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Abstract
The development of high-level programming environments is es-
sential if wireless sensor networks are to be accessible to non-
experts. In this paper, we present the Regiment system, which con-
sists of a high-level language for spatiotemporal macroprogram-
ming, along with a compiler that translates global programs into
node-level code. In Regiment, the programmer views the network
as a set of spatially-distributed data streams. The programmer can
manipulate sets of these streams that may be defined by topologi-
cal or geographic relationships between nodes. Regiment provides
a rich set of primitives for processing data on individual streams,
manipulating regions, performing aggregation over a region, and
triggering new computation within the network.

In this paper, we describe the design and implementation of the
Regiment language and compiler. We describe the deglobaliza-
tion process that compiles a network-wide representation of the
program into a node-level, event-driven program. Deglobalization
maps region operations onto associated spanning trees that estab-
lish region membership and permit efficient in-network aggrega-
tion. We evaluate Regiment in the context of a complex distributed
application involving rapid detection of spatially-distributed events,
such as wildfires or chemical plumes. Our results show that Reg-
iment makes it possible to develop complex sensor network appli-
cations at a global level.

Categories and Subject Descriptors:
D.3.2 Concurrent, distributed, and parallel languages;

Applicative (functional) languages; Data-flow languages
C.2.4 Distributed Systems

General Terms: Design, Languages
Keywords: functional macroprogramming, sensor networks

1. Introduction
Programming complex coordinated behaviors in sensor networks

is a difficult task. When programming at the sensor node level,
developers must concern themselves with low-level details of ra-
dio communication, sensing, buffer management, and concurrency,
typically under severe constraints on resource usage. One approach
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that has been proposed to address these problems is macroprogram-
ming, which involves programming the sensor network at the global
level, rather than individual sensor nodes. In a macroprogramming
system, the global network program is automatically translated into
a node-local program.

This paper presents Regiment, a macroprogramming language
and runtime environment based on the concept of functional reac-
tive programming (FRP) [5]. In Regiment, the programmer views
the network as a set of spatially-distributed, time-varying signals,
each representing either the state of an individual sensor node (e.g.,
sensor readings or the results of local computation) or an aggregate
taken across regions of sensor nodes. Regions may be defined in
terms of geographic area, network topology, or functional capabil-
ity (e.g., all of the climate sensors within a given area). Regiment
provides a rich set of primitives for processing data on individual
signals, manipulating regions, performing aggregation over signals
in a region, and triggering new computation within the network.

A Regiment macroprogram compiles down to a node-level inter-
mediate language called token machines (TMs). A token machine
program provides basic facilities for local computation, sampling,
and radio communication, as well as the ability to construct gradi-
ents within the network for region formation and aggregation. In
contrast to declarative query languages such as TinyDB [10], Reg-
iment offers a more complete, flexible programming environment
that supports complex in-network processing, triggered execution,
and coordination within local regions of the network.

In previous work, we presented an early design of the Regiment
language [14] and the TM interface [13]. In this paper, we signif-
icantly extend this previous work by describing the complete Reg-
iment macroprogramming environment, a compiler that translates
Regiment code to TM programs, and a runtime system that sup-
ports the global coordination primitives in the Regiment language.
In addition, we present a performance evaluation of Regiment in
the context of a complex distributed application involving rapid de-
tection of spatially-distributed events such as wildfires or chemical
plumes. Our results show that sophisticated macroprograms writ-
ten in Regiment can be compiled to efficient node-level code.

The rest of this paper is organized as follows. Section 2 presents
the background and motivation for this work, with an emphasis on
existing approaches to sensor network macroprogramming. Sec-
tion 3 gives a brief overview of the Regiment language and Sec-
tion 4 presents an example application. Section 5 describes the
Regiment compiler and deglobalization techniques in detail. Sec-
tion 6 presents a detailed performance evaluation of several variants
of the event-detection program in simulation, focusing on detection
latency and communication overheads. Finally, Section 7 describes
future work and concludes.



2. Background and Motivation
The goal of macroprogramming systems is to provide a high-

level programming model for sensor networks that abstracts away
the details of individual sensor nodes. Rather, an application de-
veloper writes code that describes the operation of the network as
a whole, which is then compiled down to a node-level program.
Macroprogramming can greatly simplify application design, mak-
ing it possible for non-sensor-networking experts to directly de-
velop complex distributed programs.

2.1 Spatiotemporal Macroprogramming
A range of macroprogramming models have been proposed in

the literature [16, 17, 6, 18, 10], which are each designed to sup-
port a particular style of network-wide programming. For example,
TinyDB [10] is focused on data collection with a limited form of
in-network aggregation, while EnviroSuite [9] has special support
for tracking applications.

Regiment is designed to support an important class of sensor
node applications that we call spatiotemporal macroprograms (ST-
MPs). STMPs are distinguished by exhibiting significant spatial
and temporal structure. That is, STMPs are typically concerned
with nodes’ locations and their topological relationships, with geo-
graphical localities in real space, as well as with time-varying sen-
sor data and computational state. Common idioms in STMPs in-
clude local communication amongst neighborhoods in the network;
the use of sensor data and location to estimate properties of a field;
and exploiting redundancies between sensor nodes to mitigate the
effects of failure. Good examples of STMPs include estimation
of a gradient or contour in the sensor field [7], or the use of local
neighborhood communication to estimate the location of a target
vehicle [17].

STMPs describe a wide range of sensor network applications,
but it is important to point out that this model is by no means uni-
versal. In contrast, non-spatiotemporal applications include those
without regard for specific sensor locations or which consider the
capabilities of nodes, rather than their positions, as primary. Exam-
ples of non-STMPs also include agent-based models in which code
migrates between nodes.

