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ABSTRACT

Customer preferences for products are drifting over timedact
perception and popularity are constantly changing as néec-se
tion emerges. Similarly, customer inclinations are evalyilead-
ing them to ever redefine their taste. Thus, modeling tenhplyra
namics should be a key when designing recommender systems o
general customer preference models. However, this raisgsie
challenges. Within the eco-system intersecting multiptedpcts
and customers, many different characteristics are spiffimulta-
neously, while many of them influence each other and oftesetho
shifts are delicate and associated with a few data instaritieis
distinguishes the problem from concept drift exploratjonbere
mostly a single concept is tracked. Classical time-windoimstance-
decay approaches cannot work, as they lose too much sigmeal wh
discarding data instances. A more sensitive approach isreslj
which can make better distinctions between transient &ffand
long term patterns. The paradigm we offer is creating a model
tracking the time changing behavior throughout the lifenspithe
data. This allows us to exploit the relevant components lafath
instances, while discarding only what is modeled as beiredeir
vant. Accordingly, we revamp two leading collaborativeefiihg
recommendation approaches. Evaluation is made on a largie mo
rating dataset by Netflix. Results are encouraging and roibide
those previously reported on this dataset.
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1. INTRODUCTION

Modeling time drifting data is a central problem in data mai
Often, data is changing over time, and up to date modelingldho
be continuously updated to reflect its present nature. Thiy/sia
of such data needs to find the right balance between discgunti
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temporary effects that have very low impact on future betravi
while capturing longer-term trends that reflect the inherexiure
of the data. This led to many works on the problem, which ie als
widely known asconcept drift see e.g. [15, 25].

Modeling temporal changes in customer preferences brinigsia

rchallenges. One kind of concept drift in this setup is thergerce

of new products or services that change the focus of custriRer
lated to this are seasonal changes, or specific holidayshviad
to characteristic shopping patterns. All those changesdntie the
whole population, and are within the realm of traditionalk¢s on
concept drift. However, many of the changes in user beharier
driven by localized factors. For example, a change in theljam
structure can drastically change shopping patterns. Ligesvindi-
viduals gradually change their taste in movies and musicthake
changes cannot be captured by methods that seek a globaptonc
drift. Instead, for each customer we are looking at diffetgpes
of concept drifts, each occurs at a distinct time frame antlii@n
towards a different direction.

The need to model time changes at the level of each individ-
ual significantly reduces the amount of available data feectang
such changes. Thus we should resort to more accurate te€lsniq
than those that suffice for modeling global changes. For pl@m
it would no longer be adequate to abandon or simply undefweig
far in time user transactions. The signal that can be exdatom
those past actions might be invaluable for understandiagcils-
tomer herself or be indirectly useful to modeling other ousgrs.
Yet, we need to distill long term patterns while discounttran-
sient noise. This requires a more sensitive methodologyader
dressing drifting customer preferences. It would not bejadte to
concentrate on identifying and modeling just what is retéva the
present or the near future. Instead, we require an accuadeling
of each point in the past, which will allow us to distinguisttiveen
persistent signal that should be captured and noise thatdsbe
isolated from the longer term parts of the model.

Modeling user preferences is relevant to multiple applcet
ranging from spam filtering to market-basket analysis. Oamm
focus in the paper is on modeling user preferences for mgjldi
recommender system, but we believe that general lessoha/¢ha
learn would apply to other applications as well. Automated-r
ommendations is a very active research field [12]. Such syste
analyze patterns of user interest in items or products taigeqer-
sonalized recommendations of items that will suit a usesgt We
expect user preferences to change over time. This may stem fr
multiple factors, some are fundamental while others areeror
cumstantial. For example, in a movie recommender systeefsus
may change their preferred genre or adopt a new viewpoinnon a
actor or director. In addition, they may alter the appeazaoftc
their feedback. E.g., in a system where users provide stagsa
to products, a user that used to indicate a neutral preferepa



“3 stars” input, may now indicate dissatisfaction by the edi®
stars” feedback. Similarly, it is known that user feedbaghkni
fluenced by anchoring, where current ratings should be taken
relative to other ratings given at the same short periodalRinn
many instances systems cannot separate different hodseieoh-
bers accessing the same account, even though each memtzer has
different taste and deserves a separate model. This creates
facto multifaceted meta-user associated with the accdunay to
get some distinction between different persons is by assythiat
time-adjacent accesses are being done by the same member (so
times on behalf of other members), which can be naturallyuceg
by a temporal model that assumes a drifting nature of a cuestom

All these patterns and the likes should have made tempordl mo
eling a predominant factor in building recommender systéyios-
etheless, with very few exceptions (to be mentioned in Sgc¢h@&
recommenders literature does not address temporal chamgesr
behavior. Perhaps, because user behavior is composed gf man
different concept drifts, all acting in a different timefna and dif-
ferent directions, thus making common methodologies fatidg
with concept drift and temporal data less successful atsiiigp.
We are showing that capturing time drifting patterns in umdrav-
ior is essential to improving accuracy of recommenderss also
gives us hope that the insights from successful time mogldtn
recommenders will be useful in other data mining appliceio

Our test bed is a large movie rating dataset released by Nasfli
the basis of a well publicized competition [4]. This datasem-
bines several merits for the task at hand. First, it is notra sy
thetic dataset, but contains user-movie ratings by reahgayet-
flix subscribers. In addition, its relatively large size -oab 100
million date-stamped ratings — makes it a better proxy fat liée
large scale datasets, while putting a premium on compuiaitief-
ficiency. Finally, unlike some other dominant datasetsetefiects
are natural and are not introduced artificially. Two intéres (if
not surprising) temporal effects that emerge within thiadet are
shown in Fig. 1. One effect is an abrupt shift of rating schk t
happened in early 2004. At that time, the mean rating valopgd
from around 3.4 stars to above 3.6 stars. Another signifiefiett
is that ratings given to movies tend to increase with the mage.
That is, older movies receive higher ratings than newer .otes
Sec. 6 we will return to these phenomena and use our temporal
modeling to shed some light on their origins.

