of infected CD4 T-helper cell (in a unit volume of blood),
I denotes the action of the immune system, and λ, d, β, η and a are positive parameters.

The population of healthy (uninfected) CD4 T-helper cells (produced by thymus) increases
at a rate λ, and decreases at a rate dx (since a cell dies naturally). The healthy CD4 T-
helper cells are a target of HIV, hence its population decreases proportionally to x and
y, because infected CD4 T-helper cells produce the virus, i.e. when a cell is infected it
generates new virus. The infected cells die out at a rate ay, increase at a rate proportional
to x and y and are affected by the immune system.

In general, and without any medication, the model (1.2) has three main operating condi-
tions. One which corresponds to a healthy patient, one which represents a patient with
HIV but not with AIDS, and one which represents a patient in which AIDS dominates. It
can be (rigorously) shown that the first two operating conditions are unstable, whereas the
third one is stable (formal definitions of stability and instability will be given in Chapter 2).
This justifies the difficulty in treating HIV infected patients.

1.2.3 A scholastic population

Consider a three-year course and the problem of modelling the number of students in each
year. Let

• u(k) be the number of incoming first year students at time k;

• y(k) be the number of graduated students at time k;

• xi(k) be the number of students in the i-th year at time k;

• αi(k) ∈ [0, 1] be the rate of promotion in the i-th year at time k.

The behaviour of the students’ population can be described by the equations

x1(k + 1) = (1 − α1(k))x1(k) + u(k)

x2(k + 1) = (1 − α2(k))x2(k) + α1(k)x1(k)

x3(k + 1) = (1 − α3(k))x3(k) + α2(k)x2(k)

y(k) = α3(k)x3(k).

(1.3)

In the ideal situation in which αi(k) = 1 for all k we have that

y(k) = u(k − 3),

which clearly shows that all incoming students are graduated after three years. Finally,
in the extreme situation in which, αi(k) = 0 for all k and for some i, we have

lim
k→∞

y(k) = 0.
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1.2.4 A tractor-trailer system

Consider a vehicle (see Figure 1.1) consisting of a wheeled tractor with two rear-drive
wheels and a front-steering wheel, towing a trailer, possibly with off-axle hitching. The
off-axle length c has to be regarded as a variable with sign, being negative when the joint
is in front of the wheel axle, and positive otherwise. L1 and L2 are constants depending
on the geometry of the vehicle. The longitudinal speed v1 and the steering angle δ of the
tractor can be (independently) manipulated so that the guide-point P1 follows a desired
path with an assigned velocity.

Suppose that the vehicle has to follow, at a given speed, a circular path of radius R1.

P1

P2

H

Jo  s

Jp

J

lo  s P0

d

L1

L2

c

v1

j

Figure 1.1: Vehicle’s geometry and path-tracking offsets los and ϑos.

To describe the motion of the vehicle, define los and ϑos as the tractor lateral offset and
its orientation offset, respectively. They are measured with reference to the projection of
the point P1 of the tractor onto the path. Moreover, let ϕos = ϕ − ϕp be the difference
between the current angle ϕ between tractor and trailer and its steady state value ϕp

along the prescribed path. Path-tracking can be viewed as the task of driving these offsets
asymptotically to zero.

The offsets are such that

l̇os = −σ |v1| sinϑos

ϑ̇os = v1
u

L1
− σ |v1|

cos ϑos

R1 + los

ϕ̇os = − v1
L2

sin (ϕos + ϕp) −
v1

L1L2
(c cos (ϕos + ϕp) + L2)u,
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where u = tan δ is the manipulated variable, and the parameter σ is used to distinguish
between counterclockwise (σ = 1) or clockwise (σ = −1) directions.

In many applications, the absolute value of the steering angle δ is bounded by a saturation
value δM < π/2.

1.2.5 A simplified atmospheric model

Consider a rectangular slice of air heated from below and cooled from above by edges kept
at constant temperatures. This is our atmosphere in its simplest description. The bottom
is heated by the earth and the top is cooled by the void of outer space. Within this slice,
warm air rises and cool air sinks. In the model, as in the atmosphere, convection cells
develop, transferring heat from bottom to top.

The state of the atmosphere in this model can be completely described by three variables,
namely the convective flow x, the horizontal temperature distribution y, and the vertical
temperature distribution z; by three parameters, namely the ratio of viscosity to thermal
conductivity σ, the temperature difference between the top and bottom of the slice ρ, and
the width to height ratio of the slice β, and by three differential equations describing the
appropriate laws of fluid dynamics, namely

ẋ = σ(y − x) ẏ = ρx− y − xz ż = xy − βz. (1.4)

These equations were introduced by E.N. Lorenz in 1963, to model the strange behaviour
of the atmosphere and to justify why weather forecast can be erroneous, and have been
recently shown to play an important role on models of lasers and electrical generators. Note
that the Lorenz equations are still at the basis of modern weather forecast algorithms.

1.2.6 A perspective vision system

A classical problem in machine vision is to determine the position of an object moving in
the three-dimensional space by observing the motion of its projected feature on the two-
dimensional image space of a charge-coupled device camera. In this case, the problem of
determining the object space coordinates reduces to the problem of estimating the depth
(or range) of the object.

The motion of an object undergoing rotation, translation and linear deformation can be
described by the equation264 ẋ1

ẋ2

ẋ3

375 =

264 a11 a12 a13

a21 a22 a23

a31 a32 a33

375264 x1

x2

x3

375+

264 b1
b2
b3

375 , (1.5)

where (x1, x2, x3) ∈ IR3 are the coordinates of the object in an inertial reference frame,
with x3 being perpendicular to the camera image space, as shown in Figure 1.2. The
parameters aij, bi, known as motion parameters, are time-varying and known.
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x1

x2

x3

y1

y2

Figure 1.2: Diagram of the perspective vision system.

Using the perspective (or “pinhole”) model for the camera, the measurable coordinates on
the image space are given by

y =
�
y1, y2

�′
= ǫ

� x1

x3
,
x2

x3

�′
, (1.6)

where ǫ is the focal length of the camera, i.e. the distance between the camera and the
origin of the image-space axes.

The perspective estimation problem consists in reconstructing the coordinates x1, x2, x3

from measurements of the image-space coordinates y1, y2.

1.2.7 The ABS system

Electronic Anti-lock Braking Systems (ABS) have recently become a standard for all
modern cars. ABS can greatly improve the safety of a vehicle in extreme circumstances,
as it maximizes the longitudinal tire-road friction while keeping large lateral forces, which
guarantee vehicle steerability.

For the preliminary modelling of braking systems, the so-called quarter-car model is used
(see Figure 1.3). The model is described by

Jω̇ = rFx − Tb mv̇ = −Fx (1.7)

where

• ω is the angular speed of the wheel;

• v is the longitudinal speed of the vehicle body;
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Figure 1.3: Quarter car vehicle model.

• Tb is the braking torque;

• Fx is the longitudinal tire-road contact force;

• J , m and r are the moment of inertia of the wheel, the quarter-car mass, and the
wheel radius, respectively.

The dynamic behavior is hidden in the expression of Fx, which depends on the variables
v and ω, and can be approximated as follows

Fx = Fzµ(λ, βt, θr),

where

• Fz is the vertical force at the tire-road contact point;

• λ is the longitudinal slip, defined as1

λ =
v − ωr

max{ωr, v} ;

• βt is the wheel side-slip angle;

• θr is a set of parameters which characterize the shape of the static function µ(λ, βt; θr)
and which depend upon the road conditions.

1By definition, λ ∈ [−1, 1]; during braking, though, as ωr ≤ v, the wheel slip is defined as λ = v−ωr
v

and λ ∈ [0, 1].
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1.2.8 A simplified guitar string

Consider a guitar string and assume that it can be modelled by n identical segments
(linear lumped springs of unity mass) which interact by means of elastic forces (depending
on a tension parameter k). Let xi, ẋi and ẍi be the position, velocity, and acceleration,
respectively, of the i-th segment. The string can be described by

ẍ1 = −k(x1 − x2)
ẍ2 = −k(x2 − x1) − k(x2 − x3)

...
ẍi = −k(xi − xi−1) − k(xi − xi+1)

...
ẍn = −k(xn − xn−1).

(1.8)

This can be rewritten in compact form as

ẍ =

2666666664 −k k 0 0 . . . 0
k −2k k 0 . . . 0
0 k −2k k . . . 0
...

...
...

. . .
...

...
0 . . . 0 k −2k k
0 . . . 0 0 k −k

3777777775x = Ax,

where x = [x1, x2, . . . , xn]′. The main frequency of oscillation of the string, hence the tune
of the string, is a function of the square root of the largest nonzero eigenvalue of A, and
this depends on k, hence on the tension on the string.

Remark. A more precise model of a guitar string of length L is given by the so-called
one-dimensional wave equation

∂2x(y, t)

∂y2
=
ρ

T

∂2x(y, t)

∂t2
, (1.9)

where y ∈ [0, L] denotes the position of a point on the string, x(y, t) the deformation of
the point y at time t with respect to the rest position, ρ the mass per unit of length, and T
the tension of the string. From this equation it is possible to obtain the given approximate
model by considering the finite difference approximation of the derivative, namely

∂2x(y, t)

∂y2
≈ x(y + h, t) − 2x(y, t) + x(y − h, t)

h2

defining the variables

x1 = x(0, t) x2 = x(h, t) · · · xn = x(L, t),

and using the constraints

x(L+ h) − x(L) = 0 x(0) − x(−h) = 0.
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Note finally, that the wave equation admits a close solution given by

x(y, t) = A sinωnt sin
nπy

L
,

where

ω2
n =

n2π2

L2

T

ρ
.

⋄

1.2.9 Approximate discrete-time models

Consider the differential equation
ẋ = f(x), (1.10)

with x ∈ IRn, together with the initial condition x(0) = x0, for some given x0, and the
problem of obtaining a solution x(t), for t ≥ 0, of such equation. With the exception
of very specific examples, it is in general not possible to compute a closed form solution
x(t). This implies that x(t) has to be computed numerically, i.e. the idea is to select a
sequence of time instants 0 < t1 < t2 · · · and to construct a numerical algorithm yielding
values x1, x2, · · · which approximate x(t1), x(t2), · · · . To this end, the simplest possible
approach is to consider an equally spaced sequence of time instants, namely

{0, τ, 2τ, · · · , kτ, · · · },

where τ > 0 is the so-called sampling-time, and approximate the time derivative with the
first difference, namely

ẋ(kτ) ≈ x(kτ + τ) − x(kτ)

τ
.

The differential equation can thus be approximated by

x(kτ + τ) − x(kτ)

τ
= f(x(kτ))

yielding the integration algorithm

xk+1 = xk + τf(xk), (1.11)

with k ≥ 0, and with x0 given. The equation (1.11) is known as the Euler discrete-time
approximation of the differential equation (1.10). The sequence {xk} obtained from the
Euler approximate model is such that

‖xk − x(kτ)‖ ≤ τψ(k)

where ψ(k) is a function of k which is not, in general, bounded. This implies that the use
of the Euler approximation yields an error that can be reduced (under certain technical
conditions) reducing the sampling interval τ but may become unbounded as k → ∞,
i.e. the Euler approximate model cannot be used for long term prediction of the solution
of differential equations.
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1.2.10 Google page rank

The speed, and success, of Google can be attributed in large part to the efficiency of the
search algorithm which, linked with a good hardware architecture, creates an excellent
search engine.

The main part of the search engine is PageRankTM , a system for ranking web pages
developed by Google’s founders Larry Page and Sergey Brin at Stanford University.

The main idea of the algorithm is the following. The web can be represented as an oriented
(and sparse) graph in which the nodes are the web pages and the oriented paths between
nodes are the hyperlinks. The basic idea of PageRank is to walk randomly on the graph
assigning to each node a vote proportional to the frequency of return to the node. If xi(k)
denotes the vote of the node i at time k, one has

xi(k + 1) =
X

j:j→i

xj(k)

nj
,

where nj is the number of nodes connected to the node i, for i = 1, . . . , N , where N ≈
3.000.000.000. The graph, representing the web, is not strongly connected, therefore
to improve the algorithm for computing the vote, one considers a random jump, with
probability p (typically 0.15) to another node (i.e. another page). As a result

xi(k + 1) = (1 − p)
X

j:j→i

xj(k)

nj
+ p

NX
j=1

xj(k)

N
. (1.12)

Collecting the variables xi in a vector x we can rewrite the equations for the votes in the
form

x(k + 1) = Ax(k),

for some matrix A ∈ IRN×N . It is not difficult to prove that the matrix A has one
eigenvalue equal to one and all other eigenvalues λi are such that |λi| < 1. This implies that
(we will discuss this issue in detail, after introducing the notion of stability in Chapter 2)

lim
k→∞

x(k) = x̄,

where all elements x̄i of x̄ are non-negative and bounded. The vector x̄ (after a certain
normalization) is Google Page Rank. The computation of x̄ is numerically very difficult,
and it is performed once a month.

1.3 The notion of system

The discussion in Section 1.2 highlights the fact that it is possible to describe the behaviour
of several objects, natural or artificial, by means of mathematical expressions (differential
or difference equations) of diverse forms, and with diverse properties.
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The notion of system is thus introduced to provide tools to study such a wide variety
of objects on the basis of their mathematical, hence abstract, description. Therefore,
by definition, an abstract system is an entity which does not depend upon the physical
properties of the associated object. This implies that it is possible to associate the same
system to several different objects, and at the same time several systems can be associated
to the same object (depending upon the properties that have to be investigated).

We stress that the definition of an abstract notion of system has the advantage that it al-
lows to interprete and study, within a unified framework, diverse phenomena and processes,
and provides a unique language for several different areas of applications. However, be-
cause of its generality, it raises several difficult issues, which can be solved or addressed
from several perspectives.

In this notes we give a definition of system which is based on the consideration of the
input and output signals. With this in mind, note that the simplest way of associating a
system to an object is to consider all possible behaviours (as a function of time) of the
input signals and of the corresponding output signals. This approach does not depend
upon the physical properties of the signals and upon the mechanisms which determine
such signals.

Remark. Throughout these notes we assume that the objects under study are deterministic.
Similar considerations can be performed in a probabilistic setting. These however require
somewhat more sophisticated mathematical tools. ⋄

The process of association of a system to an object can be regarded as the collection of
data from experiments performed on the object thought of as a black box. The experiments
can be carried out as follows: fix an initial time instant t0, consider a possible input signal
for all t ≥ t0 and the corresponding output signals. In this way we collect one or more pairs
of functions, denoted as input-output pairs, which are defined for all t ≥ t0. Collecting
together all such pairs we have a set of input-output pairs, which is used to obtain the
definition of system.

In particular, if we consider the set U of all input signals and the set Y of all output
signals, we have that all input-output pairs determine a relation S which is such that

S ⊂ U × Y.

This implies that the natural way of giving a formal definition of system is to define an
abstract system as a set of relations, where each relation describes all input-output pairs
obtained from experiments performed starting from a given time instant.

In particular, consider an ordered subset T of the set IR, which is the set of time instants
of interest for the system, and define the subset of future time instants2

F (t0) = {t ∈ T | t ≥ t0};
2F stands for “future”.
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the set UF (t0) of all input functions defined for t ≥ t0, and the set Y F (t0) of all output
functions defined for t ≥ t0. Then, a relation

St0 ⊂ UF (t0) × Y F (t0)

can be used to describe all experiments, hence all input-ouput pairs, starting at t0.

From the above discussion we conclude that an abstract system can be defined as the set
of all relations St0 for all t0 ∈ T . Note however that the sets St0 and St1 , for t1 > t0
are not independent, because we can consider some of the pairs in St1 as obtained from
experiments started at t0 and disregarding all data for t < t1. A formal definition of
system must therefore take this issue into consideration.

Example 1.1 Consider a synchronous D-type flip-flop with input u and output y. The
set T is the set of all time instants in which the clock goes high, the set of all input values
is U = [0, 1], the set of all output values is Y = [0, 1], and the set of all input and output
functions is such that UF (t0) = Y F (t0) and this is the set of all sequences of ’1’s and ’0’s.
To understand the structure of the relation St0 we have to consider the behaviour of the
flip-flop. For example, for some given t0, the pair of input and output sequences

{′0011′,′ 0010′}

does not belong to St0 , whereas the pairs

{′0011′,′ 0001′} {′0011′,′ 1001′}

do. This is consistent with the fact that the output lags the input of one clock cycle, that
the initial value of y cannot be determined from the current input and that the value of
u at some time instant does not affect y at the same time instant. This implies that all
pairs of input and output sequence of the form

{′001x̃′,′ x̂001′}

with x̃ and x̂ either ’1’ or ’0’ belong to St0 . Note finally that, for a given input sequence
we can generate several (two in this example) output sequences.

Definition 1.1 Consider an ordered subset T of IR and two (non-empty) sets U and Y .
An abstract system is a set of relations

S = {St0 ⊂ UF (t0) × Y F (t0) | t0 ∈ T}

such that3 for all t0 ∈ T and for all t1 ∈ F (t0)

(u0, y0) ∈ St0 ⇒ (u0|F (t1), y0|F (t1)) ∈ St1 . (1.13)

For this system T is the set of time instants, U the set of values of the input signal, and
Y the set of values of the output signal.

3u|F (t1) denotes the restriction of u to t ∈ F (t1).
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Condition (1.13) implies that the relation St1 contains all input-output pairs which are
obtained truncating any other input-output pair originated at a time instant t0 ≤ t1. Note
however, that the relation St1 may contain input-output pairs which cannot be obtained
by truncation of other pairs. There is, however, a class of systems, of special interest in
applications, for which every relation contains only pairs obtained by truncation. This
class is characterized as follows.

Definition 1.2 A system is uniform if there exists a relation

S ⊂ UT × Y T (1.14)

such that for all t0 ∈ T

(u, y) ∈ S ⇒ (u|F (t0), y|F (t0)) ∈ St0

and
(u0, y0) ∈ St0 ⇒ ∃(u, y) ∈ S : (u|F (t0), y|F (t0)) = (u0, y0).

A uniform system can therefore be assigned by means of the relation S which, roughly
speaking, allows to generate all relations St0 for t0 ∈ T .

Example 1.2 Consider an ideal and instantaneous quantizer, i.e. a device which receives
at its input a signal u and delivers at its output a signal y, which is obtained via quanti-
zation, with a certain quantization interval q. For such a system T = IR, U = IR and

Y = {· · · ,−2q,−q, 0, q, 2q, · · · }.

The relation St0 is given in Figure 1.4, and it is not hard to argue that the system is
uniform.

1.3.1 Parametric representations

The use of relations to represent a system provides a very powerful point of view which
is applicable to a very general set of objects. It is however interesting to study if it is
possible to determine all input-output pairs by means of functions. To this end, we recall
the following basic result.

Lemma 1.1 Consider two non-empty sets A and B and a relation

R ⊂ A×B.

Then it is always possible to define a set C and a function4

f : C ×DR→ RR
4DR denotes the domain of R, and RR denotes the range of R.
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Figure 1.4: The relation St0 for an ideal quantizer.

such that
(a, b) ∈ R⇒ ∃c ∈ C : b = f(c, a)

and
c ∈ C, a ∈ DR⇒ (a, f(c, a)) ∈ R.

This lemma shows that the function f can be used to specify all, and only, the pairs in
the relation R. The set C is the set of parameters and the function f is a parametric
representation of R. Finally, the association of f and C to R is said parameterization.

The result expressed in Lemma 1.1 can be used to obtain parametric representations for
a system S. To this end, for any relation St0 it is possible to perform a parameterization,
i.e. it is possible to define a set of parameters Xt0 and a function

ft0 : Xt0 ×DSt0 → RSt0 .

It is then possible to define a parametric representation of the system S by means of a set
of functions

F = {ft0 : Xt0 ×DSt0 → RSt0 | t0 ∈ T}.
Note that, for uniform systems, described by the relation (1.14), it is enough to consider
a single function

f : X ×DS → RS.

Remark. For given x0 ∈ Xt0 and given u0 ∈ DSt0 , the function ft0 can be used to compute
the output of the system as y = ft0(x0, u0). ⋄
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1.3.2 Causal systems

The class of systems considered so far are so-called oriented, i.e. there is a natural flow
of information from the input to the output. This implies that we regard the input as a
cause and the output as a consequence. However, these quantities are functions of time.
It is therefore natural to study the relationship between the observed effect at time t̄ and
the time evolution of the causes. Because abstract systems are often used to describe the
behaviour of physical objects or processes, it is natural to consider that the above relation
be causal, i.e. the output at time t̄ should depend only upon the input at times t < t̄, or
possibly upon the input at times t ≤ t̄.

It is not easy to formalize this idea to input-output relations. The simplest way is to resort
to the parametric representation of the system and to consider the following definition.

Definition 1.3 A system S is causal if it possesses at least one parametric representation
F which is such that for all t0 ∈ T , for all x0 ∈ Xt0 and for all t̄ ∈ F (t0)

u|[t0,t̄] = u′|[t0,t̄] ⇒ ft0(x0, u)(t̄) = ft0(x0, u
′)(t̄).

A system S is strictly causal if it possesses at least one parametric representation F which
is such that for all t0 ∈ T , for all x0 ∈ Xt0 and for all t̄ ∈ F (t0)

u|[t0,t̄) = u′|[t0,t̄) ⇒ ft0(x0, u)(t̄) = ft0(x0, u
′)(t̄).

We stress that the difference between the notions of causality and strict causality is only
on the constraint on u. In the former case u and u′ have to be identical for all t ∈ [t0, t̄],
in the latter for all t ∈ [t0, t̄).

1.3.3 The notion of state

The crucial point in the definition of abstract system by means of a relation is the fact
that, in the relation St0 , to any given input signal we can associate several output signals.
To single out one output signal it is thus necessary to specify, besides the input function,
further information. This infomation is associated to the notion of state.

To understand this notion, recall that we have associated, via the process of parameteri-
zation, to each relation St0 a function which associates to an input signal and a parameter
x0 ∈ Xt0 a single output signal. The parameter x0 may be therefore regarded as the
additional piece of information needed to specify the output signal in a unique way. How-
ever, to give a formal and precise, hence useful, definition, we have to make sure that the
parameterizations performed at each time instant be related in some way, i.e. they cannot
be independent but must satisfy a so-called consistency condition.

This consistency property will be discussed in the framework of causal systems.

To begin with, note that the set Xt0 , associated with the parameterization St0 , may be
different from the set Xt1 , associated with the parameterization St1 , and so on for all
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t ∈ T . It is therefore convenient to define a unique set X such that all sets Xt̄, with t̄ ∈ T ,
are subsets of X. Consider now an element x0 ∈ X, thought of as an element of Xt0 , which
is the set of parameters associated to the parameterization of St0 , and a second element
x1 ∈ X, thought of as an element of Xt1 , which is the set of parameters associated to the
parameterization of St1 , with t1 > t0. If the system is causal there should be a relation
between x1 and x0.

In particular, if we assume that x0 depends only upon the input values for t < t0 and x1

depends only upon the input values for t < t1, then, recalling that t1 > t0 , it is natural
to assume that x1 depends upon the input values for t ∈ [t0, t1) and upon x0, and this can
be written as

x1 = φ(t1, t0, x0, u[t0,t1))

for some function φ5.

The discussion above can be extended to any pair of elements in X, hence it is possible to
define the function φ for all pairs of elements of X, for all pairs {t0, t1} such that t0 < t1,
and once t0 is fixed to all u ∈ DSt0 .

Finally, for any t1 ≥ t0 the output is computed as

y(t1) = ft0(x0, u[t0,t1])(t1).

Setting t0 = t1 in the above relation allows to obtain the relation

y(t1) = η(t1, x1, u(t1)),

which shows that the output at time t1 depends (only) upon t1, the parameter x1 (which
represents the memory of the system) and the value of the input signal at time t1.

We conclude this discussion noting that, to a causal system, we have associated a space of
parameters and two functions which provide an alternative representation of input-output
pairs. In fact, for all t1 ≥ t0, we have

y(t1) = η(t1, φ(t1, t0, x0, u[t0,t1), u(t1))

and this yields, varying x0 in X and u in DSt0 , all input-output pairs in St0 .

This representation is characterized by the appearance, a-side the input and output signals,
of an auxiliary quantity which takes values in the space X. The role of this quantity is
to summarize the effect of past input values, hence to render unique the determination of
the present and future output. This quantity is denominated state, or state variable, and
the space X is denominated state space.

1.3.4 Definition of state

In the previous section we have informally introduced the notion of state, and we have
highlighted its main properties. We now provide a formal definition of state.

5 With an alternative convention we could have obtained x1 = φ(t1, t0, x0, u[t0,t1]).
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Definition 1.4 Given a system S and a space of input functions U . A set X is a state
space for the system S if there exist two functions

φ : T × T ×X × U → X

η : T ×X × U → Y

such that the following conditions hold.

• For all t0 ∈ T , u ∈ U and x0 ∈ X

{(u0, y0) ∈ UF (t0) × Y F (t0) : u0(t) = u(t), y0(t) = η(t, φ(t, t0, x0, u[t0,t), u(t))} = St0 .

• (Causality) For all t0 ∈ T , for all t ≥ t0 and for all x0 ∈ X

u|[t0,t) = u′|[t0,t) ⇒ φ(t, t0, x0, u|[t0,t)) = φ(t, t0, x0, u
′|[t0,t)).

• (Consistency) For all t ∈ T , and for all u ∈ U

φ(t, t, x0, u) = x0.

• (Separation)6 For all t0 ∈ T , for all t ≥ t0, for all x0 ∈ X and for all u ∈ U

t > t1 > t0 ⇒ φ(t, t0, x0, u[t0,t)) = φ(t, t1, φ(t1, t0, x0, u[t0,t1)), u[t1,t)).

The function φ is called state transition function, and the function η output transfor-
mation. The triple {X,φ, η} is called state space representation, or input-state-output
representation, of S.

Remark. In what follows, and to simplify the equations, we use the notation φ(t, t0, x0, u)
in place of φ(t, t0, x0, u[t0,t)). ⋄

Remark. For the special class of systems in which U , Y and X are composed of a finite
number of elements, for examples all digital electronics systems, the above definition is
equivalent to the definition of a Mealy-type finite state machine. To obtain the definition
of a Moore-type finite state machine it is necessary to alter the definition of state, requiring
that the state represent the effect of all past and current input values (see Footnote 5). ⋄

At this stage, one may wonder if the given definition of state space representation is
sufficiently general to develop a systematic theory. To this end, we need to address the
issues of existence, and then of unicity of state space representations. While a complete
treatment of such topics is outside the scope of these notes, we give a few important results
and facts.

6This property is sometimes called semigroup property.
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Theorem 1.1 Given a system S and a space of input functions7 U . The system has a
state space representation if and only if it is causal.

The above statement implies that, under mild technical assumptions, a causal system
admits at least one state space representation. However, such representation need not be
unique. In fact, given a system S and a state space representation {X,φ, η} it is possible
to obtain other state space representations, for example by means of one of the following
procedures.

• (State space transformation) Consider a system S, with state space representation
{X,φ, η}. Let ψ : X → Z be an invertible map, i.e. there exists ψ−1 : Z → X
such that z = ψ(ψ−1(z)) and x = ψ−1(ψ(x)), for all z ∈ Z and x ∈ X. Define the
function

φz : T × T × Z × U → Z̃

such that

φz(t, t0, z, u[t0,t)) = ψ(φ(t, t0, ψ
−1(z), u[t0,t))

and the function

ηz : T × Z × U → Ỹ

such that

ηz(t, z, u) = η(t, ψ−1(z), u).

Then {Z, φz , ηz} is a state space representation of S.

• (State augmentation) Consider a system S, with state space representation {X,φ, η}.
Let Xa = X × X̃, where X̃ is a non-empty set,

φa =

�
φ

φ̃

�
,

for some function

φ̃ : T × T ×Xa × U → X̃,

and ηa : T × T ×Xa × U → Y is such that ηa − η = 0. Then {Xa, φa, ηa} is a state
space representation of S.

We conclude that if a system S admits a state space representation, it admits an infinite
number of representations. Thus, it makes sense to distinguish between the various rep-
resentations of a system, and to determine (if possible) a representation which is more
convenient, or adequate, for a certain goal. To this end, we conclude this section intro-
ducing a few new concepts, which will be useful in the study a state space representations
of particular classes of systems.

7To be precise, we should assume that the space U be complete, i.e. that it is closed with respect to
concatenation and that, for all t ∈ T , {u(t) ∈ U : u ∈ U} = U .
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Definition 1.5 (Equivalent representations) Two state space representations {X,φ, η}
and {X ′, φ′, η′} of a system S are equivalent if

• for all t0 ∈ T and for all x0 ∈ X there exists x′0 ∈ X ′ such that for all u ∈ U and
t ≥ t0

η(t, φ(t, t0, x0, u), u(t)) = η′(t, φ′(t, t0, x
′
0, u), u(t));

• for all t0 ∈ T and for all x′0 ∈ X ′ there exists x0 ∈ X such that for all u ∈ U and
t ≥ t0

η′(t, φ′(t, t0, x
′
0, u), u(t)) = η(t, φ(t, t0, x0, u), u(t)).

