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ABSTRACT
Customer preferences for products are drifting over time. Product
perception and popularity are constantly changing as new selec-
tion emerges. Similarly, customer inclinations are evolving, lead-
ing them to ever redefine their taste. Thus, modeling temporal dy-
namics should be a key when designing recommender systems or
general customer preference models. However, this raises unique
challenges. Within the eco-system intersecting multiple products
and customers, many different characteristics are shifting simulta-
neously, while many of them influence each other and often those
shifts are delicate and associated with a few data instances. This
distinguishes the problem from concept drift explorations, where
mostly a single concept is tracked. Classical time-window or instance-
decay approaches cannot work, as they lose too much signal when
discarding data instances. A more sensitive approach is required,
which can make better distinctions between transient effects and
long term patterns. The paradigm we offer is creating a model
tracking the time changing behavior throughout the life span of the
data. This allows us to exploit the relevant components of all data
instances, while discarding only what is modeled as being irrele-
vant. Accordingly, we revamp two leading collaborative filtering
recommendation approaches. Evaluation is made on a large movie
rating dataset by Netflix. Results are encouraging and better than
those previously reported on this dataset.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing

General Terms
Algorithms
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1. INTRODUCTION
Modeling time drifting data is a central problem in data mining.

Often, data is changing over time, and up to date modeling should
be continuously updated to reflect its present nature. The analysis
of such data needs to find the right balance between discounting
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temporary effects that have very low impact on future behavior,
while capturing longer-term trends that reflect the inherent nature
of the data. This led to many works on the problem, which is also
widely known asconcept drift; see e.g. [15, 25].

Modeling temporal changes in customer preferences brings unique
challenges. One kind of concept drift in this setup is the emergence
of new products or services that change the focus of customers. Re-
lated to this are seasonal changes, or specific holidays, which lead
to characteristic shopping patterns. All those changes influence the
whole population, and are within the realm of traditional studies on
concept drift. However, many of the changes in user behaviorare
driven by localized factors. For example, a change in the family
structure can drastically change shopping patterns. Likewise, indi-
viduals gradually change their taste in movies and music. All those
changes cannot be captured by methods that seek a global concept
drift. Instead, for each customer we are looking at different types
of concept drifts, each occurs at a distinct time frame and isdriven
towards a different direction.

The need to model time changes at the level of each individ-
ual significantly reduces the amount of available data for detecting
such changes. Thus we should resort to more accurate techniques
than those that suffice for modeling global changes. For example,
it would no longer be adequate to abandon or simply underweight
far in time user transactions. The signal that can be extracted from
those past actions might be invaluable for understanding the cus-
tomer herself or be indirectly useful to modeling other customers.
Yet, we need to distill long term patterns while discountingtran-
sient noise. This requires a more sensitive methodology forad-
dressing drifting customer preferences. It would not be adequate to
concentrate on identifying and modeling just what is relevant to the
present or the near future. Instead, we require an accurate modeling
of each point in the past, which will allow us to distinguish between
persistent signal that should be captured and noise that should be
isolated from the longer term parts of the model.

Modeling user preferences is relevant to multiple applications
ranging from spam filtering to market-basket analysis. Our main
focus in the paper is on modeling user preferences for building a
recommender system, but we believe that general lessons that we
learn would apply to other applications as well. Automated rec-
ommendations is a very active research field [12]. Such systems
analyze patterns of user interest in items or products to provide per-
sonalized recommendations of items that will suit a user’s taste. We
expect user preferences to change over time. This may stem from
multiple factors, some are fundamental while others are more cir-
cumstantial. For example, in a movie recommender system, users
may change their preferred genre or adopt a new viewpoint on an
actor or director. In addition, they may alter the appearance of
their feedback. E.g., in a system where users provide star ratings
to products, a user that used to indicate a neutral preference by a



“3 stars” input, may now indicate dissatisfaction by the same “3
stars” feedback. Similarly, it is known that user feedback is in-
fluenced by anchoring, where current ratings should be takenas
relative to other ratings given at the same short period. Finally, in
many instances systems cannot separate different household mem-
bers accessing the same account, even though each member hasa
different taste and deserves a separate model. This createsa de
facto multifaceted meta-user associated with the account.A way to
get some distinction between different persons is by assuming that
time-adjacent accesses are being done by the same member (some-
times on behalf of other members), which can be naturally captured
by a temporal model that assumes a drifting nature of a customer.

All these patterns and the likes should have made temporal mod-
eling a predominant factor in building recommender systems. Non-
etheless, with very few exceptions (to be mentioned in Sec. 7), the
recommenders literature does not address temporal changesin user
behavior. Perhaps, because user behavior is composed of many
different concept drifts, all acting in a different timeframe and dif-
ferent directions, thus making common methodologies for dealing
with concept drift and temporal data less successful at thissetup.
We are showing that capturing time drifting patterns in userbehav-
ior is essential to improving accuracy of recommenders. This also
gives us hope that the insights from successful time modeling for
recommenders will be useful in other data mining applications.

Our test bed is a large movie rating dataset released by Netflix as
the basis of a well publicized competition [4]. This datasetcom-
bines several merits for the task at hand. First, it is not a syn-
thetic dataset, but contains user-movie ratings by real paying Net-
flix subscribers. In addition, its relatively large size – above 100
million date-stamped ratings – makes it a better proxy for real life
large scale datasets, while putting a premium on computational ef-
ficiency. Finally, unlike some other dominant datasets, time effects
are natural and are not introduced artificially. Two interesting (if
not surprising) temporal effects that emerge within this dataset are
shown in Fig. 1. One effect is an abrupt shift of rating scale that
happened in early 2004. At that time, the mean rating value jumped
from around 3.4 stars to above 3.6 stars. Another significanteffect
is that ratings given to movies tend to increase with the movie age.
That is, older movies receive higher ratings than newer ones. In
Sec. 6 we will return to these phenomena and use our temporal
modeling to shed some light on their origins.