The major contribution of this work is presenting a methodgl
and specific techniques for modeling time drifting user @refices
in the context of recommender systems. The proposed ag@eac
are applied on the aforementioned extensively analyzedemat-
ings dataset, enabling us to firmly compare our methods Withet
reported recently. We show that by incorporating temporédri
mation we achieve best results reported so far, indicatiegsig-
nificance of uncovering temporal effects.

The rest of the paper is organized as follows. In the next@ect
we describe basic notions and notation. Then, in Sec. 3 @ pr
ciples for addressing time changing user preferences ateesl/
Those principles are then materialized, in quite diffeveays, within
two leading recommender techniques: factor modeling ($eand
item-item neighborhhod modeling (Sec. 5). In Sec. 6 we dascr
an exploratory study, followed by surveying related worlSgc. 7.

2. PRELIMINARIES

We are given ratings about users (henceforth, interchangeable
with “customers”) andn items (henceforth, interchangeable with
“products”). We reserve special indexing letters for digtiishing
users from items: for usens, v, and for itemsi, 5. We uset for
time (or, date). A rating.;(¢) indicates the preference by user
of item ¢ at day¢, where high values mean stronger preferences.
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Figure 1: Two temporal effects emerging within the Netflix
movie rating dataset. Top: the average movie rating made a
sudden jump in early 2004 (1500 days since the first rating in
the dataset). Bottom: ratings tend to increase with the movie
age at the time of the rating. Here, movie age is measured by
the time span since its first rating event within the dataset.In
both charts each point averages 100,000 rating instances.
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For example, values can be integers ranging from 1 (staigatd
ing no interest to 5 (stars) indicating a strong intereserdsrates
item 4 at most once, otherwise we take only the freshest rating, so
givenw ands, the day of rating is unique. Sometimes, when the day
of rating is not relevant, we will use the short notatiqn. We dis-
tinguish predicted ratings from known ones, by using thetan
7v:(t) for the predicted value of,;(¢). Usually the vast major-
ity of ratings are unknown. Theu, i, t) triples for whichr.;(t) is
known are stored in the skt = {(u, i, t) | ru:(t) is known}.

We evaluated our algorithms on a movie rating dataset of more
than 100 million date-stamped ratings performed by abdéinfik
lion anonymous Netflix customers on 17,770 movies between De
31, 1999 and Dec 31, 2005 [4]. We are not aware of any publicly
available comparable dataset that is close to the scope wald g
ity of this one. To maintain compatibility with results pigiied
by others, we adopted some common standards. We evaluated ou
methods on two comparable sets designed by Netflix: a hald-ou
set (“Probe set”) and a test set (“Quiz set”), each of whiatt@ios
over 1.4 million ratings. Reported results are on the testvdaile
experiments on the hold-out set show the same findings. In our
time-modeling context, it is important to note that the testances
of each user come later in time than his/her training inganc
The quality of the results is measured by their root meanregua

error (RMSE)\/Z(LL i)ETestSet(T“'i - fui)2/|T€8tSSt|, a mea-
sure that puts more emphasis on large errors compared \eithl-th

ternative of mean absolute error. Achievable RMSE valuethen
test set lie in a quite compressed range, as reported by naatigip




pants in the related competition. Nonetheless, there ieace that
small improvements in RMSE terms can have a significant impac
on the quality of the top few presented recommendations [8].

Recommender systems are often base@€olaborative Filter-
ing (CF), which relies only on past user behavior—e.g., thadwipr
ous transactions or product ratings—and does not requérere
ation of explicit profiles. When enough ratings were gattigrer
item, as in the Netflix movie rating dataset, CF becomes the pr
ferred and more accurate technique. Notably, CF technicgies
quire no domain knowledge and avoid the need for extensitee da
collection. In addition, relying directly on user behavadiows un-
covering complex and unexpected patterns that would beuliffi
or impossible to profile using known data attributes. As aseen
quence, CF attracted much of attention in the past decasldting
in significant progress and being adopted by some successful
mercial systems, including Amazon [9], TiVo and Netflix.

In order to establish recommendations, CF systems needirto co
pare fundamentally different objects: items against usehere are
two primary approaches to facilitate such a comparisongkvbon-
stitute the two main disciplines of CEhe neighborhood approach
andlatent factor models Neighborhood methods are centered on
computing the relationships between items or, alternigtivee-
tween users. An item-item approach [9, 14] evaluates thizmpre
ence of a user to an item based on ratings of similar items &y th
same user. In a sense, these methods transform users terthe it
space by viewing them as baskets of rated items.

Latent factor models, such as matrix factorization, cosgen
alternative approach by transforming both items and usethe
same latent factor space, thus making them directly corbjmara
The latent space tries to explain ratings by characterizatl prod-
ucts and users on factors automatically inferred from used<
back. For example, when the products are movies, factorhtmig
measure obvious dimensions such as comedy vs. drama, aofount
action, or orientation to children; less well defined dimens such
as depth of character development or “quirkiness”; or ceteby
uninterpretable dimensions.

3. TRACKING DRIFTING CUSTOMER
PREFERENCES

One of the frequently mentioned examples of concept drift is
changing customer preferences over time, e.g.: “customeferp
ences change as new products and services become avajligble”
This aspect of drifting customer preferences highlightsrmmon
paradigm in the literature of having global drifting contemflu-
encing the data as a whole. However, in many applicatiootydn
ing our focus application of recommender systems, we als® da
more complicated form of concept drift where interconne qieef-
erences of many users are drifting in different ways at cbffietime
points. This requires the learning algorithm to keep trafakolti-
ple changing concepts. In addition the typically low amafrdata
instances associated with individual customers calls forencon-
cise and efficient learning methods, which maximize thézation
of signal in the data.

