Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

AN OBJECT-ORIENTED LOGIC PROGRAMMING
ENVIRONMENT FOR MODELING

September 1989

Thomas Wingfield Page, Jr.
CSD-890055

UNIVERSITY OF CALIFORNIA

Los Angeles

An Object-Oriented Logic Programming Environment for Modeling

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Thomas Wingfield Page, Jr.

1989

© Copyright by
Thomas Wingfield Page, Jr.

1989

1 Introduction

TABLE OF CONTENTS

...............................

1.1 Introduction

..............................

1.1.1 Goal . . . e e e e
1.1.2 The Promiseof Prolog« v v v v oo
1.1.3 Programmingin the Large. oo oo v
1.1.4 Object-Oriented Programming
1.1.5 Combining Logic and Object-Oriented Programming . . .
1.2 Significance of the Worko
1.2.1 Significance of the Modeling Application
1.2.2 Further Contributions <.« v v v v
1.3 Organization of the Dissertationo v ovvee e
Background and Related Work >
21 Introduction . . . v v v v v v bbb e
2.2 Prolog and Logic Programming« .« .o
291 The Warren Abstract Machine
2.3 Concepts from Object-Oriented Programming
231 Encapsulation.o
23.2 LateBinding oo
9.3.3 Classes and Inheritance oo
2.3.4 Composite Objects o oo
9.4 Related Work on Objectsin Prolog
2.4.1 Concurrent Logic Programming« ... o
2492 Zaniolo e e e
9243 McCabe v o o v i e e
244 Spool
245 BowenandKowalski
246 Biggertalk
2.5 SUMIMATY . . o« « o o v o v o m s o e

Design and Implementation of Object-Oriented Prolog . . .
3.1 Introduction . . . v v v v v e e e e e e e e

3.2 Philosophy of Objects in Logic v v v coe e e e
321 Message=Goalo
322 TInheritance v o« v v v oo e

3.2.3 Programmingin the Large.o

3.3 Design of Underlying Modules Facility 47

331 NameConflicts 48
3.3.2 Namingin Modules 50
3.33 Exportsand Imports 30
3.3.4 Implementation Via Name Translation 51
3.3.5 Further NameBinding 52
3.4 WAM Implementation of Modules 53
3.41 New WAM Architecture 53
342 LoadingModules 54
3.4.3 Procedure Calls and Backtracking 56
3.4.4 User Interface to Modules Implementation 57
3.5 Design of Object-Oriented Prolog 57
3.5.1 Object Representation and Identity 59
3.5.2 Class Representation 60
3.5.3 Imstantiation 61
3.5.4 CreatingClasses 62
3.5.0 Sending Messages. 64
3.5.6 Multiple Inheritance 68
3.5.7 Multiple Solutions L 69
358 Self Messageso 69
3.5.9 Inheriting Instance Variables 70
3.5.10 Super Messages 71
3.5.11 Persistent Objects 72
3.5.12 Mutable State 0oL, 73
3.5.13 Collection Classes 74
3.5.14 Compiling Away Search, 735
3.5.15 Mixing Modules and Objects 76
3.6 Example of Object-Oriented Prolog Code 76
3.7 SUMIATY . . . v v o v v i e e e e e e e e e e e e 81
Formal Semantics of Modular and Object-Oriented Prolog . . 82
4.1 Conventional Prolog Semantics 82
4.2 Relation to Other Work 84
4.3 Operational Semantics 000 85
4.3.1 Background oo oo o 85
4.83.2 Syntax.o e e e 85
4.3.3 The Abstract Machine 89
4.4 Semantics of Object-Oriented “Send” 93
4.5 Denotational Semantics L0000 95
4.5.1 Background oo oo 95
452 Syntax 96

