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Abstract

Current computer vision techniques can effectively moni-
tor gross activities in sparse environments. Unfortunately,
visual stimulus is often not sufficient for reliably discrimi-
nating between many types of activity. In many cases where
the visual information required for a particular task is ex-
tremely subtle or non-existent, there is often audio stim-
ulus that is extremely salient for a particular classifica-
tion or anomaly detection task. Unfortunately unlike vi-
sual events, independent sounds are often very ambiguous
and not sufficient to define useful events themselves. With-
out an effective method of learning causally-linked tempo-
ral sequences of sound events that are coupled to the vi-
sual events, these sound events are generally only useful for
independent anomalous sounds detection, e.g., detecting a
gunshot or breaking glass. This paper outlines a method
for automatically detecting a set of audio events and visual
events in a particular environment, for determining statisti-
cal anomalies, for automatically clustering these detected
events into meaningful clusters, and for learning salient
temporal relationships between the audio and visual events.
This results in a compact description of the different types
of compound audio-visual events in an environment.

1. Introduction

The field of computer vision has made great strides in mak-
ing functional activity understanding systems, but these sys-
tems are generally deaf to the world around them. Figure 1
shows two individuals trying to gain access to a secure area.
One of them unlocks the door, while the other forces the
door open. There is almost no information in the visual sig-
nal to discriminate these two activities, but the audio con-
tains an anomalous alarm sound, resulting a short time after
the unauthorized access. Even trained security personnel
would have difficulty differentiating these two events over
closed-circuit TV with no audio.

Visual observation allows objects to be tracked from one
location to another and allows objects’ appearances and ac-
tivities to be characterized over time. Audio observation
compliments visual observation in many ways.

Audio capture is less expensive and less cumbersome
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Figure 1: This figure shows a single frame of video ex-
tracted from sequences when two separate individuals were
tracked as they passed into a secure area. The first individ-
ual unlocks the door and passes through resulting in a sound
event of the door lock mechanism unlatching shown in the
left audio spectrogram. The second individual forces the
magnetic door open, resulting in a shrill alarm sound shown
in the right spectrogram.

than video capture. Audio contains information that is of-
ten not available in the visual signal. Audio does not suf-
fer from line-of-sight or occlusion restrictions. This en-
ables an audio system to “see around corners”, but can also
make it difficult in some cases to separate temporally over-
lapping audio events. The ability to “see around corners”
can enhance visual surveillance applications in the areas
that are the most difficult to completely monitor and are
often prone to danger, e.g., stairwells, dark corners, tun-
nels, etc. In many of these situations, the sounds of doors
opening, doors closing, footsteps, elevator sounds, unusual
sounds, and other auditory cues can be extremely useful in
understanding activity and detecting potentially hazardous
or risky behavior.

In this paper, we describe a system that is able to de-
tect discrete audio and visual events, determine anomalous
audio and visual events, cluster the audio and video events
into meaningful classes, and determine the salient temporal



chains of these events that correspond to particular activ-
ities in the environment. This system can be deployed in
any environment with reasonably sparse audio and visual
input and is capable of learning complex models of activity
involving temporal sequences of particular stimuli.

1.1. Previous Work

In order to automatically learn temporal relationships be-
tween classes of visual or audio events, it is first neces-
sary to automatically model the classes of visual and audio
events.

Johnson and Hogg [7] clustered activities into 400 clus-
ters based on the object position and direction. Stauffer and
Grimson [14] accomplished a similar goal using a hierar-
chical clustering. This paper exploits two of the most sig-
nificant events in visual tracking— entrances and exits from
an environment. Stauffer presented a automated clustering
source and sink locations [12], which is similar to an aspect
of this work.

While there has been a large amount of work in the area
of speech recognition (see [11]), relatively little work has
been focused on general audio understanding. By far the
most common general audio application is detecting speech
versus non-speech sounds. This is most often accomplished
by adaptive thresholds on signal or spectral power levels,
i.e., if there is a noise, it must be speech. Much more com-
plex audio analysis has been performed in the area of com-
putational audio scene analysis [4, 2]. Unfortunately, the
CASA approaches to audio segmentation tend to run a hun-
dreds to thousands of times slower than real-time. This pa-
per introduces a method for detecting audio events in sparse
environments with a robust audio background model which
requires little computational overhead.