In a survey on the problem of concept drift, Tsymbal [22] ar-
gues that three approaches can be distinguished in thatliter
Theinstance selectioapproach discards instances that are less rel-
evant to the current state of the system. A common variaiis t
window approaches were only recent instances are condidére
possible disadvantage of this simple model is that it isngjvihe
same significance to all instances within the considered tirim-
dow, while completely discarding all other instances. Thight
be reasonable when the time shift is abrupt, but less so wimen t
shift is gradual. Thus, a refinement iisstance weightingvere
instances are weighted based on their estimated relevafiee.

quently, a time decay function is used, under-weightingaimnses
as they occur deeper into the past. The third approach isllmase
ensemble learningvhich maintains a family of predictors that to-
gether produce the final outcome. Those predictors are tesidly
their perceived relevance to the present time point, ergdigtors
that were more successful on recent instances get highghtsei

We performed extensive experiments with instance weightin
schemes, trying different exponential time decay ratesodi teigh-
borhood and factor models. The consistent finding was tleatipr
tion quality improves as we moderate that time decay, readhést
quality when there is no decay at all. This is despite the thaat
users do change their taste and rating scale over the yesavee a
show later. However, much of the old preferences still gérsi,
more importantly, help in establishing useful cross-ugetross-
product patterns in the data. Thus, just underweightingae®ns
loses too much signal along with the lost noise, which isiafen-
tal given the scarcity of data per user.

As for ensemble learning, having multiple models, each a€twvh
considers only a fraction of the total behavior may missétgiebal
patterns that can be identified only when considering tHeséalpe
of user behavior. What makes them even less appealing inaser ¢
is the need to keep track of the independent drifting behawib
many customers. This, in turn, would require building a safea
ensemble for each user. Such a separation will significaothy-
plicate our ability to integrate information across uséosg multi-
ple time points, which is the cornerstoneaafilaborative filtering
For example, an interesting relation between products eaasb
tablished by related actions of many users, each of thenoahliyt
different point of time. Capturing such a collective sigredjuires
building a single model encompassing all users and itenethieg

All those considerations led us to the following guidelives
adopt for modeling drifting user preferences.

e We seek models that explain user behavior along the full ex-
tent of the time period, not only the present behavior (while
subject to performance limitations). This is key to beintgab
to extract signal from each time point, while neglectingyonl
the noise.

e Multiple changing concepts should be captured. Some are
user-dependent and some are item-dependent. Similartg so
are gradual while others are sudden.

e While we need to model separate drifting “concepts” or pref-
erences per user and/or item, it is essential to combine all
those concepts within a single framework. This allows mod-
eling interactions crossing users and items thereby ifyenti
ing higher level patterns.

e In general, we do not try to extrapolate future temporal dy-
namics, e.g., estimating future changes in a user's prefer-
ences. This could be very helpful but is seemingly too diffi-
cult, especially given a limited amount of known data. Raethe
than that, our goal is to capture past temporal patterns-in or
der to isolate persistent signal from transient noise. ,This
indeed, helps in predictingiture behavior.

Now we turn to how these desirable principles materialize in
concrete methods when dealing with two leading approachest
laborative filtering - matrix factorization and neighboodadomodels.

4. TIME-AWARE FACTOR MODEL

4.1 The anatomy of a factor model

One of the more successful approaches to CF is based on a ma-
trix factorization model [2, 5, 10, 13, 18]. This approachde
itself well to an adequate modeling of temporal effects. dBef



we deal with those temporal effects, we would like to estdiblhe
foundations of a static factor model.

Matrix factorization models map both users and items tor joi
latent factor space of dimensionalify such that ratings are mod-
eled as inner products in that space. Accordingly, each wser
associated with a vectgr, € R’ and each item is associated
with a vectorg; € RY. A rating is predicted by the rule:

@)

In order to learn the vectoys, andg; we minimize the regularized
squared error:

LT
Tui = q; Pu

min
QD%
(u,i,t)ER

(rui = ¢ pu)” + Al 1 + llpull®)

The constani controls the extent of regularization, as usually de-
termined by cross validation. Minimization is typicallyrfermed
by either stochastic gradient descent or alternating kpsires.

Such a pure factor model serves well in capturing the intenac
between users and items. However, much of the observedratin
values are due to effects associated with either usersros;ts-
dependently of their interaction. A prime example is thaticgl
CF data exhibit large user and item biases — i.e., systeeaiien-
cies for some users to give higher ratings than others, argbfoe
items to receive higher ratings than others.

We will encapsulate those effects, which do not involve itgsn
interaction, within thebaseline predictorsThese baseline predic-
tors tend to capture much of the observed signal, in pagicalich
of the temporal dynamics within the data. Hence, it is vitahiodel
them accurately, which enables better identification ofpthe of
the signal that truly represents user-item interactionsralild be
subject to factorization.

A suitable way to construct a static baseline predictor ifohs
lows. Denote by the overall average rating. A baseline predictor
for an unknown rating-,; is denoted by,,; and accounts for the
user and item main effects:

bui = b+ by 4+ b; (2

The parameters, andb; indicate the observed deviations of user

exact model is as follows (see [8] for further explanations)

Fui = o+ bi+ bu + a7 | pu+ R(u)| "2 >y 4)

JER(u)

The setR(u) contains the items rated by user

The decomposition of a rating into distinct portions is cement
here, as it allows us to treat different temporal aspectspaation.
More specifically, we identify the following effects: (1)arsbiases
(bw) change over time; (2) Item biases ) change over time; (3)
User preferencesp(,) change over time. On the other hand, we
would not expect a significant temporal variation of itemrelater-
istics (g;), as items, unlike humans, are static in their nature. We
start with a detailed discussion of the temporal effectsahnacon-
tained within the baseline predictors.