The major contribution of this work is presenting a methodology
and specific techniques for modeling time drifting user preferences
in the context of recommender systems. The proposed approaches
are applied on the aforementioned extensively analyzed movie rat-
ings dataset, enabling us to firmly compare our methods with those
reported recently. We show that by incorporating temporal infor-
mation we achieve best results reported so far, indicating the sig-
nificance of uncovering temporal effects.

The rest of the paper is organized as follows. In the next section
we describe basic notions and notation. Then, in Sec. 3 our prin-
ciples for addressing time changing user preferences are evolved.
Those principles are then materialized, in quite differentways, within
two leading recommender techniques: factor modeling (Sec.4) and
item-item neighborhhod modeling (Sec. 5). In Sec. 6 we describe
an exploratory study, followed by surveying related work inSec. 7.

2. PRELIMINARIES
We are given ratings aboutm users (henceforth, interchangeable

with “customers”) andn items (henceforth, interchangeable with
“products”). We reserve special indexing letters for distinguishing
users from items: for usersu, v, and for itemsi, j. We uset for
time (or, date). A ratingrui(t) indicates the preference by useru
of item i at dayt, where high values mean stronger preferences.
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Figure 1: Two temporal effects emerging within the Netflix
movie rating dataset. Top: the average movie rating made a
sudden jump in early 2004 (1500 days since the first rating in
the dataset). Bottom: ratings tend to increase with the movie
age at the time of the rating. Here, movie age is measured by
the time span since its first rating event within the dataset.In
both charts each point averages 100,000 rating instances.

For example, values can be integers ranging from 1 (star) indicat-
ing no interest to 5 (stars) indicating a strong interest. Useru rates
item i at most once, otherwise we take only the freshest rating, so
givenu andi, the day of rating is unique. Sometimes, when the day
of rating is not relevant, we will use the short notationrui. We dis-
tinguish predicted ratings from known ones, by using the notation
r̂ui(t) for the predicted value ofrui(t). Usually the vast major-
ity of ratings are unknown. The(u, i, t) triples for whichrui(t) is
known are stored in the setK = {(u, i, t) | rui(t) is known}.

We evaluated our algorithms on a movie rating dataset of more
than 100 million date-stamped ratings performed by about half mil-
lion anonymous Netflix customers on 17,770 movies between Dec
31, 1999 and Dec 31, 2005 [4]. We are not aware of any publicly
available comparable dataset that is close to the scope and qual-
ity of this one. To maintain compatibility with results published
by others, we adopted some common standards. We evaluated our
methods on two comparable sets designed by Netflix: a hold-out
set (“Probe set”) and a test set (“Quiz set”), each of which contains
over 1.4 million ratings. Reported results are on the test set, while
experiments on the hold-out set show the same findings. In our
time-modeling context, it is important to note that the testinstances
of each user come later in time than his/her training instances.
The quality of the results is measured by their root mean squared

error (RMSE):
√

∑

(u,i)∈TestSet
(rui − r̂ui)2/|TestSet|, a mea-

sure that puts more emphasis on large errors compared with the al-
ternative of mean absolute error. Achievable RMSE values onthe
test set lie in a quite compressed range, as reported by many partici-



pants in the related competition. Nonetheless, there is evidence that
small improvements in RMSE terms can have a significant impact
on the quality of the top few presented recommendations [8].

Recommender systems are often based onCollaborative Filter-
ing (CF), which relies only on past user behavior—e.g., their previ-
ous transactions or product ratings—and does not require the cre-
ation of explicit profiles. When enough ratings were gathered per
item, as in the Netflix movie rating dataset, CF becomes the pre-
ferred and more accurate technique. Notably, CF techniquesre-
quire no domain knowledge and avoid the need for extensive data
collection. In addition, relying directly on user behaviorallows un-
covering complex and unexpected patterns that would be difficult
or impossible to profile using known data attributes. As a conse-
quence, CF attracted much of attention in the past decade, resulting
in significant progress and being adopted by some successfulcom-
mercial systems, including Amazon [9], TiVo and Netflix.

In order to establish recommendations, CF systems need to com-
pare fundamentally different objects: items against users. There are
two primary approaches to facilitate such a comparison, which con-
stitute the two main disciplines of CF:the neighborhood approach
and latent factor models. Neighborhood methods are centered on
computing the relationships between items or, alternatively, be-
tween users. An item-item approach [9, 14] evaluates the prefer-
ence of a user to an item based on ratings of similar items by the
same user. In a sense, these methods transform users to the item
space by viewing them as baskets of rated items.

Latent factor models, such as matrix factorization, comprise an
alternative approach by transforming both items and users to the
same latent factor space, thus making them directly comparable.
The latent space tries to explain ratings by characterizingboth prod-
ucts and users on factors automatically inferred from user feed-
back. For example, when the products are movies, factors might
measure obvious dimensions such as comedy vs. drama, amountof
action, or orientation to children; less well defined dimensions such
as depth of character development or “quirkiness”; or completely
uninterpretable dimensions.

3. TRACKING DRIFTING CUSTOMER
PREFERENCES

One of the frequently mentioned examples of concept drift is
changing customer preferences over time, e.g.: “customer prefer-
ences change as new products and services become available”[7].
This aspect of drifting customer preferences highlights a common
paradigm in the literature of having global drifting concepts influ-
encing the data as a whole. However, in many applications, includ-
ing our focus application of recommender systems, we also face a
more complicated form of concept drift where interconnected pref-
erences of many users are drifting in different ways at different time
points. This requires the learning algorithm to keep track of multi-
ple changing concepts. In addition the typically low amountof data
instances associated with individual customers calls for more con-
cise and efficient learning methods, which maximize the utilization
of signal in the data.