Definition 1.6 (Equivalent states) Consider a system S and a state space representa-
tion {X,φ, η}. Two elements xa and xb of X are equivalent at t0 if for all u ∈ U and for
all t ≥ t0

η(t, φ(t, t0, xa, u), u(t)) = η(t, φ(t, t0, xb, u), u(t)).

Remark. Equivalent states are sometimes referred to as non-distinguishable states, because
it is not possible to distingh between them by measurements of the output. ⋄

Definition 1.7 (Reduced state space) Consider a system S and a state space repre-
sentation {X,φ, η}. The state space X is said to be reduced at t0 if there are no pairs of
states equivalent at t0. If X is reduced at t0 the representation {X,φ, η} is said reduced at
t0.

Remark. A state space can be reduced at some time t0 but not reduced at some other time
t1. It is possible to give a notion of reduction independent of time requiring that X be
reduced at least at one time instant. ⋄

1.3.5 Classification

The notion of system introduced is very general. In applications, it is often possible to
consider special classes of systems, i.e. to restrict our interest to systems with special
properties. To clarify this issue we introduce a classification of systems on the basis of
some of the key ingredients discussed.

Definition 1.8 A system S is a continuous-time system if T = IR. A system S is a
discrete-time system if T = Z.

Remark. There is a class of system, increasingly studied and used in applications, in
which for some state variables T = IR and for some other state variables T = Z, i.e.
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some variables vary continuously with time, and other variables vary only at discrete time
instants. This is the case in systems where a physical component, for example a robot,
is connected with a supervisor, for example a machine that decides which operation the
robot has to perform. These systems are denominated hybrid systems. ⋄

Definition 1.9 A system S is said time-invariant if for all t0 ∈ T and for all δ such that
t0 + δ ∈ T

(u0(t), y0(t)) ∈ St0 ⇒ (u0(t− δ), y0(t− δ)) ∈ St0+δ.

Definition 1.10 A state space representation is said time-invariant if for all t0 ∈ T , all
x0 ∈ X, all u ∈ U and all t̄ ∈ T

φ(t, t0, x0, u) = φ(t− t0, 0, x0, u) η(t, x, u(t)) = η(t̄, x, u(t)).

Remark. For a time-invariant representation we can always select t0 = 0. ⋄

Definition 1.11 A system S is said linear if X, U and Y are linear spaces and if, for
all t0 ∈ T , St0 is a linear subspace of UF (t0) × Y F (t0). A system S which is not linear is
called nonlinear.

Definition 1.12 A state space representation is linear if

• the sets U , Y and X are linear spaces;

• the set U is a linear subspace of UT ;

• for all t0 ∈ T and t ∈ T such that t ≥ t0 the function φ is linear on X × U ;

• for all t ∈ T the function η is linear on X × U .

Definition 1.13 A state space representation is a finite state representation if the sets
U , Y and X have a finite number of elements.

Definition 1.14 A state space representation is a finite-dimensional representation if the
sets U , Y and X are linear, finite-dimensional, spaces.

1.3.6 Generating functions

In this section we show that, under certain regularity assumptions, it is possible to obtain
an alternative description of a system. To begin with, consider discrete-time systems and
rewrite the state transition function for t− t0 = 1, i.e.

x(t+ 1) = φ(t+ 1, t, x(t), u[t,t+1)) = φ(t+ 1, t, x(t), u(t)).
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This equation shows that for a discrete-time system the value of the state at time t + 1
depends upon t, x(t) and u(t). We can therefore write

x(t+ 1) = f(t, x(t), u(t)),

where the function f is called generating function, or one-step state update function.
Note that, from the function f it is possible to reconstruct (uniquely) the state transition
function φ. Thus, the triple {X, f, η} can be regarded as the state space representation of
a discrete-time system.

It is now natural to wonder if a similar representation can be obtained for continuous-time
systems. To this end, consider the generating function of a discrete-time system and note
that (if X is a linear space)

x(t+ 1) − x(t) = f(t, x(t), u(t)) − x(t),

which shows that the variation of the state in a time unit is a function of t, x(t) and u(t).

This means that, for continuous-time systems, we are looking at the class of systems for
which the rate of change of the state x(t) can be written as a function of t, x(t) and
u(t). These systems have special importance in applications, where they arise naturally
whenever first principles are used to derive their representation (see some of the examples
in Section 1.2).

Motivated by these considerations we say that the state space representation {X,φ, η} is
regular, or differentiable, if there exists a function f : IR×X ×U → X such that, for any
t0, for any x0 ∈ X and for any u ∈ U the function φ(t, t0, x0, u) is, for all t ∈ F (t0) the
(unique) solution of the differential equation

dφ(t, t0, x0, u)

dt
= f(t, φ(t, t0, x0, u), u(t)), (1.15)

with the initial condition

φ(t0, t0, x0, u) = x0.

Note that equation (1.15) can be rewritten as

ẋ(t) =
dx(t)

dt
= f(t, x(t), u(t)).

We conclude noting that a regular representation {X,φ, η} can be alternatively described
by the triple {X, f, η}.

Remark. A state space representation {X, f, η} is time-invariant in f does not depend
explicitely on t and η is as in Definition 1.10. ⋄
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1.4 Examples revisited

We conclude this chapter by revisiting the examples discussed in Section 1.2 in terms of
the concepts, and notions introduced.

• The system (1.1) is a discrete-time, time-invariant, linear, finite-dimensional system
without input. To obtain a state space representation {X, f, η} consider the state
variables x1 = Fn−2 and x2 = Fn−1 and note that

X = {(x1, x2) ∈ IR2}

f(x) =

�
x2

x1 + x2

�
and η(x) = x1 + x2.

• The system (1.2) is a continuous-time, nonlinear, time-invariant, finite dimensional
system, with input I ∈ IR+, and state (x, y) ∈ IR+ × IR+, described by a generating
function. For such a system we have not defined an output transformation.

• The system (1.3) is a discrete-time, nonlinear, finite-dimensional system, with input
u ∈ IR+, state (x1, x2, x3) ∈ IR+ × IR+ × IR+, and output y ∈ IR+, described by
means of a generating function. The system is nonlinear because the input, state
and output spaces are not linear spaces.

• The system (1.4) is a continuous-time, nonlinear, time-invariant, finite-dimensional
system with input u ∈ [− tan δM , tan δM ] and state (los, ϑos, ϕos) ∈ IR × (−π, π] ×
(−π, π], and described by means of a generating function. For such a system we
have not defined an output transformation.

• The system (1.4) is a continuous-time, nonlinear, time-invariant, finite-dimensional
system, without input, and with state (x, y, z) ∈ IR3, described by means of a gen-
erating function. For such a system we have not defined an output transformation.

• The system (1.5)-(1.6) is a continuous-time, nonlinear, finite-dimensional system,
without input, with state (x1, x2, x3) ∈ IR3, and output y ∈ IR2, described by a
generating function. The system is nonlinear because the output transformation is
not linear.

• The system (1.7) is a continuous-time, nonlinear, time-invariant, finite-dimensional
system, with input Tb ∈ IR+, and state (ω, v) ∈ IR2, described by a generating
function. The output variable can be selected as the longitudinal slip λ ∈ [−1, 1].

• The system (1.8) is a continuous-time, linear, time-invariant, finite-dimensional sys-
tem, without input, and with state (x1, · · · , xn) ∈ IRn, described by a generating
function. For such a system we have not defined an output transformation.
The system (1.9) is a continuous-time, time-invariant, infinite-dimensional, linear
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system without input of with state the set of all functions x(y, t) defined and twice
differentiable in [0, L]× IR. For such a system we have not defined an output trans-
formation.

• The system (1.10) (resp. (1.11)) is a continuous- (resp. discrete-) time, time-invariant,
nonlinear (in general), finite-dimensional system, with state x ∈ X and without
input. For such a system we have not defined an output transformation.

• The system (1.12) is a discrete-time, linear, time-invariant, finite-dimensional sys-
tem, without input, and with state x ∈ IRN . For such a system the output transfor-
mation can be regarded as the identity map.
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Stability
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2.1 Introduction

In Chapter 1 we have seen that, under some regularity conditions, continuous- and discrete-
time causal systems, with state space X, can be described by means of a generating
function and an output transformation, namely

ẋ = f(t, x, u) y = η(t, x, u) (2.1)

and1

x+ = f(t, x, u) y = η(t, x, u), (2.2)

where all signals have to be understood as evaluated at time t, and t ∈ IR if the system is
continuous-time, whereas t ∈ Z if the system is discrete-time. In what follows, whenever
convenient and for compactness, we also use the notation

σx = f(t, x, u) y = η(t, x, u), (2.3)

where σx stands for ẋ if the system is continuous-time, and σx stands for x+ if the system
is discrete-time.

2.2 Existence and unicity of solutions

The simplest question that can be posed in the study of the equations (2.1) and (2.2) is
the following.

Given an initial time t0, an initial value of the state x(t0) = x0 and an input signal
u ∈ UF (t0), is it possible to obtain a solution of the equation (2.3)? By a solution we mean
a function x(t), defined for all t ≥ t0, and such that

σx(t) = f(t, x(t), u(t))

for all2 t ∈ F (t0), or for all t ∈ [t0, t̄), for some t̄ > t0.

1To simplify notation we replace x(t + 1) with x+ and x(t) with x.
2It is enough to require that the equality holds for almost all t, i.e. the condition may be violated

for some t ∈ Ts ⊂ T , provided that Ts has zero Lebesgue measure. To illustrate this point consider the
differential equation

ẋ = −sign(x), (2.4)

where the signum function is defined as

sign(x) =

(
1 if x > 0
0 if x = 0

−1 if x > 0.

For a given x(0) > 0 we have

x(t) =

§
x(0) − t for t ≤ x(0)

0 for t ≥ x(0),

which shows that equation (2.4) does not hold for all t, in fact x(t) is not differentiable at t = x(0).
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The answer to this question is trivial in the case of discrete-time systems, provided the
state space X coincides with IRn and the generating function is continuous. In fact, if the
function f is continuous and the input signal u(t) is bounded for all finite t ∈ T , then
equation (2.2) describes a continuous mapping from T ×IRn×U to IRn, hence the solution
x(t) is unique and it is such that x(t) ⊂ X = IRn for all finite t ≥ t0.

Note however that, if the function f is not continuous, or if the state space X is not IRn,
then solutions of the equation (2.2) may not be defined for all t ≥ t0.

In the case of continuous-time systems the situation is much more involved, and continuity
of f is not enough to guarantee existence and uniqueness of solutions of equation (2.1).
To understand the issues involved in this problem we start considering two examples.

Example 2.1 Consider the nonlinear system, without input, described by

ẋ = x3, (2.5)

with x ∈ IR, and the initial condition x(0) = x0. A simple integration by parts yields

x(t) =
x0È

1 − 2x2
0t
,

which shows that if x0 6= 0 then x(t) is defined only for

t ∈ [0,
1

2x2
0

).

This situation is often referred to as the existence of a finite escape time for the solutions
of the differential equation. Note that the time of escape depends upon the initial condition.

Example 2.2 Consider the nonlinear system, without input, described by

ẋ = x1/3, (2.6)

with x ∈ IR, and the initial condition x(0) = 0. Clearly x(t) = 0 is a solution of the
differential equation for the given initial condition. However

x(t) =
�

2

3
t
� 3

2

is also a solution of the differential equation for the given initial condition.

Remark. The finite escape time phenomenon is not only a mathematical curiosity, but
it may naturally arise in applications. For example, consider a mass m, sliding without
friction along a line, and acted upon by an external force F . Let x be the position of the
mass, and assume that the mass is constrained to stay in the set I = (−1, 1), to avoid
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contacts with hard physical constraints (this may be the case in a car suspension). By
Newton’s law, the differential equation of the mass is

mẍ = F,

which holds provided x ∈ I. The differential equation can be rewritten in state space rep-
resentation (see Example 2.8 for a general discussion on high order differential/difference
equations) as

ẋ1 = x2 ẋ2 =
F

m
,

where x1 = x ∈ [−1, 1] and x2 = ẋ. To take into account the presence of the constraints
we can define a new variable

z = ψ(x) = − log(1 − x) + log(1 + x)

and note that the function ψ maps the interval [−1, 1] into IR. Note now that the system
can be rewritten as

ż =
(ez + 1)2

2ez
x2 ẋ2 =

F

m
.

Suppose that F = 0 for all t, that x1(0) = 0 and that x2(0) 6= 0. Then x2(t) = x2(0) for
all t and

z(t) = log
1 + x2(0)t

1 − x2(0)t

which shows that z(t) has finite escape time at t = 1
|x2(0)|

. This is the mathematical
description of the obvious fact that the mass, with a nonzero initial velocity, and without
any external action, hits one of the constraints in finite time, i.e. at the time of escape
of z(t). Note that, even in the presence of a nonzero force, the problem of determining
F to avoid hitting the constraints, i.e. to avoid the occurence of finite escape time, is
non-trivial. ⋄

Example 2.3 Consider the Euler approximate models of systems (2.5) and (2.6), with
sampling time τ , namely

x+ = x+ τx3

and

x+ = x+ τx1/3.

Note that these systems do not present the finite escape time phenomenon, neither the
existence of multiple solutions. This shows that the numerical integration of nonlinear
continuous-time systems may be very difficult and requires, in general, the use of dedicated
algorithms.

From the above examples we infer that the issues of existence and unicity of solutions for
continuous-time systems may be very delicate. It is possible to show that if the function
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f is continuous then, for any x0, the differential equation (2.1) has at least one solution,
defined for all t ≥ t0 and such that t− t0 is sufficiently small (local existence). The critical
issue is therefore the existence of trajectories for t→ ∞ (global existence). It is very hard
to characterize such a property, and we therefore discuss only sufficient conditions.

Theorem 2.1 (Existence of solutions for Lipschitz differential equations) Consi-
der the differential equation

ẋ = f(t, x), (2.7)

with x ∈ IRn, and the initial condition x(t0) = x0. Suppose that f is piecewise continuous
in t and it is such that the (global) Lipschitz condition

‖f(t, x) − f(t, y)‖ ≤ L‖x− y‖

holds for all x ∈ IRn and y ∈ IRn, and for some constant L > 0. Then for any x0 the
differential equation (2.7) has a unique solution defined for all t ≥ t0.

As a direct consequence of the above statement we have the following result.

Corollary 2.1 (Existence of solutions for linear differential equations) Consider
the differential equation

ẋ = A(t)x+ g(t),

with x ∈ IRn, and the initial condition x(t0) = x0. Assume that A(t) and g(t) are piecewise
continuous. Then for any x0 ∈ IRn the differential equation has a unique solution defined
for all t ≥ t0.

The Lipschitz condition of Theorem 2.1 is very restrictive, and there are several differential
equations for which it does not hold, but which have unique solutions defined for all
t ≥ t0. Note that existence conditions for non-Lipschitz differential equations may be very
involved. We thus restrict our discussion to a simple sufficient condition which is however
very important in applications.

Theorem 2.2 Consider the differential equation (2.7), with x ∈ IRn, and the initial con-
dition x(t0) = x0. Suppose that f is piecewise continuous in t and it is differentiable3 in
x. Suppose, in addition, that there exists a compact set W such that, for all x0 ∈ W , the
solutions of the differential equation remain in W for all t ≥ t0. Then for any x0 ∈ W
the differential equation (2.7) has a unique solution defined for all t ≥ t0.

Example 2.4 Consider the differential equation

ẋ = a(t)x− x3 + u,

3Locally Lipschitz is enough.
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with x ∈ IR, a(t) continuous and such that |a(t)| ≤ 1, and u ∈ [−1, 1]. We now show that
for any x0 ∈ IR the differential equation admits a unique solutions for all t ≥ t0. Note
first that, for any fixed x̄ > 2,

x > x̄⇒ ẋ < 0 x < −x̄⇒ ẋ > 0.

This implies that, for all x0 ∈ [−x̄, x̄], the corresponding solution x(t) is such that x(t) ∈
[−x̄, x̄], for all t ≥ t0. Hence, by Theorem 2.2 we infer that, for any x0 ∈ IR the differential
equation has a unique solution for all t ≥ t0.

2.3 Trajectory, motion and equilibrium

We now consider again a system described by means of an input-state-output representa-
tion {X,φ, η} and define a few typical dynamic behaviours of the system.

Definition 2.1 (Trajectory) Consider a system {X,φ, η}. A trajectory is the set

T = {x ∈ X : x = φ(t, t0, x0, u)} ⊂ X,

i.e. is the set of points in X reached by the state x(t), for t ≥ t0, and for a specific initial
state x0 and input signal u.

Definition 2.2 (Motion) Consider a system {X,φ, η}. A motion is the set

M = {(t, x(t)) ∈ T ×X : t ∈ F (t0), x(t) = φ(t, t0, x0, u)} ⊂ T ×X,

i.e. is the set of points in T ×X taken by the pairs (t, x(t)), for t ≥ t0, and for a specific
initial state x0 and input signal u.

The main differences between a trajectory and a motion are that they leave in different
spaces, and the motion is parameterized by t, whereas the trajectory does not contain
any information on t. This means that the trajectory provides solely information on the
points of the state space X visited by the system during his evolution, whereas the motion
specifies in addition when each point has been visited. Note, however, that the (natural)
projection of a motion along T yields a trajectory.

Figure 2.1 gives an example of a motion, and of the corresponding trajectory, for a
continuous-time system, with X = IR2 and t0 = 0.

Definition 2.3 (Equilibrium) Consider a system {X,φ, η}. Assume the input u is con-
stant, i.e. u(t) = u0 for all t and for some constant u0. A state xe is an equilibrium of
the system associated to the input u0 if

xe = φ(t, t0, xe, u0),

for all t ≥ t0, i.e. an equilibrium is a trajectory composed of a single point.



2.3. TRAJECTORY, MOTION AND EQUILIBRIUM 31

−2
−1

0
1

2

−2
−1

0
1

2
0

2

4

6

8

10

x
1x

2

t

Figure 2.1: A motion (dashed line) and the corresponding trajectory (solid line).

If the system {X,φ, η} possesses a generating function, hence can be described by means of
the triple {X, f, η}, then the computation of equilibria requires the solution of the system
of equations

0 = f(t, xe, u0),

for continuous-time systems, and of the systems of equations

xe = f(t, xe, u0),

for discrete-time systems.

2.3.1 Linear systems

In this section we discuss the notions introduced for the special class of linear, time-
invariant, finite-dimensional systems, i.e. systems described by equations of the form

σx = Ax+Bu y = Cx+Du, (2.8)

with x ∈ X = IRn, u(t) ∈ IRm, y(t) ∈ IRp and A ∈ IRn×n, B ∈ IRn×m, C ∈ IRp×n, and
D ∈ IRp×m.
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Proposition 2.1 (Equilibria of linear systems) Consider a linear, time-invariant, sys-
tem

σx = Ax+Bu,

with x ∈ IRn and u(t) ∈ IRm. The set of equilibria is a linear subspace4. Moreover, the
following hold.

• For u(t) = u0 = 0, the origin is always an equilibrium.

• For continuous-time systems, if A is invertible, for any u0 there is a unique equilib-
rium xe = −A−1Bu0. If A is not invertible the system has either infinitely many
equilibria (spanning a linear subspace) or it has no equilibria.

• For discrete-time systems, if I−A is invertible, for any u0 there is a unique equilib-
rium xe = (I − A)−1Bu0. If I − A is not invertible the system has either infinitely
many equilibria (spanning a linear subspace) or it has no equilibria.

Proposition 2.2 (Trajectories of linear, continuous-time, systems) Consider the
continuous-time, time-invariant, linear system

ẋ = Ax+Bu y = Cx+Du,

with x ∈ X = IRn, u(t) ∈ IRm, y(t) ∈ IRp and the initial condition5 x(0) = x0. Then6

x(t) = eAtx0 +
Z t

0
eA(t−τ)Bu(τ)dτ (2.9)

4This property holds also for general linear systems, i.e. not necessarily time-invariant.
5Without loss of generality we set t0 = 0.
6 Given a (square) matrix F , the matrix exponential eF t is formally defined as

e
F t = I + Ft +

(Ft)2

2!
+

(Ft)3

3!
+ · · · .

The matrix exponential has the following properties, which can be derived from its definition.

• For every t1 and t2, eF t1eF t2 = eF (t1+t2).

• eF teF̃ t = eF̃ teF t = e(F+F̃ )t if and only FF̃ = F̃F , i.e. if and only if F and F̃ commute.

• (eF t)−1 = e−F t and (eF t)′ = eF ′t.

• If v is an eigenvector of F with eigenvalue λ then v is also an eigenvector of eF t with eigenvalue eλt.

• d
dt

eF t = FeF t = eF tF .

• T−1eF tT = e(T−1F T )t.

• If F is diagonal, i.e. F = diag(λ1, λ2, · · · , λn) then eF t is also diagonal and eF t =
diag(eλ1t, eλ2t, · · · , eλnt).

Finally,

e
F t =

rX
i=1

miX
k=1

Rik
tk−1

(k − 1)!
e

λit
,

for some mi ≥ 1 (see Footnote 9), where r is the number of distinct eigenvalues of F .
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and

y(t) = CeAtx0 +
Z t

0
CeA(t−τ)Bu(τ)dτ +Du(t). (2.10)

Proof. To begin with consider the differential equation ẋ(t) = Bu(t), with x(0) = x0 and
note that, by a simple integration,

x(t) = x0 +

tZ
0

Bu(τ)dτ.

Consider now the variable

z(t) = e−Atx(t)

and note that z(0) = x(0), x(t) = eAtz(t) and

ż = e−AtBu.

Hence

z(t) = z0 +

tZ
0

e−AτBu(τ)dτ,

from which we obtain directly equation (2.9). Equation (2.10) is trivially obtained replac-
ing x(t) in the output transformation. ⊳

Example 2.5 Let Fλ ∈ IRn×n be defined as

Fλ =

26666664 λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . .

. . .
...

0 · · · 0 λ 1
0 · · · · · · 0 λ

37777775
then

eFλt = eλt

2666666664 1 t t2

2 · · · tn−1

(n−1)!

0 1 t · · · tn−2

(n−2)!

...
...

. . .
. . .

...
0 · · · 0 1 t
0 · · · · · · 0 1

3777777775 .
To establish the claim note that Fλ = λI + F0 and that I and F0 commutes, hence

eFλt = e(λI+F0)t = eλteF0t,
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where, by definition of the matrix exponential,

eF0t =

2666666664 1 t t2

2 · · · tn−1

(n−1)!

0 1 t · · · tn−2

(n−2)!

...
...

. . .
. . .

...
0 · · · 0 1 t
0 · · · · · · 0 1

3777777775 .
Example 2.6 Let

Fλ =

�
λ ω
−ω λ

�
then

eFλt = eλt

�
cosωt sinωt

− sinωt cosωt

�
.

To establish the claim note that Fλ = λI + F0, and that I and F0 commutes, hence

eFλt = e(λI+F0)t = eλteF0t,

where, by definition of the matrix exponential, and recalling the series expansions of sinωt
and cosωt,

eF0t =

�
cosωt sinωt

− sinωt cosωt

�
.

Example 2.7 Consider a continuous-time, time-invariant, linear system with x ∈ IR2,
u(t) ∈ IR and y(t) ∈ IR. Suppose that x(0) = [1, 1]′, that u(t) = 0 for all t, and that

A =

�
0 1

−2 −3

�
C =

�
1 0

�
.

Note that

A = L−1ÃL =

�
1 1

−1 −2

� �
−1 0
0 −2

� �
2 1

−1 −1

�−1

hence

eAt = e(L
−1ÃL)t = L−1

�
e−t 0
0 e−2t

�
L = e−t

�
2 1

−2 −1

�
+ e−2t

�
−1 −1

2 2

�
.

Therefore

x(t) =

�
−2e−2t + 3e−t

4e−2t − 3e−t

�
and y(t) = −2e−2t + 3e−t. Note that, the state and the output are linear combinations of
exponential functions with exponents given by t times the eigenvalues of A.
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Remark. Continuous-time systems are reversible, i.e. the knowledge of x(t) and of the input
in the interval [0, t) allows to compute x0. In fact, from equation (2.9) we obtain

x0 = e−Atx(t) −
Z t

0
e−AτBu(τ)dτ.

⋄

Proposition 2.3 (Trajectories of linear, discrete-time, systems) Consider the di-
screte-time, time-invariant, linear system

x(k + 1) = Ax(k) +Bu(k) y(k) = Cx(k) +Du(k),

with x ∈ X = IRn, u(k) ∈ IRm, y(k) ∈ IRp and the initial condition x(0) = x0. Then

x(k) = Akx0 +
k−1X
i=0

Ak−1−iBu(i) (2.11)

and

y(k) = CAkx0 +
k−1X
i=0

CAk−1−iBu(i) +Du(k). (2.12)

Proof. Using the state space representation of the system we have that

x(1) = Ax0 +Bu(0)
x(2) = Ax(1) +Bu(1) = A2x0 +ABu(0) +Bu(1)
x(3) = Ax(2) +Bu(2) = A3x0 +A2Bu(0) +ABu(1) +Bu(2)

...

from which we obtain the expression of x(k). Finally, y(k) is obtained replacing x(k) in
the output transformation. ⊳

Remark. The expression of x(k) can be rewritten as

x(k) = Akx0 +
�
B AB · · · Ak−1B

� 266664 u(k − 1)
u(k − 2)

...
u(0)

377775 .
This expression highlights the role of the matrix

�
B, AB, · · · , Ak−1B

�
in the computation

of x(k). ⋄
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Remark. If the matrix A is invertible then the system is reversible, i.e. the knowledge of
x(k) and of the input sequence in the interval [0, k) allows to compute x0. In fact, from
equation (2.11) we obtain

x0 = A−kx(k) −
k−1X
i=0

A−i−1Bu(i).

⋄

Remark. Reversibility of continuous-time systems does not require any assumption on the
matrix A. This is because, for any A, the matrix eAt is invertible for any t. ⋄

Remark. The matrices CAhB, known as Markov parameters, appearing in equation (2.12)
have a simple and interesting interpretation for single-input single-output discrete-time
systems. Suppose that x(0) = 0, that u(0) = 1 and that u(i) = 0 for i ≥ 1. Then

y(0) = D y(1) = CB y(2) = CAB · · · y(h) = CAh−1B,

i.e. the output yields directly information on the matrices A, B, C and D. The problem
of determining such matrices, hence a state space representation for the system, from the
above output sequence is the so-called realization problem. ⋄

It is interesting to interprete the results of the Propositions 2.2 and 2.3 in the light of
the general discussion in Chapter 1. Equations (2.9) and (2.11) show that the state of
the system at time t is the linear combination of two contributions, the former depends
only upon the initial condition x0, and is denoted free response of the state of the system,
the latter depends only upon the input signal u and is denoted forced response of the
state of the system. Note that the initial condition and the input can be regarded as two
independent causes acting on the system, hence equations (2.9) and (2.11) show that the
principle of superposition holds for such systems.

Analogously, equations (2.10) and (2.12) show that the output of the system at time t
is the linear combination of two contributions, the former depends only upon the initial
condition x0, and is denoted free response of the output of the system, the latter depends
only upon the input signal u and is denoted forced response of the output of the system.

Finally, note that equations (2.9) and (2.10) ((2.11) and (2.12), resp.) yield directly the
functions φ and η of a state space representation of the system.

Remark. Consider the continuous-time, time-invariant, linear system

ẋ = Ax+Bu y = Cx

with x ∈ X = IRn, u(t) ∈ IRm and y(t) ∈ IRp. Suppose the system is between a zero-
order hold and a sampler with sampling period T , i.e. the input is constant over each
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time interval [kT, (k + 1)T ), for k ≥ 0, and the output is measured at t = kT , for k ≥ 0.
The system viewed from outside the zero-order hold and the sampler is a discrete-time,
time-invariant, linear system. To obtain a state space representation of this discrete-time
system let xk = x(kT ), uk = u(kT ) and yk = y(kT ). Integrating the above differential
equation for t ∈ [kT, (k + 1)T ) yields (recall equation (2.9))

xk+1 = eATxk +
Z T

0
eA(T−τ)Bdτ uk = Adxk +Bduk,

whereas the output transformation is given by yk = Cxk. These equations provide a state
space representation of the discrete-time system seen from outside the zero-order hold
and the sampler. Note that, unlike the approximate discrete-time models described in
Section 1.2.9, the obtained discrete-time model is exact, i.e. under the stated operating
conditions xk = x(kT ), for all k ≥ 0. ⋄

Example 2.8 (Input/output models) Linear, time-invariant, systems can be also de-
scribed by means of high-order differential or difference equations involving only the ex-
ternal signals, i.e. the input and the output. Consider for simplicity single-input single
output-systems and the equation7

σny + an−1σ
n−1y + · · · + a1σy + a0y = bn−1σ

n−1u+ · · · + b1σu+ b0u, (2.15)

where the ai and bi are constant coefficients. We now show that this equation defines a
linear, time-invariant, system as discussed in Chapter 1. To this end we derive a state
space representation with a generating function by means of the following procedure (known
as realization).

Assume, for simplicity, that bn−1 = bn−2 = · · · = b1 = 0 and that b0 6= 0. Let x ∈ X = IRn,
and define

x1 = y x2 = σy · · · xn−1 = σn−2y xn = σn−1y.