2.2 Macroprogramming languages
Among the first macroprogramming environments were database-

inspired declarative query languages in which the user describes
sensor data of interest using an SQL or XML query. TinyDB [10],
Cougar [19], and IrisNet [11] are examples of this approach. Query
languages offer an extremely high-level interface to the sensor net-
work, and provide exactly the right solution for applications that
need to retrieve data from the whole network, or compute an ag-
gregate over the whole network. They are, however, limited in
that they do not offer much flexibility for introducing application-
specific logic. In TinyDB, for example, a developer could imple-
ment new query operators, but doing so requires extensive modifi-
cations to the parser and query engine.

Kairos [6] provides an SPMD-style programming model in which
parallel computation over a set of sensor nodes is represented as a
loop that iterates over members of the set. EnviroSuite [9] is a lan-
guage and runtime environment with special support for tracking
applications. Abstract Task Graphs [1] offers a dataflow program-
ming model with a graphical composition language, while Seman-
tic Streams [18] use a logic program to compose services hosted on
different sensor nodes into a dataflow.

One of the key challenges in defining a macroprogramming en-
vironment is resolving the tension between ease-of-use, efficiency,
and providing adequate flexibility for expressing powerful distributed

computations. Indeed, the wide range of proposals for macropro-
gramming systems suggests that there is no universal model for
macroprogramming, and different application domains will involve
very different tradeoffs along these axes. Regiment aims to signif-
icantly extend the functionality of declarative query interfaces by
supporting a rich set of primitives for computation and communi-
cation at the node, region, and global levels.

Of course, this degree of abstraction will always come with some
overhead as compared to highly-tuned, hand-coded systems. But
we believe that these overheads can be minimized to the point that
macroprogramming is viable for the majority of applications. Fur-
ther, we will demonstrate that rapidly prototyping applications—
embodying drastically different communication strategies—can be
accomplished within the macroprogramming environment.

3. Overview of Regiment
In this section, we provide an overview of the Regiment lan-

guage and programming model. In a previous workshop paper [14],
we presented an earlier form of the Regiment language, which has
since evolved substantially. Thus, we offer the following summary.

Regiment is based on the concept of functional reactive pro-
gramming (FRP) [5]. Sensor network state is represented as time-
varying signals. Signals might represent sensor readings on an in-
dividual node, the state of a node’s local computation, or aggregate
values computed from multiple source signals. Regiment also sup-
ports the notion of regions, which are spatially distributed signals.
An example of a region is the set of sensor readings from nodes
in a given geographic area. Regiment abstracts away the details of
sensor data acquisition, storage, and communication from the pro-
grammer, instead permitting the compiler to map global operations
on signals and regions onto local structures within the network.

3.1 Regiment Language Basics
Signals: In Regiment, the principal objects that the program-

mer manipulates are signals. For example, a temperature sensor
on a given node, which returns a floating-point value, has type
Signal(float). Conceptually, a signal is a function that maps a
time t to a value v, but in practice the time t will always be “now”
and the signal must be sampled to produce a discrete stream. A
signal can carry primitive values (such as integers, floats, etc.) or
tuples, such as records containing both the light and temperature
sensor readings on a given node.

Regiment provides a number of operations for manipulating and
building new signals out of existing signals. For example, smap ap-
plies a function to each element of a signal, returning a new signal.
Thus, the code fragment:

smap(fun(t) {t * 10.0}, tempvals)

converts a sensor’s floating-point signal tempvals to a new signal
with each temperature value multiplied by ten.

Regions: Central to Regiment is the concept of a region, which
represents a collection of signals. Part of the job of the Regiment
compiler is to enable the user to treat the region as containing a
“snapshot” of the values of its constituent signals, while imple-
menting operations on the region in a distributed fashion.

It is important to note that membership in a region may vary
with time; for example, the region defined as “temperature readings
from nodes where temperature is above a threshold” will consist of
values from a varying set of nodes over time. The collection of
signals that participate in a region can also vary due to node or
communication failures or the addition of nodes in the network.
One of the advantages of programming at the region level is that
the application is insulated from the low-level details of network
topology and membership.



There are three key operations on regions: rmap, rfilter, and
rfold. Rmap is the region-level version of smap and applies a func-
tion to each value in the region. For instance,

outreg = rmap(fun(x) {x / SCALEFACTOR}, inreg)

divides each value in the region inreg by a scaling factor.
Rfilter applies a predicate function to each sample in an input

region to determine whether it should remain in the output region.
For example, one can use rfilter to filter a region of numbers
down to only those numbers above a threshold:

newreg = rfilter(fun(n) {n > THRESH}, oldreg)

Finally, rfold is used to aggregate the values in a region into
a single signal using an associative and commutative combining
function. For example,

sumsignal = rfold((+), 0, inputregion)

produces an output signal, sumsignal, that consists of the sum of
the values in the input region. Rfold also takes as arguments a
combining function and an initial value; here, the combining func-
tion is + while the initial value is 0. The system reserves the right
to fold in the initial value as many times as it likes, so it should
generally be a neutral element for the combining function.

Regiment hides the details of how the aggregation is performed
at runtime. As we will describe in Section 5, rfold is implemented
using a spanning tree rooted at the node consuming the output
signal of the rfold operation; however, it would be semantically
equivalent (though less efficient) to implement rfold by shipping
all of the input data items to a single node and then performing the
aggregation there.

3.2 Node objects
A Node is an object in Regiment that provides access to the state

of an individual sensor node. A Node consists of both static in-
formation about the node, such as its unique ID and location, as
well as dynamic information, such as sensor readings. Regiment
provides primitive operations for accessing the elements of a Node
object; for example, nodeid(n) returns the ID of node n, while
sense(”temp”, n) samples the temperature value of node n.