4.2 Time changing baseline predictors

Much of the temporal variability is included within the blise
predictors, through two major temporal effects. First idradsing
the fact that an item’s popularity is changing over time. &mam-
ple, movies can go in and out of popularity as triggered bgrewl
events such as the appearance of an actor in a new movie.sThis i
manifested in our models by the fact that item Hiasvill not be a
constant but a function that changes over time. The secofa ma
temporal effect is related to user biases - users changelthse-
line ratings over time. For example, a user who tended toamate
average movie “4 stars”, may now rate such a movie “3 stacs”, f
various reasons explained earlier. Hence, in our models agdv
like to take the parametéy, as a function of time. This induces the
following template for a time sensitive baseline predictor

bui(t) = 1+ bu(t) + bi(?) ®)

The functionb,,;(¢) represents the baseline estimatedt rating
of 7 at dayt. Here,b,(t) andb;(t) are real valued functions that
change over time. The exact way to build these functionsldhou
reflect a reasonable way to parameterize the involving teahpo
changes. We will detail our choice in the context of the movie
rating dataset, which demonstrates some typical congidasa A
major distinction is between temporal effects that spaereded pe-
riods of time and more transient effects. In the movie ratiage,
we do not expect movie likeability to fluctuate on a daily bBabut

v and itemi, respectively, from the average. For example, suppose rather to change over more extended periods. On the othel han

that we want a baseline estimate for the rating of the mow&nic
by user Joe. Now, say that the average rating over all moyies,
is 3.7 stars. Furthermore, Titanic is better than an avenamée,

we observe that user effects can change on a daily basistiedle
inconsistencies natural to customer behavior. This reguiiner
time resolution when modeling user-biases compared to arlow

so it tends to be rated 0.5 stars above the average. On the otheresolution that suffices for capturing item-related tinfees.

hand, Joe is a critical user, who tends to rate 0.3 stars |tveer
the average. Thus, the baseline estimate for Titanic’agdly Joe
would be 3.9 stars by calculatirsg? — 0.3 + 0.5.

The baseline predictor should be integrated back into ttiifa

model. To achieve this we extend rule (1) to be:

Fui = p+ by 4 b; + ¢} pu (3)
Here main effects are explicitly isolated, thus letting ¢fie., fac-
torization deal effectively with the relevant portions bétsignal;
see also [8, 10].

The factor model we are using in this work is SVD++ [8], which
slightly differs from (3). This model was shown to offer a sup
rior accuracy by also accounting for the more implicit imf@-
tion recorded by which items were rated (regardless of ttagiing
value). To this end a second set of item factors is addedingla
item i to a factor vectoy; € RY. Those new item factors are used
to characterize users based on the set of items that they rEibe

Let us start with our choice of time-changing item biasks#),
which are easier to capture since we do not need finest rasolut
there. Thus, an adequate decision would be to split the itaseb
into time-based bins. During each time period correspanttna
single bin we use a distinct item bias. The decision of howpti s
the timeline into bins should balance the desire to achies fes-
olution (hence, smaller bins) with the need to have enoutihga
per bin (hence, larger bins). For the movie rating data ethera
wide variety of bin sizes that yield about the same accurdaocgur
implementation each bin corresponds to roughly ten cornisecu
weeks of data, leading to an overall number of 30 bins spgralin
days in the dataset. A dayis associated with an integBin(¢) (a
number between 1 and 30 in our data), such that the movie dias i
split into a stationary part and a time changing part:

bi(t) = bi + b; in() ©

While binning the parameters works well on the items, it iseno
of a challenge on the users side. On the one hand, we would like



finer resolution for users to detect very short lived tempeffacts.
On the other hand, we do not expect having enough ratingsseer u
to produce reliable estimates for isolated bins. Differfamiction
forms can be considered for parameterizing temporal usenier,
with varying complexity and accuracy.

The first modeling choice is very concise, and uses a linear-fu
tion to capture a possible gradual drift of user bias. Let s fi
introduce some new notation. For each usenve denote the mean
date of rating byt,,. Now, if v rated a movie on day, then the
associated time deviation of this rating is defined as:

dev, (t) = sign(t — t,) - |t — tu|®

Here |t — t.| measures the time distance (e.g., number of days)
between datesandt,,. We set the value g8 by cross validation; in
our implementatiors = 0.4. We introduce a single new parameter
for each user called., so that we get our first definition of a time-
dependent user-bias:

b (£) = bu + au - deva(t) )

This offers a simple linear model for approximating a dniftibe-
havior, which requires learning two parameters per userand
a.,. A more flexible parameterization is offered by splines. Let
be a user associated with, ratings. We designate, time points
—{t¥,...,t¢, } —spaced uniformly across the datesuf ratings
as kernels that control the following function:
Zfil eiﬂtit?‘bz
The parameters;; are associated with the control points (or, ker-
nels), and are automatically learnt from the data. This \wayuser
bias is formed as a time-weighted combination of those perars.
The number of control pointg,,, balances flexibility and computa-
tional efficiency. In our application we skt=n2?®, letting it grow
with the number of available ratings. The constadetermines the
smoothness of the spline; we 3&t0.3 by cross validation.

So far we have discussed smooth functions for modeling thie us
bias, which mesh well witlyradual concept drift However, in
many applications there aseidden driftemerging as “spikes” as-
sociated with a single day or session. For example, in theianov
rating dataset we have found that multiple ratings a usersgin
a single day, tend to concentrate around a single value. &uch
effect does not span more than a single day. This may reflect th
mood of the user that day, the impact of ratings given in alsing
day on each other, or changes in the actual rater in multigper
accounts. To address such short lived effects, we assigmgée si
parameter per user and day, absorbing the day-specifidilayia
This parameter is denoted by ;. Notice that in some applications
the basic primitive time unit to work with can be shorter ander
than a day. E.g., our notion of day can be exchanged with amoti
of a user session.