Note that

σx =

26666664 σx1

σx2
...

σxn−1

σxn

37777775 =

26666664 x2

x3
...
xn

−a0x1 − a1x2 − · · · − an−1xn + b0u

37777775
7The operator σi is such that

σ
i
α(t) =

¨
α(t) i = 0

di

dti α(t) i > 1
(2.13)

for continuous-time systems, and such that

σ
i
α(t) =

¨
α(t) i = 0

α(t + i) i > 1
(2.14)

for discrete-time systems. To simplify notation we write α instead of σ0α and σα instead of σ1α.



38 CHAPTER 2. STABILITY

hence

σx =

26666664 0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
−a0 −a1 · · · −an−1 −an

37777775x+

26666664 0
0
...
0
b0

37777775u,
and

y = [1, 0, · · · , 0]x.
The above equations provide the state space representation of the system defined by equation
(2.15), under the considered simplifying assumptions. Note that, a similar procedure can
be used in the general case, i.e. in the case of nonzero bi’s.

2.4 Linearization

Linear systems can be often used to approximate the behaviour of nonlinear systems
around given operating conditions. The procedure that allows to associate a linear system
to a nonlinear system together with one of its operating conditions is called linearization.

The advantage in using a linear system to approximate a nonlinear system resides clearly
in the fact that linear systems are simpler to study, and it is possible to assess several
of their properties with simple tests. In addition, it is also often possible to determine
local properties of the original nonlinear system, i.e. properties around a certain operating
condition, by properties of the linearization.

The process of linearization is performed on a nonlinear system and for a specific initial
condition and input signal, i.e. it is assumed that a system, described by equations of the
form (2.3), an initial (nominal) state x(t0) = x0 and a (nominal) input function uN are
assigned.

Suppose, in addition, that the motion of the system, for the given initial state and input
signal, is well-defined for all t ≥ t0. Let xN (t) be such that xN (t0) = x0 and, for t ≥ t0,

σxN = f(t, xN , uN ),

and let
yN (t) = η(t, xN , uN ).

xN (t) and yN (t) are referred to as the nominal state and the nominal output trajectories.

Consider now a perturbed initial condition and a perturbed input signal, i.e. assume that
the system (2.3) has been initialized at time t0 with x(t0) = xN (0) + δx(t0) and that the
input signal is

uP = uN + δu.

Let xP (t) be such that xP (t0) = xN (0) + δx(t0) and, for t ≥ t0,

σxP = f(t, xP , uP ),
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and let
yP (t) = η(t, xP , uP ).

xP (t) and yP (t) are referred to as the perturbed state and the perturbed output trajecto-
ries.

Note now that
δx(t) = xP (t) − xN (t)

is such that

σδx = σxP − σxN = f(t, xP , uP ) − f(t, xN , uN ) = f(t, xN + δx, uN + δu) − f(t, xN , uN ),

and define δy = yP (t) − yN (t). If the generating function is differentiable, using Taylor
series expansion around xN and uN , we obtain8

σδx = f(t, xN + δx, uN + δu) − f(t, xN , uN )

= f(t, xN , uN ) +
∂f(t, x, u)

∂x
(t, xN , uN )δx +

∂f(t, x, u)

∂u
(t, xN , uN )δu+

O(‖δx‖2 + ‖δu‖2) − f(t, xN , uN ).

If the perturbations δx(0) and δu are sufficiently small, and as long as δx(t) remains small,
it is possible to approximate σδx with the linear terms of the Taylor series expansion, i.e.

σδx ≈ ∂f(t, x, u)

∂x
(t, xN , uN )δx +

∂f(t, x, u)

∂u
(t, xN , uN )δu = A(t)δx +B(t)δu. (2.16)

Similarly, if η is differentiable,

δy = η(t, xP , uP ) − η(t, xN , uN )

= η(t, xN , uN ) + ∂η(t,x,u)
∂x (t, xN , uN )δx + ∂η(t,x,u)

∂u (t, xN , uN )δu+

O(‖δx‖2 + ‖δu‖2) − η(t, xN , uN ),

hence δy can be approximated, provided δu and δx are small, with the linear terms of the
Taylor series expansion, i.e.

δy ≈ ∂η(t, x, u)

∂x
(t, xN , uN )δx +

∂η(t, x, u)

∂u
(t, xN , uN )δu = C(t)δx +D(t)δu. (2.17)

In summary, we have shown that, under suitable differentiability assumptions, the behav-
iour of a nonlinear system around a nominal operating condition can be approximated

8The Jacobian of a funcion g : IRn → IRm at a point x̄ is defined as

∂g(x)

∂x
(x̄) =

264 ∂g1(x)
∂x1

(x̄) · · · ∂g1(x)
∂xn

(x̄)
...

. . .
...

∂gm(x)
∂x1

(x̄) · · · ∂gm(x)
∂xn

(x̄)

375 .
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considering input, state and output perturbations around the nominal behaviour and such
perturbations are the input, state and output variables of a linear, time-varying system.

We stress, once more, that the approximation makes sense only if δx and δu are small.
While it is possible to select δu small by selecting uP close to uN , selecting δx(t0) small
does not guarantee that δx(t) be small for all t ≥ t0. We will see in Section 2.7 that there
is an important practical situation in which a small δx(t0) implies that δx(t) remains small
for all t ≥ t0.

Remark. If we consider, as nominal operating condition, a constant input and an equilib-
rium point, and if in addition the functions f and η do not depend explicitely on time,
then the linearized system is time-invariant, i.e. the matrices A(t), B(t), C(t) and D(t)
have constant entries. ⋄

Example 2.9 Consider the nonlinear, time-invariant, system

ẋ = sinx+ u y = sin 2x,

with x ∈ IR, u(t) ∈ IR and y(t) ∈ IR, and the nominal operating condition uN = 0 and
xN (0) = 0, yielding xN (t) = 0 and yN (t) = 0 for all t ≥ 0. The linearization of the system
around the given nominal behaviour is given by

δ̇x =
∂(sin x+ u)

∂x
(0, 0)δx +

∂(sin x+ u)

∂u
(0, 0)δu = δx + δu

and

δy =
∂ sin 2x

∂x
(0, 0)δx +

∂ sin 2x

∂u
(0, 0)δu = 2δx.

Note that, as discussed above, the linearized system is time-invariant.

Consider again the same system but with operating condition uN = −1 and xN (0) = π/2,
yielding xN (t) = π/2 and yN (t) = 0 for all t ≥ 0. The linearized system is now

δ̇x = δu δy = −2δx.

Note the (obvious) fact that linearizing a nonlinear system around different operating con-
ditions yields different linearized systems!

Example 2.10 The problem of minimizing a function f : IRn → IR can be dealt with, if
the function is twice differentiable, considering the sequence of points generated, starting
from some initial guess x0 of the minimum, by the so-called Newton’s iteration, namely

x+ = x−
�
∂2f(x)

∂x2
(x)

�−1
∂f(x)

∂x
(x). (2.18)

This is in general a nonlinear, discrete-time system, and any stationary point of the func-
tion f is an equilibrium of this system. Let x̄ be a stationary point of f such that the
matrix

∂2f(x)

∂x2
(x̄) (2.19)
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is nonsingular. The linearization of system (2.18) around such stationary point is given
by

δ+x =

�
I −

∂
h

∂2f(x)
∂x2 (x)

i−1 ∂f(x)
∂x (x)

∂x
(x̄)

Ǒ
δx = 0.

Example 2.11 Consider the system

ẋ1 = g(x1x2)x1

ẋ2 = −2x2 + x3

ẋ3 = −x3,
(2.20)

with x = (x1, x2, x3) ∈ IR3, where g(x1x2) is a differentiable function such that g(1) = 1.
Consider an initial condition (x1(0), x2(0), x3(0)) such that x1(0) 6= 0, x2(0) = 1/x1(0)
and x3(0) = x2(0) and note that the corresponding trajectory is

x1(t) = etx1(0) x2(t) =
e−t

x1(0)
x3(t) =

e−t

x1(0)
. (2.21)

The system linearized around this nominal trajectory is described by

δ̇x1 =

�
∂g(x1x2)

∂x1
(etx1(0),

e−t

x1(0)
) + 1

�
δx1 +

∂g(x1x2)

∂x2

�
etx1(0),

e−t

x1(0)

�
δx2

δ̇x2 = −2δx2 + δx3

δ̇x3 = −δx3 ,

(2.22)

and this is not, in general, time-invariant.

2.5 Lyapunov stability

To study the qualitative behaviour of a system, hence to describe the properties of its
trajectories for all t ∈ T and for t→ ∞, we introduce the notion of stability. In addition,
this notion allows to study the behaviour of trajectories close to an equilibrium point or
to a certain motion.

Remark. The notion of stability that we discuss has been introduced in 1882 by the Russian
mathematician A.M. Lyapunov, in its Doctoral Thesis (hence it is often referred to as
Lyapunov stability). There are other notions of stability due for example to Lagrange
(Lagrange stability) or introduced in the past 20 years. Nevertheless, the concept of
Lyapunov stability is the most commonly used in applications. ⋄
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2.5.1 Definition

Consider a system described via a state space representation {X,φ, η} and denote with
x(t) the value of the function φ(t, t0, x0, 0), i.e. the value of the state at time t when
the input is identically zero and x(t0) = x0. Recall that x(t) describes the so-called free
evolution of the system. Suppose that it is possible to define a norm on the space X. (If
X ⊂ IRn the Euclidean norm can be defined.)

Definition 2.4 [Lyapunov stability] Consider a system {X,φ, η} and an equilibrium point
xe. The equilibrium is stable (in the sense of Lyapunov) if for every ǫ > 0 there exists a
δ = δ(ǫ, t0) > 0 such that

‖x(t0) − xe‖ < δ

implies
‖x(t) − xe‖ < ǫ,

for all t ≥ t0.

In stability theory, the quantity x(t0) − xe is called initial perturbation, and x(t) =
φ(t, t0, x0, 0) is called perturbed evolution.

Therefore, an equilibrium xe is stable if for any neighborhood of xe (even very small) the
perturbed evolution stays within this neighborhood for all initial perturbations belonging
to a sufficiently small neighborhood of xe.

The definition of stability can be interpreted as follows. An equilibrium point xe is stable
if however we select a tolerable deviation ǫ, there exists a (sufficiently small) region with
the equilibrium xe in its interior, such that all initial perturbations in this region give rise
to trajectories which are within the tolerable deviation.

Remark. The constant δ is in general a function of t0. If it is possible to define a δ which
does not depend upon t0, we say that the equilibrium is uniformly stable. Note that if an
equilibrium of a time-invariant system is stable, it is also uniformly stable. ⋄

The property of stability dictates a condition on the free evolution of the system for all
t ≥ t0. Note, however, that in the definition of stability we have not requested that
the perturbed evolution converges, for t → ∞, to xe. This convergence property is very
important in applications, as it allows to characterize the situation in which not only the
perturbed evolution remains close to the unperturbed evolution, but it also converges to
the initial (unperturbed) evolution. To capture this property we introduce a new definition.

Definition 2.5 [Asymptotic stability] Consider a system {X,φ, η} and an equilibrium
point xe. The equilibrium is asymptotically stable if it is stable and if there exists a
constant δa = δa(ǫ, t0) such that

‖x(t0) − xe‖ < δa
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implies
lim
t→∞

‖x(t) − xe‖ = 0. (2.23)

In summary, an equilibrium point is asymptotically stable if it is stable and whenever
the initial perturbation is inside a certain neighborhood of xe the perturbed evolution
converges, as t → ∞, to the equilibrium point, which is said to be attractive. From a
physical point of view this means that all sufficiently small initial perturbations give rise to
effects which can be a-priori bounded (stability) and these vanish as t→ ∞ (convergence).

It is important to realize that convergence does not imply stability: it is possible to
have an equilibrium of a system which is not stable (i.e. it is unstable), yet for all initial
perturbations the perturbed evolution converges to the equilibrium.

Remark. To define the notion of uniform asymptotic stability, it is important to understand
the role of t0 in the convergence property. The existence of the limit in equation (2.23)
implies that, for any κ > 0 there is a time ta such that

‖x(t) − xe‖ ≤ κ,

for all t ≥ ta. The value ta is a function of κ (consistently with the definition of limit),
but may be also function of t0. Therefore, the convergence property depends upon t0 in
two ways: firstly through the constant δa(ǫ, t0) and secondly on the fact that the speed of
convergence of ‖x(t)− xe‖, which can be measured by ta − t0, depends upon t0. If δa and
ta− t0 are not function of t0 then the convergence is uniform. Finally, if the equilibrium is
uniformly stable, and if the convergence property is uniform, the equilibrium is uniformly
asymptotically stable. ⋄

Example 2.12 Consider the discrete-time system

xk+1 = −xk,

with x ∈ IR. This system has the unique equilibrium xe = 0. Note that, for any initial
condition x0 ∈ IR one has

x2i−1 = −x0 x2i = x0,

for all i ≥ 1. This implies that the equilibrium is uniformly stable, but not attractive.

Example 2.13 Consider the discrete-time system

x+ =

¨
2x if |x| < 1
0 if |x| ≥ 1,

with x ∈ IR. This system has the unique equilibrium xe = 0. This equilibrium is attractive,
i.e. for any initial condition the trajectories converge to xe, but it is not stable.
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Example 2.14 Consider the continuous-time system

ẋ1 = ψ(t, x1, x2)x2 ẋ2 = −ψ(t, x1, x2)x1,

with ψ(t, x1, x2) > 0 for all (t, x1, x2). The system has the unique equilibrium xe = 0.
This equilibrium is stable, but not attractive. To see this note that, along the trajectories
of the system,

x1ẋ1 + x2ẋ2 = 0,

and this implies that, along the trajectories of the system, x2
1(t) + x2

2(t) is constant for
every t ∈ T , i.e.

x2
1(t) + x2

2(t) = x2
1(t0) + x2

2(t0).

Therefore the trajectory of the system with initial state (x1(t0), x2(t0)) remains on a circle
of radius x2

1(t0) + x2
2(t0) for all t, hence the condition for stability holds with

δ(ǫ, t0) = ǫ.

Finally, because δ does not depend upon t0 the equilibrium xe = 0 is uniformly stable.

Definition 2.6 [Global asymptotic stability] Consider a system {X,φ, η} and an equilib-
rium point xe. The equilibrium is globally asymptotically stable if it is stable and if, for
all x(t0) ∈ X,

lim
t→∞

‖x(t) − xe‖ = 0.

Remark. The property of global asymptotic stability is very strong, and it has important
implications on the structure of the underlying state space realization. For example, in
the case of finite-dimensional, time-invariant systems, it implies that X = IRn. This
fact, which is the consequence of a very delicate theorem of J.W. Milnor, is sometimes
informally explained with the sentence “it is not possible to comb the hair on a sphere
without leaving a crown somewhere”. ⋄

Obviously, the property of global asymptotic stability is much stronger than the property
of asymptotic stability (which is often referred to as local asymptotic stability), as it
requires that the effect of all initial perturbations vanishes as t→ ∞.

If an equilibrium xe is not globally asymptotically stable, it is possible to determine a
region of X, containing xe, such that for all initial conditions in this region the free
evolution converges to xe. This region is known as region of attraction of the equilibrium
xe. Note that if xe is globally asymptotically stable then its region of attraction coincides
with X.

The property of asymptotic stability can be strengthened imposing conditions on the
convergence speed of ‖x(t) − xe‖.
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Definition 2.7 [Exponential stability] Consider a system {X,φ, η} and an equilibrium
point xe. The equilibrium is exponentially stable if there exists λ > 0 such that for all
ǫ > 0 there exists a δ = δ(ǫ) > 0 such that

‖x(t0) − xe‖ < δ

implies

‖x(t) − xe‖ < ǫe−λ(t−t0), (2.24)

for all t ≥ t0.

Remark. The property of exponential stability implies the property of stability and the
property of uniform asymptotic stability. ⋄

Definition 2.8 [Stability of motion] Consider a system {X,φ, η} and a motion

M = {(t, x(t)) ∈ T ×X : t ∈ F (t0), x(t) = φ(t, t0, x0, u)}.

The motion is stable if for every ǫ > 0 there exists a δ = δ(ǫ, t0) > 0 such that

‖x(t0) − x0‖ < δ

implies

‖φ(t, t0, x(t0), u) − φ(t, t0, x0, u)‖ < ǫ, (2.25)

for all t ≥ t0.

The notion of stability of motion is substantially similar to the notion of stability of an
equilibrium. The important issue is that the time-parameterization is important, i.e. a
motion is stable if, for small initial perturbations, for any t ≥ t0 the perturbed evolution
is close to the non-perturbed evolution. This does not mean that if the perturbed and
un-perturbed trajectories are close then the motion is stable: in fact the trajectories may
be close, but may be followed with different timing, which means that for some t ≥ t0
condition (2.25) may be violated.

Example 2.15 To illustrate, informally, the fact that an unperturbed and a perturbed
trajectory can be close, yet the nominal unperturbed motion is not stable, consider two
identical chemical reactions taking place one in the presence of a catalyst and the other
without catalyst. The two reactions follow the same trajectory, but with a different time
parameterization, i.e one is faster than the other. Then, the distance between the two
motions may be larger than any pre-assigned bound.
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2.5.2 Stability of linear systems

The notion of stability relies on the knowledge of the trajectories of the system. As a
result, even if this notion is very elegant, and useful in applications, it is in general very
hard to assess stability of an equilibrium or of a motion. There are, however, classes
of systems for which it is possible to give stability conditions without relying upon the
knowledge of the trajectories.

Linear systems belong to one such class. Therefore, in this section, we study the stability
of linear systems ad we show that, because of the linear structure, it is possible to assess
the properties of stability and attractivity in a simple way.

To begin with, we recall some properties of linear representations.

Proposition 2.4 Consider a system with a linear state space representation. Then (as-
ymptotic) stability of one motion implies (asymptotic) stability of all motions. In partic-
ular, (asymptotic) stability of any motion implies and is implied by (asymptotic) stability
of the equilibrium xe = 0.

Proof. It is enough to prove the second claim. Consider a motion φ(t, t0, x0, u) and note
that, by definition, the motion is stable if for every ǫ > 0 there exists a δ = δ(ǫ, t0) > 0
such that

‖x(t0) − x0‖ < δ

implies

‖φ(t, t0, x(t0), u) − φ(t, t0, x0, u)‖ < ǫ,

for all t ≥ t0. However, by linearity of the state space representation

φ(t, t0, x(t0), u) − φ(t, t0, x0, u) = φ(t, t0, x(t0) − x0, 0).

Hence, the motion is stable if and only if the equilibrium xe = 0 is stable. An analogous
argument can be used to prove the asymptotic stability claim. ⊳

The above statement, together with the result in Proposition 2.1, implies the following
important properties.

Proposition 2.5 If the origin of the linear representation of a system is asymptotically
stable, then necessarily, the origin is the only equilibrium of the system for u = 0. More-
over, asymptotic stability of the zero equilibrium is always global. Finally, uniform asymp-
totic stability implies exponential stability.

The above discussion shows that the stability properties of a motion (e.g. an equilibrium)
of a linear representation are inherited by all motions of the system. Moreover, for linear
representations local properties are always global properties. This means that, with some
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abuse of terminology, we can refer the stability properties to the linear representation,
for example we say that a linear representation is stable to mean that all its motions
are stable. Note that it does not make sense to say that a nonlinear representation or a
nonlinear system is stable, despite the fact that this terminology is often used!

The stability results discussed in this section apply to general linear representations, in
particular it is not necessary to assume that X = IRn, for some n ≥ 1. However, in this
case, i.e. in the case of a finite-dimensional linear representation, it is possible to obtain
very simple stability tests.

To derive such tests, note that, by linearity of φ and by the finite dimensionality of
X = IRn, we have that

φ(t, t0, x0, 0) = Φ(t, t0)x0,

where Φ(t, t0), defined for all t ≥ t0, is a square matrix of dimension n× n, known as the
state transition matrix. For finite-dimensional linear representations this matrix plays a
central role in the study of stability properties.

Proposition 2.6 A linear, finite-dimensional, representation is stable if and only if

‖Φ(t, t0)‖ ≤ k, (2.26)

for all t ≥ t0 and for some k > 0 possibly dependent on t0.

Proof. We prove only the sufficient part. For, suppose condition (2.26) holds. Then

‖x(t)‖ = ‖Φ(t, t0)x0‖ ≤ k‖x0‖.
Therefore, for any ǫ > 0 the selection

δ =
ǫ

k

is such that
‖x0‖ < δ

implies
‖x(t)‖ < ǫ,

for all t ≥ t0, which is the stability property for the equilibrium xe = 0. ⊳

A similar result, with conceptually similar proof, holds with respect to the property of
asymptotic stability.

Proposition 2.7 A linear, finite-dimensional, representation is asymptotically stable if
and only if

‖Φ(t, t0)‖ ≤ k,

for all t ≥ t0, and for some k > 0 possibly dependent on t0, and

lim
t→∞

Φ(t, t0) = 0.
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We conclude this section noting that the above statements can be further simplified, if
we assume in addition that the linear representation is time-invariant. To develop these
tests, we need the following fact.

Proposition 2.8 The equilibrium x0 of a linear, finite-dimensional, time-invariant rep-
resentation is asymptotically stable if and only if it is attractive.

This result implies that for linear, finite-dimensional, time-invariant representations at-
tractivity of the zero equilibrium implies stability of the zero equilibrium. This implies
that stability is a property of the matrix A (see equation (2.8)). Moreover, as the proper-
ties are uniform, attractivity implies uniform asymptotic stability, and hence exponential
stability.

Proposition 2.9 The equilibrium xe = 0 of a linear, finite-dimensional, time-invariant
representation is stable if and only if the following conditions hold.

• In the case of continuous-time systems, the eigenvalues of A with geometric mul-
tiplicity9 equal to one have non-positive real part, and the eigenvalues of A with
geometric multiplicity larger than one have negative real part.

• In the case of discrete-time systems, the eigenvalues of A with geometric multiplicity
equal to one have modulo not larger than one, and the eigenvalues of A with geometric
multiplicity larger than one have modulo smaller than one.

Proof. Recall that, for the considered class of representations, stability implies and is
implied by boundedness of the state transition matrix.

For continuous-time systems the state transition matrix, with t0 = 0, is (see Footnote 6)

eAt =
rX

i=1

miX
k=1

Rik
tk−1

(k − 1)!
eλit,

where mi is the geometric multiplicity of the eigenvalue λi. This matrix is bounded if and
only if the conditions in the statement hold.

9 To define the geometric multiplicity of an eigenvalue we need to recall a few facts. Consider a matrix
A ∈ IRn×n and a polynomial p(λ). The polynomial p(λ) is a zeroing polynomial for A if p(A) = 0.
Note that, by Cayley-Hamilton Theorem, the characteristic polynomial of A is a zeroing polynomial for
A. Among all zeroing polynomials there is a unique monic polynomial pM (λ) with smallest degree. This
polynomial is called the minimal polynomial of A. Note that the minimal polynomial of A is a divisor of
the characteristic polynomial of A. If A has r distinct eigenvalues λ1, ..., λr then

pM (λ) = (λ − λ1)
m1(λ − λ2)

m2 · · · (λ − λr)
mr ,

where the numbers mi denote by definition the geometric multiplicity of λi. This means that the geometric
multiplicity of λi equals the multiplicity of λi as a root of pM (λ). Recall, finally, that the multiplicity of
λi as a root of the characteristic polynomial is called algebraic multiplicity.
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Similarly, for discrete-time systems, the state transition matrix, for t0 = 0 and t ≥ 1, is

At =
rX

i=1

miX
k=1

Rik
tk−1

(k − 1)!
λt−k+1

i ,

and this is bounded if and only if the conditions in the statement hold. ⊳

Proposition 2.10 The equilibrium xe = 0 of a linear, finite-dimensional, time-invariant
representation is asymptotically stable if and only if the following conditions hold.

• In the case of continuous-time systems, the eigenvalues of A have all negative real
part.

• In the case of discrete-time systems, the eigenvalues of A have all modulo smaller
than one.

Proof. The proof is similar to the one of the previous proposition, once it is noted that,
for the considered class of representations, asymptotic stability implies and is implied by
boundedness and convergence of the state transition matrix. ⊳

We conclude this discussion with an alternative characterization of asymptotic stability,
the proof of which is outside the scope of these lecture notes.

Proposition 2.11 The equilibrium xe = 0 of a linear, finite-dimensional, time-invariant
representation is asymptotically stable if and only if the following conditions hold.

• In the case of continuous-time systems, there exists a positive definite matrix10 P =
P ′ such that

A′P + PA < 0.

10A square and symmetric matrix P ∈ IRn×n is positive definite, denoted P > 0, if

v
′
Pv > 0,

for all nonzero vectors v ∈ IRn. Note that the symmetry condition is without loss of generality. In fact, a
nonsymmetric matrix M is the sum of a symmetric matrix P and an anti-symmetric matrix Q. Hence

v
′
Mv = v

′(P + Q)v = v
′
Pv.

To test positivity of a symmetric matrix

P =

266664 p11 p12 p13 · · · p1n

p12 p22 p23 · · · p2n

p13 p23 p33 · · · p3n

...
...

...
. . .

...
p1n p2n p3n · · · pnn

377775
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• In the case of discrete-time systems, there exists a positive definite matrix P = P ′

such that
A′PA− P < 0.

To complete our discussion we stress that stability properties are associated to the specific
state space representation of the system that we consider. Thus, another state space
representation of the same system may have different stability properties. Nevertheless,
representations related by a change of coordinates with specific properties have the same
stability properties. We discuss this issue with reference to linear representations and
linear change of coordinates. To this end, consider a change of coordinates described by

x(t) = L(t)x̂(t), (2.27)

with L(t) invertible for all t, and note that the state transition matrix of the representation
with state x̂ is given by

Φ̂(t, t0) = L−1(t)Φ(t, t0)L(t0).

As a consequence, the following results hold.

Proposition 2.12 Consider a state space representation of a linear, finite-dimensional
system, and assume it is (asymptotically) stable. Then any representation obtained by
means of a change of variable of the form (2.27) is (asymptotically) stable if and only if

‖L(t)‖ ≤ k1 ‖L−1(t)‖ ≤ k2, (2.28)

for some constants k1 and k2, and for all t.

Corollary 2.2 Consider a state space representation of a linear, finite-dimensional, time-
invariant system, and assume it is (asymptotically) stable. Then any representation ob-
tained by means of a change of variable of the form (2.27) with L(t) constant and invertible
is (asymptotically) stable.

Proof. It is enough to note that if L(t) is constant and invertible then condition (2.28)
holds. ⊳

Example 2.16 To show the importance of the bounds (2.28) consider the system described
by

ẋ = −x,
we could use the Sylvester test, which states that P = P ′ > 0 if and only if

p11 > 0

���� p11 p12

p12 p22

���� > 0

����� p11 p12 p13

p12 p22 p23

p13 p23 p33

����� > 0 · · · detP > 0.

Note finally, that a matrix P is negative definite, denoted P < 0 is −P > 0.
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with x ∈ IR, which is asymptotically stable, and the change of coordinates

x̂(t) = eαtx(t).

Note that, for α 6= 0, this change of coordinates is such that conditions (2.28) do not hold.
The state space representation with the state variable x̂ is given by

˙̂x = (α− 1)x̂,

and its stability depends upon the value of α!

2.6 Coordinates transformations

Because of the importance that it has in the forthcoming chapters, we elaborate on the
operation of coordinates transformation. This operation is often used to simplify the state
space representation of a given system or to highlight some specific property.

Consider a continuous-time, finite-dimensional, linear system described by the equations

ẋ = A(t)x+B(t)u y = C(t)x+D(t)u,

with x ∈ X = IRn, u(t) ∈ IRm, y(t) ∈ IRp, and the change of coordinates

x(t) = L(t)x̂(t), (2.29)

with L(t) invertible for all t. The state space representation in the new coordinates is
given by

˙̂x =
�
L−1(t)(A(t)x +B(t)u) + L̇−1(t)x

�
x=L(t)x̂

= (L(t)−1A(t)L(t) + L̇−1(t)L(t))x̂ + L−1(t)B(t)u,

and
y = CL(t)x̂+D(t)u.

Similarly, for a a discrete-time, finite-dimensional, linear system described by the equations

x+ = A(t)x+B(t)u y = C(t)x+D(t)u,

with x ∈ X = IRn, u(t) ∈ IRm, y(t) ∈ IRp, and the change of coordinates

x(t) = L(t)x̂(t),

with L(t) invertible for all t, the state space representation in the new coordinates is given
by

x̂+ = L−1(t+ 1)A(t)L(t)x̂ + L−1(t+ 1)B(t)u,

and
y = CL(t)x̂+D(t)u.
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In the case of time-invariant systems, we focus on time-invariant coordinates transforma-
tions, i.e. x = Lx̂, with L invertible. The transformed system is described by

σx̂ = L−1ALx̂+ L−1Bu y = CLx̂+Du.

The matrices A and L−1AL have the same eigenvalues, and the same characteristic and
minimal polynomials, and they are said to be similar.

Motivated by this discussion we introduce the following definition.