To avoid high communication overheads, Regiment enforces the
rule that the dynamic components of Node objects are only accessi-
ble on the physical sensor node that corresponds to the Node. This
implies that computations that operate on dynamic Node state must
run locally on that node; for example, sense(”temp”, node) can
only be executed locally on the sensor corresponding to node. The
Regiment compiler ensures this by forbidding values of type Node
from occurring in places that will require them to be sent across
the network, such as the input to a gossip primitive, or in the ag-
gregate accumulator parameter of an rfold. The user must first
project the sensor readings of interest from the Node before at-
tempting network communication.

In future versions of Regiment, we will either remove this restric-
tion (for example, by implementing just-in-time routing of dynamic
node state), or introduce a refinement in the type system to make
clear to the user the distinction between portable network code and
pinned code.

3.3 Region formation primitives
Thus far we have described primitives for transforming existing

regions, such as rmap and rfilter. Regiment also provides oper-
ators for forming new regions based on spatial and topological re-
lationships between nodes. For example, the code fragment below
forms a Region(Node) within two radio hops of the given node.

nbrhood = khood(2, node)

There are two major categories of region formation primitives
in Regiment. The first category encompasses operators that grow
a region starting from a single anchor node. This includes khood,

as well as circle, which creates a region of nodes within a given
physical distance from a node, and knearest, which creates a re-
gion containing the k geographically nearest nodes to a given node.
All of these primitives are implemented with a bounded flood that
sets up a spanning tree within the network. These region forma-
tion operators are similar to those in Hoods [17] and abstract re-
gions [16].

The second category consists of gossip based primitives. These
primitives do not depend on spanning trees. Instead, they pro-
vide the Regiment programmer with access to simple one-hop radio
broadcast. The most basic, gossip, takes a region of scalar values
and shares this data with all nodes in single-hop radio range of any
node in the input region. This is accomplished through a simple ra-
dio broadcast of all samples in the region. The new region contains
signals of all overheard broadcasts on all nodes within the one-hop
closure of the input region.
Table gossip is a more user-friendly gossip primitive that ag-

gregates the data overheard from all neighbors into a single table.1

All nodes overhearing at least one broadcast cache the data received
from their neighbors in a table indexed by node id. Unlike basic
gossip, table gossip imposes an epoch discipline; it periodi-
cally snapshots, flushes, and returns the tables’ state. These table
snapshots, taken together, make up the output region returned by
table gossip.

To summarize the language thus far, we have two key types,
Signal and Region, and a small set of key operations on values of
these types.

smap :: (α→ β), Signal(α)→ Signal(β)
rmap :: (α→ β), Region(α)→ Region(β)
rfilter :: (α→ bool), Region(α)→ Region(α)
rfold :: (α, β → β), β, Region(α)→ Signal(β)
khood :: Int, Node→ Region(())
gossip :: Region(α)→ Region(α)
table gossip :: Region(α)→ Region(List(Int, α))

3.4 Regiment program structure
A Regiment program consists of a set of function and variable

bindings followed by a single wiring statement of the form “BASE
← expression”. The signal or region returned to BASE determines
what will be sent from the network to the sensor network’s base sta-
tion. Conversely, the Regiment program acquires its input through
the special region, world, which represents the entire network and
has type Region(Node). Node is an abstract type that provides ac-
cess to an individual node’s state (as described below).

A complete program: The following complete Regiment pro-
gram computes the average temperature across the sensor network.2

Note that the type-annotation for dosum is purely for documenta-
tion, the compiler is capable of inferring all types.

dosum :: float, (float, int) → (float, int)
fun dosum(temp, (sumtemp, count)) {

(sumtemp+temp, count+1)
}

tempreg = rmap(fun(nd){sense("temp",nd)}, world);
sumsig = rfold(dosum, (0,0), tempreg);
avgsig = smap( fun((sum,cnt)) {sum / cnt},

sumsig);
BASE ← avgsig

1table gossip can be implemented from a simpler gossip prim-
itive if the language includes an rintegrate operator (rmap that
locally maintains state between invocations). Rintegrate is omit-
ted from this paper for simplicity.
2No paper on macroprogramming would be complete without this
classic program!



The program starts by applying rmap to world to obtain a region
of temperature readings for all sensor nodes. It then uses rfold to
aggregate this region into a signal called sumsig. Each value of
sumsig is a tuple consisting of two components: a sum of the tem-
perature readings across the network, and a count of the number of
nodes contributing to the sum. Aggregation is accomplished with
the help of the combining function dosum, which takes as input a
temperature value (one element from the tempreg region) and an
accumulator (the tuple (sumtemp, count)). Dosum returns an up-
dated accumulator value that includes the new temperature with the
count incremented by one. Finally, smap is applied to the resulting
signal to divide the temperature sums by the counts, resulting in a
signal of averaged temperatures (float values), avgsig. Avgsig
is the signal returned to BASE.

While the above average temperature program is somewhat more
involved than, say, a two-line SQL query, it is clear that Regiment
provides a great deal of flexibility while abstracting away most de-
tails of sensing, communication, and computation. For instance,
it is straightforward to implement a wide range of in-network ag-
gregations by providing alternative combining functions to rfold.
Likewise, the rich set of primitive operations on signals and regions
permits complex distributed computations to be described in a few
lines of code. Further examples are presented in Section 4 below.

3.5 Other Regiment features
Regiment provides the basic set of language features seen in

other functional programming languages. In addition to the prim-
itive operators over regions and signals, the programmer may use
conditionals, pass functions as values, and so on. At compile time,
Regiment performs aggressive reductions to simplify the global
network program into a form that can be readily optimized and
mapped into node-local code. The technique Regiment employs
is called multi-stage programming, meta-programming, or partial
evaluation. This technique enables the use of programming ab-
stractions in the meta-language that are not supported by the target
platform. However, it places restrictions on the kinds of Regiment
programs one can write. For example, only bounded recursions are
allowed, because they must terminate with inlining. Higher order
functions cannot be stored in regions, because they have no run-
time representation. The program reductions applied by Regiment
are described in Section 5.