In the Netflix movie rating data, a user rates on 40 differexysd
on average. Thus, working with, ; requires, on average, 40 pa-
rameters to describe each user bias. It is expectedhas inad-
equate as a standalone for capturing the user bias, sindesésn
all sorts of signals that span more than a single day. Thaeries
as an additive component within the previously describéeises.
The time-linear model (7) becomes:

b (t) = bu + (8)

b (1) = by + au - deve () + bu,e )
Similarly, the spline-based model becomes:
kay —’y\tftz‘\bu

B () = b 4 i b (10)

ku L —ylt—t¥]
2 e L

model | static | mov | linear | spline| linear+ | spline+ |
RMSE | .9799| .9771| .9731| .9714 | .9605 | .9603 |

Table 1: Comparing baseline predictors capturing main move
and user effects. As temporal modeling becomes more accu-
rate, prediction accuracy improves (lowering RMSE).

A baseline predictor on its own cannot yield personalizedme
mendations, as it misses all interactions between useritemd.
In a sense, it is capturing the portion of the data that isrelesant
for establishing recommendations and in doing so enablégrp
accurate recommendations. Nonetheless, to better absesda-
tive merits of the various choices of time-dependent uses;hwe
will compare their accuracy as standalone predictors. demoto
learn the involved parameters we minimize the associatdae
ized squared error by using stochastic gradient descenexam-
ple, in our actual implementation we adopt rule (9) for moutgl
the drifting user bias, thus arriving at the baseline pitedic

buL(t) = Hu + bu + oy - devu(t) + bu,t + bz + bi,Bin(t) (11)

To learn the involved parameters,, o, bu,t, bi andb; gin(s),
one should solve:

min Y (rui(t) — g — bu — audeva(t) — bu — bi — b piner))”
(u,i,t)ER

+ A + Al + by + b7+ b ging)

Here, the first term strives to construct parameters thdidigtven
ratings. The regularization termy(b2 + . . . ), avoids overfitting by
penalizing the magnitudes of the parameters, assumingteah8u
prior. Learning is done by a stochastic gradient desceratrittgn
running 20-30 iterations, with = 0.01.

Table 1 compares the ability of various suggested basefiee p
dictors to explain signal in the data. As usual, the amourtiapf
tured signal is measured by the root mean squared error aaghe
set. As a reminder, test cases come later in time than thertgai
cases for the same user. We code the predictors as follows:

e staticno temporal effectshy; (t) = p + by + b;.

e movaccounting only to movie-related temporal effeéts:(t) =
p 4 by + bi + b; Bin(r)-

e linear linear modeling of user biases;; (t)
Oy - devy, (t) +b; + bi,Bin(t)-

e splinespline modeling of user biases;;(t) = w + b. +
Spme ey

SNl + bi + b; Bin(t)-

e linear+ linear modeling of user biases and single day effect:
bul(t) =u+ by + - devu(t) —+ bu,t +b; + bi,Bin(t)'

e spline+spline modeling of user biases and single day effect:

bui(t) = p+b e ey b bi+b
ui = p+bu+ T + Ou,t +0; + 4,Bin(t)-

ky _—[t—t]
zl:]e 1

The table shows that while temporal movie effects residehan t
data (lowering RMSE from 0.9799 to 0.9771), the drift in user
ases is much more influential. The additional flexibility pfises
at modeling user effects leads to better accuracy comparadin-
ear model. However, sudden changes in user biases, whichgre
tured by the per-day parameters, are most significant. thaegen
including those changes, the difference between linearefivagl
(“linear+") and spline modeling (“spline+") virtually vashes.

Beyond the temporal effects described so far, one can use the
same methodology to capture more effects. A prime example is
capturing periodic effects. For example, some products bm@n
more popular in specific seasons or near certain holidaysile8ly,



different types of television or radio shows are populaotighout
different segments of the day (known as “dayparting”). &did
effects can be found also on the user side. As an examplera use
may have different attitudes or buying patterns during teekend
compared to the working week. A way to model such periodic ef-
fects is to dedicate a parameter for the combinations of pien@ds

with items or users. This way, the item bias of (6), becomes:

bi(t) = bi + b; Bin(t) + bi,period(t)

E.g., if we try to capture the change of item bias with the seas
the year, themeriod(t) € {fall, winter, spring, summer}. Simi-
larly, recurring user effects are modeled by modifying (9beé:

bu(t) = by + o - devy (t) + bu,t + bu,period(t)

E.g., if we try to model a day-of-week user effect, themiod (¢) €
{Sun, Mon, Tue, Wed, Thu, Fri, Sat}. We could not find peri-
odic effects with a significant predictive power within thevie-
rating dataset, thus our reported results do not includgetho

Another temporal effect within the scope of basic preditsr
related to the changing scale of user ratings. Whi(é) is a user-
independent measure for the merit of itérat timet¢, users tend
to respond to such a measure differently. For example, rdifte
users employ different rating scales, and a single user lcange
his rating scale over time. Accordingly, the raw value of thavie
bias is not completely user-independent. To address tlisdd a
time-dependent scaling feature to the baseline predjctersoted
by c.(t). Thus, the baseline predictor (11) becomes:

bui(t) = p4bu+ 0w -devey (t) +bu e+ (bi+b; Bing)) -cu(t) (12)

All discussed ways to implemeat, (¢) would be valid for imple-
mentingc, (t) as well. We chose to dedicate a separate parame-
ter per day, resulting inc,(t) = cu + cu,t. As usual,c, is the
stable part ot (t), whereas:, ; represents day-specific variabil-
ity. Adding the multiplicative factor,, (t) to the baseline predictor
lowers RMSE to 0.9555. Interestingly, this basic model, alhi
captures just main effects disregarding user-item intemas, can
explain almost as much of the data variability as the comiakrc
Netflix Cinematch recommender system, whose published RMSE
on the same test set is 0.9514 [4].