Definition 2.9 (Algebraic equivalent systems) The state space representations

σx = Ax+Bu y = Cx+Du

with x ∈ IRn, u(t) ∈ IRm, y(t) ∈ IRp, and

σx̂ = Âx̂+ B̂û ŷ = Ĉx̂+ D̂û

with x̂ ∈ IRn, û(t) ∈ IRm, ŷ(t) ∈ IRp, are algebraically equivalent if there exists a nonsin-
gular matrix L such that

Â = L−1AL B̂ = L−1B Ĉ = CL D̂ = D.

Note that, for algebraically equivalent representations, one has

CAiB = ĈÂiB̂

and

CeAtB = ĈeÂtB̂.

Example 2.17 (Lyapunov transformation) Consider a system, without input, descri-
bed by

ẋ = A(t)x, (2.30)

with x ∈ IRn, and A(t) periodic of period T , i.e. A(t + T ) = A(t), for all t ∈ IR. A
coordinates transformation x(t) = L(t)x̂(t), with L(t) periodic of period T , differentiable,
bounded and nonsingular for every t, and with bounded inverse, is called a Lyapunov
transformation if the matrix

Ã = L−1(t)A(t)L(t) + L̇−1(t)L(t)

has constant entries. Note that in general, for a given periodic matrix A(t) it is not
possible to decide on the existence of a Lyapunov transformation. However, if such a
transformation does exist, then it is possible to decide stability of the system (2.30) by
computing the eigenvalues of Ã.
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2.7 Stability in the first approximation

In Section 2.4 we have seen that it is possible to approximatly describe a nonlinear system
around a given operating condition by means of a linear system. This approximation
makes sense only if the deviation variables δu and δx are small for all t, i.e. only if δu is
selected sufficiently small and if a sort of stability property holds for δx.

In this section we clarify this issue. In particular we show that, in several cases of practical
interest, from properties of the linearized model it is possible to infer properties of the
nominal motion of the nonlinear system.

Proposition 2.13 Consider a nonlinear, time-invariant, system

σx = f(x),

with x ∈ X. Let xe be an equilibrum of the system and let

σδx = Aδx

be the corresponding linearized system.

• In the case of continuous-time systems, if A is non-singular then the equilibrium xe

is isolated.

• In the case of discrete-time systems, if A− I is non-singular then the equilibrium xe

is isolated.

Remark. An equilibrum of a nonlinear system may be isolated even if the matrix A, or
A − I, which describes the linearized system around the equilibrium is singular. For
example, consider the discrete-time system

x+
1 = x1 + x2

2 x+
2 = x2 + x3

1,

and the equilibrium (x1, x2) = (0, 0). Note that this is the unique equilibrium of the
system. Nevertheles, the matrix A of the linearized system around the equilibrium is
equal to the identity, hence A− I is identically equal to zero, hence it is singular. ⋄

The result in Proposition 2.13 is important because only isolated equilibria may be as-
ymptotically stable, hence it provides a necessary condition for asymptotic stability of the
equilibrium of the nonlinear system. Sufficient conditions can be also developed, as given
in the following statement.

Proposition 2.14 Consider a nonlinear, time-invariant, system

σx = f(x),
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with x ∈ X. Let xe be an equilibrum of the system and let

σδx = Aδx

be the corresponding linearized system.

• Asymptotic stability of the linearized system implies (local) asymptotic stability of
the equilibrium x = xe of the nonlinear system.

• In the case of continuous-time systems, if the linearized system is unstable because
the matrix A has eigenvalues with positive real part then the equilibrium x = xe of
the nonlinear system is unstable.

• In the case of discrete-time systems, if the linearized system is unstable because the
matrix A has eigenvalues with modulo larger than one then the equilibrium x = xe

of the nonlinear system is unstable.

The second and third claims cannot be relaxed replacing the fact that one eigenvalue has
positive real part, in the case of continuous-time systems, or modulo larger than one, in
the case of discrete-time systems, with the property that the linearized system is unstable,
as illustrated in the following example.

Example 2.18 Consider the system

ẋ1 = x2 ẋ2 = −x3
1,

with x = (x1, x2) ∈ IR2. The origin is an equilibrium of the system, and the linearized
system around such an equilibrium is

δ̇x =

�
0 1
0 0

�
δx,

hence it is unstable. However, the zero equilibrium of the nonlinear system is stable. To
prove this note that

x3
1ẋ1 + x2ẋ2 = 0,

hence
x4

1(t)

4
+
x2

2(t)

2

is constant along all trajectories of the system. As a results, using similar arguments as
those in Example 2.14, we conclude stability of the equilibrium.

Example 2.19 Consider the Newton iteration discussed in Example 2.10. Therein, it
has been shown that the system linearized around any stationary point such that condition
(2.19) holds is

δ+x = 0,
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hence the stationary point, which is an equilibrium of the nonlinear system, is locally
asymptotically stable. This property justifies the fast convergence rate of Newton’s method
whenever initialized close to a stationary point, provided the Hessian matrix of the function
be nonsingular at the point.

Example 2.20 Proposition 2.14 holds also for non-time-invariant systems. For example,
consider the system in Example 2.11. Suppose that, for all t ∈ IR,

∂g(x1x2)

∂x1

�
etx1(0),

e−t

x1(0)

�
+ 1

∂g(x1x2)

∂x2

�
etx1(0),

e−t

x1(0)

�
are bounded and

∂g(x1x2)

∂x1

�
etx1(0),

e−t

x1(0)

�
+ 1 < −ǫ < 0,

for some constant ǫ > 0. Then, by direct integration of the linear differential equations,
it is possible to conclude that the system (2.22) is asymptotically stable. This, in turn,
implies that the motion associated to the trajectory (2.21) is locally asymptotically stable.

Example 2.21 Newton’s iteration

x+ = x−
�
∂2f(x)

∂x2
(x)

�−1
∂f(x)

∂x
(x).

is not well-defined, hence not applicable, for all x such that the matrix�
∂2f(x)

∂x2
(x)

�
is singular. To avoid this difficulty it is sometimes modified into

x+ = x− det

�
∂2f(x)

∂x2
(x)

��
∂2f(x)

∂x2
(x)

�−1
∂f(x)

∂x
(x). (2.31)

This modification, known as discrete Branin method, is well-defined for all x. However, it
has the disadvantage that there are equilibria of the system (2.31) which are not stationary
points of the function f . (These points are called extraneous singularities). Moreover, the
system linearized around a stationary point xe of f is given by

δ+x =

�
1 − det

�
∂2f(x)

∂x2
(xe)

��
δx,

hence it is not possible to claim anything on the local stability of the equilibrium xe.
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3.1 Introduction

In this chapter we focus on linear, time-invariant, systems, namely systems described by
equations of the form

σx = Ax+Bu y = Cx+Du, (3.1)

with x ∈ X = IRn, u(t) ∈ IRm, y(t) ∈ IRp and A, B, C, and D matrices of appropriate
dimensions and with constant entries.

For such a class of systems we study the input-to-state and state-to-output interactions,
which are characterized by means of the so-called structural properties: reachability and
controllability, observability and reconstructability, respectively.

These properties allow to quantify and describe in a precise way the effect of input signals
on the state of the system and the ability to reconstruct the state of the system by
means of measurements of the output variable. These properties are naturally defined in
terms of properties of the trajectories of the system. However, because of linearity and
time-invariance, it is possible to characterize such properties in terms of properties of the
matrices arising in the state space representation.

3.2 Reachability and controllability

When studying the input-to-state interaction we can take two different points of view. In
the former, we assume that the initial state of the system, i.e. the state of the system at
time t = 0, is fixed and we consider the problem of determining the states of the system
that can be reached applying a certain input signal over a given period of time. In this
case we study the so-called reachability property. In the latter, we assume that the final
state of the system, at some time T , is fixed and we aim at determining all initial states
that can be steered, by means of a certain input signal, to the selected final state. In this
case we study the so-called controllability property.

In the study of reachability and controllability, whenever the input signal that drives a
certain initial state to a certain final state is not unique, we could impose constraints on
such an input signal, e.g. we could consider the input signal with minimum energy, or with
minimum amplitude, or the input signal which achieves the transfer in minimum time. If
no constraint is imposed all input signals achieving the considered trasfer are equivalent.

For linear systems the properties of reachability and controllability are referred to the state
x = 0, hence we say that a state is reachable to mean that it is reachable from x = 0 and
that a state is controllable to mean that it is controllable to x = 0. Note moreover that,
because these properties are used to describe the input-to-state interaction they, trivially,
depend only upon properties of the matrices A and B.
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3.2.1 Reachability of discrete-time systems

Consider a linear, time-invariant, discrete-time, system. Let x(0) = 0 and consider an
input sequence u(0), u(1), u(2), · · · , u(k − 1). The state reached at t = k is given by

x(k) =
�
B AB · · · Ak−1B

� 266664 u(k − 1)
u(k − 2)

...
u(0)

377775 .
This implies that the set of states that can be reached at t = k is a linear space, i.e. it is
the subspace Rk spanned by all linear combinations of the columns of the matrix

Rk =
�
B AB · · · Ak−1B

�
,

i.e.
Rk = ImRk.

The set Rk is a vector space, denoted as the reachable subspace in k steps. If Rk = X,
i.e. rankRk = n, then all states of the system are reachable in (at most) k steps and the
system is said to be reachable in k steps.

As k varies, we have a sequence of subspaces, namely

R1, R2, · · · , Rk, · · · . (3.2)

This sequence of subspaces is such that the following properties hold.

Proposition 3.1 The sequence of subspaces (3.2) is such that

R1 ⊆ R2 ⊆ · · · ⊆ Rk ⊆ · · · .

Moreover, if for some k̄, Rk̄ = Rk̄+1, then, for all k ≥ k̄, Rk = Rk̄. Finally,

R1 ⊆ R2 ⊆ · · · ⊆ Rn = Rn+1.

Proof. To prove the first claim note that if a state x̄ is reached from zero in k steps, using
the input sequence u(0), u(1), · · · , u(k− 1), then the same state is also reached from zero
in k + 1 steps, using the input sequence 0, u(0), u(1), · · · , u(k − 1), hence, for all k ≥ 1,
Rk ⊆ Rk+1.

To prove the second claim it is enough to show that

Rk̄ = Rk̄+1 ⇒ Rk̄+1 = Rk̄+2, (3.3)

or, equivalently that if Rk̄ = Rk̄+1, then any x̄ ∈ Rk̄+2 belongs also to Rk̄+1. For, let
x̄ be an element of Rk̄+2. This means that there is an input sequence which steers the
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state of the system from x(0) = 0 to x̄ in k̄ + 2 steps. Consider now the state reached
after k̄+1 steps, using the same input sequence, which we denote with x̃. By assumption,
x̃ ∈ Rk̄+1 = Rk̄, hence there is an input sequence which steers the state of the system
from x(0) = 0 to x̃, in k̄ steps. However, by definition of x̃ it is possible to steer x̃ to x̄
in one step, hence there is an input sequence which steers x(0) = 0 to x̄, in k̄ + 1 steps,
which proves the claim.

To prove the third claim note that if, for some k < n, Rk = Rk+1 then the claim follows
from equation (3.3). Suppose now that, for all k, the dimension of Rk+1 is strictly larger
than the dimension of Rk. This implies that the sequence

dim Rk

is strickly increasing at each step. However, this sequence is bounded (from above) by n,
and this proves the claim. ⊳

Definition 3.1 Consider the discrete-time system (3.1). The subspace R = Rn is the
reachability subspace of the system.

The matrix R = Rn is the reachability matrix of the system.

The system is said to be reachable if R = X = IRn.

Remark. By definition,

R = ImR,

hence the discrete-time system (3.1) is reachable if and only if

rankR = n. (3.4)

Equation (3.4) is known as Kalman reachability rank condition, and was derived by
R.E. Kalman in the 60’s. ⋄

Remark. From the above discussion it is obvious that, in a n-dimensional, linear, discrete-
time system, if a state x̄ is reachable, then it is reachable in at most n steps. This does
not mean that n steps are necessarily required, i.e. the state x̄ could be reached in less
than n steps. In a reachable system, the smallest integer k⋆ such that

rankRk⋆ = n

is called the reachability index of the system. Note that, for single-input reachable systems,
necessarily, k⋆ = n. ⋄
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Example 3.1 Consider a discrete-time system with x ∈ IR3,

A =

264 0 0 0
0 0 0
0 0 1

375 B =

264 0
1
1

375 .
Then

R1 = spanB R2 = R3 = R = span

264 0 0
1 0
1 1

375 .
Hence the system is not reachable, and its reachable subspace has dimension two.

Example 3.2 Consider a discrete-time system with x ∈ IR3,

A =

264 0 1 0
0 0 1
0 0 0

375 B =

264 α
β
γ

375 .
Then

R1 = spanB R2 = span

264 α β
β γ
γ 0

375 R3 = span

264 α β γ
β γ 0
γ 0 0

375 .
As a result, the system is reachable if and only if γ 6= 0. Moreover, if γ = 0 and β 6= 0,
the system is not reachable and the reachable subspace has dimension two. Finally, if
γ = β = 0 and α 6= 0, the system is not reachable and the reachable subspace has dimension
one.

The reachability subspace R has the following important property, the proof of which is
a simple consequence of the definition of the subspace.

Proposition 3.2 The reachability subspace contains the subspace spanB, i.e.

spanB ⊆ R,
and it is A-invariant, i.e.

AR ⊆ R.

We conclude this section noting that algebraically equivalent systems have the same reach-
ability properties. In particular, consider two algebraically equivalent systems, with state
x and x̂, respectively. Let L be the coordinates transformation matrix, as given in equa-
tion (2.29), Rk and R̂k the reachability subspaces, and R and R̂ the reachability matrices,
respectively. Then

R̂k = L−1Rk,

hence
R̂ = L−1R,

and one of the two systems is reachable if and only if the other is.
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3.2.2 Controllability of discrete-time systems

The results established for the reachability property can be easily exploited to characterize
the controllability property. In fact, for a linear, time-invariant, discrete-time system, a
state x⋆ is controllable (to zero) in k steps if there exists an input sequence u(0), u(1),
· · · , u(k − 1) that drives the state from x(0) = x⋆ to x(k) = 0, i.e.

0 = Akx⋆ +
�
B AB · · · Ak−1B

� 266664 u(k − 1)
u(k − 2)

...
u(0)

377775 ,
or equivalently

−Akx⋆ =
�
B AB · · · Ak−1B

� 266664 u(k − 1)
u(k − 2)

...
u(0)

377775 .
This last equation implies that x⋆ is controllable if the state −Akx⋆ is reachable in k steps,
hence if

−Akx⋆ ∈ Rk. (3.5)

It is easy to see that the set of all x⋆ such that equation (3.5) holds is a vector space,
denoted by Ck, and called the controllability subspace in k steps.

A linear, discrete-time, system is controllable in k steps if

ImAk ⊆ Rk.

Example 3.3 Consider the system in Example 3.1. The system is controllable in two
steps. In fact

A2 = A ∈ R2 = R.

Example 3.4 Consider the system in Example 3.2. The system is controllable in three
steps no matter the values of α, β, and γ. Note in fact that A3 = 0. The system is
controllable in two steps if γ = 0 and α 6= 0 or β 6= 0. Finally, it is controllable in one
step if γ = 0, and αβ 6= 0.

Similarly to the reachability subspaces, as k varies we have a sequence of controllability
subspaces, namely

C1, C2, · · · , Ck, · · · . (3.6)

This sequence of subspaces is such that the following properties hold.
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Proposition 3.3 The sequence of subspaces (3.6) is such that

C1 ⊆ C2 ⊆ · · · ⊆ Ck ⊆ · · · .

Moreover, if for some k̄, Ck̄ = Ck̄+1, then, for all k ≥ k̄, Ck = Ck̄. Finally,

C1 ⊆ C2 ⊆ · · · ⊆ Cn = Cn+1.

Proof. The proof of this statement is similar to the one of Proposition 3.1. We simply
remark that, if a state is controllable in k steps, using the input sequence u(0), u(1), · · · ,
u(k − 1), then the same state is also controllable in k + 1 steps, using the input sequence
u(0), u(1), · · · , u(k − 1), 0. ⊳

Definition 3.2 Consider the discrete-time system (3.1). The subspace C = Cn is the
controllability subspace of the system.

The system is said to be controllable if C = X = IRn.

The discrete-time system (3.1) is controllable if and only if

ImAn ⊆ R. (3.7)

In particular, if A is nilpotent, i.e. Aq = 0, for some q ≤ n, then for any B (even B = 0)
the system is controllable. Note that a reachable system is controllable, but the converse
statement does not hold. In particular

R ⊆ C ⊆ X = IRn.

3.2.3 Construction of input signals

The study of the properties of reachability and controllability leads to the following ques-
tion. Is it possible to explicitly construct an input sequence which steers the state of the
system from an initial condition x0, i.e. x(0) = x0, to a final condition xf in k steps, i.e.
x(k) = xf?

To answer this question, consider the problem of determining an input sequence u(0),
u(1), · · · , u(k − 1) such that

xf −Akx0 = RkUk−1, (3.8)

where

Uk−1 =

26666664 u(k − 1)
u(k − 2)

...
u(1)
u(0)

37777775 ∈ IRk m.



64 CHAPTER 3. THE STRUCTURAL PROPERTIES

To solve the problem we have to solve the linear system (3.8) in the unknown Uk−1. This
system has a solution if, and only if,

xf −Akx0 ∈ ImRk, (3.9)

which clearly shows the role of the matrices Rk in solving the considered problem. Note
that the input sequence achieving the desired goal may not be unique. In particular,
several solutions can be obtained as the linear combination of a particular solution of
equation (3.9) and a solution of the homogeneous equation

RkUk−1 = 0.

In the special case of a reachable system, it is possible to obtain an explicit expression for
one input sequence solving the considered problem in n steps. To this end, note that by
reachability, rankRn = n, hence the condition expressed in equation (3.9), with k = n,
holds.

Consider now an input signal defined as

Un−1 = R′
nv,

where v has to be determined. Using this definition, and setting k = n, equation (3.8)
becomes

xf −Anx0 = RnR
′
nv,

where the matrix RnR
′
n is square and invertible. Hence, a control sequence solving the

considered problem in n steps is given by

Un−1 = R′
n(RnR

′
n)−1(xf −Anx0).

It is possible to show that, among all input sequences steering the state of the system from
x0 to xf in n steps the one constructed has minimal norm (energy).

3.2.4 Reachability and controllability of continuous-time systems

The properties of reachability and controllability for linear, time-invariant, continuous-
time systems can be assessed using the same ideas exploited in the case of discrete-time
systems. However, the tools are more involved as the input-state relation is expressed by
means of an integral (see equation (2.9)).

Consider the reachability problem, i.e. the initial state of the system is x(0) = 0 and we
want to characterize all states x̄ that can be reached in some interval of time t, i.e. all
states such that, for some input function u(t),

x̄ =
Z t

0
eA(t−τ)Bu(τ) dτ.

Note now that, by Cayley-Hamilton Theorem

eAt = α0(t)I + α1(t)A+ · · · + αn−1(t)A
n−1,
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for some scalar functions αi(t). Hence

x̄ =
�
B AB · · · An−1B

� 2666666666664
Z t

0
α0(t− τ)u(τ) dτZ t

0
α1(t− τ)u(τ) dτ

...Z t

0
αn−1(t− τ)u(τ) dτ

3777777777775 .
This implies that a state x̄ is reachable only if

x̄ ∈ Im
�
B AB · · · An−1B

�
= ImR.

We now prove the converse fact, i.e. that if a state is in the image of R then it is reachable.
To this end, define the controllability Gramian

Wt =
Z t

0
eA(t−τ)BB′eA

′(t−τ) dτ,

with t > 0, and note that1

ImR = ImWt. (3.10)

Selecting
u(τ) = B′eA

′(t−τ)β,

where β is a constant vector, yields

x̄ = Wtβ. (3.11)

Hence, to assess reachability of the state x̄ ∈ ImR it is sufficient to show that equation
(3.11) has (at least) one solution β. However, this fact holds trivially by condition (3.10).

Remark. Unlike the case of discrete-time systems, where the set of reachable states depends
upon the length of the input sequence, for continuous-time systems if a state is reachable,
then it is reachable in any (possibly small) interval of time. ⋄

Definition 3.3 Consider the continuous-time system (3.1). The subspace R is the reach-
ability subspace of the system.

The matrix R is the reachability matrix of the system.

The system is said to be reachable if R = X = IRn.

We summarize the above discussion with a formal statement.

1The proof of this property is not trivial.
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Proposition 3.4 Consider the continuous-time system (3.1). The following statements
are equivalent.

• The system is reachable.

• rankR = n.

• For all t > 0 the controllability Gramian Wt is positive definite.

Remark. If a system is reachable then it is possible to explicitly determine one input signal
which steers the state of the system from x(0) = 0 to any x̄ in a give time t > 0. In fact,
to determine one such input signal it is sufficient to solve the equation (3.11) which, if the
system is reachable, has the unique solution

β = W−1
t x̄,

i.e. the input signal
u(τ) = B′eA

′(t−τ)W−1
t x̄ (3.12)

steers the state of the system from x(0) = 0 to x(t) = x̄. Similarly to what discussed
in Section 3.2.3, it is possible to prove that, among all input signals steering the state
from 0 to x̄ in time t, the input signal (3.12) is the one with minimum energy. Similar
considerations can be done to determine an input signal steering a nonzero initial state to
a given final state. ⋄

To discuss the property of controllability note that a state x̄ is controllable (to zero) in
time t > 0 if there exists an input signal such that

0 = eAtx̄+
Z t

0
eA(t−τBu(τ) dτ.

This, however, implies that
eAtx̄ ∈ R

hence
x̄ ∈ e−AtR.

This implies that the set of controllable states in time t > 0 is the set

Ct = e−AtR,

which has the same dimension as R, by invertibility of e−At for all t, and it is contained in
R, by the fact that R is A-invariant, hence it is trivially e−At-invariant. As a consequence,
for all t > 0,

Ct = R,
which shows that the set C of controllable states does not depend upon t > 0 and that
a continuous-time system is controllable if and only if it is reachable (unlike what hap-
pens for discrete-time systems, for which reachability implies, but it is not implied by,
controllability).
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Example 3.5 Consider the linear electric network in Figure 3.1. Assume R1 > 0, R2 >
0, L > 0 and C > 0. The input u is the driving voltage and the output y is the current
supplied.

R
R1

u 2

C

y=i

L

-

+

Figure 3.1: A linear electric network.

Let x1 be the current through L and x2 the voltage across C. By Kirchhoff’s laws we have

ẋ1 = −R1

L
x1 −

1

L
x2 +

1

L
u ẋ2 =

1

C
x1

and

y = x1 +
1

R2
u.

Therefore

A =

" −R1
L − 1

L

1
C 0

#
B =

" 1
L

0

#
.

The reachability matrix is

R =

" 1
L −R1

L2

0 1
LC

#
hence the system is reachable (and controllable) for any L and C.

Example 3.6 Consider the linear electric network in Figure 3.2. Assume R1 > 0, R2 >
0, L > 0 and C > 0. The input u is the driving voltage and the output y is the current
supplied.

Let x1 be the voltage across C and x2 the current through L. By Kirchhoff’s laws we have

ẋ1 = − 1

R1C
x1 +

1

R1C
u ẋ2 = −R2

L
x2 +

1

L
u

and

y = − 1

R1
x1 + x2 +

1

R1
u.
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R1 2R

C L

u

y=i

Figure 3.2: A linear electric network.

The reachability matrix is

R =

" 1
R1C − 1

R2
1C2

1
L −R2

L2

#
and

detR =
1

R1CL

�
1

R1C
− R2

L

�
,

hence the system is reachable (and controllable) provided R1R2C 6= L.

3.2.5 A canonical form for reachable systems

In this section we focus on single-input systems and we show that the property of reacha-
bility allows to write the system in a special form, known as reachability canonical form.

Consider the system (3.1), with m = 1, and suppose the system is reachable, i.e. the rank
of the reachability matrix is equal to n.

By reachability, there is a (row) vector l such that

lB = 0 lAB = 0 lAn−2B = 0 lAn−1B = 1. (3.13)

In fact, conditions (3.13) can be rewritten as

lR =
�

0 0 · · · 0 1
�

(3.14)

hence

l =
�

0 0 · · · 0 1
�
R−1

is well defined.

The vector l has the following important property.
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Lemma 3.1 Let l be as in equation (3.14). Then the square matrix

T =

26666664 l
lA
...

lAn−2

lAn−1

37777775
is invertible.

Proof. Consider the matrix

TR =

26666664 l
lA
...

lAn−2

lAn−1

37777775 � B AB · · · An−2B An−1B
�

=

2666666664 lB lAB · · · lAn−2B lAn−1B

lAB lA2B · · · lAn−1B lAnB

...
... . .

. ...
...

lAn−2B lAn−1B · · · · · · · · ·
lAn−1B · · · · · · · · · · · ·

3777777775
and note that, by conditions (3.13),

TR =

26666664 0 0 · · · 0 1
0 0 · · · 1 lAnB
...

... . .
. ...

...
0 1 · · · · · · · · ·
1 lAnB · · · · · · · · ·

37777775
which shows that |det(TR)| = 1, hence T is invertible. ⊳

The matrix T can be used to define a new set of coordinates x̂ such that

x̂ = Tx.

To derive the state space representation of the system in the x̂ coordinates we could use
the general discussion in Section 2.6. However, it is easier to proceeed in an alternative
way. For, consider the auxiliary signal

x̂1 = lx
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and note that
σx̂1 = lAx = x̂2,

σx̂i = lAix = x̂i+1,

for i = 1, · · · , n− 1 and

σx̂n = lAnx+ u = lAnT−1x̂+ u.

As a result, in the new coordinates x̂ one has

σx̂ = Arx̂+Brx̂, (3.15)

where

Ar =

26666664 0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · −αn−1

37777775 Br =

26666664 0
0
...
0
1

37777775 ,
and �

−α0 −α1 −α2 · · · −αn−1

�
= lAnT−1.

Note that for any αi, the system (3.15) is reachable, hence a system described by equation
(3.15) is said to be in reachability canonical form.

The matrix Ar is in companion form. It is worth noting that its characteristic polynomial
is

p(s) = sn + αn−1s
n−1 + αn−2s

n−2 + · · · + α1s+ α0,

i.e. it depends only upon the elements of the last row.

Example 3.7 Consider the system in Example 3.5. This system is reachable (and con-
trollable) for any L and C. To write the system in reachability canonical form we have to
find a (row) vector l such that conditions (3.13) hold, namely

l

" 1
L

0

#
= 0 l

" −R1
L2

1
LC

#
= 1,

yielding
l =

�
0 LC

�
.

Finally

T =

"
l

lA

#
=

"
0 LC

L 0

#
and the system in the transformed coordinates is described by

˙̂x =

"
0 1

− 1
LC −R1

L

#
x̂+

"
0

1

#
u,

i.e. it is in reachability canonical form.
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3.2.6 Description of non-reachable systems

In this section we study systems which are not reachable, i.e. systems described by the
equation (3.1) and such that

rankR = ρ < n.

Under this assumption, consider a set of coordinates x̂ such that

x = Lx̂,

and the matrix L is constructed as follows. The first ρ columns of L are ρ linearly
independent columns of the matrix R, and the last n − ρ columns are selected in such a
way that the matrix L is invertible2.

The system in the x̂ coordinates, which is algebraically equivalent to the system in the x
coordinates, is described by the equations

σx̂ = Âx̂+ B̂u = L−1ALx̂+ L−1Bu.

We now show that, because of the way in which L has been constructed, the matrices Â
and B̂ have a special structure. To this end note that

LÂ = AL LB̂ = B

and partition the matrices L, A, Â, B and B̂ as

L =

�
L11 L12

L12 L22

�
, A =

�
A11 A12

A12 A22

�
, Â =

�
Â11 Â12

Â21 Â22

�
,

B =

�
B1

B2

�
, B̂ =

�
B̂1

B̂2

�
,

where L11, A11 and Â11 have dimensions ρ×ρ; L12, A12 and Â12 have dimensions ρ×n−ρ;
L21, A21 and Â21 have dimensions n−ρ×ρ; L22, A22 and Â22 have dimensions n−ρ×n−ρ;
B1 and B̂1 have dimensions ρ×m and B2 and B̂2 have dimensions n− ρ×m.

Recall that, by construction, R is spanned by the first ρ columns of the matrix L, and
that R is A-invariant and contains B. This implies that the submatrices Â21 and B̂2 have
to be identically zero, i.e. in the x̂ coordinates the system is described by

σx̂ =

�
σx̂1

σx̂2

�
=

�
Â11 Â12

0 Â22

�
x̂+

�
B̂1

0

�
u, (3.16)

where x̂1 ∈ IRρ and x̂2 ∈ IRn−ρ. The reachability matrix of the system in the x̂ coordinates
is

R̂ =

�
B̂1 Â11B̂1 · · · Ân

11B̂1

0 0 0 0

�
,

2It is always possible to determine such n− ρ vectors. Moreover it is possible to select them among the
vectors ei of the canonical basis.
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and, because R = LR̂, it has rank ρ. This implies that the subsystem

σx̂1 = Â11x̂1 + B̂1u (3.17)

is reachable. The subsystem (3.17) is called the reachable subsystem of the system (3.1),
whereas the subsystem

σx̂2 = Â22x̂2, (3.18)

which is clearly not affected by the input, is called the unreachable subsystem of the
system (3.1). The eigenvalues of the matrix Â22, which are a subset of the eigenvalues of
the matrix A, are called unreachable modes.