3.6 Limitations
Certain applications do no fit naturally into the Regiment frame-

work. First, because Regiment compiles queries into stream-pro-
cessing dataflow graphs, applications with highly dynamic beha-
vior—multiple modes of operation, changing data paths—are more
difficult to encode in Regiment. Second, the Regiment runtime is
based on a specific spanning tree library. Applications that require
other communication services (such as any-to-any routing), cannot
make use of Regiment, nor can applications that require explicit
control of other low level hardware features (for example, a cus-
tom duty cycling policy). Finally, Regiment is designed to compile
and install long-running queries; due to its reliance on custom user
code rather than predefined operators, and its focus on compilation
rather than interpretation of queries, it is not well-engineered to
support rapid, repeated, short-lived queries. Such queries are bet-
ter supported through a database-like macroprogramming system
(such as TinyDB [10]).

4. Application examples
As a motivating example of Regiment in a realistic context, we

focus on a specific application domain: detection of spatially-dist-

ributed events, such as chemical plumes [3] or wildfires [4]. These
applications involve a network of sensors distributed over a poten-
tially large area (many thousands of acres), each capable of mon-
itoring local conditions such as temperature or airborne chemical
concentrations. The goal is to rapidly detect the onset of a plume
or wildfire by collecting readings from the sensor network, and to
avoid false positive reports which may be caused by noisy readings
from individual sensors. In addition, to save power, it is desirable to
avoid sending data over long multi-hop paths unless absolutely es-
sential to reporting a plume. These applications represents just one
of a class of STMP programs for which Regiment is well-suited.

4.1 Example programs for plume monitoring
In this section we develop a series of programs that all perform

chemical plume monitoring, but which employ substantially differ-
ent communication and filtering mechanisms. A major thrust of the
Regiment system is to enable the rapid prototyping of a range of so-
lutions for a given sensor network problem. The use of a high-level
language makes it possible to quickly develop complex distributed
programs in a few lines of code, which can be subsequently tailored
to different environments. Indeed, we recognize that in many appli-
cations, no single strategy will work well under all network sizes,
topologies, and environmental conditions.

NoFilt: The most basic plume-detection program, called Nofilt,
periodically samples the data from each node and delivers it to the
base station:

fun read(nd) { (sense("conc",nd), nodeid(nd)) }
BASE ← rmap(read, world)

This program returns a region of tuples with each node’s chemi-
cal concentration sensor value and node ID. Note that the sampling
period is not given explicitly; it can be specified either within the
source or set as a configuration parameter. Further, notice that Reg-
iment permits that a region value be returned as the program’s out-
put; all samples returned to the base station without aggregation.
Because NoFilt returns all the data samples at every point in time,
it clearly involves high communication overhead.

LocalFilt: A somewhat more sophisticated program filters out
sensor values below a threshold before reporting to the base station:

fun abovethresh((c,id)) { c > CHEM THRESHOLD }
fun read(nd) { (sense("conc", nd), nodeid(nd)) }
BASE ← rfilter(abovethresh, rmap(read, world))

Here, abovethresh takes a tuple of (conc, nodeid) and returns
true if the corresponding concentration reading is above the thresh-
old. This program suffers from the problem that reports from indi-
vidual nodes may not reliably indicate that an event has occurred.
For example, noise from individual sensor readings could cause
spurious event detections. Apart from false positive detections, this
approach leads to wasted transmissions to the base station.

KhoodFilt: The third variant of the program uses collaborative
event detection within the network to suppress spurious detections.
In this case, the sum of the sensor readings in a neighborhood of
nodes must exceed a threshold before the phenomena is reported to
the base station.

fun abovethresh(t) {t > CHEM THRESHOLD}
fun read(n) {sense("conc", n)}
fun sum(r) {rfold((+), 0, r)}
detects = rfilter(abovethresh, rmap(read, world));
hoods = rmap( fun(t,nd){khood(1,nd)}, detects);
sums = rmap(sum, hoods);
BASE ← rfilter( fun(t){t > CLUSTER THRESH}, sums)

In the above code, detected is a region of nodes that surpass their
local thresholds. hoods is a nested region consisting of the sets



of nodes in the one-hop radio neighborhood of every node in the
detected region. Nested regions are an extremely powerful struc-
ture in Regiment that facilitate complex, coordinated operation in
the sensor network.

The region sums is not a nested region because the helper func-
tion sum has reduced each neighborhood back down to a single
summed value. The code shown here only returns the set of summed
sensor values; the complete program would also need to return the
node IDs of the cluster-heads reporting each sum. This extra book-
keeping information must be threaded through the program using
tuples, and is not shown here to simplify the discussion. 3

GossipFilt: The above program provides simple neighborhood-
based filtering, but has a substantial downside. By forming local
neighborhoods and folding their values, KhoodFilt operates on a
request-response model. Nodes request to form local neighbor-
hoods, and their neighbors respond with local data through the fold
operation. Thus a node may respond individually to several re-
quests for its local data rather than leveraging the broadcast nature
of the communication medium. In the case of one-hop radio neigh-
borhoods, we can optimize this program further by eliminating the
use of khood region construction and using as simple gossip mech-
anism instead. This approach is similar to the data sharing primi-
tives explored in Hoods [17] and abstract regions [16].

# Reduces a table to a number:
fun sum(tbl) {

fold( fun((id,t), acc) {t + acc}, 0, r)
}
detects = rfilter(abovethresh, rmap(read, world));
tables = table gossip(detects);
sums = rmap(sum, tables);
BASE ← rfilter(fun(t) {t>CLUSTER THRESH}, sums)

The GossipFilt program uses the table gossip operator intro-
duced in Section 3.3. GossipFilt collects the temperature data pub-
lished by neighbors into tables residing on each node. Each table is
then subjected to a fold operation to aggregate data for that neigh-
borhood. Finally, only those aggregated values that are above the
threshold are reported to the base station.