In a survey on the problem of concept drift, Tsymbal [22] ar-
gues that three approaches can be distinguished in the literature.
Theinstance selectionapproach discards instances that are less rel-
evant to the current state of the system. A common variant is time
window approaches were only recent instances are considered. A
possible disadvantage of this simple model is that it is giving the
same significance to all instances within the considered time win-
dow, while completely discarding all other instances. Thismight
be reasonable when the time shift is abrupt, but less so when time
shift is gradual. Thus, a refinement isinstance weightingwere
instances are weighted based on their estimated relevance.Fre-

quently, a time decay function is used, under-weighting instances
as they occur deeper into the past. The third approach is based on
ensemble learning, which maintains a family of predictors that to-
gether produce the final outcome. Those predictors are weighted by
their perceived relevance to the present time point, e.g., predictors
that were more successful on recent instances get higher weights.

We performed extensive experiments with instance weighting
schemes, trying different exponential time decay rates on both neigh-
borhood and factor models. The consistent finding was that predic-
tion quality improves as we moderate that time decay, reaching best
quality when there is no decay at all. This is despite the factthat
users do change their taste and rating scale over the years, as we
show later. However, much of the old preferences still persist or,
more importantly, help in establishing useful cross-user or cross-
product patterns in the data. Thus, just underweighting past actions
loses too much signal along with the lost noise, which is detrimen-
tal given the scarcity of data per user.

As for ensemble learning, having multiple models, each of which
considers only a fraction of the total behavior may miss those global
patterns that can be identified only when considering the full scope
of user behavior. What makes them even less appealing in our case
is the need to keep track of the independent drifting behaviors of
many customers. This, in turn, would require building a separate
ensemble for each user. Such a separation will significantlycom-
plicate our ability to integrate information across users along multi-
ple time points, which is the cornerstone ofcollaborative filtering.
For example, an interesting relation between products can be es-
tablished by related actions of many users, each of them at a totally
different point of time. Capturing such a collective signalrequires
building a single model encompassing all users and items together.

All those considerations led us to the following guidelineswe
adopt for modeling drifting user preferences.

• We seek models that explain user behavior along the full ex-
tent of the time period, not only the present behavior (while
subject to performance limitations). This is key to being able
to extract signal from each time point, while neglecting only
the noise.

• Multiple changing concepts should be captured. Some are
user-dependent and some are item-dependent. Similarly, some
are gradual while others are sudden.

• While we need to model separate drifting “concepts” or pref-
erences per user and/or item, it is essential to combine all
those concepts within a single framework. This allows mod-
eling interactions crossing users and items thereby identify-
ing higher level patterns.

• In general, we do not try to extrapolate future temporal dy-
namics, e.g., estimating future changes in a user’s prefer-
ences. This could be very helpful but is seemingly too diffi-
cult, especially given a limited amount of known data. Rather
than that, our goal is to capture past temporal patterns in or-
der to isolate persistent signal from transient noise. This,
indeed, helps in predictingfuturebehavior.

Now we turn to how these desirable principles materialize into
concrete methods when dealing with two leading approaches to col-
laborative filtering - matrix factorization and neighborhood models.

4. TIME-AWARE FACTOR MODEL

4.1 The anatomy of a factor model
One of the more successful approaches to CF is based on a ma-

trix factorization model [2, 5, 10, 13, 18]. This approach lends
itself well to an adequate modeling of temporal effects. Before



we deal with those temporal effects, we would like to establish the
foundations of a static factor model.

Matrix factorization models map both users and items to a joint
latent factor space of dimensionalityf , such that ratings are mod-
eled as inner products in that space. Accordingly, each useru is
associated with a vectorpu ∈ R

f and each itemi is associated
with a vectorqi ∈ R

f . A rating is predicted by the rule:

r̂ui = qT
i pu (1)

In order to learn the vectorspu andqi we minimize the regularized
squared error:

min
q∗,p∗

∑

(u,i,t)∈K

(rui − qT
i pu)2 + λ(‖qi‖

2 + ‖pu‖
2)

The constantλ controls the extent of regularization, as usually de-
termined by cross validation. Minimization is typically performed
by either stochastic gradient descent or alternating leastsquares.

Such a pure factor model serves well in capturing the interaction
between users and items. However, much of the observed rating
values are due to effects associated with either users or items, in-
dependently of their interaction. A prime example is that typical
CF data exhibit large user and item biases – i.e., systematictenden-
cies for some users to give higher ratings than others, and for some
items to receive higher ratings than others.

We will encapsulate those effects, which do not involve user-item
interaction, within thebaseline predictors. These baseline predic-
tors tend to capture much of the observed signal, in particular much
of the temporal dynamics within the data. Hence, it is vital to model
them accurately, which enables better identification of thepart of
the signal that truly represents user-item interaction andshould be
subject to factorization.

A suitable way to construct a static baseline predictor is asfol-
lows. Denote byµ the overall average rating. A baseline predictor
for an unknown ratingrui is denoted bybui and accounts for the
user and item main effects:

bui = µ + bu + bi (2)

The parametersbu andbi indicate the observed deviations of user
u and itemi, respectively, from the average. For example, suppose
that we want a baseline estimate for the rating of the movie Titanic
by user Joe. Now, say that the average rating over all movies,µ,
is 3.7 stars. Furthermore, Titanic is better than an averagemovie,
so it tends to be rated 0.5 stars above the average. On the other
hand, Joe is a critical user, who tends to rate 0.3 stars lowerthan
the average. Thus, the baseline estimate for Titanic’s rating by Joe
would be 3.9 stars by calculating3.7 − 0.3 + 0.5.

The baseline predictor should be integrated back into the factor
model. To achieve this we extend rule (1) to be:

r̂ui = µ + bu + bi + qT
i pu (3)

Here main effects are explicitly isolated, thus letting theqT
i pu fac-

torization deal effectively with the relevant portions of the signal;
see also [8, 10].