Example 3.8 Consider the system in Example 3.6, and assume R1R2C = L, which im-
plies that the system is not reachable (and not controllable), as the rank of the reachability
matrix is equal to one. To obtain a decomposition into reachable and unreachable subsys-
tems, let

L =

" 1
R1C 1

1
L 0

#
yielding

Â = L−1AL =

"
−R2

L 0

0 − 1
R1C

#
B̂ = L−1B =

"
1

0

#
.

3.2.7 PBH reachability test

The decomposition of a system in reachable and unreachable parts allows to derive an
alternative test for reachability.

Proposition 3.5 (Popov-Belevich-Hautus (PBH) reachability test) Consider the
system (3.1). The system is reachable if and only if

rank
�
sI −A B

�
= n

for all s ∈ CI.

Remark. The matrix �
sI −A B

�
is called reachability pencil. Note that the rank condition in Proposition 3.5 holds trivially
for all s which are not eigenvalues of A, hence the condition has to be checked only for
the n (complex) numbers which are eigenvalues of A. ⋄

Proof. (Necessity) We prove the necessity by contradiction. Suppose the system is reach-
able and that, for some s⋆ ∈ CI,

rank
�
s⋆I −A B

�
< n.
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Then there is a vector w such that

w′
�
s⋆I −A B

�
= 0,

hence
w′B = 0 w′A = s⋆w′.

As a result
w′AB = 0 w′A2B = 0 · · · w′An−1B = 0

or, equivalently,
w′R = 0,

which implies that the system is not reachable, hence the contradiction.
(Sufficiency) Again, we prove the statement by contradiction. Suppose

rank
�
sI −A B

�
= n

for all s ∈ CI and the system is not reachable. Consider the change of coordinates which
transforms the system into the form (3.16) and note that, for the transformed system one
has3

rank

�
sI − Â11 −Â12 B̂1

0 sI − Â22 0

�
= n.

However, this is not true as this matrix loses rank for all s which are eigenvalues of Â22,
hence the contradiction. ⊳

Remark. The PBH test allows to compute the unreachable modes of a system without per-
forming the decomposition into reachable and unreachable parts. In fact, the unreachable
modes are all the complex numbers for which the reachability pencil loses rank. ⋄

Example 3.9 Consider again the system in Example 3.6. The reachability pencil is"
s+ 1

R1C 0 1
R1C

0 s+ R2
L

1
L

#
.

This matrix has rank two for all s 6= − 1
R1C and s 6= −R2

L . For s = − 1
R1C or s = −R2

L the
reachability pencil loses rank, i.e. the system is not reachable, if

− 1

R1C
+
R2

L
= 0,

and this condition is the same as the one derived in Example 3.6.

3Note that the rank of the reachability pencils of algebraically equivalent systems is the same for all
s ∈ CI . This is a consequence of the identity�

sI − Â B̂
�

=
�

sI − L−1AL L−1B
�

= L
−1 �

sI − A B
� � L 0

0 I

�
.
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Example 3.10 Consider a continuous-time system described by the equation

ẋ = Ax+Bu (3.19)

and its Euler approximate discrete-time model

x+ = x+ TAx+ TBu, (3.20)

where T denotes the sampling-time. Suppose the continuous-time system is controllable,
i.e.

rank
�
sI −A B

�
= n,

for all s ∈ CI. Consider now the reachability pencil of the discrete-time model (3.20), i.e.�
sI − (I + TA) TB

�
and note that, by reachability of the continuous-time system,

rank
�
sI − (I + TA) TB

�
= rank

�
s− 1

T
I −A B

�
= rank

�
zI −A B

�
= n,

where z = s−1
T . Hence, reachability of system (3.19) implies, and it is implied by, reacha-

bility of system (3.20).

Suppose now that the continuous-time system is not reachable, and that all non-reachable
modes are in the open left part of the complex plane, i.e. they have negative real part hence
they are asymtotically stable. This implies that the discrete-time Euler approximate model
is not reachable, however the non-reachable modes belong to the set described by§

z ∈ CI | Real(z) < − 1

T

ª
,

hence it is not possible to decide a-priori if they are stable or otherwise.

3.3 Observability and reconstructability

In this section we study the state-to-output relation, and we focus on the problem of
determining the state of a system, at a given time instant, from measurements of the
input and output signals. This problem, of great importance in applications, can be
addressed from two different perspectives.

In the former, we assume that the state at time t has to be determined on the basis
of current and future measurements. In this case we deal with a so-called observability
problem. In the latter, we assume that the state at time t has to be determined from past
and current measurements. In this case we have a so-called reconstructability problem.
Observability problems typically arise in real-time problems, where one has to determine
the state of a system from the actual measurements, whereas a classical reconstructability
problem arises in weather forecast, where one wishes to determine the current weather
from past measurements.
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3.3.1 Observability of discrete-time systems

Consider a linear, time-invariant, discrete-time system. Two states xa and xb are indis-
tinguishable in the future in k steps if for any input sequence u(0), u(1), . . . , u(k− 1) the
corresponding output sequences ya and yb, coincide for the first k steps, i.e.

ya(t) = yb(t) (3.21)

for all t ∈ [0, k]. By equation (2.12), condition (3.21) is equivalent to

CAtxa = CAtxb (3.22)

for all t ∈ [0, k]. This implies that the property of indistinguishability in the future does
not depend upon the input sequence, i.e. it is a property of the free response of the output
of the system, hence of the matrices A and C. Note, moreover, that condition (3.22) can
be rewritten as

xa − xb ∈ kerOk

where

Ok =

26666664 C
CA
CA2

...
CAk

37777775 .
We say that two states are indistinguishable in the future if they are indistinguishable in
the future in k steps for all k ≥ 0. Note that, by Cayley-Hamilton Theorem, two states
xa and xb are indistinguishable in the future if

xa − xb ∈ kerOn−1

Definition 3.4 A state x is not observable in k steps if it is not distinguishable in the
future in k steps from the zero state. It is not observable if it is not observable in k steps
for all k.

As a consequence of the above discussion, we conclude that a state x is not observable in
k steps if

x ∈ kerOk

and it is not observable if
x ∈ kerOn−1.

Note that the set of non-observable (in k steps) states is a subspace.

Definition 3.5 Consider the discrete-time system (3.1). The subspace kerOn−1 is the
unobservable subspace of the system.

The matrix O = On−1 is the observability matrix of the system.

The system is said to be observable if kerO = {0}.
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Remark. The discrete-time system (3.1) is observable if and only if

rankO = n. (3.23)

Equation (3.23) is known as Kalman observability rank condition, and was derived by
R.E. Kalman in the 60’s. ⋄

Example 3.11 Consider a discrete-time system with x ∈ IR3, y ∈ IR,

A =

264 0 0 0
0 0 0
0 0 1

375 C =
�
α β γ

�
.

Then

O0 = C O1 =

�
α β γ
0 0 γ

�
. O2 =

264 α β γ
0 0 γ
0 0 γ

375 .
Hence the system is not observable. The unobservable subspace has dimension one if
αγ 6= 0 or βγ 6= 0, it has dimension two either if γ = 0 and α 6= 0 or β 6= 0, or if γ 6= 0
and α = 0 and β = 0.

Remark. The existence of a non-empty unobservable subspace, implies that from current
and future output and input measurements it is not possible to determine the current
state. In fact this can be determined modulo an element in kerO. ⋄

Example 3.12 Consider the system in Example 3.11 and assume α 6= 0, β = 0 and
γ 6= 0. Thus the unobservable subspace has dimension one and

kerO = span

264 0
1
0

375 .
Therefore it is not possible to distinguish, using current and future measurements, between
states which have the same x1 and x3 components, but different x2 component. This means
that, for example, from current and past measurements, it is possible to conclude that the
initial state belongs to the straight line in Figure 3.3, but it is not possible to determine at
which point on the line the initial state is.

The unobservable subspace kerO has the following important property, the proof of which
is a simple consequence of the definition of the subspace.
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x1

x
3

x2

Figure 3.3: Admissible initial states for an unobservable system.

Proposition 3.6 The unobservable subspace contains the subspace kerC, i.e.

kerC ⊆ kerO,

and it is A-invariant, i.e.

A kerO ⊆ kerO.

We conclude this section noting that algebraically equivalent systems have the same ob-
servability properties. In particular, consider two algebraically equivalent systems, then
one of the two systems is observable if and only if the other is.

3.3.2 Reconstructability of discrete-time systems

In this section we study the property of reconstructability. Consider a linear, time-
invariant, discrete-time system, assume that the input sequence u(0), u(1), . . . , u(k − 1)
and the output sequence y(0), y(1), . . . , y(k) are known and consider the problem of
determining the state of the system at time k, i.e. x(k).

Of course, if the system is observable in k steps, then the considered problem is solvable.
In fact, the input and output sequences determine a unique state x(0), from which it is
possible to compute x(k).

If the system is not observable in k steps, then the initial state cannot be uniquely de-
termined, but it can determined modulo an element in the unobservable subspace. This
means that, if x(0) is an initial state which is consistent with the input and output se-
quences, then all states described by

x̃(0) = x(0) + kerOk
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are also consistent with the same input and output sequences.

Consider now the initial state x̃(0) and the resulting state at time k, namely

x̃(k) = Akx(0) +
k−1X
t=0

Ak−t−1Bu(t) +AkkerOk = x(k) +AkkerOk.

As a result, for given input and output sequences, the state of the system at time k is
uniquely defined if

AkkerOk = {0},
or, equivalently, if

kerOk ⊆ kerAk (3.24)

whereas it is not uniquely defined if the above condition does not hold.

A system is said reconstructable in k steps if condition (3.24) holds. It is said recon-
structable if it is reconstructable in k steps for all k. Recalling that

kerAk = kerAn

for all k ≥ n, a system is reconstructable if and only if

kerO ⊆ kerAn. (3.25)

Note that, the observability rank condition (3.23) implies, but it is not implied, by condi-
tion (3.25).

Example 3.13 Consider a discrete-time system with x ∈ IR3, y ∈ IR,

A =

264 1 1 0
1 0 0
0 1 0

375 C =
�

1 0 0
�
,

i.e.

x+
1 = x1 + x2 x+

2 = x1 x+
3 = x2,

and y = x1. The observability matrix is

O =

264 1 0 0
1 1 0
2 1 0

375 ,
hence the system is not observable. The unobservable subspace has dimension one and is
given by

kerO = span

264 0
0
1

375 .
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Note now that

A3 =

264 3 2 0
2 1 0
1 1 0

375 ,
hence

kerA3 = kerO,

which implies that the system is reconstructable.

This fact can be shown directly. Suppose we want to determine x(2) from y(0), y(1) and
y(2). To this end, note that

x1(2) = y(2),

x2(2) = x1(1) = y(1)

and

x3(2) = x2(1) = x1(0) = y(0),

which proves the claim.

Example 3.14 Consider again the system in Example 3.13. Note that

kerA2 = kerO,

hence the system is reconstructable in two steps. This property can be shown directly. In
fact, suppose we want to determine x(1) from y(0) and y(1). This can be achieved noting
that

x1(1) = y(1),

x2(1) = x1(0) = y(0)

and

x3(1) = x2(0) = x1(1) − x1(0) = y(1) − y(0).

3.3.3 Computation of the state

The property of observability highlights the ability to determine the state of a system from
present and future measurements. From a practical point of view it is however important
not only to characterize the observability property, but also to have a procedure that
allows to effectively compute the unknown state.

Consider a linear, time-invariant, discrete-time system, and note that, by equation (2.12),
the output response of the system is a linear combination of the free response and of the
forced response. The latter is known, once the input signal is known, whereas the former
depends upon the initial state, which has to be determined. This means that the problem
of determining the initial state of a system from current and future (input and output)
measurements is equivalent to the problem of determining the initial state of the system
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from the knowledge of its free output response, i.e. it is possible to assume, without loss
of generality, that the input sequence is identically equal to zero.

To solve this problem note that

Yk =

266664 y(0)
y(1)

...
y(k)

377775 =

266664 C
CA
...

CAk

377775x(0) = Okx(0),

with Yk ∈ IRp (k+1). If the system is observable then On−1 = O is full rank, hence the
equation

Yn−1 = Ox(0) (3.26)

has the (unique) solution

x(0) = (O′O)−1O′Yn−1, (3.27)

which provides a simple way to compute the state x(0) of the system.

Remark. Equation (3.27) shows how to compute the initial state of a system from current
and future measurements. This information, in turn, can be used to determine the state
at time k using equation (2.11). ⋄

Remark. Measurements are naturally affected by noise, i.e. in practice equation (3.26) has
to be replaced by

Yn−1 + ν = Ox(0),

where ν represents a vector of additive noise affecting the output measurements. (For
simplicity we assume that the input sequence is identically zero.) It is possible to prove
that the initial state given by equation (3.27) yields a free output response which minimizes
the norm (energy) of the error between the actual free output response and the calculated
one. ⋄

3.3.4 Observability and reconstructability for continuous-time systems

The properties of observability and reconstructability for continuous-time systems can be
assessed using the same ideas exploited in the case of discrete-time systems.

Consider a linear, time-invariant, continuous-time system. Two states xa and xb are indis-
tinguishable in the future over the interval [0, t] if for any input signal u the corresponding
output responses coincide in the interval [0, t]. This property, recalling equation (2.10),
and noting that the forced responses do not depend upon the initial states, is equivalent
to the condition

CeAτxa = CeAτxb,
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for all τ ∈ [0, t], or to the condition

CeAτ (xa − xb) = 0, (3.28)

for all τ ∈ [0, t].

The function CeAτ is analytic, hence condition (3.28) is equivalent to

CeAτ (xa−xb)|τ=0 = 0
d

dτ
CeAτ (xa−xb)|τ=0 = 0 · · · di

dτ i
CeAτ (xa−xb)|τ=0 = 0 · · · ,

yielding, by a property of the matrix exponential,

C(xa − xb) = 0 CA(xa − xb) = 0 · · · CAi(xa − xb) = 0 · · · . (3.29)

Note finally that, by Cayley-Hamilton Theorem, (3.29) is equivalent to (recall the definition
of the observability matrix O)

O(xa − xb) = 0. (3.30)

In summary, if two states xa and xb are indistinguishable in the future over the interval
[0, t] then they have to be such that condition (3.30) holds.

Remark. Unlike discrete-time systems, in the continuous-time case if two states are indis-
tinguishabe in the future over an interval [0, t] then they are indistinguishabe in the future
over any interval [0, t̄], with t̄ > 0. ⋄

From the above discussion, we conclude that, for a continuous-time system, all states
which are indistinguishable in the future from the zero state, i.e. the unobservable states,
are those, and only those, belonging to kerO, as expressed in the following statement.

Proposition 3.7 Consider the continuous-time system (3.1). The following statements
are equivalent.

• The system is observable.

• rankO = n.

• For all t > 0 the observability Gramian

Vt =
Z t

0
eA

′τC ′CeAτdτ

is positive definite.

Proof. We have only to prove the claim on the observability Gramian. Note first that
Vt = V ′

t ≥ 0, hence we only need to show that rankVt = n, for all t > 0, if and only if the
system is observable.
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Suppose the system is observable and rankVt < n, for some t > 0. This implies that there
exists a vector w such that

w′Vtw = 0,

which implies Z t

0
w′eA

′τC ′CeAτwdτ = 0

hence Z t

0
‖CeAτw‖dτ = 0.

This last equality implies that the function

CeAτw

is identically equal to zero on the interval [0, t]. As a result, by analyticity of the function
and a property of the matrix exponential,

Cw = 0 CAw = 0 · · · CAn−1w = 0,

or equivalently Ow = 0, which contradicts the observability assumption.

Suppose now that Vt > 0 for all t > 0. To show that the system is observable consider the
function

δ(t) =
Z t

0
eA

′τC ′y(τ)dτ

and note that

δ(t) = Vtx(0).

Hence, by positivity of Vt we can uniquely determine x(0) processing future measurements,
i.e. the system is observable. ⊳

We conclude this section studying the property of reconstructability for linear, continuous-
time systems. For, note that two states xa and xb are indistinguishable in the past over
the interval [−t, 0] if for any input signal u the corresponding output responses coincide
in the interval [−t, 0].
Using arguments similar to the ones used in the case of discrete-time systems, we conclude
that all states are distinguishable in the past, over the interval [−t, 0], from the zero state
if

eAt kerO = {0}.

However, because the matrix eAt is invertible for all t, the above condition is equivalent
to

kerO = {0},

i.e. a continuous-time system is reconstructable if and only if it is observable.
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Example 3.15 Consider the system in Example 3.5. The observability matrix is

O =

"
1 0

−R1
L − 1

L

#
hence the system is observable for any zero L (recall that L > 0).

Example 3.16 Consider the system in Example 3.6. The observability matrix is

O =

24 − 1
R1

1

1
R2

1C
−R2

L

35
and

detO =
R2

R1L
− 1

R2
1C

,

hence the system is observable if, and only if, R1R2C 6= L.

3.3.5 Duality

In the study of the structural properties there is a strong relation between the results
on reachability and observability and the results on controllability and reconstructability.
This relation can be defined formally by introducing the notion of dual system.

Definition 3.6 Consider the system, with state x ∈ X = IRn, input u ∈ IRm, and output
y ∈ IRp, described by the equations

σx = Ax+Bu y = Cx+Du. (3.31)

The system, with state ξ ∈ Ξ = IRn, input v ∈ IRp, and output η ∈ IRm, described by the
equations

σξ = A′ξ + C ′v η = B′ξ +D′v (3.32)

is called the dual system of system (3.31), which is called the primal system of system
(3.32).

To understand the importance and the usefulness of this notion of duality, let R and O be
the reachability and observability matrix, respectively, of the system (3.31) and let R⋆ and
O⋆ be the reachability and observability matrix, respectively, of the dual system (3.32).

Then, trivially,
R⋆ = O′ O⋆ = R′.

Moreover, for discrete-time systems, the following implications hold

ImAn ⊆ R⇔ (ImAn)⊥ ⊇ R⊥ ⇔ kerAn ⊇ kerR′ = kerO⋆.

As a result, the following statement holds.
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Proposition 3.8 Consider the system (3.31) and its dual (3.32).

• System (3.31) is reachable if and only if system (3.32) is observable.

• System (3.31) is observable if and only if system (3.32) is reachable.

• System (3.31) is controllable if and only if system (3.32) is reconstructable.

• System (3.31) is reconstructable if and only if system (3.32) is controllable.

The notion of duality and the above statement allow to derive results similar to those
presented in Sections 3.2.5, 3.2.6 and 3.2.7, but with respect to the observability property.

Proposition 3.9 Consider the system (3.1) with p = 1. Suppose the system is observable.
Then the system is algebraically equivalent to a system of the form

σx̂ = Aox̂+Bou y = Cox̂+Dou (3.33)

with

A0 =

2666666664 0 0 · · · 0 0 −α0

1 0 · · · 0 0 −α1

0 1 · · · 0 0 −α2
...

...
. . .

...
...

...
0 0 · · · 1 0 −αn−2

0 0 · · · 0 1 −αn−1

3777777775 C0 =
�

0 · · · 0 1
�
.

Note that for any αi, the system (3.33) is observable, hence a system described by the
equations (3.33) is said to be in observability canonical form.

Proposition 3.10 Consider the system (3.1). Suppose the system is not observable.
Then the system is algebraically equivalent to a system of the form

σx̂ =

�
σx̂1

σx̂2

�
=

�
Â11 0

Â21 Â22

�
x̂+

�
B̂1

B̂2

�
u,

y =
�
Ĉ1 0

�
x̂+ D̂u.

Moreover, the system

σx̂1 = Â11x̂1 + B̂1u y = Ĉ1x̂1 + D̂u (3.34)

is observable.
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The subsystem (3.34) is called the observable subsystem of the system (3.1), whereas the
subsystem

σx̂2 = Â22x̂2 + B̂2u y = 0, (3.35)

which clearly does not contribute to the output, is called the unobservable subsystem of
the system (3.1). The eigenvalues of the matrix Â22, which are a subset of the eigenvalues
of the matrix A, are called unobservable modes.

Proposition 3.11 (PBH observability test) Consider the system (3.1). The system
is observable if and only if

rank

�
sI −A

C

�
= n

for all s ∈ CI.

Example 3.17 (Kalman decomposition) Consider the system (3.1), the associated
reachable subspace R and unobservable subspace kerO. Let

X1 = R ∩ kerO,

with dimX1 = n1, and note that, by A-invariance of R and kerO, also X1 is A-invariant.
Let X2, X3 and X4 be subspaces, of dimension n2, n3, and n4, respectively, such that4

X1 ⊕X2 = R X1 ⊕X3 = kerO X1 ⊕X2 ⊕X3 ⊕X4 = X = IRn.

Note that, by construction, n1 + n2 + n3 + n4 = n. Consider now a change of coordinates
described by

x = Lx̂

where the matrix L is constructed as follows. The first n1 columns of L are a basis for
X1. The subsequent n2 columns are a basis for X2, the subsequent n3 columns are a basis
for X3, and finally, the last n4 columns are a basis for X4.

In the coordinates x̂ the system is described by

σx̂ =

26664 Â11 Â12 Â13 Â14

0 Â22 0 Â24

0 0 Â33 Â34

0 0 0 Â44

37775 x̂+

26664 B̂1

B̂2

0
0

37775 u
y =

�
0 Ĉ2 0 Ĉ4

�
x̂+ D̂u.

(3.36)

The state space representation (3.36) is known as Kalman’s canonical form. From this
representation it is possible to single out the following subsystems.

4The symbol ⊕ denotes the direct sum between subspaces. The direct sum of two subspaces is defined
as follows. Let X and Y be two subspaces of a vector space W. The sum of these subspaces, denoted
X + Y, is the set of all vectors x + y, with x ∈ X and y ∈ Y. If X ∩ Y = {0} the sum is a direct sum and
it is denoted X ⊕ Y.
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• The reachable and unobservable subsystem

σx̂1 = Â11x̂1 + B̂1u y = 0.

• The reachable and observable subsystem

σx̂2 = Â22x̂2 + B̂2u y = Ĉ2x̂2 + D̂u.

• The unreachable and unobservable subsystem

σx̂3 = Â33x̂3 y = 0.

• The unreachable and observable subsystem

σx̂4 = Â44x̂4 y = Ĉ4x̂4.

These subsystems, and their role in the overall system, are illustrated in Figure 3.4.

u yReachable
Unobservable

Reachable
Observable

Unreachable
Unobservable

Unreachable
Observable

+

Figure 3.4: Illustrative representation of a system in Kalman’s canonical form.

We conclude this example noting that a state space representation which is reachable
and observable is called minimal. From a nonminimal state space representation it is
always possible to obtain a (reduced) minimal representation. This is constructed comput-
ing Kalman’s canonical form and then disregarding the unreachable and/or unobservable
parts.

Note that only the reachable and observable subsystem contribute to the input-output be-
haviour of the system. This can be proved, for example, noting that the transfer function
of the system (3.36) is

G(s) = Ĉ2(sI − Â22)
−1B̂2 + D̂.
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Example 3.18 Consider the system

ẋ1 = x2 + u
ẋ2 = αx1 + u
y = x1 − x2

with x1 ∈ IR, x2 ∈ IR, u ∈ IR, y ∈ IR and α a constant parameter.

The reachability matrix is

R =

�
1 1
1 α

�
,

hence the system is reachable (and controllable) if α 6= 1. If α = 1 the reachability pencil
is �

sI −A B
�

=

�
s −1 1

−1 s 1

�
and this has rank one for s = −1 and rank two for any other s. Therefore, for α = 1, the
unreachable mode is s = −1.

The observability matrix is

O =

�
1 −1
−α 1

�
,

hence the system is observable if α 6= 1. If α = 1 the observability pencil is�
sI −A

C

�
=

264 s −1
−1 s

1 −1

375
and this has rank one for s = 1 and rank two for any other s. Therefore, for α = 1, the
unobservable mode is s = 1.

Note that, if α = 1 the system does not have a subsystem which is reachable and observable,
hence the transfer function is identically equal to zero, i.e. there is no direct input-output
connection. To see this, note that

CB = 0 CAB = 1 − α

and, by Cayley-Hamiton Theorem, CAiB, with i > 1, can be written in terms of CB and
CAB.
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Chapter 4

Design tools
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4.1 Introduction

In Chapter 3 we have considered the problem of determining an input signal driving the
state of the system to a given final condition and the problem of determining the state of
the system from measurements of the input and output signals. The proposed solutions
rely upon information on the system over a finite and predetermined time interval and
generate the required input signal or the required state estimate off-line. Typically, the
input signal is computed a priori and the state estimate a posteriori.

This approach is unsatisfactory for various reasons: the effect of disturbances, model errors
and uncertainties is not taken into consideration and the actual evolution of the system is
not considered in the solution of the problems, hence these solutions are open-loop.

This implies that it makes sense to seek methods, to control or estimate the state of
the system, which are based on current information. Such methods provide closed-loop
solutions to the considered problems.

Closed-loop solutions can be constructed in several ways. In the case of linear, finite-
dimensional, time-invariant systems it is natural to solve the above problems considering
the interconnection, of the system to be controlled or of the system the state of which has to
be estimated, with another linear, finite-dimensional, time-invariant system. This system,
which has to be designed, processes the current information and generates the current
input to be applied to the system to achieve a specific goal, or the current estimate of the
state of the system.

4.2 The notion of feedback

Consider a linear, finite-dimensional, time-invariant system and the problem of determin-
ing an input signal such that a certain objective is achieved.

Typically, the input signal has to be such that the state of the system has to be driven to
zero with a given speed of convergence (state regulation) or the output of the system has
to follow a pre-assigned reference value (output tracking).

We are interested in determining the input signal in closed-loop form, i.e. the input signal
at time t has to be a function of the available information (state or output) at the same time
instant. This implies that the input signal is generated by means of a feedback mechanism.
This mechanism can be instantaneous, i.e. the input signal is generated instantaneously by
processing the available information. In this case we have a static feedback. Alternatively,
the input signal can be generated processing the available information through a dynamical
device. In this case we have a dynamic feedback.

Assume that the system to be controlled is described by equations of the form

σx = Ax+Bu y = Cx+Du, (4.1)

with x ∈ X = IRn, u(t) ∈ IRm, y(t) ∈ IRp and A, B, C, and D matrices of appropriate
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dimensions and with constant entries. Assume, in addition, that the system which gener-
ates the input signal is linear, finite-dimensional and time-invariant. Then we may have
the following four configurations.

• Static output feedback. The input signal is generated via the relation

u = Ky + v, (4.2)

with K a constant matrix of appropriate dimensions and v a new external signal.
The resulting closed-loop system is described by the equations

σx = (A+B(I +KD)−1KC)x+Bv

y = (I +D(I +KD)−1K)Cx+Dv,
(4.3)

which are well-defined provided the matrix I +KD is invertible. Note that this is
always the case if D = 0.

• Static state feedback. The input signal is generated via the relation

u = Kx+ v, (4.4)

with K a constant matrix of appropriate dimensions and v a new external signal.
The resulting closed-loop system is described by the equations

σx = (A+BK)x+Bv

y = (C +DK)x+Dv.
(4.5)

• Dynamic output feedback. The input signal is generated by the system1

σξ = Fξ +Gy u = Kξ + v (4.6)

with F , G and K constant matrices of appropriate dimensions and v a new external
signal. The resulting closed-loop system is described by the equations

σx = Ax+BKξ +Bv

σξ = (F +GDK)ξ +GCx+GDv

y = Cx+DKξ +Dv.

(4.7)

• Dynamic state feedback. The input signal is generated by the system2

σξ = Fξ +Gx u = Kξ + v (4.8)

1We consider the simplest version of dynamic output feedback. A more general form is given by
σξ = Fξ + Gy + Hv, u = Kξ + Jy + Lv.

2We consider the simplest version of dynamic state feedback. A more general form is given by σξ =
Fξ + Gx + Hv, u = Kξ + Jx + Lv.
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with F , G and K constant matrices of appropriate dimensions and v a new external
signal. The resulting closed-loop system is described by the equations

σx = Ax+BKξ +Bv

σξ = Fξ +Gx

y = Cx+DKξ +Dv.

(4.9)

In what follows we study in detail the static state feedback (Section 4.3) and the dynamic
output feedback (Section 4.6) configurations. This is mainly due to the fact that these two
configurations allow to solve most control problems for linear systems. Moreover, while the
use of static output feedback is very appealing in practice because it results in a simple to
implement control strategy, the study of the properties of system (4.3) as a function of K
is very difficult3. Finally, dynamic state feedback is useful only in very specific problems,
such as the so-called noninteracting control problem with stability4, which are not the
subject of these notes.

4.3 State feedback

Consider a system described by the equations (4.1), the state feedback control law (4.4)
and the resulting closed-loop system (4.5).

The use of state feedback modifies the input-to-state interaction, i.e. the system σx =
Ax + Bu is replaced by the system σx = (A + BK)x + Bv. As a result, it makes sense
to study which properties of the system are left unchanged by the application of state
feedback (i.e. are feedback invariant) and which properties can be modified as a function
of K.