As these examples show, Regiment makes it easy to construct
programs with increasing degrees of sophistication in a few lines of
code. The GossipFilt program shown above involves local sensing,
region formation, in-network aggregation, and distributed filtering
in just eight lines of code (including the code for the abovethresh
and read functions, borrowed from LocalFilt).

5. The Regiment Compiler
The basic job of the Regiment compiler is to map the global

structure of the program into node-level code that implements that
structure. The Regiment compiler performs many stages of code
normalization, analysis, and optimization. However, the core goal
of deglobalization—converting macroprograms to local, event-driven
programs —is accomplished in three key steps:

• Normalize: reduce the Regiment code into a small sub-language
called RQuery.

• Switch-POV: region-streams become local streams as we
switch from network point-of-view (POV) to node POV.

• Event-Convert: translate the node-level, stream-processing
program into an event-driven program.

3In the evaluated version of KhoodFilt and GossipFilt we sum the
max three temperature readings from the neighborhood. This is a
more robust aggregate than a simple sum, given that the degree of
the network may vary.

The output of the compiler is low-level, event-driven code writ-
ten in an intermediate language that we described in earlier work
[13]. We call these programs token machines; they represent a com-
putational model suitable for implementation in sensor-embedded
operating systems such as TinyOS. That is, programs are repre-
sented as sets of asynchronous event-handlers—no thread support
is assumed. These event-handlers execute in response to external
events (e.g., arrival of radio messages), or by one event-handler
posting an event for another.

Ultimately, Regiment depends only on a simple spanning-tree
based communication layer. We have implemented one such layer
on top of our event-driven compilation-target. Each region is affil-
iated with a gradient (spanning tree) that establishes membership
in the region and permits communication with nodes in the region.
Region operations such as rmap, rfilter, and rfold are imple-
mented on top of the region’s spanning tree. Region spanning trees
are constructed and maintained by the Regiment runtime system,
a runtime which consists entirely of a set of simple event handlers
that are linked against the event-handlers compiled from the user
query. For example, the gradient library provides handlers for emit-
ting new gradients as well as sending and receiving messages along
existing gradients.

5.1 Translation to RQuery and Normalization
The first step of compilation takes Regiment programs in their

general form and reduces them, through a process of partial eval-
uation, to a sub-language which we call RQuery. The key parts of
the RQuery subset are defined below: 4

Q ::= rmap(fun(x) B, Q) | rfilter(fun(x) B, Q)
| table gossip(Q) | world

B ::= e | S
e ::= x | c | (e1, e2) | if e1 then e2 else e3 | · · ·
S ::= rfold(fun(x, s) B, e, R)
R ::= rmap(fun(x) B, R) | rfilter(fun(x) B, R)

| table gossip(R) | khood(c, x)

A query (Q) produces a region of scalar values from the distin-
guished world region. The query consists of a chain of region-level
dataflow operators, parameterized by functions and expressions.
The bodies of these functions (B), can be either simple expres-
sions or nested queries against sub-regions constructed by khood

(S). Simple queries, that involve no nested-regions (and therefore
no rfolds) are relatively easy to compile to node-level dataflow
programs. Nested queries are handled via the Switch-POV step de-
scribed below.

In order to map Regiment programs to the RQuery subset, we
apply a number of reduction rules to the initial program until it is
in RQuery-normal form. The reduction rules include the usual no-
tions of β-reduction (function in-lining) and δ-reduction (constant
folding) for functional languages. In addition, the reduction rules
include the following transformations:

rmap(f, rmap(g, e)) → rmap(f ◦ g, e)
rfilter(f, rfilter(g, e)) → rfilter(f && g, e)

rfold(f, u, rmap(g, e)) → rfold(fun(v, a)f(g(v), a), u, e)
rfold(f, u, rfilter(g, e)) → rfold((fun(v, a)

if g(v) thenf(v, a) else a),
u, e)

The first two rules allow us to fuse adjacent maps and adjacent fil-
ters. The third and fourth rules allow us to collapse an inner rmap

4We omit certain parts of the full-blown Regiment language here
for clarity, including: rintegrate, smap, sfilter, and non-
region typed queries.



timer :: Int → Signal(())
emit :: Int, Signal(RID,()) → Signal(RID,())
aggr :: (α→β→β), β, Signal(RID,α)

→ Signal (RID,β)

Figure 1: The types of node-level stream operators.

or rfilter into an outer rfold. In essence, we delay applying
the map or filter function until the fold operation is invoked.

By applying all of the reduction rules exhaustively, we are able
to generate programs in the RQuery normal form. For example,
consider the collaborative sensing (KhoodFilt) program from Sec-
tion 4.1 which has the following high-level structure:

fun sum(r) {rfold(f1,u1,r)}
detects = rfilter(f2, rmap(f3, world));
hoods = rmap( fun(t,nd) {khood(1,nd)}, detects);
sums = rmap(avg, hoods);
BASE ← rfilter(f2, sums)

After function in-lining and constant folding, the program body has
the form:

rfilter(f2, rmap(fun(r){rfold(f1,u1,r)},
rmap(fun(t,nd){khood(1,nd)},

rfilter(f2, rmap(f3, world)))))

After applying the first reduction rule to fuse rmaps, the compiler
yields the following, which is in RQuery normal form.

rfilter(f2,
rmap(fun(t,nd){rfold(f1,u1,khood(1,nd))},

rfilter(f2, rmap(f3, world))))

In a technical note [12], we define the full syntax and typing
rules for a larger subset of Regiment, give a complete set of reduc-
tion rules, and prove that an exhaustive application of these rules
results in well-typed RQuery normal forms. We are currently work-
ing to prove that for well-typed Regiment programs, the process of
normalization always terminates and produces unique (up to in-
put/output equivalence) normal forms.