The factor model we are using in this work is SVD++ [8], which
slightly differs from (3). This model was shown to offer a supe-
rior accuracy by also accounting for the more implicit informa-
tion recorded by which items were rated (regardless of theirrating
value). To this end a second set of item factors is added, relating
item i to a factor vectoryi ∈ R

f . Those new item factors are used
to characterize users based on the set of items that they rated. The

exact model is as follows (see [8] for further explanations):

r̂ui = µ + bi + bu + qT
i



pu + |R(u)|−
1

2

∑

j∈R(u)

yj



 (4)

The setR(u) contains the items rated by useru.
The decomposition of a rating into distinct portions is convenient

here, as it allows us to treat different temporal aspects in separation.
More specifically, we identify the following effects: (1) user biases
(bu) change over time; (2) Item biases (bi) change over time; (3)
User preferences (pu) change over time. On the other hand, we
would not expect a significant temporal variation of item character-
istics (qi), as items, unlike humans, are static in their nature. We
start with a detailed discussion of the temporal effects that are con-
tained within the baseline predictors.

4.2 Time changing baseline predictors
Much of the temporal variability is included within the baseline

predictors, through two major temporal effects. First is addressing
the fact that an item’s popularity is changing over time. Forexam-
ple, movies can go in and out of popularity as triggered by external
events such as the appearance of an actor in a new movie. This is
manifested in our models by the fact that item biasbi will not be a
constant but a function that changes over time. The second major
temporal effect is related to user biases - users change their base-
line ratings over time. For example, a user who tended to ratean
average movie “4 stars”, may now rate such a movie “3 stars”, for
various reasons explained earlier. Hence, in our models we would
like to take the parameterbu as a function of time. This induces the
following template for a time sensitive baseline predictor:

bui(t) = µ + bu(t) + bi(t) (5)

The functionbui(t) represents the baseline estimate foru’s rating
of i at dayt. Here,bu(t) andbi(t) are real valued functions that
change over time. The exact way to build these functions should
reflect a reasonable way to parameterize the involving temporal
changes. We will detail our choice in the context of the movie
rating dataset, which demonstrates some typical considerations. A
major distinction is between temporal effects that span extended pe-
riods of time and more transient effects. In the movie ratingcase,
we do not expect movie likeability to fluctuate on a daily basis, but
rather to change over more extended periods. On the other hand,
we observe that user effects can change on a daily basis, reflecting
inconsistencies natural to customer behavior. This requires finer
time resolution when modeling user-biases compared to a lower
resolution that suffices for capturing item-related time effects.

Let us start with our choice of time-changing item biases -bi(t),
which are easier to capture since we do not need finest resolution
there. Thus, an adequate decision would be to split the item biases
into time-based bins. During each time period corresponding to a
single bin we use a distinct item bias. The decision of how to split
the timeline into bins should balance the desire to achieve finer res-
olution (hence, smaller bins) with the need to have enough ratings
per bin (hence, larger bins). For the movie rating data, there is a
wide variety of bin sizes that yield about the same accuracy.In our
implementation each bin corresponds to roughly ten consecutive
weeks of data, leading to an overall number of 30 bins spanning all
days in the dataset. A dayt is associated with an integerBin(t) (a
number between 1 and 30 in our data), such that the movie bias is
split into a stationary part and a time changing part:

bi(t) = bi + bi,Bin(t) (6)

While binning the parameters works well on the items, it is more
of a challenge on the users side. On the one hand, we would likea



finer resolution for users to detect very short lived temporal effects.
On the other hand, we do not expect having enough ratings per user
to produce reliable estimates for isolated bins. Differentfunction
forms can be considered for parameterizing temporal user behavior,
with varying complexity and accuracy.

The first modeling choice is very concise, and uses a linear func-
tion to capture a possible gradual drift of user bias. Let us first
introduce some new notation. For each useru, we denote the mean
date of rating bytu. Now, if u rated a movie on dayt, then the
associated time deviation of this rating is defined as:

devu(t) = sign(t − tu) · |t − tu|
β

Here |t − tu| measures the time distance (e.g., number of days)
between datest andtu. We set the value ofβ by cross validation; in
our implementationβ = 0.4. We introduce a single new parameter
for each user calledαu so that we get our first definition of a time-
dependent user-bias:

b(1)
u (t) = bu + αu · devu(t) (7)

This offers a simple linear model for approximating a drifting be-
havior, which requires learning two parameters per user:bu and
αu. A more flexible parameterization is offered by splines. Letu
be a user associated withnu ratings. We designateku time points
– {tu

1 , . . . , tu
ku

} – spaced uniformly across the dates ofu’s ratings
as kernels that control the following function:

b(2)
u (t) = bu +

∑ku

l=1 e−γ|t−tu
l |bu

tl
∑ku

l=1 e−γ|t−tu
l
|

(8)

The parametersbu
tl

are associated with the control points (or, ker-
nels), and are automatically learnt from the data. This way the user
bias is formed as a time-weighted combination of those parameters.
The number of control points,ku, balances flexibility and computa-
tional efficiency. In our application we setku=n0.25

u , letting it grow
with the number of available ratings. The constantγ determines the
smoothness of the spline; we setγ=0.3 by cross validation.

So far we have discussed smooth functions for modeling the user
bias, which mesh well withgradual concept drift. However, in
many applications there aresudden driftsemerging as “spikes” as-
sociated with a single day or session. For example, in the movie
rating dataset we have found that multiple ratings a user gives in
a single day, tend to concentrate around a single value. Suchan
effect does not span more than a single day. This may reflect the
mood of the user that day, the impact of ratings given in a single
day on each other, or changes in the actual rater in multi-person
accounts. To address such short lived effects, we assign a single
parameter per user and day, absorbing the day-specific variability.
This parameter is denoted bybu,t. Notice that in some applications
the basic primitive time unit to work with can be shorter or longer
than a day. E.g., our notion of day can be exchanged with a notion
of a user session.