Research in unsupervised approaches to combined
audio-visual understanding has taken many forms. In
the area of combined audio-visual segmentation, Clark-
son et al. [3] clustered ambulatory audio-visual streams
to determine classes corresponding to an individual per-
son’s location and the Broadcast News Darpa Challenge
[1] evoked numerous papers that segmented audio-visual
streams based on speaker changes or story changes. There
has also been significant work on detecting scene changes
in video. Unfortunately, raw segmentation of audio-visual
signals usually does not constitute activity understanding,
because audio activities often include multiple audio events
at different temporal offsets and multiple sequences may oc-
cur in overlapping intervals. There has been other work that
exploits synchrony to establish statistical correspondence
between localized visual representations and an audio sig-
nal [6, 5]. While this work can find audio and visual stimu-
lus that are likely to result from the same underlying cause
at the same time, these approaches do not attempt to model
sequences of events.

This paper introduces a method for detecting discrete au-
dio and visual events, determining anomalous events, clus-
tering the events into meaningful classes, and determining
recurring temporal sequences of particular audio and visual
events. This is fundamentally different from any previous
approach that simply clusters audio-visual streams or learns
correspondence between temporally co-occurring audio and
video events. This system is able to learn sequences of au-
dio and video events that correspond to meaningful activity
classes. These chains encode temporal information, which
is essential to classifying certain activities. This system can
represent multiple activities occurring during overlapping
temporal windows. Finally, this is all accomplished with-
out supervision and is relatively robust to variation in the
algorithms parameters.

Section 2 describes how the independent audio and vi-
sual events are detected. Section 3 describes the robust
classification of the audio and visual events into meaningful
clusters of activity. Section 4 describes a method for deter-
mining salient temporal relationships between these event
classes and determining which events are causally linked in
this model. This automated analsysis is performed on thirty
minutes of video. Sections 5 and 6 discuss future work and
conclusions.

2. Event Detection

The first step in this analysis is the automated detection
of visual and audio events. The majority of the audio
and visual events tend to correspond to objects at partic-
ular locations performing particular actions. The follow-
ing two subsections describe the visual and audio prepro-
cessing required to detect discrete audio and visual events.
Both systems are less effective in heavily populated envi-
ronments with continuously varying ambient audio signals.
Fortunately, many visual surveillance applications involve
sparsely populated indoor and outdoor settings. The au-
thors anticipate that as our understanding of these problems
and the computational prowess with which we face them
increase, these limitations will be circumvented with more
effective, real-time detection and segmentation of objects
and audio events. Section 3 will then describe how these
events are clustered into meaningful classes.

2.1. Video Event Detection

Our work uses an implementation of the Adaptive Back-
ground Mixture Model of Stauffer and Grimson as de-
scribed in [13] to track moving objects in sparsely popu-
lated environments. Figure 2 shows one hour of tracking
data superimposed on the corresponding scene of an eleva-
tor lobby.

A quick description of tracking systems based on back-
ground subtraction is: characterize the appearance of the



Figure 2: This figure shows con-trails for the tracking data
of pedestrians in an elevator lobby. The tracks are blue and
begin at locations with green circles and end at locations
with red x’s. There are three elevators in the left foreground.
In the back, bottom of the image, one can see the hallway
where many pedestrians pass from left to right or right to
left. Though not visible in this camera view, there is a secu-
rity door at the rightmost location where pedestrians exit.

static (and sometimes repetitive) elements of a visual scene;
detect pixels that are not characteristic of the static ele-
ments; group those pixels; track the groups of pixels from
frame to frame using a set of linear Kalman filters. This ap-
proach is one of a few approaches that results in real-time
tracking of unrestricted object types in unstructured envi-
ronments.

These tracks are filtered to remove transient tracks and
to smooth trajectories. Finally, the state of the initial and
final observations of the tracking sequences, €', and ey, are
extracted as in [12]. These two types of events correspond
to particular activities. It may be possible to extract events
that are internal to the scene by finding common locations
or locations where loitering occurs, but only the entrance
and exit events are used in this work.

2.2. Audio Event Detection

Our method for detecting audio events is somewhat analo-
gous to our adaptive background segmentation. Rather than
attempting to characterize the “pixel process”, this work at-
tempts to characterize the “audio process”. As stated earlier,
our approach is appropriate for sparse audio environments,
i.e., where “audio events” are generally non-overlapping in
time.