An advantage of the normalization process is that, through ag-
gressive inlining and fusion, the overheads of many small functions
can be avoided. This allows programmers to write many small, re-
usable fragments of code that can be conveniently stitched together
to rapidly produce an application. A potential disadvantage is that
the aggressive normalization can lead to excessive code duplica-
tion, though for the small programs that we have used thus far, this
has not proven to be a problem.

5.2 Switch POV
Now that the program is in the restricted RQuery normal form, it

is possible to switch to the node-local POV (point of view). This re-
quires flattening the nested, region-processing RQuery into a stream-
processing program that can execute at each node. In doing so, it
replaces Region values with local streams augmented with region
identifiers. Likewise, region-level communication operators, such
as rfold, map onto node-level communication services.

5.2.1 Unraveling Nested Regions
Because regions can be nested, it is possible for the user function

provided to as argument to rfold to take a Node and internally
construct and consume a nested Region. The node-local stream
language that we compile into does not allow nesting; each user
function must take and produce only plain data. Consider this ex-
ample program:

rfold0(fun(n,a) { ...
rfold1(fun(n,a) { ...

rfold2(fun(n,a) { ...
khood2(c2,n)),

khood1(c1,n)),
world)

To unravel the nested regions, the compiler traces a linear chain of
control through the RQuery. This pipeline represents transfers of
control from one region to another: from a parent region to its child,
and back. Control originates with world and proceeds into succes-
sively nested regions (khood1, khood2). From the innermost nested
region, control moves back outward, aggregating data through suc-
cessive rfolds. Thus the flow of control for the operators in the
example is as follows.

world→ khood1 → khood2 → rfold2 → rfold1 → rfold0

Constructing this control graph is possible because the normaliza-
tion process ensures that regions produced by khood are immedi-
ately consumed. Another way of saying this is that there remain
no variables with type Region. Thus, while a region is a da-
tum within the user’s source program, the sequence of operations
through which this datum travels is completely known to the com-
piler at this phase. Indeed, this is a critical property of Regiment.
Regions, as distributed objects, are expensive to control at runtime;
they must instead know what operations to apply to themselves.

5.2.2 Substituting Local Types/Operators
Now the compiler must generate a stream-processing dataflow

graph that matches the structure of the control graph described
above. Because of the invariants introduced by the normalization
transformation, this process is relatively simple. In fact, the code
for user functions that parameterize the RQuery does not change
substantially. Only the following substitutions need to be applied
to the control graph to yield the correct node dataflow graph.

Operators :
world → timer

rmap → smap

rfilter → sfilter

khood → emit

rfold → aggr

Types :
Region(α) → Signal((RID, α))

Node → ()

RID is a new type representing a region identifier. The emit

and aggr operators are hooks into the gradient service running on
all nodes. These communication operations are part of the node-
level dataflow graph, but their incident edges represent data routed
through the network, rather than between operators within a node.
In particular, emit initiates a bounded flood (one-to-many), and
aggr sends data up the resulting tree (many-to-one), aggregating it
in the process. Types for these operators are given in Figure 1.

As a final illustration let us return to our example program from
Section 5.1.

rfilter(f2,
rmap(fun(t,nd){rfold(f1,u1,khood(1,nd))},

rfilter(f2, rmap(f3, world))))

once traversed, becomes:
world→ rmap(f3)→ rfilter(f2)→ khood→

→ rfold(f1, u1)→ rfilter(f2)→

Finally, the substitutions are applied to yield the node-level dataflow,
pictured in Figure 2. Let’s examine how this node-level dataflow
graph works. Timer, which was given periodicity (3000ms) by the
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Figure 2: Node-level dataflow graph produced from the KhoodFilt ex-
ample program found in Sections 4.1, 5.1, and 5.2.2

compiler based on configuration information, generates a stream of
unit values (zero-length tuples). These unit values are received by
smap, which applies the function f3 locally—f3 receives no data
from the timer, but it is free to read local node values, including
sensors. Next, sfilter simply filters events from the stream, and
then we arrive at the interesting part of the pipeline.

When a data element passes the filter f2, it enters emit and trig-
gers the emission of a local gradient. In the current implementa-
tion, this means that a flood message is sent with a time-to-live and
nodes use an ETX[2] metric to choose their parents. These emitted
gradients may overlap; thus the messages sent by emit carry an
RID that uniquely identifies that region. Emit takes an RID on its
input stream, and addst to it the node-ID of the current node (the
root of the gradient) to make a unique RID.

The output edge from emit—which fires on every node that
receives a message from the bounded flood—feeds directly into
aggr(f1, u1). The aggregation operator is responsible for main-
taining state, applying the function f1 to the input data paired with
the existing state, and periodically sending aggregated state to the
parent of the current node. Aggr uses a table (indexed by RID) to
maintain separate state for each overlapping nested region in which
the node participates. It further uses the RID retrieved from its in-
put stream to determine which routing tree to use. When the data
gets back to the root of the gradient, the RID is shortened by one,
paired with the final aggregated state, and sent along the output
edge of the aggr operator.

5.3 Event-Convert Streams
The output of Switch-POV is a node-level dataflow graph. This

would be a reasonable point at which to plug into another back-end
or intermediate language for a particular sensor network platform,
for instance, the dataflow language Flask [15]. However, Regiment
goes one step further and compiles the DFG to an event-driven pro-
gram. This step is an application of well-understood compiler tech-
nology. Our DFGs are instances of a deterministic process network.

Each operator in the directed graph is compiled to a simple func-
tion: an event-handler that fires when a data-element is available
on any of its input edges. One complication is that functions such
as sense, which require a split-phase implementation, must be
first separated out into their own “boxes” in the dataflow graph.
However, the major source complexity in this step is not in the
transformation itself, but in the libraries that are linked against
the event-driven program. For instance, the gradient library, upon
which Regiment relies for all its communication needs, is written
in this event-handler style. Applications of communication primi-

tives, timer, emit, aggr, become event postings that are consumed
by these linked libraries.