In the Netflix movie rating data, a user rates on 40 different days
on average. Thus, working withbu,t requires, on average, 40 pa-
rameters to describe each user bias. It is expected thatbu,t is inad-
equate as a standalone for capturing the user bias, since it misses
all sorts of signals that span more than a single day. Thus, itserves
as an additive component within the previously described schemes.
The time-linear model (7) becomes:

b(3)
u (t) = bu + αu · devu(t) + bu,t (9)

Similarly, the spline-based model becomes:

b(4)
u (t) = bu +

∑ku

l=1 e−γ|t−tu
l |bu

tl
∑ku

l=1 e−γ|t−tu
l
|

+ bu,t (10)

model static mov linear spline linear+ spline+
RMSE .9799 .9771 .9731 .9714 .9605 .9603

Table 1: Comparing baseline predictors capturing main movie
and user effects. As temporal modeling becomes more accu-
rate, prediction accuracy improves (lowering RMSE).

A baseline predictor on its own cannot yield personalized recom-
mendations, as it misses all interactions between users anditems.
In a sense, it is capturing the portion of the data that is lessrelevant
for establishing recommendations and in doing so enables deriving
accurate recommendations. Nonetheless, to better assess the rela-
tive merits of the various choices of time-dependent user-bias, we
will compare their accuracy as standalone predictors. In order to
learn the involved parameters we minimize the associated regular-
ized squared error by using stochastic gradient descent. For exam-
ple, in our actual implementation we adopt rule (9) for modeling
the drifting user bias, thus arriving at the baseline predictor:

bui(t) = µ + bu + αu · devu(t) + bu,t + bi + bi,Bin(t) (11)

To learn the involved parameters,bu, αu, bu,t, bi and bi,Bin(t),
one should solve:

min
∑

(u,i,t)∈K

(rui(t) − µ − bu − αudevu(t) − bu,t − bi − bi,Bin(t))
2

+ λ(b2
u + α2

u + b2
u,t + b2

i + b2
i,Bin(t))

Here, the first term strives to construct parameters that fit the given
ratings. The regularization term,λ(b2

u + . . . ), avoids overfitting by
penalizing the magnitudes of the parameters, assuming a neutral 0
prior. Learning is done by a stochastic gradient descent algorithm
running 20–30 iterations, withλ = 0.01.

Table 1 compares the ability of various suggested baseline pre-
dictors to explain signal in the data. As usual, the amount ofcap-
tured signal is measured by the root mean squared error on thetest
set. As a reminder, test cases come later in time than the training
cases for the same user. We code the predictors as follows:

• staticno temporal effects:bui(t) = µ + bu + bi.

• movaccounting only to movie-related temporal effects:bui(t) =
µ + bu + bi + bi,Bin(t).

• linear linear modeling of user biases:bui(t) = µ + bu +
αu · devu(t) + bi + bi,Bin(t).

• splinespline modeling of user biases:bui(t) = µ + bu +
∑ku

l=1
e
−γ|t−tu

l
|
bu
tl

∑ku
l=1

e
−γ|t−tu

l
| + bi + bi,Bin(t).

• linear+ linear modeling of user biases and single day effect:
bui(t) = µ + bu + αu · devu(t) + bu,t + bi + bi,Bin(t).

• spline+spline modeling of user biases and single day effect:

bui(t) = µ + bu +
∑ku

l=1
e−γ|t−dl|bu

tl
∑ku

l=1
e
−γ|t−tu

l
| + bu,t + bi + bi,Bin(t).

The table shows that while temporal movie effects reside in the
data (lowering RMSE from 0.9799 to 0.9771), the drift in userbi-
ases is much more influential. The additional flexibility of splines
at modeling user effects leads to better accuracy compared to a lin-
ear model. However, sudden changes in user biases, which arecap-
tured by the per-day parameters, are most significant. Indeed, when
including those changes, the difference between linear modeling
(“linear+”) and spline modeling (“spline+”) virtually vanishes.

Beyond the temporal effects described so far, one can use the
same methodology to capture more effects. A prime example is
capturing periodic effects. For example, some products canbe
more popular in specific seasons or near certain holidays. Similarly,



different types of television or radio shows are popular throughout
different segments of the day (known as “dayparting”). Periodic
effects can be found also on the user side. As an example, a user
may have different attitudes or buying patterns during the weekend
compared to the working week. A way to model such periodic ef-
fects is to dedicate a parameter for the combinations of timeperiods
with items or users. This way, the item bias of (6), becomes:

bi(t) = bi + bi,Bin(t) + bi,period(t)

E.g., if we try to capture the change of item bias with the season of
the year, thenperiod(t) ∈ {fall, winter, spring, summer}. Simi-
larly, recurring user effects are modeled by modifying (9) to be:

bu(t) = bu + αu · devu(t) + bu,t + bu,period(t)

E.g., if we try to model a day-of-week user effect, thenperiod(t) ∈
{Sun, Mon, Tue, Wed, Thu, Fri, Sat}. We could not find peri-
odic effects with a significant predictive power within the movie-
rating dataset, thus our reported results do not include those.

Another temporal effect within the scope of basic predictors is
related to the changing scale of user ratings. Whilebi(t) is a user-
independent measure for the merit of itemi at timet, users tend
to respond to such a measure differently. For example, different
users employ different rating scales, and a single user can change
his rating scale over time. Accordingly, the raw value of themovie
bias is not completely user-independent. To address this, we add a
time-dependent scaling feature to the baseline predictors, denoted
by cu(t). Thus, the baseline predictor (11) becomes:

bui(t) = µ+bu+αu ·devu(t)+bu,t+(bi+bi,Bin(t))·cu(t) (12)

All discussed ways to implementbu(t) would be valid for imple-
mentingcu(t) as well. We chose to dedicate a separate parame-
ter per day, resulting in:cu(t) = cu + cu,t. As usual,cu is the
stable part ofcu(t), whereascu,t represents day-specific variabil-
ity. Adding the multiplicative factorcu(t) to the baseline predictor
lowers RMSE to 0.9555. Interestingly, this basic model, which
captures just main effects disregarding user-item interactions, can
explain almost as much of the data variability as the commercial
Netflix Cinematch recommender system, whose published RMSE
on the same test set is 0.9514 [4].