Given a sampled audio sequence z(t), the Fast-Fourier
Transform (FFT) coefficients are calculated on windows of
W samples enveloped by a corresponding hamming win-
dow function. Computing these FFT coefficients at inter-
vals of W/2 results in a new time sequence of FFT coeffi-
cients ¢ (t). Whereas x(t) is a scalar function over time

at the sample interval, x #(¢) is a multinomial function over
time sampled at a slower rate.

We model the audio process using a mixture of k spec-
tral exemplars, (S, Ss, ..., Sk). Each spectral exemplar S;
is parameterized by a mean spectral value p;, a variance
>, and a weight w;. Each incoming sample spectrum is
matched to the exemplar that is within &, standard devi-
ations. This hard matching is based on the Mahalanobis
distance in log(x ¢ (t))-space.

If multiple exemplar’s match, the exemplar S; with the
highest ratio of weight to variance (w;/|%;|) is chosen as
a discrete match. It is possible to use a soft assignment
function, but in our experience it results in exemplar drift
causing exemplars that are temporarily without supporting
evidence to drift towards other exemplars. This is usually
undesirable. If no exemplar matches the current sample, the
noisiest exemplar with the least recent evidence replaces the
a new exemplar at the current sample position with a small
weight and large variance. Thus, every sample spectrum
matches a single exemplar. The weight, mean, and variance
of the matching exemplar is updated using an online scheme
described in [13]. Our approach differs in that we use dif-
ferent learning rates for the mean, variance, and weight pa-
rameters. This allows the mean value to be tracked at a
reasonable rate, but the variance and weight can estimate
a long-term average. Also, the adaptation rate is constant
rather than related to the probability of the match, which
increases the stability of this algorithm.

Finally, the adaptation can be scheduled such that the
learning rate is decreased as more samples are received.
Le., Initial adaptation rate for mean is 1.0, and it decreases
as more samples are received. In our implementation the
adaptation rate asymptotes at to a constant factor, which is
related to the factor in previous descriptions of this work.
The scheduling is different for each adaptation rate (mean,
variance, and weight).

The goal of the exemplars is to characterize the entire
audio process. This includes the “background process” and
the “foreground process”. In this case, the background pro-
cess is what is commonly referred to as background noise,
e.g., air conditioners, computer fans, street noise, repet-
itive beeps, etc. The foreground process refers to non-
repetitive transients in the environment. Given the evolving
set of exemplars, our system uses the method described in
[13] to classify the process models as background or fore-
ground. Each sample x¢(¢) is classified as foreground or
background based on the exemplar to which it is assigned.
The final segmentation results from a median filtered esti-
mate of the foreground binary stream.

In our experience, this method is able to robustly repre-
sent relatively complex background noise and quickly adapt
to changes in the environmental audio, while not generally
corrupting the background model when new sound events



occur. Using this method on thirty minutes of video from
the scene shown in Figure 2, 262 discrete audio events were
detected. These clips can be played back in less than one
tenth of the original time by simply removing the back-
ground segments. Removing dead space in the signal al-
lows very quick review of the sounds in a particular envi-
ronment, but often hinders understanding of how discrete
sounds combine to form meaningful sequences. Section 3
describes how to derive a compact description of the visual
and audio events.

3. Event classification and Anomaly
Detection

To automatically find meaningful sequences of events, the
events must be automatically clustered into homogeneous
classes of events. Without the capability to classify the type
of an event, it would be impossible to learn meaningful re-
lationships between events. E.g., after someone unlocks the
security door, they will either appear 5.8+1.4 seconds later
from around the corner at the end of the hallway or you will
hear the storage door open 2.8+0.4 seconds later. If some-
one doesn’t does not appear when they are expected or if the
unobserved door isn’t heard re-latching, it may be a security
risk. A similar description consisting of terms like after one
generic sound another generic sound will occur, is much
less descriptive or useful. This section describes an auto-
mated method for inferring event classes such as the sound
of a door being unlocked or an object leaving the scene at a
particular location. This work uses the same clustering al-
gorithm to cluster both the audio descriptors and the visual
descriptors.

As described in the previous section, the visual events
correspond to the starting and ending states of individual
tracking sequences. The source and sink descriptors, d* and
dv, are [z,y, s], where x and y are the normalized image
position and s is the square root of the objects projected
area relative to the entire image. Significant source and sink
clusters, c§* and ¢ will generally correspond to the position
and size of objects at particular entry and exit locations, e.g.,
doors, hallways, and permanant visual occlusions.