4.3 Time changing factor model

In the previous subsection we discussed the way time affects
baseline predictors. However, as hinted earlier, tempubnaadmics
go beyond this, they also affect user preferences and théneln-
teraction between users and items. Users change theiremeés
over time. For example, a fan of the “psychological thridlegenre
may become a fan of “crime dramas” a year later. Similarly, hu
mans change their perception on certain actors and digecitis
effect is modeled by taking the user factors (the vegtgras a
function of time. Once again, we need to model those changes a
the very fine level of a daily basis, while facing the builtsitarcity
of user ratings. In fact, these temporal effects are thedsartd
capture, because preferences are not as pronounced asfieetis e
(user-biases), but are split over many factors.

The same way we treat user biases we also treat each component

of the user preferences, (t)” (Pur(t), ..., pus(t)). In our
application, we have found modeling after (9) effectivedieg to:

f (13)

Herep.,. captures the stationary portion of the factegy, - dev, (¢)
approximates a possible portion that changes linearly txres,
andp.,,+ absorbs the very local, day-specific variability.

Duk(t) = puk + auk - devy(t) + puke k=1,...

Model 7=10 | f=20 | f=50 | f=100] f=200
SVD 9140 .9074 | .9046 | .9025 | .9009
SVD++ 9131| .9032| .8952| .8924 | .8911
timeSVD++ | .8971| .8891| .8824| .8805 | .8799

Table 2: Comparison of three factor models: prediction ac-
curacy is measured by RMSE (lower is better) for varying
factor dimensionality (f). For all models accuracy improves
with growing number of dimensions. Most significant accurag
gains are achieved by addressing the temporal dynamics in ¢éh
data through the timeSVD++ model.

At this point, we can tie all pieces together and extend thB&V
factor model by incorporating the time changing paramet&hss
leads to a model, which will be denotedtaseSVD++ where the
prediction rule is as follows:

1
Fui(t) = p+bi(H) +bu () +af | pult) + Rw) 72 Yy
JER(u)
(14)

The exact definitions of the time drifting parametérét), b, (¢t)
andp.(t) were given in (6),(9) and (13). Learning is performed
by minimizing the associated squared error function onrdiaing
set using a regularized stochastic gradient descent #igariThe
procedure is analogous to the one involving the original $¥@l-
gorithm [8]; details are omitted here for brevity. Time cdexity
per iteration is still linear with the input size, while walbck run-
ning time is approximately doubled compared to SVD++, due to
the extra overhead required for updating the temporal petens
Importantly, convergence rate was not affected by the teahpa-
rameterization, and the process converges in around ZQidps.

Addressing temporal dynamics leads to significant accuyaiys
within the movie rating dataset, when considering past RMSE
provements on the dataset. In Table 2 we compare resultses th
algorithms. First is the plain matrix factorization alghm as per
(3), denoted by SVD. Second, is the SVD++ method (4), which
was considered as a significant improvement over SVD by incor
porating also a kind of implicit feedback [8]. Finally is thewly
proposed timeSVD++, which accounts for temporal effectinas
(14). The three methods are compared over a range of faatoriz
tion dimensions f). All methods benefit from a growing number
of factor dimensions, what enables them to better exprasplex
movie-user interactions. Notice that the improvementveedid by
timeSVD++ over SVD++ is consistently more significant thiaa t
improvement SVD++ achieves over SVD. In fact, we are not awar
of any single algorithm in the literature that could deligeich ac-
curacy. We attribute this to the importance of properly adding
temporal effects. What further demonstrates the impoe@aficap-
turing temporal dynamics is the fact that a timeSVD++ model o
dimension 10 is already more accurate than an SVD model of di-
mension 200. Similarly, a timeSVD++ model of dimension 20 is
enough to outperform an SVD++ model of dimension 200.

5. TEMPORAL DYNAMICS AT
NEIGHBORHOOD MODELS

The most common approach to CF is based on neighborhood
models. While typically less accurate than their factdicracoun-
terparts, neighborhood methods enjoy popularity thankstoe of
their merits, such as explaining the reasoning behind ctedmec-
ommendations, and seamlessly accounting for new entetiadsa
Recently, we suggested an item-item model based on glotial op

mization [8], which will enable us here to capture time dyizsin

a principled manner. The static model, without temporaladyits,



is centered on the following prediction rule:

Fui = ot bi b+ [R(w)| 2 D (rus = buj)wis +ciy (15)
JER(u)

Here, the item-item weight®;; andc;; represent the adjustments
we need to make to the predicted rating of iténgiven a known
rating of itemj. It was proven greatly beneficial to use two sets
of item-item weights: one (the;;s) is related to the values of the
ratings, and the other disregards the rating value, corisglenly
which items were rated (theg;s). These weights are automatically
learnt from the data together with the biagesandb,,. The con-
stantsb,,; are precomputed according to (2). Recall tRdi) is
the set of items rated by user

When adapting rule (15) to address temporal dynamics, twe co
ponents should be considered separately. First, is thditapee-
dictor portion,u + b; + b., which explains most of the observed
signal. Second, is the part that captures the more infovmatg-

. . . . . 1
nal, dealing with user-item interactioR (u)| ™2 >, g, (Tuj —
buj)wi; + cij. As for the baseline part, nothing changes from the
factor model, and we replace it wigh+ b; (t) + b.(t), according
to (6) and (9). However, capturing temporal dynamics wittie
interaction part requires a different strategy.