4.3 Time changing factor model
In the previous subsection we discussed the way time affects

baseline predictors. However, as hinted earlier, temporaldynamics
go beyond this, they also affect user preferences and thereby the in-
teraction between users and items. Users change their preferences
over time. For example, a fan of the “psychological thrillers” genre
may become a fan of “crime dramas” a year later. Similarly, hu-
mans change their perception on certain actors and directors. This
effect is modeled by taking the user factors (the vectorpu) as a
function of time. Once again, we need to model those changes at
the very fine level of a daily basis, while facing the built-inscarcity
of user ratings. In fact, these temporal effects are the hardest to
capture, because preferences are not as pronounced as main effects
(user-biases), but are split over many factors.

The same way we treat user biases we also treat each component
of the user preferencespu(t)T = (pu1(t), . . . , puf (t)). In our
application, we have found modeling after (9) effective leading to:

puk(t) = puk + αuk · devu(t) + puk,t k = 1, . . . , f (13)

Herepuk captures the stationary portion of the factor,αuk ·devu(t)
approximates a possible portion that changes linearly overtime,
andpuk,t absorbs the very local, day-specific variability.

Model f=10 f=20 f=50 f=100 f=200
SVD .9140 .9074 .9046 .9025 .9009
SVD++ .9131 .9032 .8952 .8924 .8911
timeSVD++ .8971 .8891 .8824 .8805 .8799

Table 2: Comparison of three factor models: prediction ac-
curacy is measured by RMSE (lower is better) for varying
factor dimensionality (f ). For all models accuracy improves
with growing number of dimensions. Most significant accuracy
gains are achieved by addressing the temporal dynamics in the
data through the timeSVD++ model.

At this point, we can tie all pieces together and extend the SVD++
factor model by incorporating the time changing parameters. This
leads to a model, which will be denoted astimeSVD++, where the
prediction rule is as follows:

r̂ui(t) = µ + bi(t)+ bu(t) + qT
i



pu(t) + |R(u)|−
1

2

∑

j∈R(u)

yj





(14)
The exact definitions of the time drifting parametersbi(t), bu(t)
andpu(t) were given in (6),(9) and (13). Learning is performed
by minimizing the associated squared error function on the training
set using a regularized stochastic gradient descent algorithm. The
procedure is analogous to the one involving the original SVD++ al-
gorithm [8]; details are omitted here for brevity. Time complexity
per iteration is still linear with the input size, while wallclock run-
ning time is approximately doubled compared to SVD++, due to
the extra overhead required for updating the temporal parameters.
Importantly, convergence rate was not affected by the temporal pa-
rameterization, and the process converges in around 30 iterations.

Addressing temporal dynamics leads to significant accuracygains
within the movie rating dataset, when considering past RMSEim-
provements on the dataset. In Table 2 we compare results of three
algorithms. First is the plain matrix factorization algorithm as per
(3), denoted by SVD. Second, is the SVD++ method (4), which
was considered as a significant improvement over SVD by incor-
porating also a kind of implicit feedback [8]. Finally is thenewly
proposed timeSVD++, which accounts for temporal effects asin
(14). The three methods are compared over a range of factoriza-
tion dimensions (f ). All methods benefit from a growing number
of factor dimensions, what enables them to better express complex
movie-user interactions. Notice that the improvement delivered by
timeSVD++ over SVD++ is consistently more significant than the
improvement SVD++ achieves over SVD. In fact, we are not aware
of any single algorithm in the literature that could deliversuch ac-
curacy. We attribute this to the importance of properly addressing
temporal effects. What further demonstrates the importance of cap-
turing temporal dynamics is the fact that a timeSVD++ model of
dimension 10 is already more accurate than an SVD model of di-
mension 200. Similarly, a timeSVD++ model of dimension 20 is
enough to outperform an SVD++ model of dimension 200.

5. TEMPORAL DYNAMICS AT
NEIGHBORHOOD MODELS

The most common approach to CF is based on neighborhood
models. While typically less accurate than their factorization coun-
terparts, neighborhood methods enjoy popularity thanks tosome of
their merits, such as explaining the reasoning behind computed rec-
ommendations, and seamlessly accounting for new entered ratings.

Recently, we suggested an item-item model based on global opti-
mization [8], which will enable us here to capture time dynamics in
a principled manner. The static model, without temporal dynamics,



is centered on the following prediction rule:

r̂ui = µ + bi + bu + |R(u)|−
1

2

∑

j∈R(u)

(ruj − buj)wij + cij (15)

Here, the item-item weightswij andcij represent the adjustments
we need to make to the predicted rating of itemi, given a known
rating of itemj. It was proven greatly beneficial to use two sets
of item-item weights: one (thewijs) is related to the values of the
ratings, and the other disregards the rating value, considering only
which items were rated (thecijs). These weights are automatically
learnt from the data together with the biasesbi andbu. The con-
stantsbuj are precomputed according to (2). Recall thatR(u) is
the set of items rated by useru.

When adapting rule (15) to address temporal dynamics, two com-
ponents should be considered separately. First, is the baseline pre-
dictor portion,µ + bi + bu, which explains most of the observed
signal. Second, is the part that captures the more informative sig-
nal, dealing with user-item interaction|R(u)|−

1

2

∑

j∈R(u)(ruj −

buj)wij + cij . As for the baseline part, nothing changes from the
factor model, and we replace it withµ + bi(t) + bu(t), according
to (6) and (9). However, capturing temporal dynamics withinthe
interaction part requires a different strategy.