Proposition 4.1 The system (4.1) is reachable if and only if the system (4.5) is reachable.

Proof. Note that

rank
�
sI −A B

�
= rank

�
sI −A B

� � I 0
−K I

�
= rank

�
sI − (A+BK) B

�
.

Hence, by Hautus test, the claim holds. ⊳

3In the case m = p = 1 and D = 0 the root locus method can be used to study the eigenvalues of the
matrix A + BKC.

4The noninteracting control problem with stability, in the case m = p > 1, can be informally described
as the problem of designing a system described by equations of the form (4.8) such that the closed-loop
system (4.9) is asymptotically stable and composed of m decoupled systems, e.g. the Markov parameters
are diagonal matrices.
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Proposition 4.2 Consider the system (4.1). Suppose the system is not reachable and it is
described by equations of the form (3.16). Then the system (4.5) is described by equations
of the same form. Moreover, the systems (4.1) and (4.5) have the same unreachable modes.

Proof. By assumption, system (4.1) is described by equations of the form

σx =

�
A11 A12

0 A22

�
x+

�
B1

0

�
u.

As a result, system (4.5) is described by

σx =

�
A11 +B1K1 A12 +B1K2

0 A22

�
x+

�
B1

0

�
v,

where
K =

�
K1 K2

�
,

which proves the claim. ⊳

This result implies that state feedback does not modify unreachable modes, hence to
evaluate the effect of the feedback on the dynamics of the system it is sufficient to consider
only the reachable subsystem.

We focus initially on single-input reachable systems.

Proposition 4.3 Consider system (4.1). Assume m = 1 (i.e. the system has only one
input) and suppose the system is reachable. Let p(s) be a monic polynomial of degree n.
Then there is a (unique) K such that the characteristic polynomial of A+BK is equal to
p(s).

Proof. By reachability of the system it is possible to write the system in reachability canon-
ical form (see Section 3.2.5). Let T be the transformation matrix defined in Section 3.2.5,
i.e. let

Ar = TAT−1 Br = TB.

Let
p(s) = sn + α̃n−1s

n−1 + α̃n−2s
n−2 + · · · + α̃1s+ α̃0

and define
Kr =

�
α0 − α̃0 α1 − α̃1 · · · αn−1 − α̃n−1

�
.

Note that

Ar +BrKr =

26666664 0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · 1
−α̃0 −α̃1 −α̃2 · · · −α̃n−1

37777775 ,
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hence p(s) is the characteristic polynomial of Ar +BrKr. Finally, let

K = KrT

and note that

Ar +BrKr = T (A+BK)T−1,

which shows that p(s) is the characteristic polynomial of A + BK. To prove unicity, let
K̂ 6= K and define

K̂r = K̂T−1,

yielding

Ar +BrK̂r 6= Ar +BrKr,

hence the characteristic polynomial of Ar +BrK̂r is not p(s). ⊳

The main disadvantage of the above result is that, to compute the feedback gain K which
assigns the eigenvalues of the closed-loop system, it is necessary to transform the system
in reachability canonical form. This transformation is however not needed, as shown in
the following statement.

Proposition 4.4 (Ackermann’s formula) Consider system (4.1). Assume m = 1 (i.e.
the system has only one input) and suppose the system is reachable. Let p(s) be a monic
polynomial of degree n. Then

K = −
�

0 · · · 0 1
�
R−1p(A)

is such that the characteristic polynomial of A+BK is equal to p(s).

Remark. Propositions 4.3 and 4.4 provide a constructive way to assign the characteristic
polynomial, hence the eigenvalues, of system (4.5). Note that, for low order systems, i.e. if
n = 2 or n = 3, it may be convenient to compute directly the characteristic polynomial of
A+BK and then compute K using the principle of identity of polynomials, i.e. K should
be such that the coefficients of the polynomials det(sI − (A+BK)) and p(s) coincide. ⋄

The result summarized in Proposition 4.3 can be extended to multi-input systems.

Proposition 4.5 Consider system (4.1) and suppose the system is reachable. Let p(s) be
a monic polynomial of degree n. Then there is a K such that the characteristic polynomial
of A+BK is equal to p(s).

Note that in the case m > 1 the feedback gain K assigning the characterisitc polynomial
of the matrix A+BK is not unique. Finally, to compute such feedback gain we may either
use the direct approach discussed in the above Remark or exploit the following fact.
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Lemma 4.1 (Heymann) Consider system (4.1) and suppose the system is reachable.
Let bi be a nonzero column of the matrix B. Then there is a matrix G such that the
single-input system

σx = (A+BG)x+ biv (4.10)

is reachable.

Exploiting Lemma 4.1 it is possible to design a matrix K such that the characteristic
polynomial of A + BK equals some monic polynomial p(s) of degree n in two steps.
First we compute a matrix G such that the system (4.10) is reachable, and then we use
Ackermann’s formula to compute a matrix k such that the characteristic polynomial of

A+BG+ bik

is p(s).

We conclude this section noting that the property of reachability implies the existence of
a state feedback gain assigning the eigenvalues of system (4.5). Conversely, it is possible
to conclude reachability of system (4.1) by a property of system (4.5).

Proposition 4.6 System (4.1) is reachable if and only if it is possible to arbitrarily assign
the eigenvalues of A+BK.

4.3.1 Stabilizability

The main goal of a state feedback control law is to render the closed-loop system asymp-
totically stable. This goal may be achieved, as discussed in the previous section, if the
system is reachable. However, reachability is not necessary to achieve this goal. In fact, as
highlighted in Proposition 4.2, the unreachable modes are not modified by the application
of state feedback. This implies that there exists a matrix K such that system (4.5) is
asymptotically stable if and only if the unreachable modes of system (4.1) have negative
real part, in the case of continuous-time systems, or have modulo smaller than one, in the
case of discrete-time systems.

To capture this situation we introduce a new definition.

Definition 4.1 (Stabilizability) System (4.1) is stabilizable if its unreachable modes
have negative real part, in the case of continuous-time systems, or have modulo smaller
than one, in the case of discrete-time systems.

Example 4.1 (Dead-beat control) Consider a discrete-time system described by equa-
tions of the form

x+ = Ax+Bu,
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and the problem of designing a static, state feedback control law, described by the equation
(4.4), yielding a closed-loop system (4.5) such that, for any initial condition x(0) and for
v = 0, one has

x(k) = 0,

for all k ≥ N , and for some N > 0. A control law achieving this goal is called a dead-beat
control law. To achieve this goal it is necessary to select K such that

(A+BK)N = 0

or, equivalently, such that the matrix A + BK has all eigenvalues equal to 0. Therefore,
there exists a dead-beat control law for the considered system if and only if the system is
controllable. Note that N ≤ n.

4.4 The notion of filtering

Consider a linear, finite-dimensional, time-invariant system and the problem of estimating
its state from measurements of the input and output signals.

We are interested in determining an on-line estimate, i.e. the estimate at time t has to be
a function of the available information (input and output) at the same time instant. This
implies that the estimate is generated by means of a device (known as filter) processing the
current input and output of the system and generating a state estimate. The filter may be
instantaneous, i.e. the estimate is generated instantaneously by processing the available
information. In this case we have a static filter. Alternatively, the state estimate can be
generated processing the available information through a dynamical device. In this case
we have a dynamic filter.

Assume that the system to be controlled is described by equations of the form (4.1) and
assume5 that D = 0. Assume, in addition, that the filter which generates the on-line
estimate is linear, finite-dimensional and time-invariant. Then we may have the following
two configurations.

• Static filter. The state estimate is generated via the relation

xe = My +Nu, (4.11)

with M and N constant matrices of appropriate dimensions. The resulting inter-
connected system is described by the equations

σx = Ax+Bu

xe = MCx+Nu.
(4.12)

5This assumption is without loss of generality. In fact, if y = Cx + Du and u are measurable then also
ỹ = Cx is measurable.
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• Dynamic filter. The state estimate is generated by the system

σξ = Fξ + Ly +Hu xe = Mξ +Ny + Pu (4.13)

with F , L, H, M , N and P constant matrices of appropriate dimensions. The
resulting interconnected system is described by the equations

σx = Ax+Bu

σξ = Fξ + LCx+Hu

xe = Mξ +NCx+ Pu.

(4.14)

In what follows we study in detail the dynamic filter configuration. This is mainly due
to the fact that this configuration allows to solve most estimation problems for linear
systems. Moreover, while the use of a static filter is very appealing, it provides a useful
alternative only in very specific situations.

4.5 State observer

A state observer is a filter that allows to estimate, asymptotically or in finite time, the
state of a system from measurements of the input and output signals.

The simplest possible observer can be constructed considering a copy of the system, the
state of which has to be estimated. This means that a candidate observer for system (4.1)
is given by

σξ = Aξ +Bu xe = ξ. (4.15)

To assess the properties of this candidate state observer let

e = x− xe

be the estimation error and note that

σe = Ae.

As a result, if e(0) = 0 then e(t) = 0 for all t and for any input signal u. However, if
e(0) 6= 0 then, for any input signal u, e(t) will be bounded only if the system (4.1) is
stable, and will converge to zero only if the system (4.1) is asymptotically stable. If these
conditions do not hold, the estimation error will not be bounded and system (4.15) does
not qualify as a state observer for system (4.1).

The intrinsic limitation of the observer (4.15) is that it does not use all the available
information, i.e. it does not use the knowledge of the output signal y. This observer is
therefore an open-loop observer.

To exploit the knowledge of y we modify the observer (4.15) adding a term which depends
upon the available information on the estimation error, which is given by

ye = Cxe − y.
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This modification yields a candidate state observer described by

σξ = Aξ +Bu+ Lye xe = ξ. (4.16)

To assess the properties of this candidate state observer note that e = x− xe is such that

σe = (A+ LC)e. (4.17)

The matrix L (known as output injection gain) can be used to shape the dynamics of the
estimation error. In particular, we may select L to assign the characteristic polynomical
p(s) of A+ LC. To this end, note that

p(s) = det(sI − (A+ LC)) = det(sI − (A′ + C ′L′)).

Hence, there is a matrix L which arbitrarily assigns the characteristic polynomial of A+LC
if and only if the system

σξ = A′ξ + C ′v

is reachable, or equivalently, if and only if the system (4.1) is observable.

We summarize the above discussion with two formal statements.

Proposition 4.7 Consider system (4.1) and suppose the system is observable. Let p(s)
be a monic polynomial of degree n. Then there is6 a matrix L such that the characteristic
polynomial of A+ LC is equal to p(s).

Proposition 4.8 System (4.1) is observable if and only if it is possible to arbitrarily
assign the eigenvalues of A+ LC.

4.5.1 Detectability

The main goal of a state observer is to provide an on-line estimate of the state of a
system. This goal may be achieved, as discussed in the previous section, if the system is
observable. However, observability is not necessary to achieve this goal. In fact, similarly
to what discussed in Proposition 4.2, the unobservable modes are not modified by the
output injection gain. This implies that there exists a matrix L such that system (4.17) is
asymptotically stable if and only if the unobservable modes of system (4.1) have negative
real part, in the case of continuous-time systems, or have modulo smaller than one, in the
case of discrete-time systems.

To capture this situation we introduce a new definition.

Definition 4.2 (Detectability) System (4.1) is detectable if its unobservable modes have
negative real part, in the case of continuous-time systems, or have modulo smaller than
one, in the case of discrete-time systems.

6For single-output systems the matrix L assigning the characteristic polynomial of A + LC is unique.
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Example 4.2 (Dead-beat observer) Consider a discrete-time system described by equa-
tions of the form

x+ = Ax+Bu y = Cx,

and the problem of designing a state observer, described by the equation (4.16), such that,
for any initial condition x(0) and for any u,

e(k) = 0,

for all k ≥ N , and for some N > 0. A state observer achieving this goal is called a
dead-beat state observer. To achieve this goal it is necessary to select L such that

(A+ LC)N = 0

or, equivalently, such that the matrix A + LC has all eigenvalues equal to 0. Therefore,
there exists a dead-beat state observer for the considered system if and only if the system
is reconstructable. Note that N ≤ n.

4.5.2 Reduced order observer

We have shown that, under the hypotheses of observability or detectability, it is possible
to design an asymptotic observer of order n for the system (4.1). However, this observer
is somewhat over-sized, i.e. it gives an estimate for the n components of the state vector,
without making use of the fact that some of these components can be directly determined
from the output function, e.g. if y = x1 there is no need to reconstruct x1.

Therefore, it makes sense to design a reduced order observer, i.e. a device that estimates
only the part of the state vector which is not directly attainable from the output. To
this end, consider the system (4.1) with D = 0 and assume that the matrix C has p
independent columns7. Then there exists a matrix Q such that

QC = [I C2] .

Let

v = Qy = QCx = x1 + C2x2,

in which x1 ∈ IRp and x2 ∈ IRn−p denote the first p and the last n− p components of the
state x. Observe that the vector v is measurable.

From the definition of v we conclude that if v and x2 are known then x1 can be easily
computed, i.e. there is no need to construct a dynamic observer for x1.

Define now the new coordinates�
x̂1

x̂2

�
= Tx =

�
I C2

0 I

� �
x1

x2

�
7This is the case if rankC = p, whereas if rankC < p it is always possible to eliminate redundant lines.
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and note that, by construction,
v = Qy = x̂1.

In the new coordinates the system, with output v, is described by equations of the form

σx̂1 = Ã11x̂1 + Ã12x̂2 + B̃1u

σx̂2 = Ã21x̂1 + Ã22x̂2 + B̃2u

v = x̂1.

In order to construct an observer for x̂2 consider the system

σξ = Fξ +Hv +Gu,

with state ξ, driven by u and v, and with output

w = ξ + Lv.

The idea is to select the matrices F , H, G and L in such a way that w be an estimate for
x̂2. Let w − x̂2 be the observation error. Then

σw − σx̂2 = Fξ +Hv +Gu+ L

�
Ã11x̂1 + Ã12x̂2 + B̃1u

�
−
�
Ã21x̂1 + Ã22x̂2 + B̃2u

�
= Fξ +

�
H + LÃ11 − Ã12

�
x̂1 +

�
LÃ12 − Ã22

�
x̂2 +

�
G+ LB̃1 − B̃2

�
u.

(4.18)
To have convergence of the estimation error to zero, regardless of the initial conditions
and of the input signal, we must have

σ(w − x̂2) = F (w − x̂2) (4.19)

and F must have all eigenvalues with negative real part, in the case of continuous-time
systems, or with modulo smaller than one, in the case of discrete-time systems.

Comparing equations (4.18) and (4.19), we obtain that the matrices F , H, G, and L must
be such that

LÃ12 − Ã22 = −F
H + LÃ11 − Ã21 = FL

G+ LB̃1 − B̃2 = 0.

We now show how the previous equations can be solved and how the stability condition
of F can be enforced. Detectability of the system implies that the (reduced system)

σξ̃ = Ã22ξ̃ ỹ = Ã12ξ

is detectable. As a result, there exists a matrix L such that the matrix

F = Ã22 − LÃ12
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Figure 4.1: A reduced order observer.

has all all eigenvalues with negative real part, in the case of continuous-time systems, or
with modulo smaller than one, in the case of discrete-time systems. Then the remaining
equations are solved by

H = FL− LÃ11 + Ã21 G = −LB̃1 + B̃2.

Finally, from x̂1 = v and the estimate w of x̂2 we build an estimate xe of the state x
inverting the transformation T , i.e.�

x1e

x2e

�
=

�
I −C2

0 I

� �
v
w

�
.

The (conceptual) structure of the reduced order observer is shown in Figure 4.1.

4.6 The separation principle

In Section 4.3 it has been shown that system (4.1) can be stabilized by means of a state
feedback control law, provided the system is stabilizable. Moreover, in Section 4.5 it has
been shown that the state of system (4.1) can be (asymptotically) estimated provided the
system is detectable.

It is therefore natural to discuss the properties resulting from the use of a state feedback
control law in which the state is replaced by an estimate generated by a state observer.

To this end, consider system (4.1) with D = 0, the state feedback control law

u = Kx+ v,

the state observer
σξ = (A+ LC)ξ +Bu− Ly xe = ξ,

and the control law obtained replacing the state x with its estimate xe, namely

u = Kxe + v.
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The overall system is described by equations of the form�
σx
σξ

�
=

�
A BK

−LC A+ LC +BK

�
+

�
B
B

�
v

y = Cx.

(4.20)

To study this system consider the coordinate

e = x− xe

and note that the system can be rewritten in the form�
σx
σe

�
=

�
A+BK −BK

0 A+ LC

�
+

�
B
0

�
v

y = Cx.

(4.21)

From this representation it is possible to draw the following conclusions.

The characteristic polynomial of the matrix�
A+BK −BK

0 A+ LC

�
is given by the product of the characeristic polynomials of the matrices A + BK and
A + LC. This result, known as the separation principle, implies that the designs of the
state feedback and of the state observer can be carried out independently. Therefore, the
problem of asymptotic stabilization of the system (4.1) by means of a dynamic output
feedback control law can be solved provided system (4.1) is stabilizable and detectable.
The control law stabilizing the system is described by the equations

σξ = (A+BK + LC)ξ − Ly u = Kξ + v,

i.e. it is a dynamic output feedback control law.

System (4.21), hence system (4.20), is not reachable. In fact, by Hautus test, we note
that the unreachable modes are all the eigenvalues of A+LC. This implies that the state
observer does not contribute to the input-output behaviour of the closed-loop system, i.e.�

C 0
� � A+BK −BK

0 A+ LC

�t �
B
0

�
= C(A+BK)tB,

and, similarly, �
C 0

�
e

��
A+BK −BK

0 A+ LC

�
t

� �
B
0

�
= Ce(A+BK)tB.

Therefore the input-output behaviour of the closed-loop system resulting from the use of
an output feedback controller designed on the basis of the separation principle coincides
with the input-output behaviour of the closed-loop system resulting from the use of the
underlying state feedback controller.



4.7. TRACKING AND REGULATION 103

4.7 Tracking and regulation

In the previous sections we have considered the simplest possible design problems, namely
the stabilization and observation problems. Practical problems, however, present them-
selves in a more complex form. In particular, the system to be controlled may be affected
by disturbances, and the output of the system does not have to be regulated to zero, but
should asymptotically track a certain, prespecified, reference signal.

In this section we discuss this control problem and present possible solutions. To begin
with, consider a system to be controlled described by equations of the form

σx = Ax+Bu+ Pd e = Cx+Qd, (4.22)

with x ∈ X = IRn, u(t) ∈ IRm, e(t) ∈ IRp, d(t) ∈ IRr, and A, B, P , C and Q matrices of
appropriate dimensions and with constant entries.

The signal d(t), denoted exogeneous signal, is in general composed of two components:
the former models a set of disturbances acting on the system to be controlled, the latter a
set of reference signals. In what follows we assume that the exogeneous signal is generated
by a linear system, denoted exosystem, described by the equation

σd = Sd, (4.23)

with S a matrix with constant entries. Note that, under this assumption, it is possible
to generate, for example, constant or polynomial references/disturbances and sinusoidal
references/disturbances with any given frequency.

The variable e(t), denoted tracking error, is a measure of the error between the ideal
behaviour of the system and the actual behaviour. Ideally, the variable e(t) should be
regulated to zero, i.e. should converge asymptotically to zero, despite the presence of the
disturbances. If this happens we say that the tracking error is regulated to zero, i.e.
converges asymptotically to zero, hence the disturbances are not affecting the asymptotic
behaviour of the system and the output Cx(t) is asymptotically tracking the reference
signal −Qd(t).
In general, the tracking error does not naturally converge to zero, hence it is necessary
to determine an input signal u(t) which drives it to zero. The simplest possible way to
construct such an input signal is to assume that it is generated via static feedback of the
state x(t) of the system to be controlled and of the state d(t) of the exosystem, i.e.

u = Kx+ Ld. (4.24)

In practice, it is unrealistic to assume that both x(t) and d(t) are measurable, hence it may
be more natural to assume that the input signal u(t) is generated via dynamic feedback
of the error signal only, i.e. it is generated by the system

σχ = Fχ+Ge u = Hχ, (4.25)

with χ(t) ∈ IRν, for some ν > 0, and F , G and H matrices with constant entries.

In summary, it is possible to formally pose the regulator problem as follows.
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Definition 4.3 (Full information regulator problem) Consider the system (4.22),
driven by the exosystem (4.23) and interconnected with the controller (4.24). The full
information regulator problem is the problem of determining the matrices K and L of the
controller such that8

(S) the system

σx = (A+BK)x

is asymptotically stable;

(R) all trajectories of the system

σd = Sd σx = (A+BK)x+ (BL+ P )d e = Cx+Qd (4.26)

are such that

lim
t→∞

e(t) = 0.

Definition 4.4 (Error feedback regulator problem) Consider the system (4.22), dri-
ven by the exosystem (4.23) and interconnected with the controller (4.25). The error feed-
back regulator problem is the problem of determining the matrices F , G and H of the
controller such that

(S) the system

σx = Ax+BHχ σχ = Fχ+GCx

is asymptotically stable;

(R) all trajectories of the system

σd = Sd σx = Ax+BHχ+ Pd σχ = Fχ+G(Cx+Qd) e = Cx+Qd (4.27)

are such that

lim
t→∞

e(t) = 0.

4.7.1 The full information regulator problem

Consider the full information regulator problem and assume the following.

Assumption 4.1 The matrix S of the exosystem has all eigenvalues with non-negative
real part, in the case of continuous-time systems, or with modulo not smaller than one, in
the case of discrete-time systems.

Assumption 4.2 The system (4.22) with d = 0 is reachable.

8(S) stands for stability and (R) for regulation.
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Assumption 4.1 implies that there are no initial conditions d(0) such that the signal d(t)
converges (asymptotically) to zero. This assumption is not restrictive. In fact, distur-
bances converging to zero do not have any effect on the asymptotic behaviour of the
system, and references which converge to zero can be tracked simply by driving the state
of the system to zero, i.e. by stabilizing the system.

Assumption 4.2 implies that it is possible to arbitrarily assign the eigenvalues of the matrix
A+BK by a proper selection of K. Note that, in practice, this assumption can be replaced
by the weaker assumption that the system (4.22) with d = 0 is stabilizable.

We now present a preliminary result which is instrumental to derive a solution to the full
information regulator problem.

Lemma 4.2 Consider the full information regulator problem. Suppose Assumption 4.1
holds. Suppose, in addition, that there exists matrices K and L such that condition (S)
holds.

Then condition (R) holds if and only if there exists a matrix Π ∈ IRn×r such that the
equations

ΠS = (A+BK)Π + (P +BL) 0 = CΠ +Q (4.28)

hold.

Proof. Consider the system (4.26) and the coordinates transformation

d̂ = d x̂ = x− Πd,

where Π is the solution of the equation9

ΠS = (A+BK)Π + (P +BL).

Note that, by condition (S) and Assumption 4.1, there is a unique matrix Π which solves
this equation. In the new coordinates x̂ and d̂ the system is described by the equations

σd̂ = Sd̂ σx̂ = (A+BK)x̂ e = Cx̂+ (CΠ +Q)d̂.

Note now that, by condition (S) limt→∞ x̂ = 0, hence condition (R) holds, by Assump-
tion 4.1, if and only if

CΠ +Q = 0.

In summary, under the state assumptions, condition (R) holds if and only if there exists
a matrix Π such that equations (4.28) hold. ⊳

We are now ready to state and prove the result which provides conditions for the solution
of the full information regulator problem.

9This equation is a so-called Sylvester equation. The Sylvester equation is a (matrix) equation of the
form

A1X = XA2 + A3,

in the unknown X. This equation has a unique solution, for any A3, if and only if the matrices A1 and A2

do not have common eigenvalues.
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Theorem 4.1 Consider the full information regulator problem. Suppose Assumptions 4.1
and 4.2 hold.

There exists a full information control law described by the equation (4.24) which solves
the full information regulator problem if and only if there exist two matrices Π and Γ such
that the equations

ΠS = AΠ +BΓ + P 0 = CΠ +Q (4.29)

hold.

Proof. (Necessity) Suppose there exist two matrices K and L such that conditions (S) and
(R) of the full information regulator problem hold. Then, by Lemma 4.2, there exists a
matrix Π such that equations (4.28) hold. As a result, the matrices Π and Γ = KΠ + L
are such that equations (4.29) hold.
(Sufficiency) The proof of the sufficiency is constructive. Suppose there are two matrices
Π and Γ such that equations (4.29) hold. The full information regulator problem is solved
selecting K and L as follows.

The matrix K is any matrix such that the system

σx = (A+BK)x

is asymptotically stable. By Assumption 4.2 such a matrix K does exist.

The matrix L is selected as
L = Γ −KΠ.

This selection is such that condition (S) of the full information regulator problem holds,
hence to complete the proof we have only to show that, with K and L as selected above,
the equations (4.28) hold. This is trivially the case. In fact, replacing L in (4.28) yields
the equations (4.29), which hold by assumption. As a result, also condition (R) of the full
information regulator problem holds, and this completes the proof. ⊳

The proof of Theorem 4.1 implies that a controller (it is not the only one) which solves
the full information regulator problem is described by the equation

u = Kx+ (Γ −KΠ)d,

with K such that a stability condition holds, and Π and Γ such that equations (4.29)
hold. By Assumption 4.2 the stability condition can be always satisfied. As a result, the
solution of the full information regulator problem relies upon the existence of a solution
of equations (4.29).

4.7.2 The FBI equations

Equations (4.29), known as the Francis-Byrnes-Isidori (FBI) equations, are linear equa-
tions in the unknown Π and Γ, for which the following statement holds.
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Lemma 4.3 (Hautus) The equations (4.29), in the unknown Π and Γ, are solvable for
any P and Q if and only if

rank

�
sI −A B
C 0

�
= n+ p, (4.30)

for all s which are eigenvalues of the matrix S.

Remark. The equations (4.29) can be rewritten in compact form as�
A B
C 0

� �
Π
Γ

�
−
�
I 0
0 0

� �
Π
Γ

�
S =

�
−P
−Q

�
,

which is a so-called generalized Sylvester equation. ⋄

For single-input, single-output systems (i.e. m = p = 1) the condition expressed by Lemma
4.3 has a very simple interpretation. In fact, the complex number s such that

rank

�
sI −A B
C 0

�
< n+ 1

are the zeros of the system

σx = Ax+Bu y = Cx,

which coincides with the roots of the numerator polynomial of the transfer function

W (s) = C(sI −A)−1B,

i.e. the zeros of W (s). This implies that, for single-input, single-output systems the full
information regulator problem is solvable if and only if the eigenvalues of the exosystem
are not zeros of the transfer function of the system (4.22), with input u, output e and
d = 0.

4.7.3 The error feedback regulator problem

To provide a solution to the error feedback regulator problem we need to introduce a new
assumption.

Assumption 4.3 The system�
σx
σd

�
=

�
A P
0 S

� �
x
d

�
e =

�
C Q

� � x
d

�
(4.31)

is observable.
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Note that Assumption 4.3 implies observability of the system

σx = Ax y = Cx. (4.32)

To prove this property note that observability of the system (4.31) implies that

rank

266664 C Q
CA ⋆
...

...
CAn+r−1 ⋆

377775 = n+ r.

This, in turn, implies

rank

266664 C
CA
...

CAn+r−1

377775 = n

and, by Cayley-Hamilton Theorem,

rank

266664 C
CA
...

CAn−1

377775 = n,

which implies observability of system (4.32). Similarly to what discussed in the case
of Assumption 4.2, Assumption 4.3 can be replaced by the weaker assumption that the
system (4.31) is detectable.

We are now ready to state and prove the result which provides conditions for the solution
of the error feedback regulator problem.

Theorem 4.2 Consider the error feedback regulator problem. Suppose Assumptions 4.1,
4.2 and 4.3 hold.

There exists an error feedback control law described by the equation (4.25) which solves
the full information regulator problem if and only if there exist two matrices Π and Γ such
that the equations

ΠS = AΠ +BΓ + P 0 = CΠ +Q (4.33)

hold.

Remark. Theorem 4.2 can be alternatively stated as follows.

Consider the error feedback regulator problem. Suppose Assumptions 4.1, 4.2 and 4.3 hold.
Then the error feedback regulator problem is solvable if and only if the full information
regulator problem is solvable. ⋄
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Proof. (Necessity) The proof of the necessity is similar to the proof of the necessity of
Theorem 4.1, hence omitted.
(Sufficiency) The proof of the sufficiency is constructive. Suppose there are two matrices Π
and Γ such that equations (4.33) hold. Then, by Theorem 4.1 the full information control
law

u = Kx+ (Γ −KΠ)d,

with K such that the system σx = (A + BK)x is asymptoticaly stable, solves the full
information regulator problem. This control law is not implementable, because we only
measure e. However, by Assumption 4.3, it is possible to build asymptotic estimates ξ
and δ of x and d, hence implement the control law

u = Kξ + (Γ −KΠ)δ. (4.34)

To this end, consider an observer described by the equation�
σξ
σδ

�
=

�
A P
0 S

� �
ξ
δ

�
+

�
G1

G2

���
C Q

� � ξ
δ

�
− e

�
+

�
B
0

� �
K Γ −KΠ

� � ξ
δ

�
.