Item-item weightsy;; andc;;) reflect inherent item characteris-
tics and are not expected to drift over time. Learning presésuld
make sure that they capture unbiased long term values, wtities
ing too affected from drifting aspects. Indeed, the timencfiag
nature of the data can mask much of the longer term item-ieem r
lationships if not treated adequately. For instance, a tetang
both itemsi andj high in a short time period, is a good indicator
for relating them, thereby pushing higher the valuevgf. On the
other hand, if those two ratings are given five years aparilewh
the user’s taste (if not her identity) could considerablgrade, this
is less of an evidence of any relation between the items. @n to
of this, we would argue that those considerations are prettgh
user-dependent — some users are more consistent than attters
allow relating their longer term actions.

Our goal here is to distill accurate values for the item-iteeights,
despite the interfering temporal effects. First we needcirameter-
ize the decaying relations between two items rated by uséWe
adopt exponential decay formed by the functior’* 2?, where

(B > 0 controls the user specific decay rate and should be be learnt

from the data. We also experimented with other decay foroeh s
as a power law decat~”«, which resulted in slightly inferior
results. This leads to the prediction rule:

Fui(t) =p + bi(t) + bu(t)+

R Y

(4:t5)€R(u)

(16)

e Pl (rug = bug)wis + cij)

Here, in a slight abuse of notation, we assume that th& éej
contains not only the items rated hy but also the time of those
ratings. The involved parametets(t) = b; + b; gin(s), bu(t) =
by + aw -devy (t) +but, Bu, wi; @andce;;, are learnt by minimizing
the associated regularized squared error:

Z (TuL(t) - K= bL - bi,Bin(t) - bu - a’udev’u (t) - bu,t_
(u,i,t)EL

IO

(J4,tj)ER(u)
)‘(b? + b?,Bin(t) + bi + Oéi + bi,t + wi2j + C?j) 17

Minimization is performed by stochastic gradient descev. run
the process for 25 iterations, with= 0.002, and step size (learn-

eI (ruy — bug)wiy + ciy))*+

ing rate) of 0.005. An exception is the update of the expogent
where we are using a much smaller step siza®f’. Training
time complexity is the same as the original algorithm, whigh
O(3,, IR(u)[?). One can tradeoff complexity with accuracy by
sparsifying the set of item-item relations as explainedin [

Like in the factor case, properly considering temporal dyits
improves the accuracy of the neighborhood model within tbeien
ratings dataset. The RMSE decreases from 0.9002 [8] to 5.888
To our best knowledge, this is significantly better than fmesty
known results by neighborhood methods. To put this in some pe
spective, this result is even better than those reported(121]
by using hybrid approaches such as applying a neighborhped a
proach on residuals of other algorithms. A lesson is thatesdihg
temporal dynamics in the data can have a more significantdmpa
on accuracy than designing more complex learning algogthm

We would like to highlight an interesting point related te tha-
sic methodology described in Sec. 3. kebe a user whose pref-
erences are quickly drifting3, is large). Hence, old ratings by
u should not be very influential on his status at the currené tim
t. One could be tempted to decay the weighufolder ratings,
leading to “instance weighting” through a cost functiorelik

e*ﬁu“tftui‘ (7.
(u,i,ty;)EK

1
—[R(u)| "2 — buj)wij + cij))* + AG--)

>

(Jituz) ER(u)

((ruj

(2

Such a function is focused at tlearrent state of the user (at time
t), while de-emphasizing past actions. We would argue attirss
choice, and opt for equally weighting the prediction eritaalbpast
ratings as in (17), thereby modeliradl past user behavior. This
allows us to exploit the signal at each of the past ratingsga s
nal that is extracted as item-item weights. Learning thosighs
would equally benefit from all ratings by a user. In other véeorde
can deduce that two items are related if users rated thenaslyni
within a short timeframe, even if this happened long ago.

6. AN EXPLORATORY STUDY

In Fig. 1 we showed two strong temporal effects within the-Net
flix movie-rating data. First effect exhibits a sudden rieethe
average movie rating beginning around 1500 days into thesdgt
corresponding to early 2004. The second effect shows togti@e
tend to give higher ratings as movies become older (movidsage
measured by number of days since its first rating in the dgtase
The patterns that our temporal models capture may help iiaiexp
ing what created those two global temporal effects.

Let us start with the first effect. We can come up with several
hypotheses on what caused the sudden increase of ratiregscor

1. Since 2004 people are matched with movies better suited fo
them leading to higher entered ratings. This may result by
technical improvements in Netflix recommendation technol-
ogy (Cinematch) and/or GUI improvements making people
more aware of movies they like. Notice that an improvement
in Cinematch’s effectiveness can have a significant impact o
which movies members rent and subsequently rate, as Cine-
match suggestions drive 60% of Netflix's rentals [20].

2. Since 2004 people are biased to give higher ratings in gen-
eral. A possible cause is a hypothetical change of the labels
associated with the star scores. While at the present, stars
reflect subjective feelings on the movies (e.g., 5 stars=tio
it", 4 stars="really liked it”), in the past they might have
used to denote a more objective quality (e.g., 5 stars=fbupe
movie”), setting a higher bar for a 5 star rating.

wi — W — bz - bi,Bin(tui) - bu - audevu (tuz)_



3. The vast majority of the users in the Netflix dataset gagi th
first rating no earlier than 2004. It is possible that unlike

early adopters those newer users have a less refined taste and

shifted the overall rating average higher.