Item-item weights (wij andcij ) reflect inherent item characteris-
tics and are not expected to drift over time. Learning process should
make sure that they capture unbiased long term values, without be-
ing too affected from drifting aspects. Indeed, the time changing
nature of the data can mask much of the longer term item-item re-
lationships if not treated adequately. For instance, a userrating
both itemsi andj high in a short time period, is a good indicator
for relating them, thereby pushing higher the value ofwij . On the
other hand, if those two ratings are given five years apart, while
the user’s taste (if not her identity) could considerably change, this
is less of an evidence of any relation between the items. On top
of this, we would argue that those considerations are prettymuch
user-dependent – some users are more consistent than othersand
allow relating their longer term actions.

Our goal here is to distill accurate values for the item-itemweights,
despite the interfering temporal effects. First we need to parameter-
ize the decaying relations between two items rated by useru. We
adopt exponential decay formed by the functione−βu·∆t, where
βu > 0 controls the user specific decay rate and should be be learnt
from the data. We also experimented with other decay forms, such
as a power law decay∆t−βu , which resulted in slightly inferior
results. This leads to the prediction rule:

r̂ui(t) =µ + bi(t) + bu(t)+ (16)

|R(u)|−
1

2

∑

(j,tj)∈R(u)

e−βu·|t−tj |((ruj − buj)wij + cij)

Here, in a slight abuse of notation, we assume that the setR(u)
contains not only the items rated byu, but also the time of those
ratings. The involved parameters,bi(t) = bi + bi,Bin(t), bu(t) =
bu +αu ·devu(t)+bu,t, βu, wij andcij , are learnt by minimizing
the associated regularized squared error:

∑

(u,i,t)∈K

(rui(t) − µ − bi − bi,Bin(t) − bu − αudevu(t) − bu,t−

|R(u)|−
1

2

∑

(j,tj)∈R(u)

e−βu·|t−tj|((ruj − buj)wij + cij))
2+

λ(b2
i + b2

i,Bin(t) + b2
u + α2

u + b2
u,t + w2

ij + c2
ij) (17)

Minimization is performed by stochastic gradient descent.We run
the process for 25 iterations, withλ = 0.002, and step size (learn-

ing rate) of 0.005. An exception is the update of the exponentβu,
where we are using a much smaller step size of10−7. Training
time complexity is the same as the original algorithm, whichis:
O(

∑

u
|R(u)|2). One can tradeoff complexity with accuracy by

sparsifying the set of item-item relations as explained in [8].
Like in the factor case, properly considering temporal dynamics

improves the accuracy of the neighborhood model within the movie
ratings dataset. The RMSE decreases from 0.9002 [8] to 0.8885.
To our best knowledge, this is significantly better than previously
known results by neighborhood methods. To put this in some per-
spective, this result is even better than those reported [1,10, 21]
by using hybrid approaches such as applying a neighborhood ap-
proach on residuals of other algorithms. A lesson is that addressing
temporal dynamics in the data can have a more significant impact
on accuracy than designing more complex learning algorithms.

We would like to highlight an interesting point related to the ba-
sic methodology described in Sec. 3. Letu be a user whose pref-
erences are quickly drifting (βu is large). Hence, old ratings by
u should not be very influential on his status at the current time -
t. One could be tempted to decay the weight ofu’s older ratings,
leading to “instance weighting” through a cost function like:

∑

(u,i,tui)∈K

e−βu·|t−tui|(rui − µ − bi − bi,Bin(tui) − bu − αudevu(tui)−

bu,tui
− |R(u)|−

1

2

∑

(j,tuj)∈R(u)

((ruj − buj)wij + cij))
2 + λ(· · · )

Such a function is focused at thecurrent state of the user (at time
t), while de-emphasizing past actions. We would argue against this
choice, and opt for equally weighting the prediction error at all past
ratings as in (17), thereby modelingall past user behavior. This
allows us to exploit the signal at each of the past ratings, a sig-
nal that is extracted as item-item weights. Learning those weights
would equally benefit from all ratings by a user. In other words, we
can deduce that two items are related if users rated them similarly
within a short timeframe, even if this happened long ago.

6. AN EXPLORATORY STUDY
In Fig. 1 we showed two strong temporal effects within the Net-

flix movie-rating data. First effect exhibits a sudden rise in the
average movie rating beginning around 1500 days into the dataset,
corresponding to early 2004. The second effect shows that people
tend to give higher ratings as movies become older (movie ageis
measured by number of days since its first rating in the dataset).
The patterns that our temporal models capture may help in explain-
ing what created those two global temporal effects.

Let us start with the first effect. We can come up with several
hypotheses on what caused the sudden increase of rating scores.

1. Since 2004 people are matched with movies better suited for
them leading to higher entered ratings. This may result by
technical improvements in Netflix recommendation technol-
ogy (Cinematch) and/or GUI improvements making people
more aware of movies they like. Notice that an improvement
in Cinematch’s effectiveness can have a significant impact on
which movies members rent and subsequently rate, as Cine-
match suggestions drive 60% of Netflix’s rentals [20].

2. Since 2004 people are biased to give higher ratings in gen-
eral. A possible cause is a hypothetical change of the labels
associated with the star scores. While at the present, stars
reflect subjective feelings on the movies (e.g., 5 stars=“loved
it”, 4 stars=“really liked it”), in the past they might have
used to denote a more objective quality (e.g., 5 stars=“superb
movie”), setting a higher bar for a 5 star rating.



3. The vast majority of the users in the Netflix dataset gave their
first rating no earlier than 2004. It is possible that unlike
early adopters those newer users have a less refined taste and
shifted the overall rating average higher.