Note that the estimation errors ex = x− ξ and ed = d− δ are such that�
σex
σed

�
=

��
A P
0 S

�
+

�
G1

G2

� �
C Q

�� � ex
ed

�
, (4.35)

hence, by Assumption 4.3, there exist G1 and G2 that assign the eigenvalues of this error
system.

Note now that the control law (4.34) can be rewritten as

u = Kx+ (Γ −KΠ)d− (Kex + (Γ −KΠ)ed) ,

hence the control law is composed of the full information control law, which solves the
considered regulator problem, and of an additive disturbance which decays exponentially
to zero. Such a disturbance does not affect the regulation requirement, provided the
closed-loop system is asymptotically stable. Therefore, to complete the proof we need
to show that condition (S) holds. For, note that, in the coordinates x, ex and ed the
closed-loop system, with d = 0, is described by the equations264 σx

σex
σed

375 =

264 A+BK −BK −B(Γ −KΠ)
0 A+G1C P +G1Q
0 G2C S +G2Q

375264 x
ex
ed

375 . (4.36)

Recall that the matrices G1 and G2 have been selected to render system (4.35) asymp-
totically stable, and that K is such that the system σx = (A + BK)x is asymptotically
stable. As a result, system (4.36) is asymptotically stable. ⊳
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4.7.4 The internal model principle

The proof of Theorem 4.2 implies that a controller (it is not the only one) which solves
the error feedback regulator problem is described by equations of the form (4.25) with

χ =
�
ξ δ

�′
,

F =

�
A+G1C +BK P +G1Q+B(Γ −KΠ)

G2C S +G2Q

�
,

G =

�
G1

G2

�
, H =

�
K Γ −KΠ

�
,

(4.37)

K, G1 and G2 such that a stability condition holds, and Π and Γ such that equations
(4.33) hold. This controller, and in particular the matrix F , possesses a very interesting
property.

Proposition 4.9 (Internal model property) The matrix F in equation (4.37) is such
that

FΣ = ΣS,

for some matrix Σ of rank r. In particular, any eigenvalue of S is also an eigevalue of F .

Proof. Let

Σ =

�
Π
I

�
and note that rankΣ = r, by construction, and that

FΣ =

�
AΠ +G1CΠ +BKΠ + P +G1Q+B(Γ −KΠ)

−G2CΠ + S −G2Q

�
=

�
(AΠ +BΓ + P ) +G1(CΠ +Q)

S −G2(CΠ +Q)

�
=

�
ΠS
S

�
= ΣS,

hence the first claim. To prove the second claim, let λ be an eigenvalue of S and v the
corresponding eigenvector. Then Sv = λv, hence

FΣv = ΣSv = λΣv,

which shows that λ is an eigenvalue of F with eigenvector Σv, and this proves the second
claim. ⊳

It is possible to prove that the property highlighted in Proposition 4.9 is shared by all
error feedback control laws which solve the considered regulation problem, and not only
the proposed controller. This property, which is often referred to as the internal model
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principle, can be interpreted as follows. The control law solving the regulator problem has
to contain a copy of the exosystem, i.e. it has to be able to generate, when e = 0, a copy
of the exogeneous signal.
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Exercises

Exercise 1 Consider the matrix

A =

264 7 −6 2
8.8 −7.6 2.8
9.6 −7.2 2.6

375 .
1. Compute the characteristic polynomial of A and hence show that the eigenvalues of

A are 1, −1 and 2.

2. Compute three linearly independent eigenvectors.

3. Find a similarity transformation L such that Â = L−1AL is a diagonal matrix.

4. Determine exp(At) as a function of t.

5. Determine sin(At) as a function of t.

Solution 1

1. The characteristic polynomal is

det(sI −A) = s3 − 2s2 − s+ 2 = (s2 − 1)(s − 2),

hence the claim.

2. The matrix A has three distinct eigenvalues, hence has three linearly independent
eigenvectors. These are computed solving the equation

Av = λv

with λ = 1,−1, 2. The eigenvector associated to λ = 1 is v1 = [1/2, 1, 3/2]′ ; the
eigenvector associated to λ = −1 is v2 = [1, 4/3, 0]′; the eigenvector associated to
λ = 2 is v3 = [1, 1/2, 2]′ . Note that, as suggested by the theory,

det([v1, v2, v3]) 6= 0,

hence the three vectors are linearly independent.

I



II EXERCISES

3. Let V = [v1, v2, v3] and

Â =

264 1 0 0
0 −1 0
0 0 2

375 .
Note that

AV = V Â,

hence, L = V is such that L−1AL is a diagonal matrix.

4. By a property of the matrix exponential

eAt = e(V ÂV −1)t = V eÂtV −1,

where

eÂt =

264 et 0 0
0 e−t 0
0 0 e2t

375 .
5. Similarly to the definition of the matrix exponential we have

sin(At) = At− (At)3

3!
+

(At)5

5!
− · · · ,

hence
sin(At) = V sin(Ât)V −1,

with

sin(Ât) =

264 sin t 0 0
0 − sin t 0
0 0 sin 2t

375 .
Exercise 2 Let A be a square matrix of dimension n and let λ1, · · · λn denote its eigen-
values. Assume for simplicity that A has n distinct eigenvalues.

1. Show that the determinant of A is equal to the product of the eigenvalues of A:

det(A) = λ1 λ2 · · · λn.

2. Show that the trace of A is equal to the sum of the eigenvalues of A:

tr(A) = λ1 + λ2 + · · · + λn.

(tr(A) = a11 + a22 + · · · + ann.)

3. Show that if tr(A) > 0, the system ẋ = Ax is unstable. Is the converse true?

4. Show that if the system ẋ = Ax is asymptotically stable then tr(A) < 0.



EXERCISES III

5. Assume n = 3, tr(A) = T and det(A) = ω2T . Assume moreover that A has two
purely imaginary eigenvalues. Discuss the stability of the system ẋ = Ax as a func-
tion of T and ω and explain how to compute exp(At) as a function of t if the
eigenvectors of A are known.

Solution 2 If A has n distinct eigenvalues then there exists a nonsingular matrix L such
that

L−1AL =

266664 λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

377775 = Ã

for some λi ∈ IC.

1. Note that

det(A) = det(L) det(L−1) det(Ã) = λ1λ2 · · ·λn.

2. The characteristic polynomial of A is given by

det(sI −A) = (s− a11)(s − a22) · · · (s− an) + · · · = sn + αn−1s
n−1 + · · ·

with

αn−1 = −a11 − a22 − · · · − ann = −tr(A).

Moreover

det(sI −A) = (s− λ1)(s − λ2) · · · (s− λn) = sn − (λ1 + λ2 + · · · + λn)sn−1 + · · · .

Hence

tr(A) = λ1 + λ2 + · · · + λn.

3. If tr(A) > 0 then there exists a λi with positive real part. Hence the system ẋ = Ax
is unstable. Instability of the system ẋ = Ax does not imply tr(A) > 0, as the sum
of the real parts of the eigenvalues may be negative even if some of the real parts
are positive.

4. If the system ẋ = Ax is asymptotically stable then the real parts of all eigenvalues
are negative, hence tr(A) < 0.

5. Let n = 3 and, as stated,

λ1 = −iω λ2 = iω λ3 = α,

then

tr(A) = λ1 + λ2 + λ3 = T det(A) = λ1λ2λ3 = ω2T.



IV EXERCISES

As a result, α = T . Hence the system ẋ = Ax is stable, not asymptotically if
T ≤ 0 and it is unstable if T > 0. Finally let v1, v2 and v3 be the eigenvectors of A
corresponding to the eigenvalues λ1, λ2 and λ3. Hence

AV = A
�
v1 v2 v3

�
=
�
v1 v2 v3

� 264 −iω 0 0
0 iω 0
0 0 α

375 = V Λ.

As a result A = V ΛV −1, hence

eAt = V eΛtV −1

with

eΛt =

264 e−iωt 0 0
0 eiωt 0
0 0 eαt

375 .
Exercise 3 Consider the discrete-time system xk+1 = Axk.

1. Let

A =

�
−1 1

0 −1

�
.

Consider the initial state

x(0) =

�
0
1

�
and plot x(k) on the state space for k = 1, 2, 3, 4. Exploiting the obtained result
discuss the stability of the equilibrium x = 0.

2. Let

A =

�
−1 1

0 1

�
.

Consider the initial state

x(0) =

�
0
1

�
and plot x(k) on the state space for k = 1, 2, 3, 4. Exploiting the obtained result
discuss the stability of the equilibrium x = 0.

Solution 3

1. Note that

x(1) =

�
1

−1

�
x(2) =

�
−2

1

�
x(3) =

�
3

−1

�
x(4) =

�
−4

1

�
,

and these are indicated in the figure with ⋆ signs. This implies that the equilibrium
x = 0 is unstable. (Note that to decide instability of an equilibrium it is enough that
one trajectory does not satisfy the “ǫ− δ” argument in the definition of stability.)
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2. Note that

x(1) =

�
1
1

�
x(2) =

�
0
1

�
x(3) =

�
1
1

�
x(4) =

�
0
1

�
,

and these are indicated in the figure with X signs. This trajectory is such that the
“ǫ − δ” argument holds, however we cannot conclude stability of the equilibrium
x = 0 only from properties of one trajectory.
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Exercise 4 Consider the discrete-time system

xk+1 = Axk =

�
1 1
a −1

�
xk

with a ∈ IR.

1. Show that the system is asymptotically stable for all a ∈ (−2, 0) and it is unstable
for a < −2 and a > 0.
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2. Let a = 0. Discuss the stability properties of the system.

3. Let a = −2. Discuss the stability properties of the system.

Solution 4 The characteristic polynomial of the matrix A is

det(sI −A) = (s− 1)(s + 1) − a = s2 − 1 − a.

Hence the eigenvalues of A are

λ1 = +
√

1 + a λ2 = −
√

1 + a.

1. The system is asymptotically stable if (and only if)

|λ1| < 1 |λ2| < 1.

Observe that λ1 and λ2 are real if a ≥ −1 and are imaginary if a < −1. Moreover,
|λ1| = |λ2| and this is smaller than one if (and only if) a ∈ (−2, 0).

2. If a = 0 the eigenvalues are real and have modulo equal to one. Moreover they are
distinct, hence they have geometric and algebraic multiplicity equal to one. Therefore
the system is stable, not asymptotically.

3. If a = −2 the eigenvalues are imaginary and have modulo equal to one. Moreover
they are distinct, hence they have geometric and algebraic multiplicity equal to one.
Therefore the system is stable, not asymptotically.

Exercise 5 Consider two systems σxi = Aixi +Biu, yi = Cixi, with i = 1, 2 and

A1 =

�
1 1
0 2

�
B1 =

�
1
0

�
C1 =

�
1 1

�
A2 =

�
1 0
1 2

�
B2 =

�
1
1

�
C2 =

�
1 0

�
.

Note that the systems have the same input.

1. Show that if x1(0) = x2(0) = 0 then y1(t) = y2(t) for all t. (This is equivalent to
C1A

k
1B1 = C2A

k
2B2 for all k ≥ 0, in discrete-time and to C1e

A1tB1 = C2e
A2tB2 for

all t ≥ 0, in continuous-time.)

2. The two systems are not algebraically equivalent.
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Solution 5

1. If x1(0) = x2(0) = 0 then (suppose the systems are discrete-time)

y1(k) =
k−1X
i=0

C1A
k−1−i
1 B1u(i) y2(k) =

k−1X
i=0

C2A
k−1−i
2 B2u(i)

Note that A1 = A′
2, B1 = C ′

2 and C1 = B′
2. Hence

C1A
k
1B1 = (C1A

k
1B1)

′ = B′
1(A

′
1)

kC ′
1 = C2A

k
2B2

which proves that the output responses of the two systems coincide.

2. The systems are algebraically equivalent if and only if there exists a nonsingular L
such that

A1 = L−1A2L (or LA1 = A2L) B1 = L−1B2 (or LB1 = B2) C1 = C2L.

Setting

L =

�
L1 L2

L3 L4

�
yields

LB1 =

�
L1

L3

�
= B2 =

�
1
1

�
C1 =

�
1 1

�
= C2L =

�
L1 L2

�
,

hence L1 = L2 = L3 = 1. Finally, for any L4,

LA1 =

�
1 3
1 1 + 2L4

�
6= A2L =

�
1 1
1 3 + 2L4

�
,

which shows that the two systems are not algebraically equivalent.
It is worth noting that the system with state x1 is not reachable but observable,
whereas the system with state x2 is reachable but not observable (it is the dual
of the system with state x1). Finally, if two systems are reachable and observable
and the forced responses of the output coincide then the systems are algebraically
equivalent.

Exercise 6 The function y = x− log x has a minimum for x = 1. This minimum can be
computed using Newton’s algorithm which yields the discrete-time system

xk+1 = 2xk − x2
k.

1. Compute the equilibrium points of this system.

2. Study the stability properties of the equilibrium points.
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3. Show that

(a) if x0 = 2 or x0 = 0 then xk = 0, for all k ≥ 1;

(b) if x0 > 2 then xk+1 < xk < 0, for all k ≥ 1;

(c) if x0 ∈ (0, 2) then xk ∈ (0, 1), for all k ≥ 1, and limk→∞ xk = 1.

Solution 6

1. At an equilibrium point of a discrete-time system we have xk+1 = xk. Hence, the
equilibrium points of the system are the solutions of the equation

x = 2x− x2.

We have therefore two equilibria

x = 0 x = 1.

2. The linearization of the system around an equilibrium point xeq is described by

(δx)k+1 = (2 − 2xeq)(δx)k.

Hence, for xeq = 0 we have (δx)k+1 = 2(δx)k, which is an unstable system, while for
xeq = 1 we have (δx)k+1 = 0, which is a stable system. As a result, by the principle
of stability in the first approximation, the equilibrium point x = 0 is unstable and
the equilibrium point x = 1 is locally asymptotically stable.

3. If x0 = 2, then x1 = 0, and by definition of equilibrium xk = 0 for all k > 1. If
x0 = 0 then, again by definition of equilibrium, xk = 0, for all k > 0.
Note now that the relation

xk+1 = 2xk − x2
k,

implies xk+1 < xk if and only if xk < 0 or xk > 1.
If x0 > 2 then x1 < 0, hence x2 < x1 < 0 and, in general,

xk+1 < xk < · · · < x2 < x1 < 0.

This shows that, for any x0 > 2 the sequence {xk} diverges, i.e. limk→∞ xk = −∞.
If x0 ∈ (0, 2) then x1 ∈ (0, 1). Moreover, x1 ∈ (0, 1) implies that x2 ∈ (0, 1), and
so on. Therefore, if x0 ∈ (0, 2) then xk ∈ (0, 1) for all k > 0. Note now that if
xk ∈ (0, 1) then xk+1 > xk. As a result, for any x0 ∈ (0, 2) we have

0 < x1 < x2 < · · · < xk < xk+1 < 1,

which states that the sequence {xk} is monotonically increasing and bounded from
above, hence should have a limit. However, any limit of the sequence has to be an
equilibrium point of the system, which implies that, for any x0 ∈ (0, 2) we have that
limk→∞ xk = 1.
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Exercise 7 Consider the discrete-time system

x1,k+1 =
1

2
x1,k + α(x2,k)x2,k

x2,k+1 = x2,k − α(x2,k)x1,k − r(x2,k)x2,k

with

r(x2,k) =
2

3
(α(x2,k))

2,

and α(·) a differentiable function.

1. Show that if

0 < |α(x2,k)| <
√

3

2

the origin is a (locally) asymptotically stable equilibrium.

Solution 7 To study the stability of the origin we use the principle of stability in the
first approximation.

1. The linearization of the system around the zero equilibrium is described by

δx(k + 1) = Aδx(k) =

�
1
2 α

−α 1 − 2
3α

2

�
δx(k).

The characteristic polynomial of the matrix A is

det(sI −A) = s2 + s
�

2

3
α2 − 3

2

�
+
�

2

3
α2 +

1

2

�
= s2 + sη + (η + 2)

with η =
�

2
3α

2 − 3
2

�
. Note that we are interested in values of α2 in the set (0, 3/4)

and hence of η in the set (−3/2,−1). We need to show that, for η ∈ (−3/2,−1), the
roots of the characteristic polynomial above have modulo not larger than one. The
simplest way to perform this test, without computing the roots, is to consider the
change of variable

s→ 1 + ξ

1 − ξ
,

and then apply Routh test to the resulting polynomial. Note in fact that is |s| < 1
then the real part of ξ is negative. The polynomial to study is thus

p(ξ) = (1 + ξ)2 + (1 + ξ)(1 − ξ)η + (1 − ξ)2(η + 2) = 3ξ2 + 2(−1 − η)ξ + (3 + 2η).

By Routh test, this polynomial has all roots with negative real part if and only if
η ∈ (−3/2,−1). Hence, the matrix A has all roots with modulo smaller than one if
and only if α2 ∈ (0, 3/4). By the principle of stability in the first approximation, for
all α2 ∈ (0, 3/4) the zero equilibrium of the nonlinear system is locally asymptotically
stable. Note that, if α2 = 0 or α2 = 3/4, the linearized system is stable, not
asymptotically, but we cannot conclude anything on the stability properties of the
zero equilibrium of the nonlinear system.
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Exercise 8 Consider the nonlinear model of a bioreactor described by the equations

Ẋ = µ(S)X −Xu

Ṡ = −µ(S)X + (Sin − S)u

y = S + kS3,

in which S ≥ 0, X ≥ 0, Sin > 1 is a constant, k is a constant, u is an external signal and

µ(S) = 2
S

1 + 2S + S2
.

1. Suppose u is constant and determine all equilibrium points of the system in the
following cases

(a) u ∈ (0, 1/2);

(b) u = 1/2;

(c) u > 1/2.

Sketch the position of the equilibrium points on the (X,S)-plane as a function of u.

2. Write the linearized model of the system around the equilibrium point with both
nonzero components determined in part 1.(b). Study the stability of such linearized
system.

Solution 8

1. The equilibrium points are the solutions of the equations Ẋ = 0 and Ṡ = 0. From the
first equation we obtain X = 0 or u = µ(S). The first alternative yields, exploiting
the second equation, S = Sin. The second alternative yields, exploiting again the
second equation, X = Sin − S, where S is the solution of u = µ(S).
Note now that the function µ(S) is always non-negative, it is zero for S = 0, it tends
to zero as S → ∞, and it has a maximum for S = 1 equal to 1/2. As a result we
obtain the following equilibria.

(a) u ∈ (0, 1/2). There are three equilibria: (0, Sin), (Sin−S1, S1) and (Sin−S2, S2),
where S1 and S2 are the two solutions of u = µ(S) with u ∈ (0, 1/2).

(b) u = 1/2. There are two equilibria: (0, Sin) and (Sin − 1, 1).

(c) u > 1/2. There is one equilibrium: (0, Sin).

2. The system linearized around the equilibrium point (Sin−1, 1) is described by (note
that dµ

dS (1) = 0)

δ̇x = Aδx +Bu =

�
0 0

−1/2 −1/2

�
δx +

�
1 − Sin

Sin − 1

�
δu

δy =
�

0 1 + 3k
�
δx.

The linearized system is stable, not asymptotically, but nothing can be concluded
on the stability of the equilibrium of the nonlinear system.
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Exercise 9 The (simplified and normalized) model of a patient in the presence of an
infectious disease is described by the equations

ẋ = 1 − x− Txy ẏ = Txy − y − ISy,

in which x represents the number of non-infected cells, y represents the number of infected
cells, T represents the effect of the therapy and IS ∈ (0, 1) represents the action of the
immune system.

1. Determine the two equilibrium points of the system. Show that one equilibrium cor-
responds to a healthy patient, i.e. the number of infected cells is zero, and one equi-
librium corresponds to an ill patient, i.e. the number of infected cells is non-zero.

2. Write the linearized models of the system around the two equilibrium points.

3. Without therapy T > 1+ IS. Show that the equilibrium point associated to a healthy
patient is unstable and the one associated to an ill patient is locally asymptotically
stable.

4. With therapy T < 1 + IS. Show that the equilibrium point associated to a healthy
patient is locally asymptotically stable and the one associated to an ill patient is
unstable.

Solution 9

1. The equilibrium points of the system are the solutions of the equations ẋ = 0 and
ẏ = 0. From the second equation we have y = 0 or x = 1+IS

T . From the equation
ẋ = 0, the former yields x = 1, and the latter yields y = T−1−IS

T (1+IS) . Hence, the equi-

librium (1, 0) corresponds to a healty patient, and the equilibrium (1+IS
T , T−1−IS

T (1+IS))
corresponds to an ill patient.

2. The linearized model of the system around the first equilibrium point is�
δ̇x
δ̇y

�
=

�
−1 −T
0 T − 1 − IS

� �
δx
δy

�
.

The linearized model of the system around the second equilibrium point is�
δ̇x
δ̇y

�
=

24 − T
1+IS −1 − IS

T−1−IS
1+IS 0

35� δx
δy

�
.

3. Suppose T > 1 + IS. The system linearized around the equilibrium associated to a
healthy patient has an eigenvalue with positive real part, hence the equilibrium is
unstable. On the contrary, the system linearized around the equilibrium associated
to a ill patient has both eigenvalues with negative real part, hence the equilibrium
is (locally) asymptotically stable.
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4. Suppose T < 1 + IS. The system linearized around the equilibrium associated to a
healthy patient has both eigenvalues with negative real part, hence the equilibrium
is (locally) asymptotically stable. On the contrary, the system linearized around
the equilibrium associated to a ill patient has one eigenvalue with positive real part,
hence the equilibrium is unstable.

Exercise 10 Consider the model of a simple robot arm given by

φ̈+m sinφ = T,

in which φ is the angle of the arm with respect to a vertical line directed upward, T is the
applied torque, and m is a positive parameter.

1. Let T = 0. Determine the equilibrium points of the system.

2. Let T = 0. Consider the energy of the system E = 1
2 φ̇

2 −m cosφ. Compute Ė and
show that E remains constant for all t.

3. Let T = −kφ̇ with k > 0. Show that the equilibrium (φ, φ̇) = (0, 0) is locally
asymptotically stable.

Solution 10

1. The equilibrium points of the system are such that φ(t) is constant for all t, hence
are such that φ̇ = φ̈ = 0. As a result, the equilibrium points are the solutions of
the equation sinφ = 0. This equation has infinitely many solutions, however, from
a physical point of view, we have only two solutions φ = 0 (the arm is directed
upward) and φ = π (the arm is directed downward).

2. Note that
Ė = φ̇φ̈+m sinφφ̇

and replacing the equation describing the motion of the arm yields

Ė = T φ̇.

Hence, if T = 0 we have that Ė = 0, hence E(t) is constant for all t.

3. Setting T = −kφ̇ yields
φ̈+ kφ̇+m sinφ = 0.

To study the stability of the equilibrium (0, 0) we linearize this equation around this
point and we obtain

δ̈φ + kδ̇φ +mδφ = 0.

The characteristic polynomial associated with this linear system is (Laplace trans-
form the equation, and factor L(φ(s)))

s2 + ks+m,

which has all roots with negative real part, by Routh test. As a result, the equilib-
rium (0, 0) of the nonlinear system is locally asymptotically stable.
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Exercise 11 Consider the nonlinear system modelling the dynamics of the angular veloc-
ities of a rigid body in space (for example a satellite), described by the equations (known
as Euler’s equations)

ẋ1 =
I2 − I3
I1

x2x3

ẋ2 =
I3 − I1
I2

x3x1

ẋ3 =
I1 − I2
I3

x1x2,

with I1 6= 0, I2 6= 0 and I3 6= 0.

1. Determine the equilibrium points of the system.

2. Consider the equilibrium x̃ = (α, 0, 0) with α 6= 0. Compute the linearized model
around the equilibrium x̃, and study its stability as a function of I1, I2 and I3.
Discuss the stability properties of the equilibrium x̃ of the nonlinear system.

Solution 11

1. The equilibrium points of the system are the solutions of the equations ẋ1 = ẋ2 =
ẋ3 = 0. From the equation ẋ1 = 0 we have x2 = 0 or x3 = 0. Replacing x2 = 0 in
the second and third equations yields the constraint x3x1 = 0. As a result, we have
the two families of equilibrium points described by

(0, 0, ⋆) (⋆, 0, 0),

where ⋆ is any real number. Finally, from x3 = 0 we have another family of equilib-
rium points described by

(0, ⋆, 0).

All the above equilibria describe steady rotations around an axis of symmetry (these
are sometimes called, in mechanics, relative equilibria).

2. The system linearized around the given equilibrium is described by

δ̇x =

264 0 0 0

0 0 I3−I1
I2

α

0 I1−I2
I3

α 0

375 δx.
As a result, if

I3 − I1
I2

I1 − I2
I3

< 0

the linearized system is stable, but no conclusions can be drawn on the stability
properties of the given equilibrium of the nonlinear system. If

I3 − I1
I2

I1 − I2
I3

> 0

the linearized system is unstable, hence the given equilibrium of the nonlinear sys-
tems is unstable.
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Exercise 12 A continuous-time system described by the equations

ẋ = Ax+Bu y = Cx

is passive if there exists a matrix P = P ′ > 0 such that

A′P + PA ≤ 0 PB = C ′.

Consider the continuous-time system

ẋ =

�
0 1
−2 0

�
x+

�
0
1

�
u y =

�
0 1

�
x.

1. Show that the system is passive.

2. Let u = −Ky. Write the equations of the closed-loop system and show that the
system is asymptotically stable for all K > 0.

3. The zeros of a system with x ∈ IRn, u ∈ IR and y ∈ IR, are the complex numbers s̄
such that

rank

�
s̄I −A B
C 0

�
< n+ 1.

Show that the considered system has a zero at s̄ = 0.

Finally, show that a passive system does not have zeros s̄ with positive real part.

Solution 12

1. Let

P =

�
2 0
0 1

�
and note that

PB =

�
0
1

�
= C ′

and
A′P + PA = 0,

hence the system is passive.

2. The closed-loop system is described by the equations

ẋ = (A−KBC)x =

�
0 1
−2 −K

�
x = Aclx.

The characteristic polynomial of the matrix Acl is given by

det(sI −Acl) = s2 +Ks+ 2,

hence, by Routh test, its roots have negative real part if and only if K > 0, hence
the closed-loop system is asymptotically stable for all K > 0.
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3. Note that �
s̄I −A B
C 0

�
=

264 s̄ −1 0
−2 s̄ 1

0 1 0

375 .
Setting s̄ = 0 yields the matrix 264 0 −1 0

−2 0 1
0 1 0

375 .
The determinant of this matrix is equal to zero, hence the matrix has rank smaller
than three, which proves that the system has a zero for s̄ = 0.
(This definition of zeros for single-input, single-output systems is consistent with
the definition based on the transfer function of the system. For example, for the
considered system, the transfer function is

W (s) = C(sI −A)−1B =
s

s2 + 2
,

hence the system has a zero at zero.)

To prove that a passive, single-input, single-output system does not have zeros with pos-
itive real part we proceed as follows. Suppose that the system has a zero at some s̄,
hence

rank

�
s̄I −A B
C 0

�
< n+ 1.

This implies that there exist a nonzero (complex) vector v and a scalar w such that

(s̄I −A)v +Bw = 0 Cv = 0 (or v⋆C ′ = 0),

where v⋆ is the adjoint of v. Then, left multiplying by P ,

0 = (s̄P − PA)v + PBw = (s̄P − PA)v + C ′w,

hence, left multiplying by v⋆,

0 = v⋆
�
(s̄P − PA)v + C ′w

�
= v⋆(s̄P − PA)v.

As a result
s̄v⋆Pv = v⋆PAv

and
s̄⋆v⋆Pv = v⋆A′Pv.

Adding these two last equations yields

(s̄+ s̄⋆)v⋆Pv = v⋆(A′P + PA)v.

Finally, note that v⋆Pv > 0, v⋆(A′P + PA)v ≤ 0 and (s̄ + s̄⋆) is equal to twice the real
part of s̄, which has to be non-positive, as claimed.
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Exercise 13 Consider the discrete-time system x(k + 1) = Ax(k) +Bu(k). Let

A =

264 0 1 0
−1 0 0

0 2 0

375 B =

264 1
−1

2

375 .
1. Compute the reachability matrix R.

2. Determine if the system is reachable and compute the set of reachable states.

3. Determine all states xI such that x(0) = xI and x(1) = 0.

Solution 13

1. The reachability matrix is

R =
�
B AB A2B

�
=

264 1 −1 −1
−1 −1 1

2 −2 −2

375 .
2. The first two columns of the reachability matrix are linearly independent, and

det(R) = 0, hence the system is not reachable. The set of reachable states is two
dimensional and it is described by the linear combination of the first two columns
of the reachable matrix.