4.5.3 Semantic Domainso e e e e 98

4.6 Informal Correspondence of Operational and Denotational Seman-
BICS . . L e e e e e e e e e e e e e e e 110

Combining Object-Oriented Prolog and Stream Processing . 113

51 Introduction. e 113
5.2 Background: Functional Programming in Prolog 114
521 Log(F). . oo oo 115
5.2.2 Tramsducerso 117
5.3 Combining Paradigms 120
5.3.1 Operator Overloading for Transducers 120
5.3.2 TemporalData 122
5.3.3 Typed Log(F) Compiler 126
534 Example. 0000 127
5.4 Adding Log(F) to Object-Oriented Prolog 132
5.4.1 Streams of Objects 133
Semantic Binding and Dynamic Classification 135
6.1 Introduction. 135
6.1.1 TheProblem 136
6.2 Two Solution Approaches 139
6.2.1 Semantic Binding 000 139
6.2.2 Dynamic Classification 140
6.3 Related Work o 144

Application: The Tangram Object-Oriented Modeling Environ-

ment L e 146
7.1 Imtroduction e 146
7.1.1 Mathematical Modeling 147
7.1.2 Example Modeling Application 150
7.1.3 Related Work oo 153
7.1.4 About this Chapter 154
7.2 SmartModels 155
7.2.1 Object-Oriented Modeling 156
7.2.2 SemanticBinding o 000 158
7.3 Role of Object-Ortented Prolog 160
7.4 The Tangram Modeling System 161
7.4.1 The Architecture of Tangram 161
7.4.2 Sample Interaction 00 0oL 163
7.5 Conclusions o e 166
Summary and Continuing Research 168
B.1 Summary o o e e e e e e e e e e e e e e e e 168

8.1.1 Object-Oriented Prolog 169

8.1.2 Design and Implementation 170

8.1.3 Formal Semantics. L. 170

8.1.4 Semantic Binding L oL, 171

8.1.5 Stream Processing 0., 173

8.1.6 The Tangram Modeling Environment 173

8.2 Avenues for Continued Research 174
8.2.1 StreamsofStates 0oL 174

8.2.2 Compiling Inheritance 0L 175

8.2.3 Formal Semantics of the Three Paradigm Language . .. 175

8.2.4 The Modeling Environment 176

8.2.5 Distributed Object-Oriented Prolog 176

8.3 Final Summary In a Nutshell 177
References 178
A Prolog Code for Object Interpreter System 187
B Root (Object) Object Definition 195
C Class Definition 198

D Prolog Code for Typed Log(F) Compiler 200

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1

5.1
5.2
5.3
5.4

6.1

7.1
7.2
7.3
7.4
7.5
7.6

LIST OF FIGURES

The Architecture of WAM Modules
New Built-in Predicates for Modules
Built-in Predicates Modified by Modules Facility
Modules for Object Instance, Class, and Factory
Structure of Object System
Implementationof Send oL
Implementation of Inheritance
Implementation of Instance Variable Access
The definition of the Antenna class.
The definition of the Parabolic Antenna class.
Trace of message inheritance.

Denotational Semantics of Modular Prolog

Account balance; step-wise constant
Daily account withdrawal summary; discrete
Digitized music; continuous
Schema for multiply transducer

A Law Governed System

A Model in the Car-Wash Domain
Queueing Model of the Car-Wash
Conceptual Diagram of a Domain
The Architecture of Tangram
Sample O-OP Code
Part of Object Hierarchy Containing A Queueing Model

ACKNOWLEDGEMENTS

I would like to thank the members of my committee for their many helpful
suggestions. I am especially grateful to my advisor and committee chair, Pro-
fessor Richard Muntz, for the many patient hours spent meeting with me while
this research was conceived and executed. It is now impossible to separate which
ideas originated with himm but his intellect pervades this work.

Special thanks to Professor David Martin for teaching me individually what
I needed to know about formal semantics.

I am also grateful to Professors Gerald Popek, Stott Parker, and Richard
Muntz, the principal investigators of the DARPA project, for providing me fi-
nancial support throughout my tenure as a graduate student.