6. Evaluation
In this section we compare the performance of four Regiment

macroprograms for detecting spatially-distributed events, such as a
chemical plume or a wildfire. Though they accomplish the same
end, these programs differ greatly in terms of their communication
patterns and their energy usage at different phases of the event-
detection life-cycle. Our goal is to demonstrate that Regiment makes
it easy to write complex sensor network applications at the global
level while achieving good communication performance.

6.1 Experimental setup
We evaluate Regiment using a detailed simulation of sensor nodes

that models local node sensing, computation, and message trans-
mission. The simulator directly supports the Token Machine pro-
gramming model described earlier. An implementation of the To-
ken Machine environment in NesC for TinyOS is currently under
development, and we expect to run these programs on real sensor
nodes soon.

The simulated network consists of 250 nodes distributed in an
area covering 5000 by 5000 m. Nodes are placed in a “perturbed
grid” configuration in which each node is placed roughly on the
corners of grid lines spaced 316 m apart. However, the location
of each node is perturbed from the grid by up to 158 m in each
of the x and y directions. The radio link quality model varies the
packet delivery ratio as a function of the distance between nodes.
Links shorter than 300 m have a 100% delivery ratio, while links
longer than 500 m have a 0% delivery ratio. These settings create a
topology with average degree 7.2, standard deviation 1.5. Yet many
of these links are low quality. The average transmission success
rate is 65%, with standard deviation 31%.

Node failures are not modeled. It should be noted, however, that
the Regiment runtime maintains no hard state. Any corruption of
the network lasts only until the next global spanning tree refresh.

Each simulation is run for 3600 simulated seconds. Chemical
plumes originate at fixed locations within the coverage area. We
assume an isotropic (wind-free) diffusion model in which plumes
diffuse radially from the source at a rate of 1 meter per second, and
eventually dissipate after 500 sec. The plume generates a uniform
chemical concentration of 200 ppm over its coverage area. Chemi-
cal concentration falls off as one over the distance from the edge of
the plume. Nodes detect the proximity of a plume using onboard
chemical sensors with normally-distributed noise (σ =6 ppm) and
maximum recorded concentration of 200 ppm.

The base station receives chemical concentration reports from
nodes in the network and determines that a plume has started when
at least three nodes have reported concentrations over 100 ppm.
Based on the location of the plume, the placement of nodes, and the
time it takes each program to process and communicate sensor data,
the probability that a plume is correctly detected, and the detection
latency, will vary accordingly.

6.2 Code complexity
The four programs evaluated in our experiment are shown in Sec-

tion 4. We refer to LocalFilt as the program that reports periodic
data with local filtering; KhoodFilt as the program that performs
collaborative in-network filtering using a khood region to collect
data from a nodes’ neighbors, and GossipFilt as the program that
uses local (one-hop neighborhood) gossip to actively share data
with each nodes’ neighbors. In addition, we show results for a
slightly improved version of GossipFilt, called GossipFiltSuppress,



Figure 3: TM simulator GUI. This figure shows the simulation running
a chemical plume simulation in a 250 node network. The plume diffuses
at a constant rate from a starting point. Nodes in the vicinity of the plume
send back messages to the base station using the global spanning tree
(red).

Program Regiment TM
LocalFilt 3 290
KhoodFilt 15 495
GossipFilt 40 394

GossipFiltSuppress 78 633

Figure 4: Lines of code for each program, showing both the Regiment
code and the Token Machine code produced by the compiler.

which causes a node to suppress sending repeated plume detection
messages (gossips) for a period of 20 sec following an initial de-
tection. The idea here is to reduce communication overhead, since
a node that detects a plume once should detect it in subsequent pe-
riods as well.

Figure 4 shows the lines of code for the Regiment programs as
well as the resulting Token Machine code. As described earlier, the
TM representation is a simple, node-local state machine consist-
ing of a set of event handlers with basic support for sensing, radio
communication, and so forth. A TM program can be likened to a
Motlle program as described in [8]. As the table shows, fairly com-
plex Regiment programs can be implemented in a few lines of code,
and increased complexity translates into larger node-level code as
expected (with the exception that basic GossipFilt is a relatively
simple node-level program).

6.3 Communication overhead
Our first experiments show the communication overhead for each

of the programs described earlier. Figures 5, 6, and 7 show the be-
havior of the LocalFilt, KhoodFilt, and GossipFilt programs, in-
cluding the number of messages transmitted per second for the
entire network, as well as the corresponding chemical reports re-
ceived by the base station. The plumes starts at time t = 1000.
(The tall spike in communication at t = 1200 corresponds to a
global spanning tree refresh initiated by the base station.) We will
judge each program according to its communication behavior dur-
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Figure 5: Message load and chemical concentration reports for the
LocalFilt data-collection program. A plume starts at time t = 1000.
Nodes detecting a chemical concentration over 12 ppm send a report to
the base station. The spike in traffic at t = 1200 is a spanning tree
refresh. Traffic load is fairly high with many chemical reports being sent
to the base station.
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Figure 6: Detection with collaborative filtering. Nodes locally
detecting a plume aggregate data from their one-hop neighbor-
hoods using a khood region, before transmitting the data to the
base. Message load is somewhat higher than simple local filter-
ing, due to local spanning-tree formation and aggregation.
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Figure 7: Detection using local gossip. Nodes locally detecting
a plume aggregate data by gossiping within a one-hop neigh-
borhood, which exhibits lower communication overhead than
khood.
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Figure 8: Plume detection latency as a function of local concentration
threshold.

ing the dormant phase before a chemical plume, and during active
detection. In the LocalFilt program, every node with a chemical
concentration of over 12 ppm is reporting data to the base station at
a rate of once every 3000ms, resulting in high dormant-phase com-
munication overhead. Each individual spurious detection must be
transmitted to the base station along a multi-hop route.