The audio events correspond to discrete transient sounds
in the environment. The audio descriptors d® used in this
work are the log of the average magnitude of the Fast-
Fourier Transform of enveloped 50ms windowsw within an
audio sequence. Significant audio clusters c{' will generally
correspond to sounds from a particular source.

3.1. Event Classification

Given a set of events {eq,eq,...,e,} and descriptions of
those events, {d1,ds, ...,d,}, our goal is to find a set of
K informative clusters. The causal link analysis described
in the next section benefits from reliable estimation of a set
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Figure 3: This figure shows the source location, sink loca-
tions, and average fft features used to cluster the individ-
ual events. The second row contains the s(i,j). The rows
and columns have been ordered to illustrate the effective-
ness of the final clustering for values K¢ = 3, K¥ = 3,
and K¢ = 9.

Figure 4: This figure shows the tracking sequences auto-
matically clustered by source location in the left column (a)
and sink location in the right column (b).



of clusters that are both homogeneous (containing mostly
the same type of event) and also non-redundant (not similar
to other clusters). The selection of the number of clusters
K can trade-off these two factors, but without robust clus-
tering, no value of K will result in meaningful clusters of
events.

We use the spectral clustering algorithm as described
in [9] to cluster in both modalities. The similarity of two
points is defined as

where ¢; is a Gaussian with mean p; = d; and variance o;.
The variance of the kernel o; is calculated as the mean of
%th lowest percentage of pairwise distances from d;. Using
this variable kernel increased the robustness of the cluster-
ing despite widely varying values of K and dimensionalities
of input. Spectral clustering with an appropriate kernel can
result in effective clustering despite extreme within-class
variation when the classes are reasonably separable and the
classes are densely connected.

Figure 3 shows the features and similarity matrices for
the sources, sinks, and audio events. Figure 4 shows the
tracking sequences clustered into three classes automati-
cally by both source state d* and sink state d“. In this scene,
the sources correspond to entering the scene near the eleva-
tors to the left, from the hallway in the lower left, and from
the security door in the lower right. Source clustering was
93.5% effective and sink state clustering was 95.7% effec-
tive.

The original thirty minute audio sequence was relatively
sparse, containing only a few hundred discrete audio events.
The result of the foreground/background segmentation dis-
cussed in the previous section is a set of 262 independent
audio events. The audio events corresponded to footfalls,
doors opening, doors closing, security lock sounds, security
alarm sounds, sounds produced by the elevators, muffled
speech', and other transient sounds. The audio clips aver-
aged approximately one to two seconds in duration.

The occurrence of an audio event is not extremely in-
formative of the scene activity except that it may indicate
that one or more objects may be present in the environment.
Thus, without grouping these events into meaningful clus-
ters, very little can be inferred from the audio signal.

Using the spectral clustering technique described above
on the audio descriptors df, we clustered the audio events
into nine separate categories, [c{, ¢5, ..., ¢&]. Figure 5(a)-(i)
show the audio events that were clustered into each of the
nine clusters.

Table 3.1 contains the confusion matrix for the unsu-
pervised clustering to human-labeled audio event clusters.

IThe audio was physically filtered to avoid the possibility that conver-
sations could be understood.

Most of the errors were due to combined audio events for
which the human was forced to choose a class. Because of
the number of footsteps and their similarity to other tran-
sients, more than one cluster was used to represent audio
events corresponding to footsteps, bumps, and similar tran-
sients. Extremely distinct classes such as the security door
alarm were clustered very effectively. In order for humans
to effectively differentiate between the audio clusters for
doors opening, doors closing, and doors re-latching, it was
necessary for to watch the video tape. In that light, the clus-
tering performance was much better than expected.

3.2. Anomaly Detection

The likelihood of each source or sink event under a Parzen
density estimator is sufficient to characterize the likelihood
of a particular event.

Lie) = ) wj¢j(er), )

J#i

where w; is a normalized weighting of the events and ¢;
is the same function used to define our similarity metric.
Anomalies are statistical outliers. In the case of sources and
sink events, there are no significant anomalies.

4. Causal Link Analysis

This section describes how to determine causal links be-
tween different events in a temporal stream. At this point
it is no longer necessary to differentiate between audio
and visual events, only unique event classes. Each event
is represented only by its class type and the time it oc-
curred. In our previous example, there are 15 unique classes
(K =K+ KY+ K%).