3. We have to determine all states which are controllable in one step. Instead of using
the definition of controllable states in one step, we perform a direct calculation. Let

x(0) = xI =

264 xI,1

xI,2

xI,3

375
and note that

x(1) = Ax(0) +Bu(0) =

264 xI,2 + u(0)
−xI,1 + u(0)
2(xI,2 + u(0))

375 .
The condition x(1) = 0 implies xI,1 = u(0), xI,2 = −u(0), hence all states that can
be controlled to zero in one step are given by

xI =

264 u(0)
−u(0)
xI,3

375 ,
and this is a two dimensional set. Note that this implies that the considered system
has an eigenvalue at zero.
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Exercise 14 Consider the discrete-time system x(k + 1) = Ax(k) +Bu(k). Let

A =

264 0 1 0
−1 0 0

0 0 0

375 B =

264 1
−1

0

375 .
1. Compute the reachable subspaces in one step, two steps and three steps.

2. Using Hautus test determine the unreachable modes.

3. Show that the system is controllable in two steps.

Solution 14 The reachability matrix is

R =
�
B AB A2B

�
=

264 1 −1 −1
−1 −1 1

0 0 0

375 ,
and it has rank equal to two.

1. The set of reachable states in one step is

R1 = spanB = span

264 1
−1

0

375 .
The set of reachable states in two steps is

R2 = span[B,AB] = span

264 1 −1
−1 −1

0 0

375 = span

264 1 0
0 1
0 0

375 .
The set of reachable states in three steps is

R3 = span[B,AB,A2B] = R2.

2. The reachability pencil is�
sI −A B

�
=

264 s −1 0 1
1 s 0 −1
0 0 s 0

375 .
This matrix has rank three for all s 6= 0, hence the unreachable mode is s = 0.
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3. The system is controllable, since the unreachable modes are at s = 0. To show that
it is controllable in two steps note that

A2 =

264 −1 0 0
0 −1 0
0 0 0

375 ,
hence

ImA2 ⊆ R2,

which proves the claim.

Exercise 15 Consider the continuous-time system ẋ = Ax+Bu. Let

A =

�
1 0
0 1

�
B =

�
1
0

�
.

Compute the set of states that can be reached from the state

x0 =

�
0
1

�
.

Solution 15 Note that

x(t) = eAtx0 +
Z t

0
eA(t−τ)Bu(τ)dτ =

�
0
et

�
+

� R t
0 e

t−τu(τ)dτ
0

�
.

Note that, by a proper selection of u(τ) in the interval [0, t) it is possible to assignR t
0 e

t−τu(τ)dτ. Therefore, the states that can be reached at time t from x0 are described
by

x(t) =

�
0
et

�
+ λB,

with λ ∈ IR.

Exercise 16 Consider the discrete-time system x(k + 1) = Ax(k), y(k) = Cx(k). Let

A =

264 0 −4 0
1 4 0
0 −4 2

375 , C =
�

0 1 0
�
.

Determine if the system is observable and compute the unobservable subspace.

Solution 16 The observability matrix is

O =

264 0 1 0
1 4 0
4 12 0

375 .
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This matrix has rank two, hence the system is not observable. The unobservable subspace
kerO is spanned by the vector 264 0

0
1

375 ,
this means that it is not possible to obtain information on the third component of the
state from measurements of the output.

Exercise 17 Consider the continuous-time system

ẋ = Ax+Bu y = Cx

and its Euler discrete-time approximate model

xk+1 = xk + T (Axk +Buk) yk = Cxk

where T > 0 is the sampling time.

Show that the continuous-time system is observable if and only if the Euler discrete-time
approximate model is observable.

Solution 17 By observability of the continuous-time system we have that

rank

�
sI −A

C

�
= n,

for all s ∈ CI. Consider now the observability pencil of the Euler model, namely�
sI − (I + TA)

C

�
.

Note now that, for all s ∈ CI,

n = rank

�
sI −A

C

�
= rank

264 s− 1

T
I −A

C

375 = rank

�
zI −A

C

�
,

where z = s−1
T . Hence, observability of the continuous-time system implies, and it is

implied by, observability of the Euler discrete-time approximate model.

Exercise 18 Consider the system σx = Ax, y = Cx, with

A =

�
A11 A12

A21 A22

�
C =

�
I 0

�
,

and Aij matrices of appropriate dimensions. Show that the system is observable if and
only if the (simpler) system σξ = A22ξ with output η = A12ξ is observable.
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Solution 18 Observability of the system σx = Ax, y = Cx implies, and is implied by,

rank

264 sI −A11 −A12

A21 sI −A22

I 0

375 = n

for all s ∈ IC. Suppose that y(t) ∈ IRp, then

rank

264 sI −A11 −A12

A21 sI −A22

I 0

375 = p+ rank

�
−A12

sI −A22

�
.

Note now that the matrix �
−A12

sI −A22

�
has full rank for all s ∈ IC if and only if the system σξ = A22ξ with output η = A12ξ is
observable, and this proves the claim.

Exercise 19 Consider the continuous-time system

ẋ =

�
3 −1 + ǫ
1 2 − ǫ

�
x +

�
0
1

�
u

y =
�
−1 1

�
x.

1. Show that the system is reachable for all ǫ 6= 1.

2. Let ǫ = 1. Write the system in the canonical form for non-reachable systems, i.e.
determine coordinates x̂, defined by

x = Lx̂

for some matrix L, such that, in the x̂ coordinates, the system is described by equa-
tions of the form

˙̂x =

�
Ã11 Ã12

0 Ã22

�
x̂+

�
B̃1

0

�
u,

with Ã11 and B̃1 such that ˙̂x1 = Ã11x̂1 + B̃1u is reachable. (Compute explicitly L,
Ã11, Ã12, Ã22 and B̃1.)

3. Show that the system is observable for all ǫ 6= 1/2.

4. Let ǫ = 1/2. Determine, using Hautus test, the unobservable modes.
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Solution 19

1. The reachability matrix is

R =

�
0 ǫ− 1
1 2 − ǫ

�
.

If ǫ 6= 1 then det(R) 6= 0, hence the system is reachable.

2. If ǫ = 1 the system is not reachable. Let L be constructed setting the first column
equal to the first column of the reachable matrix (which is nonzero) and selecting
the second column to render L non-singular, for example

L =

�
0 1
1 0

�
.

(Any matrix L of the form

L =

�
0 L12

1 L21

�
,

with L12 6= 0, can be used.)
Note now that (recall that ǫ = 1 and note that L−1 = L)

˙̂x = L−1

�
3 0
1 1

�
Lx̂+ L−1

�
0
1

�
u =

�
1 1
0 3

�
x̂+

�
1
0

�
u

y =
�
−1 1

�
Lx̂ =

�
1 −1

�
x̂.

Hence Ã11 = 1, Ã12 = 1, Ã22 = 3, B̃1 = 1 and the system ˙̂x1 = Ã11x̂1 +B̃1u = x̂1+u
is reachable. (Note that the system is not stabilizable, and the unreachable mode is
s = 3.)

3. The observability matrix is

O =

�
−1 1
−2 3 − 2ǫ

�
.

Note that det(O) = 2ǫ− 1. Therefore the system is observable if ǫ 6= 1/2.

4. The observability pencil, for ǫ = 1/2, is264 s− 3 1/2
−1 s− 3/2

1 −1

375 .
As the system is not observable we know that the observability pencil loses rank, i.e.
it has rank equal to one, for some s. To compute such an s consider the submatrix�

−1 s− 3/2

1 −1

�
.

This has rank equal to one for s = 5/2, which is therefore the unobservable mode.
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R1 2R

C L

u

y=i

Figure A: The electrical network for Exercise 20.

Exercise 20 Consider the linear electrical network in Figure A. Let u be the driving
voltage.

1. Using Kirchhoff’s laws, or otherwise, express the dynamics of the circuit in the
standard state-space form

ẋ = Ax+Bu y = Cx+Du

Take x1 to be the voltage across the capacitor, x2 to be the current through the
inductor and the output to be the current supplied by the generator.

2. Derive a condition on the parameters R1, R2, C and L under which the pair (A,B)
is controllable.

3. Derive a condition on the parameters R1, R2, C and L under which the pair (A,C)
is observable.

4. Assume R1R2C = L and R1 6= R2. Derive the Kalman canonical form for the
system.

5. Assume R1R2C = L and R1 6= R2. Define the controllable subspace and the unob-
servable subspace. Illustrate these subspaces as lines in R2.

Solution 20 Let x1 denote the voltage across C and x2 the current through L.

1. Kirchhoff’s laws yield

u = x1 +R1C1ẋ1 u = R2x2 + lẋ2
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and

y = i = x2 +
u− x1

R1
.

As a result,

ẋ =

�
ẋ1

ẋ2

�
= Ax+Bu =

� − 1
R1C 0

0 −R2
L

�
x+

" 1
R1C

1
L

#
u

and

y = Cx+Du =
�
− 1

R1
1
�
x+

1

R1
u.

2. The reachability matrix is

R =

" 1
R1C − 1

R2
1C2

1
L −R2

L2

#
and

det(R) =
1

R1CL

�
1

R1C
− R2

L

�
.

Hence the system is reachable and controllable if, and only if,

R1R2C 6= L.

3. The observability matrix is

O =

24 − 1
R1

1

1
R2

1C
−R2

L

35
and

det(O) =
1

R1

�
R2

L
− 1

R1C

�
.

Hence the system is observable if, and only if,

R1R2C 6= L.

4. If R1R2C = L then the reachable subspace is

R = span

�
R2

1

�
and the unobservable subspace is

kerO = span

�
R1

1

�
.
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Note that, as R1 6= R2 these two subspaces are independent. Let

L =

�
R2 R1

1 1

�
and note that the matrices of the system in Kalman canonical form are

Ã = L−1AL =

�
−R2

L 0

0 −R2
L

�
B̃ = L−1B =

�
1
L
0

�
and

C̃ = CL =
�

1 − R2
R1

0
�
.

5. The subspaces are indicated in the figure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

x1

x2

R1 R2

R

kerO

Exercise 21 Consider the electrical network depicted in Figure B.

1. Using Kirchoff’s laws, or otherwise, write a state space description of the system.

2. Let R1 = R2 = R and C1 = C2 = C. Compute the controllability and observability
matrices and their ranks.

3. Let R1 = R2 = R and C1 = C2 = C. Compute the Kalman canonical form of the
system.

Solution 21 Let xj be the voltage across the capacitor Cj, considered positive “from left
to right”, and ij the current through the capacitor Cj , considered positive “from left to
right”. The input current i is positive in the upward direction, and the output voltage is
the voltage, positive “upward” between the two open terminals.
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2

1

2

3

u=i y=V

R1

R

C

C

C

Figure B: The electrical network for Exercise 21.

1. Using the above conventions we have

i1 = C1v̇1 i2 = C2v̇2 i3 = C3v̇3

i1 + i2 + i3 = 0 v3 − v2 = R2(i− i1 − i3) v1 − v3 = R1(i− i1).

As a result264 1 1 1
−1 0 −1
−1 0 0

375264 C1v̇1
C2v̇2
C3v̇3

375+

264 0
1
1

375 i =

264 0 0 0
0 − 1

R2

1
R2

1
R1

0 − 1
R1

375264 v1
v2
v3

375
yielding264 v̇1

v̇2
v̇3

375 =

2664 − 1
C1R1

0 1
C1R1

0 − 1
C2R2

1
C2R2

1
C3R2

1
C3R2

− 1
C3R1

− 1
C3R2

3775264 v1
v2
v3

375+

2664 − 1
C1

1
C2

0

3775 i.
Finally

y =
�

1 −1 0
� 264 v1

v2
v3

375 .
2. Setting R1 = R2 = R, C1 = C2 = C, RC = 1/α, RC3 = 1/β, and u = i/C yields264 v̇1

v̇2
v̇3

375 =

264 −α 0 α
0 −α α
β β −2β

375264 v1
v2
v3

375+

264 −1
1
0

375u.
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The reachability matrix is

R =

264 −1 α −α2

1 −α α2

0 0 0

375 .
R has rank one, hence the system is not reachable and not controllable. The observ-
ability matrix is

O =

264 1 −1 0
−α α 0
α2 −α2 0

375 .
O has rank one, hence the system is not observable.

3. The reachability subspace is

R = spanB = span

264 −1
1
0

375 .
The unobservable subspace is

kerO = span

264 1 0
1 0
0 1

375 .
Note that

X1 = R∩ kerO = ∅ X2 = R X3 = kerO X4 = ∅,

hence x = Lx̂, with

L =

264 −1 1 0
1 1 0
0 0 1

375 .
Finally, Kalman canonical form is given by the equations

˙̂x =

264 −α 0 0
0 −α α
0 2β −2β

375 x̂+

264 1
0
0

375u
y =

�
−2 0 0

�
x̂.

Exercise 22 The linearized model of an orbiting satellite about a circular orbit of radius
r0 > 0 and angular velocity ω0 6= 0 is described by the equations

ẋ = Ax+Bu =

26664 0 1 0 0
3ω2

0 0 0 2r0ω
2
0

0 0 0 1
0 −2ω0/r0 0 0

37775x+

26664 0 0
1 0
0 0
0 1/r0

37775 u
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y = Cx =

�
1 0 0 0
0 0 1 0

�
x.

The output components are variations in radius and angle of the orbit and the input com-
ponents are radial and tangential forces.

1. Show that the system is controllable.

2. Design a state feedback control law

u = Kx+Gv =

�
k11 k12 k13 k14

k21 k22 k23 k24

�
x+

�
g11 0
0 g22

�
v

such that

• the matrix A+BK has all eigenvalues equal to −1 and it is block diagonal, i.e.

A+BK =

�
F1 0
0 F2

�
with Fi ∈ IR2×2;

• the closed-loop system has unity DC gain, i.e.

−C(A+BK)−1BG =

�
1 0
0 1

�
.

Solution 22

1. Consider the following submatrix of the reachability matrix

R̃ = [B AB] =

26664 0 0 1 0
1 0 0 2ω2

0

0 0 0 1/r0
0 1/r0 −2ω0/r0 0

37775
and note that its determinant is −1/r20 6= 0. Hence the system is reachable and
controllable.

2. Consider the closed-loop system

ẋ = (A+BK)x+BGv

and note that

A+BK =

26664 0 1 0 0
3ω2

0 + k11 k12 k13 2r0ω
2
0 + k14

0 0 0 1
k21/r0 −2ω0/r0 + k22/r0 k23/r0 k24/r0

37775 .
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Hence, selecting

k11 = −3ω2
0 − 1 k12 = −2 k13 = 0 k14 = −2r0ω

2
0

k21 = 0 k22 = 2ω0 k23 = −r0 k24 = −2r0

yields

A+BK =

26664 0 1 0 0
−1 −2 0 0

0 0 0 1
0 0 −1 −2

37775
which shows that the first condition has been achieved.

To achieve the second condition note that

−C(A+BK)−1BG =

�
g11 0
0 g22/r0

�
.

Hence, it suffices to select
g11 = 1 g22 = r0.

Exercise 23 Consider the continuous-time system ẋ = Ax+Bu. Let

A =

�
1 2
3 4

�
B =

�
1
1

�
.

Find a matrix K such that σ(A+BK) = {−1,−2}. Solve the problem in two ways:

1. using the general theory discussed in the lectures;

2. using a direct computation, i.e. without computing the reachability matrix of the
system.

Solution 23

1. The general theory states that the state feedback is given by

K = −
�

0 1
�
R−1p(A),

where R is the reachability matrix and p(s) is the desired closed-loop characteristic
polynomial, in this case p(s) = (s+ 1)(s + 2) = s2 + 3s + 2. As a result,

K = −
�

0 1
��1

4

�
7 −3

−1 1

���
12 16
24 36

�
= −

�
3 5

�
,

yielding

A+BK =

�
−2 −3

0 −1

�
,

which has eigenvalues equal to −1 and −2, as requested.
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2. Let

K =
�
K1 K2

�
and note that

A+BK =

�
1 +K1 2 +K2

3 +K1 4 +K2

�
.

The characteristic polynomial of A+BK is

det(sI − (A+BK)) = s2 + s(−5 −K1 −K2) + (−2K2 + 2K1 − 2),

and this should be equal to p(s) = s2 + 3s + 2. As a result, K1 and K2 should be
such that

−5 −K1 −K2 = 3 − 2K2 + 2K1 − 2 = 2,

which yields K1 = −3 and K2 = −5. Note that, because the system has only one
input and it is reachable, the state feedback assigning the eigenvalues is unique!

Exercise 24 Consider the continuous-time system

ẋ =

�
1 −2
3 −1

�
x+

�
1

−1

�
u

y =
�

3 −1
�
x.

1. Show that the system is controllable and observable.

2. Assume zero initial state. Compute the response of the system when u is a unity
step applied at t = 0.

3. Design a state feedback control law

u = Kx+Gr

such that the closed-loop system has two eigenvalues at −3.

Solution 24

1. The reachability matrix is

R =

�
1 3

−1 4

�
,

which is full rank, hence the system is reachable and controllable.
The observability matrix is

O =

�
3 −1
0 −5

�
,

which is full rank, hence the system is observable.
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2. We have to compute the forced response of the output of the system. Note that
σ(A) = {i

√
5,−i

√
5}, hence the forced response of the output of the system has the

form
y(t) = y0 + y1 sin(

√
5t+ φ).

Note now that (recall that u = 1, for t ≥ 0, and that x(0) = 0)

y(0) =
�

3 −1
�
x(0) = 0

ẏ(0) =
�

0 −5
�
x(0) + 4u = 4

ÿ(0) =
�
−15 5

�
x(0) + 5u+ 4u̇ = 5.

Therefore, we have to determine y0, y1 and φ from the equations

y0 + y1 sinφ = 0
√

5y1 cosφ = 4 − 5y1 sinφ = 5.

This yields

y1 =

r
21

5
φ = arctan

�
−
√

5

4

�
y0 =

r
21

5
.

3. Let
K =

�
K1 K2

�
and note that

A+BK =

�
1 +K1 −2 +K2

3 +K1 −1 −K2

�
.

The characteristic polynomial of A+BK is

det(sI − (A+BK)) = s2 + s(−K1 +K2) + (−3K1 + 5 − 4K2),

and this should be equal to p(s) = (s + 3)2 = s2 + 6s + 9. As a result, K1 and K2

should be such that

−K1 +K2 = 6 − 3K1 + 5 − 4K2 = 9,

which yields K1 = −4 and K2 = 2.

Exercise 25 Consider the continuous-time system

ẋ =

�
3 −1 + ǫ
1 2 − ǫ

�
x+

�
0
1

�
u

y =
�
−1 1

�
x.

1. Show that the system is controllable for any ǫ 6= 1. Study the stabilisability of the
system for ǫ = 1.
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2. Show that the system is observable for any ǫ 6= 1/2. Study the detectability of the
system for ǫ = 1/2.

3. Assume ǫ = 0. Design a state feedback control law

u = Kx+Gr

such that the closed-loop system has two eigenvalues equal to −2.

4. Show that the state feedback control law designed above stabilizes the system for any
ǫ ∈ (−4, 1/7).

Solution 25

1. The reachability matrix is

R =

�
0 ǫ− 1
1 2 − ǫ

�
,

and det(R) = 1 − ǫ. As a result the system is reachable and controllable for ǫ 6= 1.
Let ǫ = 1 and consider the reachability pencil�

sI −A B
�

=

�
s− 3 0 0
−1 s− 1 1

�
,

which has rank equal to one for s = 3. The system is therefore not stabilizable. Note
that it is possible to obtain this conclusion without computing the reachability pencil.
In fact, for ǫ = 1 the eigenvalues of A are {3, 1}, hence if there is an unreachable
mode this is associated to a value of s with positive real part.

2. The observability matrix is

O =

�
−1 1
−2 −2ǫ+ 3

�
,

and det(O) = 2ǫ − 1. As a result the system is observable for ǫ 6= 1/2. Let ǫ = 1/2
and consider the observability pencil�

sI −A

C

�
=

264 s− 3 1/2
−1 s− 3/2

−1 1

375 .
Because the system is not observable, this matrix has to have rank equal to one for
some s. To find such an s consider the submatrix�

−1 s− 3/2

−1 1

�
.

Its determinant is s−5/2, hence the unobservable mode is s = 5/2 and the system is
not detectable. Note that it is possible to obtain this conclusion without computing
the observability pencil. In fact, for ǫ = 1/2 the eigenvalues of A are {5/2, 2}, hence
if there is an unobservable mode this is associated to a value of s with positive real
part.
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3. If ǫ = 0 we have

A =

�
3 −1
1 2

�
.

Setting K = [K1, K2] yields

det(sI − (A+BK)) = s2 + s(−5 −K2) + (K1 + 3K2 + 7),

which should be equal to (s+ 2)2. This is achieved setting

K1 = 24 K2 = −9.

4. Consider now the matrix

A+BK =

�
3 ǫ− 1
25 −7 − ǫ

�
.

Its characteristic polynomial is

det(sI − (A+BK)) = s2 + s(4 + ǫ) + (4 − 28ǫ),

which has both roots with negative real part (by Routh test) if and only if ǫ ∈
(−4, 1/7).

Exercise 26 Consider the continuous-time system ẋ = Ax+Bu, y = Cx, with

A =

264 0 1 0
0 0 1
0 −5 −6

375 B =

264 0
0
2

375 C =
�

1 0 0
�
.

Design an asymptotic observer having three eigenvalues at −10.

Solution 26 An asymptotic observer is described by

ξ̇ = Aξ + L(Cξ − y) +Bu = (A+ LC)ξ − Ly +Bu

for some L = [L1 L2 L3]
′, where ξ is the asymptotic estimate of x provided the matrix

A+ LC has all eigenvalues with negative real part. Note that

A+ LC =

264 L1 1 0
L2 0 1
L3 −5 −6

375 ,
and its characteristic polynomial is

s3 + s2(6 − L1) + s(5 − 6L1 − L2) + (−L3 − 5L1 − 6L2).

This should be equal to

(s + 10)3 = s3 + 30s2 + 300s + 1000.

As a result,
L1 = −24 L2 = −151 L3 = 26.
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Exercise 27 Consider the continuous-time system ẋ = Ax, y = Cx. Let

A =

�
0 1
0 −α

�
, C =

�
1 0

�
.

1. Show, using Hautus test, that the system is observable for all α.

2. Design an asymptotic observer for the system. Select the output injection gain L
such that the matrix A− LC has two eigenvalues equal to -3.

3. Suppose that one can measure y(t) and a delayed copy of y(t) given by y(t− τ), with
τ > 0. Assume (for simplicity) that α 6= 0.
For t ≥ τ , express the vector

Y (t) =

�
y(t)

y(t− τ)

�
from x(0).
Show that the relation determined above can be used, for any τ > 0, to compute
x(0) as a function of Y (t), where t ≥ τ . Argue that the above result can be used to
determine x(t) from Y (t), for t ≥ τ , exactly.

Solution 27

1. The observability pencil is 264 s −1
0 s+ α

1 0

375 ,
which has rank two for any s and any α. Hence the system is observable.

2. An asymptotic observer is described by

ξ̇ = Aξ + L(Cξ − y) = (A+ LC)ξ − Ly

for some L = [L1 L2]
′, where ξ is the asymptotic estimate of x provided the matrix

A+ LC has all eigenvalues with negative real part. Note that

A+ LC =

�
L1 1
L2 −α

�
and its characteristic polynomial is

s2 + s(α− L1) − αL1 − L2.

This should be equal to (s+ 3)2 = s2 + 6s+ 9, yielding

L1 = α− 6 L2 = −9 + (6 − α)α.
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3. Note that
y(t) = CeAtx(0)

and replacing t with t− τ one has

y(t− τ) = CeA(t−τ)x(0).

Then, for t ≥ τ ,

Y (t) =

�
y(t)

y(t− τ)

�
=

�
C

Ce−Aτ

�
eAtx(0).

For the given A and C (using α 6= 0) we have�
C

Ce−Aτ

�
=

�
1 0

1 − eατ−1
α

�
which is invertible for all α 6= 0 and all τ > 0. Hence

x(t) = eAtx(0) =

�
1 0

1 − eατ−1
α

�−1

Y (t).

The above relation implies that, for all t ≥ τ , it is possible to obtain exactly x(t).

Exercise 28 Consider the discrete-time system

xk+1 =

�
1 −2
3 −1

�
xk +

�
1

−1

�
uk,

yk =
�

3 −1
�
xk.

1. Show that the system is observable.

2. Design an asymptotic observer, with state x̂k, such that ek = xk − x̂k = 0 for all
k ≥ N . Determine the smallest value of N for which the above condition can be
satisfied.

3. Let
uk = Kx̂k + vk

with K = [3/4, 3/4]. Write the equations of the closed-loop system, with state
[xk, x̂k], input vk and output yk, and determine the eigenvalues of this system.

Solution 28

1. The observability matrix is

O =

�
3 −1
0 −5

�
,

which has rank equal to two. The system is therefore observable.
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2. An asymptotic observer is described by

ξk+1 = Aξk + L(Cξk − yk) +Buk = (A+ LC)ξk − Lyk +Buk

for some L = [L1 L2]
′, where ξk is the asymptotic estimate of x provided the matrix

A+ LC has all eigenvalues with negative real part. To obtain a dead-beat observer
L should be such that both eigenvalues of A+ LC are zero. Note that

A+ LC =

�
1 + 3L1 −2 − L1

3 + 3L2 −1 − L2

�
,

and
det(sI − (A+ LC)) = s2 + s(L2 − 3L1) + 5(1 + L2).

Hence,
L1 = −1/3 L2 = −1.

With this selection of L we have (A + LC)2 = 0, hence N = 2. To prove that the
smallest N for which the considered condition holds is N = 2 it is enough to observe
that there is no selection of L such that (A+ LC)1 = 0.

3. By the separation principle the eigenvalues of the closed-loop system are the eigen-
values of the observer and of the matrix

A+BK =

�
7/4 −5/4
9/4 −7/4

�
.

Hence, the eigenvalues of the closed-loop system are {1/2,−1/2, 0, 0}.

Exercise 29 Consider the simplified model of a ship described by the equation

Mθ̈ + dθ̇ + cα = w
α̇+ α = u

where θ denotes the heading angle error (the angle between the ship’s heading and the
desired heading), α denotes the rudder angle, w denotes a disturbance due to wind, and u
is the control input. M and c are positive parameters, and d is a non-negative parameter.

1. Write the equation of the system, with state (θ, θ̇, α), input (w, u) and output θ in
standard state space form.

2. Let w = 0. Show that the system is controllable.

3. Show that the system is observable.

4. Let w = 0, M = 1, c = 1 and d = 0. Design an output feedback controller applying
the separation principle. In particular, select the state feedback gain K such that the
matrix A − BK has three eigenvalues equal to −1 and the output injection gain L
such that the matrix A− LC has three eigenvalues equal to −3.
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Solution 29

1. The description of the system in standard state space form is (set x = (θ, θ̇, α)′)

ẋ =

264 0 1 0
0 −d/M −c/M
0 0 −1

375x+

264 0 0
1/M 0

0 1

375� w
u

�
y =

�
1 0 0

�
x.

2. The reachability matrix is

R =

264 0 0 −c/M
0 −c/M c/M(d/M + 1)
1 −1 1

375
and this has full rank for all positive c and M . The system is reachable and control-
lable.

3. The observability matrix is

O =

264 1 0 0
0 1 0
0 −d/M −c/M

375
and this has full rank for all positive c and M . The system is observable.

4. Let K = [K1 K2 K3] and note that

A+BK =

264 0 1 0
0 0 −1
K1 K2 −1 +K3

375 ,
and that the characteristic polynomial of this matrix is s3+(1−K3)s

2+(K2)s+(K1).
Hence the selection

K1 = 1 K2 = 3 K3 = −2

is such that all eigenvalues of A + BK are equal to −1. Let L = [L1 L2 L3]
′ and

note that

A+ LC =

264 L1 1 0
L2 0 −1
L3 0 −1

375 ,
and that the characteristic polynomial of this matrix is s3 + (1 − L1)s

2 + (−L1 −
L2)s+ (−L2 + L3). Hence the selection

L1 = −8 L2 = −19 L3 = 8

is such that all eigenvalues of A + LC are equal to −3. Finally, the controller is
ξ̇ = (A+BK + LC)ξ − Ly, u = Kξ.
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Exercise 30 Consider the continuous-time system

ẋ =

�
1 −2
3 −1

�
x+

�
1

−1

�
u,

y =
�

3 −1
�
x

1. Design an asymptotic observer with a double pole at −6.

2. Suppose x0 is the observer state evaluated in part 1. Let

u = Kx0 +Gr

with K = [−4, 2]. Compute the eigenvalues of the closed-loop system.

Solution 30

1. An asymptotic observer is described by

ξ̇ = Aξ + L(Cξ − y) +Bu = (A+ LC)ξ − Ly +Bu

for some L = [L1 L2]
′, where ξ is the asymptotic estimate of x provided the matrix

A+ LC has all eigenvalues with negative real part. Note that

A+ LC =

�
1 + 3L1 −2 − L1

3 + 3L2 −1 − L2

�
,

and its characteristic polynomial is

s2 + s(L2 − 3L1) + 5(1 + L2).

This should be equal to
(s+ 6)2 = s2 + 12s+ 36.

As a result,
L1 = −29/15 L2 = 31/5.

2. By the separation principle the eigenvalues of the closed-loop system are the eigen-
values of the observer and of the matrix

A+BK =

�
−3 0

7 −3

�
.

Hence, the eigenvalues of the closed-loop system are {−3,−3,−6,−6}.
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