A straightforward analysis rejects the third hypothesisvene
when concentrating on earlier customers, e.g., those wieraged
earlier than 2003, we can find a strong shift in rating scaleesi
early 2004. As for the two other hypotheses, we use our mdaels
examining them. The first hypothesis corresponds to thedotien
part of the models (e.gg? (pu(t) + |R(u)|’% 2 jeR(w) yj) for
the timeSVD++ model), which measures how well user and movie
characteristics match together. On the other hand, thendeuy
pothesis, deals with general biases that have nothing tatticire
matching of users to movies. Thus, it corresponds to thelinase
predictor portion of them model(+ b;(t) + b.(¢)). In order to
analyze this, we modeled the data using the timeSVD++ madel (
dimensionalityf = 50). While the full model could accurately
regenerate the shifts in rating values over time, more éistérg to
us is to separate the model predictions into baseline aachiction
components, and examine how each of them evolve over time. Re
sults are shown in Fig. 2. We observe that since early 200d0(15
days into the data), the score due to interaction betweens asel
movies steadily rises, indicating that users are incrgasirating
movies that are more suitable for their own taste. This stppo
the first hypothesis of an ongoing improvement in the way Metfl
matches users to movies beginning at early 2004 and congnui
since then. Apparently, this could be expected knowing &ngel
effort that company invests in improving their recommersjetem
[4]. At the same time, the various biases, captured by thelinas
predictors, exhibit a onetime phase transition around 888 Hays
time point. While shallower than the change in the intemacpart,
the jump is clear and supports the more surprising secondthyp
esis. This hints that beyond a constant improvement in nragch
people to movies they like, something else happened in 2afy
causing an overall shiftin rating scale. Uncovering thiymeuire
extra information on the related circumstances.
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Figure 2: Tracking the change of the two components of mod-
eled movie-ratings over time. First component (“baseline)
represents rating behavior influenced by exterior considea-
tions, while the other component (“interaction”) captures the
rating behavior that is explained by the match between users
and movies.

Now we move to the second temporal effect. We would like to
suggest two hypotheses to why ratings rise as movies becll@e o

1. Older movies are getting rated by users better matchamth
This might indicate that people watch (and then rate) a new

movie even if it is less appropriate for them, but will watch
an older movie only after a more careful selection process.
Such an improved match between users and movies can be
captured by the fact that the interaction part of the model is
rising with movies’ age.

. Older movies are just inherently better than newer onks T
would be captured by the baseline part of the model.

Once again we split the modeled behavior into two parts —rites-i
action part measuring the match between users and movigband
baseline part capturing other effects. In Fig. 3 we track Huvge
two components change over time. Much like the original ratad
(in Fig. 1), the interaction part shows a steady increasealiy
throughout the whole movie age range at a close to linear. [iace
the other hand, the baseline portion is increasing only éetvdays
1000 and 1500, while being captured within a narrow range-els
where. Since we measure movie age by number of days since first
rating, as movies become older they are more exposed todhe af
mentioned early 2004 rating jump effect. In particular,rativies
older than 1500 days must be fully susceptible to this eff€ltis,
itis possible that the increase in baseline values betwags 1000
and 1500 reflects such a side effect. To wipe out this intieidesf-
fect we concentrate only on ratings to movies aged 1500 days o
older. This leaves us with about 44% of the points ("44 millio
rating instances) and makes the picture much clearer. \ttle
raw ratings as well the interaction part continue to stgddirease
beyond day 1500, the baseline portion does not increasethfte
day. We view this as an indication that the first hypothestddser

to the truth than the second one.
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Figure 3: Tracking the change of the two components of mod-
eled ratings against age of rated movie. We observe a congst
improvement in the match between users and movies as movie
age rises (captured by the “interaction” component).

7. RELATED WORKS
In the past few years, much research was devoted to the Netflix
dataset. Many works were published in the two KDD workshops
dedicated to that dataset [3, 23]. Other notable works del8,
13, 19]. Best reported results were obtained by integrdtindac-
torization and neighborhood models. Results reportedisnpdyper
by pure factorization are more accurate, in a sense showaigut-
dressing temporal dynamics is not less important than ilhgoic
sophistication created by integration of two different ralsd

Despite the high impact of temporal effects on user prefeen
the subject attracted a quite negligible attention in tikememender
literature. Notable discussions of temporal effects idelDing and
Li [6], who suggested a time weighting scheme for a simyarit
based collaborative filtering approach. At the predicti@ags, sim-



ilarities to previously rated items are decayed as timewifice in-
creases. The decay rate is both user-dependent and itesnetiay.
Sugiyama et al. [17] proposed a personalized web searchengi
where they let the user profile evolve over time. There, thsijd
guish between aspects of user behavior computed over afired t
decay window, and ephemeral aspects captured within threrdur
day. In a prior work, we suggested an incremental modeling of
global effects [1], which include some baseline time effecthis
scheme was later enhanced [11, 21].

Our work is within the topic of tracking and modeling concept
drift, which has gathered much interest in the data miningrooi-
nity. Early works in the field (e.g. [15, 25]) used techniqli&s
adjusted and decayed weights of past instances or usindiagsli
time window. Another approach popular in newer publicagi(eng.

[7, 16, 24]) is based on maintaining an ensemble of modelstdap
of capturing various states of the data. As explained in Sethe
problem of tracking user preferences, especially in a bolative
filtering scenario, requires different approaches.

8. CONCLUSIONS

Tracking the temporal dynamics of customer preferencesot-p
ucts raises unique challenges. Each user and product jadiient
goes through a distinct series of changes in their chaiatts:
Moreover, we often need to model all those changes withima si
gle model thereby interconnecting users (or, productsath ether
to identify communal patterns of behavior. A mere decay déol
instances or usage of multiple separate models lose too sigeh
nal, thus degrading prediction accuracy. The solution wepteti
is to model the temporal dynamics along the whole time period
allowing us to intelligently separate transient factoxrlasting
ones. We applied this methodology with two leading reconaeen
techniques. In a factorization model, we modeled the way use
and product characteristics change over time, in order stlldi
longer term trends from noisy patterns. In an item-item neig

borhood model, we showed how the more fundamental relations
among items can be revealed by learning how influence between

two items rated by a user decays over time. In both factoriza-
tion and neighborhood models, the inclusion of temporaladyn

ics proved very useful in improving quality of predictionapre
than various algorithmic enhancements. This led to theressits
published so far on a widely analyzed movie rating dataset.
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