Given a set of N events {ey, e, ..., en}, the classes of
those events {ci,ca,...,cn}, and the onset times of the
events {t1,1o,...,tn5}, it is possible to determine salient
temporal relationships between event pairs and determine
chains of events that correspond to regular activities in a
particular environment. This is done without supervision.

To limit the complexity of the problem, we have chosen
to represent only temporal chains of events, i.e., sequences
of events with no forks. Each event in a chain can at most
one element before directly proceeding it and at most one
element directly coupled after it in the chain. Thus, if an
event initiates a set of events, those events must be repre-
sented in a single chain of events. In most cases, a chain can
effectively represent activities, because they often occur in
the same temporal order. For example, if someone entering
a store causes a chime and the door to close, both events
usually occur with the same relative timing. Thus, a chain
of “entrance” — ‘“‘chime” — “door closing” is a reasonable
approximation.
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Figure 5: This figure shows unsegmented raw audio containing four separate events (top) and the concatenation of all of the
audio events from each of nine audio clusters (a)-(h). The clusters roughly correspond to footsteps and transient conversations
and noises (a-b), elevator pings (c), the security door re-latching (d-e), security door alarms (f), security alarm sounding (g),
security door closing (h), and security door being opened (i).



|| Description

A leg gt cd]cg]es]cg]c]

security door opening (SDO) 01010 11210 10/29] 0
security door closing (SDC) O] 0|0 ] 2]010]0]O0]26
security door relatching(SDR) | 0 | O | O [ 15| O | O | O | 2 | O
security door alarm (SDA) 0|00 0Oj]0|0]5]0 0
elevator pings (EP) 3015102 |0|0]|O0
elevator opening (EO) O}5(0 2 |19]0]0]01]0
footsteps (F) 4 118 | O 0 1 1240 0 0
other transients (T) 0 3 0 1 5 1 1 0 0

Table 1: This table shows the confusion matrix for the automated clustering of audio events.

Automatically finding temporal relationships and deter-
mining events that are included in a temporal chain in-
volves two steps: determining the most likely correspon-
dence chains; and estimating the linking likelihoods. Unfor-
tunately, neither of these steps can be solved independently
of the other.

4.1. Inferring the Correspondence Chains
Suppose that an oracle provided reasonable estimates of the
likelihood of a pair of events (parameterized event classes
and relative times), given that the two events were linked

p(ci, ¢j, 0tiz|vi; = 1) (3)

where 4;; is an indicator variable that is zero if the occur-
rence of the first event is not directly responsible for the
occurrence of the second event. The oracle also provided
an estimate of the likelihood of a pair of events given the
event classes and times given that the two events were not
linked

p(ci, cj, 0tijlyiy # 1) “4)
These two values together with an estimate of the relative
likelihood of linked versus not linked pairs is sufficient to
estimate the posterior

p(vi; = 1ci, cj, 6t55) )

using Bayes Rule.

Given the estimate of the posterior likelihood of
gamma;; = 1 for all 7, j pairs of events, optimal chain-
ing hypothesis I'* is defined as

I'* = argmax | L(T) = I I p(vij = 1les, ¢, 0tsj)
r 4,J:yi5=1
(6)

where all valid I' hypotheses must obey the chaining restric-
tion described above.

Rather than using a Markov Chain Monte Carlo
(MCMC) approximation as was previously done in [10], we

solve for the optimal solution using a variant of the Hun-
garian Algorithm [8]. Our variant allows for each event
to be result from a null event and be terminated by a null
event. The likelihood of these null events, p(~yqj|cq, ;) and
P(Yiw|Ci, Cw ), are assumed to be a constant and is a param-
eter of this system.

Unfortunately, our automated system is not provided
with an estimate of linking likelihoods, so the must be esti-
mated.

4.2. Estimating the Linking Likelihoods

Suppose an oracle provided a reasonable linking hypothesis
I. Given this linking hypothesis, we estimate the likelihood
of the linking potentials by estimating p(c;, ¢;, 0t;;|vi; =
1) using the Parzen density

pleiy ¢, Otijlyiy =1) = e, o (Bty), (D)
— 205 Wij
where w;; is one if «;; is one and zero otherwise.
Ve, ,c;(0tij) is a Gaussian over the inter-arrival time
with variance of one second. A variance of about one
second is reasonable for most surveillance applications.
p(ci, ¢j, 0tij]vi; # 1) is calculated in the same way.
Unfortunately, our automated system is not provided
with an initial linking hypothesis.