A straightforward analysis rejects the third hypothesis – even
when concentrating on earlier customers, e.g., those who have rated
earlier than 2003, we can find a strong shift in rating scale since
early 2004. As for the two other hypotheses, we use our modelsfor
examining them. The first hypothesis corresponds to the interaction

part of the models (e.g.,qT
i

(

pu(t) + |R(u)|−
1

2

∑

j∈R(u) yj

)

for

the timeSVD++ model), which measures how well user and movie
characteristics match together. On the other hand, the second hy-
pothesis, deals with general biases that have nothing to do with the
matching of users to movies. Thus, it corresponds to the baseline
predictor portion of them model (µ + bi(t) + bu(t)). In order to
analyze this, we modeled the data using the timeSVD++ model (of
dimensionalityf = 50). While the full model could accurately
regenerate the shifts in rating values over time, more interesting to
us is to separate the model predictions into baseline and interaction
components, and examine how each of them evolve over time. Re-
sults are shown in Fig. 2. We observe that since early 2004 (1500
days into the data), the score due to interaction between users and
movies steadily rises, indicating that users are increasingly rating
movies that are more suitable for their own taste. This supports
the first hypothesis of an ongoing improvement in the way Netflix
matches users to movies beginning at early 2004 and continuing
since then. Apparently, this could be expected knowing the large
effort that company invests in improving their recommendersystem
[4]. At the same time, the various biases, captured by the baseline
predictors, exhibit a onetime phase transition around the 1500 days
time point. While shallower than the change in the interaction part,
the jump is clear and supports the more surprising second hypoth-
esis. This hints that beyond a constant improvement in matching
people to movies they like, something else happened in early2004
causing an overall shift in rating scale. Uncovering this may require
extra information on the related circumstances.
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Figure 2: Tracking the change of the two components of mod-
eled movie-ratings over time. First component (“baseline”)
represents rating behavior influenced by exterior considera-
tions, while the other component (“interaction”) captures the
rating behavior that is explained by the match between users
and movies.

Now we move to the second temporal effect. We would like to
suggest two hypotheses to why ratings rise as movies become older.

1. Older movies are getting rated by users better matching them.
This might indicate that people watch (and then rate) a new

movie even if it is less appropriate for them, but will watch
an older movie only after a more careful selection process.
Such an improved match between users and movies can be
captured by the fact that the interaction part of the model is
rising with movies’ age.

2. Older movies are just inherently better than newer ones. This
would be captured by the baseline part of the model.

Once again we split the modeled behavior into two parts – the inter-
action part measuring the match between users and movies andthe
baseline part capturing other effects. In Fig. 3 we track howthose
two components change over time. Much like the original raw data
(in Fig. 1), the interaction part shows a steady increase virtually
throughout the whole movie age range at a close to linear pace. On
the other hand, the baseline portion is increasing only between days
1000 and 1500, while being captured within a narrow range else-
where. Since we measure movie age by number of days since first
rating, as movies become older they are more exposed to the afore-
mentioned early 2004 rating jump effect. In particular, allmovies
older than 1500 days must be fully susceptible to this effect. Thus,
it is possible that the increase in baseline values between days 1000
and 1500 reflects such a side effect. To wipe out this interfering ef-
fect we concentrate only on ratings to movies aged 1500 days or
older. This leaves us with about 44% of the points (˜44 million
rating instances) and makes the picture much clearer. Whilethe
raw ratings as well the interaction part continue to steadily increase
beyond day 1500, the baseline portion does not increase after that
day. We view this as an indication that the first hypothesis iscloser
to the truth than the second one.
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Figure 3: Tracking the change of the two components of mod-
eled ratings against age of rated movie. We observe a consistent
improvement in the match between users and movies as movie
age rises (captured by the “interaction” component).

7. RELATED WORKS
In the past few years, much research was devoted to the Netflix

dataset. Many works were published in the two KDD workshops
dedicated to that dataset [3, 23]. Other notable works include [8,
13, 19]. Best reported results were obtained by integratingthe fac-
torization and neighborhood models. Results reported in this paper
by pure factorization are more accurate, in a sense showing that ad-
dressing temporal dynamics is not less important than algorithmic
sophistication created by integration of two different models.

Despite the high impact of temporal effects on user preferences,
the subject attracted a quite negligible attention in the recommender
literature. Notable discussions of temporal effects include Ding and
Li [6], who suggested a time weighting scheme for a similarity-
based collaborative filtering approach. At the prediction stage, sim-



ilarities to previously rated items are decayed as time difference in-
creases. The decay rate is both user-dependent and item-dependent.
Sugiyama et al. [17] proposed a personalized web search engine,
where they let the user profile evolve over time. There, they distin-
guish between aspects of user behavior computed over a fixed time
decay window, and ephemeral aspects captured within the current
day. In a prior work, we suggested an incremental modeling of
global effects [1], which include some baseline time effects. This
scheme was later enhanced [11, 21].

Our work is within the topic of tracking and modeling concept
drift, which has gathered much interest in the data mining commu-
nity. Early works in the field (e.g. [15, 25]) used techniqueslike
adjusted and decayed weights of past instances or using a sliding
time window. Another approach popular in newer publications (e.g.
[7, 16, 24]) is based on maintaining an ensemble of models capable
of capturing various states of the data. As explained in Sec.3, the
problem of tracking user preferences, especially in a collaborative
filtering scenario, requires different approaches.

8. CONCLUSIONS
Tracking the temporal dynamics of customer preferences to prod-

ucts raises unique challenges. Each user and product potentially
goes through a distinct series of changes in their characteristics.
Moreover, we often need to model all those changes within a sin-
gle model thereby interconnecting users (or, products) to each other
to identify communal patterns of behavior. A mere decay of older
instances or usage of multiple separate models lose too muchsig-
nal, thus degrading prediction accuracy. The solution we adopted
is to model the temporal dynamics along the whole time period,
allowing us to intelligently separate transient factors from lasting
ones. We applied this methodology with two leading recommender
techniques. In a factorization model, we modeled the way user
and product characteristics change over time, in order to distill
longer term trends from noisy patterns. In an item-item neigh-
borhood model, we showed how the more fundamental relations
among items can be revealed by learning how influence between
two items rated by a user decays over time. In both factoriza-
tion and neighborhood models, the inclusion of temporal dynam-
ics proved very useful in improving quality of predictions,more
than various algorithmic enhancements. This led to the bestresults
published so far on a widely analyzed movie rating dataset.
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