The second program, KhoodFilt, causes nodes detecting a plume
to collect and aggregate sensor data from nodes in a one-hop radio
neighborhood. Only if the sum over the maximum three readings
in the neighborhood exceeds the threshold is a report sent to the
base station. The goal here is to reduce the number of false posi-
tives, at the expense of possibly increased plume detection latency.
As Figure 6 shows, far fewer chemical reports are transmitted to
the base station. However, overall communication load is higher
than in the case of LocalFilt. This is because any node that exceeds
the (fairly sensitive) local concentration threshold forms a khood
region and performs aggregation, increasing the total number of
message transmissions in the network. Keep in mind, however,
that we have run our simulation for a relatively short period of time
(five minutes), and simulated three chemical plumes in that short
duration. Realistically, the network would be dormant the vast ma-
jority of the time, which makes the background traffic incurred by
LocalFilt’s spurious reports a serious disadvantage.

Figure 7 shows the behavior of GossipFilt, which uses a lightweight
local gossip to share information on plume detections. Compared
with KhoodFilt, we can see that GossipFilt has somewhat lower
communication overhead, and the chemical sensor readings returned
to the base station follow a continuous profile as the plume nears
each of the sensors.

6.4 Detection accuracy vs. overhead
In our next set of experiments, we explore the effect of the lo-

cal filtering threshold on plume detection latency, communication
overhead, and false positive rate. We vary the local concentration
threshold from 4 ppm to 50 ppm. We do not vary the network
topology.5 Results are averaged over three runs for each case. We
calculate the detection latency as the time between the origination
of the plume and the time that the base station detects the plume’s
presence. We also report the number of messages transmitted per
node per second as a measure of overall communication load.

5However, varying network density (by changing radio ranges) be-
tween average degree 5.3 and average degree 19.9 does not signif-
icantly affect detection latency, though it does reduce communica-
tion overhead by shrinking the diameter of the network.
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Figure 9: Communication overhead as a function of local concentra-
tion threshold.

Figure 8 shows the plume detection latency as a function of the
concentration threshold for all four programs. Not surprisingly,
an increased detection threshold also increases plume detection la-
tency. While the plume detection times may seem to be large (gen-
erally between 180 and 220 sec), the fact that the plumes are dif-
fusing very slowly relative to the inter-node spacing implies that
it will take some time before enough sensor readings can trigger a
detection. Figure 8 also shows the lower bound of the detection la-
tency, which is taken as the minimum detection time possible with
an ideal network with no sensor error. Several of the measured
detection latencies appear to be below the lower bound due to pre-
mature detections caused by noise in the sensor values; these are
counted as false positives as discussed below. We can see that all
four programs achieve very close to the lower bound, with Local-
Filt having the lowest overall latency.

Figure 9 shows the communication load for each program as
the local sensor threshold is varied. The overall message load is
fairly low; the highest value is 0.95 msgs/node/sec for KhoodFilt
with a detection threshold of 5 ppm. This program has the high-
est load due to the formation of local spanning trees for khood-
based aggregation. The inset figure shows the communication load
for larger thresholds, in which GossipFiltSuppress has the lowest
communication load. At lower thresholds, GossipFiltSuppress ex-
hibits higher load than GossipFilt because of its alternative strategy
for integrating the stream of gossips it receives. Because Gossip-
Filt’s input does not come regularly it maintains detections from
its neighbors for a period of 20 seconds. This can exacerbate the
impact of frequent false detections.

Finally, we look at the false positive rate of each application,
which we define as the number of event detections at the base sta-
tion that occur during periods when no plume is active. We also
consider as false positives any “premature” detections induced by
the sensor noise. This can occur when a plume is active but a noisy
sensor causes the base station to detect an event before the lower-
bound detection time that would occur in an ideal, noise-free net-
work. In some sense these premature detections are “lucky,” but we
do not count them as true positives.

The results are shown in Figure 10. The overall false positive
rate is very low, less than 5% in most cases, apart from KhoodFilt
when the local sensor threshold is close to the sensor noise floor.

As these results show, different designs for in-network aggrega-
tion exhibit differing tradeoffs in terms of communication overhead
and detection latency. Regiment makes it possible to rapidly ex-
plore the design space by developing differing versions of a fairly
sophisticated sensor network application in just a few lines of code.
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Figure 10: False positive rate as a function of local concentration
threshold.

7. Conclusions and Future Work
In this paper, we have presented the Regiment macroprogram-

ming system, which consists of a high-level language for global
programming of sensor networks, as well as a compiler for Regi-
ment macroprograms. Regiment allows the programmer to develop
complex applications with in-network computation without explic-
itly dealing with low-level features of node programming. This
approach does not, however, entirely insulate the programmer from
the performance implications of their algorithms. We believe that
no macroprogramming language can completely abstract away the
performance details of distributed program design while remaining
expressive. For this reason, the macroprogrammer must implement
several versions of their program, and refine them according to the
particular parameters of their network environment, before finally
choosing a program for deployment.

We have demonstrated the use of Regiment through a series of
chemical plume detection programs, each implemented in a few
lines of code. Regiment supports this usage model through a high-
level language with expressive, composable constructs based on the
concepts of Signals and Regions. These programs are automat-
ically compiled down to a simple node-level runtime based on the
Token Machine model. Our results demonstrate the flexibility of
macroprogramming in Regiment while retaining good communi-
cation performance.

Several ongoing threads of work are focused on improving the
Regiment system. We are expanding the set of features while con-
tinuing to re-evaluate our restrictions on the source language so as
to achieve a good balance between flexibility for the programmer,
and restrictions for efficient compilation. Further, we currently
have a prototype TinyOS compiler for our TM intermediate repre-
sentation. It successfully compiles a subset of Regiment programs,
which we hope to expand to the full set in the near future.
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