4.3. Iterative Optimization

Our automated system begins with no assignment and no
linking likelihood estimates. Our initial estimate of the link-
ing likelihoods (Equation 7) is estimated as an expectation
over all possible assignments where assignments have not
been determined. This is equivalent to Equation 7 except
that the values of w;; are a normalized weighting of the
pairs of samples. Thus, our first estimation of Equation 7
assumes that each event pair is equally likely to be assigned
to any other event. As the more assignments are made, the
linking likelihood estimate becomes a better approximation
of the ideal linking likelihood estimate.
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Figure 6: This figure shows three 3562356 matrices. In the first matrix (a), the red rows and columns represent sets of event
pairs either beginning with a source event or ending with a source event respectively. The green rows and columns represent
the three classes of sink events and the blue rows and columns represent the nine audio event clusters. The second matrix
(b) represents the estimate of p(c;, ¢;j, 0¢;;|v:;; = 1). The final matrix represents the optimal assignment for (b) as defined in

Equation 6.

After this initial estimate is made the iterative procedure
continues as follows:

e Estimate the optimal linking hypothesis I, given the
current linking likelihood estimates.

e Estimate the linking likelihoods given the current link-
ing hypothesis I.

4.4. Linking Results

Figure 6 shows the three matrices for the first iteration of as-
signment. The first matrix shows which rows and columns
corresponding to the different audio and video event classes.
The second matrix shows the assignment likelihoods as es-
timated in the first iteration. The final matrix shows the
optimal assignment for this iteration. After the first itera-
tion, the most salient causal relationships are strengthened
in the link likelihood estimation. As the iterative estimation
continues the causal relationships become more and more
salient. After 3-5 iterations, the process tends to stabilize,
although reasonable results are achieved after the second it-
eration.

From the 356 individual events over 109 causal chains
were inferred. There were 20 chains that contained minor
variations of:

e enter from right,

e exit to left 3.4 seconds later,

e door closes 4.2 seconds later,

e first door re-latches 19.8 seconds later,

e second door re-latches 2.02 seconds later.

Other significant chains included: series of footsteps separated
by a second or two in initial offset time; regular visual entrance

and visual exit pairs’; exiting through the security doors and the
doors subsequently closing and latching; the elevator opening fol-
lowed by a series of footsteps and sometimes the security door be-
ing opened; etc. Of the chains that were found, the average chain
length was 3.3 events. The longest chain was 8 events in length.

This chaining results in a compact description of events that
are otherwise disassociated. In the example shown, our system
learned when objects are expected to appear based purely on audio
evidence as well as what one might expect to hear after objects
have left the field-of-view. Objects whose track was lost may be
able to be stitched together if their entrance and exits are detected
reliably and exhibit low entropy. Finally, this system is capable of
working when visual evidence is not available due to lost cameras
or lack of cameras to begin with.

5. Future Work

The most obvious area for future investigation is to integrate clus-
tering into the iterative optimization procedure. There are many
events that have similar likelihoods under two different classes.
Using the temporal context, it may be possible to cluster the events
more effectively. This will result in more salient temporal chaining
and better activity models.

The most significant parameter in this work is the number of
clusters for each modality. Automatic model selection is a difficult
problem as has been pointed out by many researchers. It is our
hope that it will be possible to robustly estimate the number of
clusters automatically, given effective clustering and a model of
temporal relationships.

Finally, we intend to investigate the stability of this algorithm
in extended scenes with multiple sensors. This type of approach
has shown promise in learning linkage across non-overlapping vi-
sual sensors. With the addition of intervening audio events, we

2It is worth noting that these event pairs would be detected even when
the tracking was lost as long as the source event and sink event were pre-
dictive of one another.



believe this algorithm may prove very valuable for tracking ob-
jects through extended environments.

6. Conclusions

This paper introduced a novel activity analysis paradigm. We have
shown that our system is capable of detecting discrete audio and
visual events, determining anomalous events, clustering the events
into meaningful classes, and determining recurring temporal se-
quences of particular audio and visual events. This approach fun-
damentally differs from any previous approach that simply clusters
audio-visual streams or learns correspondence between temporally
co-occurring audio and video events.

This system is able to learn sequences of audio and video
events that correspond to meaningful activity classes. These
chains encode temporal information, which is essential to classi-
fying the activities. This system can represent multiple activities
occurring during overlapping temporal windows. Finally, this is
all accomplished without supervision and is relatively robust to
variation in the algorithms parameters.
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