My research has benefited greatly from the dynamic collection of people in
the Tangram group who have provided a sounding board for ideas. The large
volume of code written as part of this work would not have been possible without
the help of many people. I especially acknowledge William Cheng and Steve
Berson who made the Tangram modeling environment happen; Robert Lindell
who collaborated on the early work on modular and object-oriented Prolog; ChLiff
Leung who worked with me on the typed Log(F) compiler; Jon Edwards, Leana
Golubchik and Gary Rozenblat who provided programming assistance; and Ted
Kim who often sacrificed his own research to keep our computing environment
in optimal shape.

Finally, I express my love and gratitude to my wife, Gayle, who gave me con-
stant love and support even though she swore she would never marry a student.

ABSTRACT OF THE DISSERTATION

An Object-Oriented Logic Programming Environment for Modeling

by

Thomas Wingfield Page, Jr.
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1989

Professor Richard R. Muntz, Chair

The human mind is primarily a machine for constructing and evaluating mod-
els. It is no surprise then that most of what we do with computers amounts to
modeling real-world systems. Models allow us to ask questions like: What hap-
pened? What would happen if ... 7 Will it perform acceptably? We would like
to be able to ask these types of questions about a real-world system before it is
ever built, while it is in operation, or after it has failed.

While there is an ever expanding set of mathematical techniques for modeling,
the actual practice of modeling remains the exclusive domain of a few experts.
Each expert is typically highly proficient at only a small number of these tech-
niques. The mathematical solvers associated with each technique are generally
very inflexible, requiring input in a rigid and idiosyncratic format.

What is required is an advanced modeling environment; an environment for

the construction, storage, maintenance, querying and solution of models. Such an

environment would harness the advanced modeling techniques for use by experts
in the domain being modeled as opposed to experts in the solution techniques
themselves. If realized, this meta-modeling system would truly be a tool for
magnifying the power of the human brain.

The goal of this dissertation is to begin to put in place the technology out of
which an advanced modeling environment could be constructed. We propose a
programining language based on a combination of the logic and object-oriented
programming paradigms. We argue that both the declarative knowledge rep-
resentation via logic and the hierarchical organization and modularization of
object-oriented structuring are critical to the flexible modeling environment prob-
lem. We identify a surprising weakness of all existing programming paradigms,
the inability to bind a function name to an implementation for a given target
object (model) flexibly. In response, we propose a new concept, semantic bind-
ing, to deal with the problem. Finally, we demonstrate the effectiveness of this
new hybrid-paradigm language in combination with semantic binding by present-
ing a prototype modeling environment. The Tangram Object-Oriented Modeling

Environment is operational and being used to model a variety of domains.

CHAPTER 1

Introduction

1.1 Introduction

Man is far from being the physically strongest species on earth, yet we dom-
inate this planet. It is our ability to use tools, machines which magnify our
muscles, which gives us dominance. When we look at the enormous changes in
the way we live which have occurred in just the last several lifetimes, they are
largely explained by the exponentially accelerating rate at which we are produc-
ing new machines.

As dramatic as the impact of these machines which magnify our muscles has
been, imagine the effect of tools which magnify our minds. After all, what truly
sets us apart from the other animals is the size of our brains. If we can amplify
what is already our greatest strength, the impact should dwarf that of all the
other machines mankind has produced. While applications to date have been
relatively mundane, falling more into the category of replacing tedious work,
computers have the potential to be this magnifier of the mind.

The human mind is primarily a machine for constructing and evaluating mod-

els [70]. It is not a surprise then that most of what we do with computers amounts

to modeling real-world systems. Models allow us to ask questions like: What hap-
pened? What would happen if ... 7 Will it perform acceptably? We would like
to be able to ask these types of questions about a real-world system before it is
ever built, while it is in operation, or after it has failed.

While there is an ever expanding set of mathematical techniques for modeling
(queueing models, statistical models, Markov models, constraint-based models,
simulation, to name but a few), the actual practice of modeling remains the
exclusive domain of a few experts. Each expert is typically highly proficient at
only a small number of these techniques. The mathematical solvers associated
with each technique are generally very inflexible, requiring input in a rigid and
idiosyneratic format.

What is required is an advanced modeling environment; an environment for
the construction, storage, maintenance, querying and solution of models. Such an
environment would harness the advanced modeling techniques for use by experts
in the domain being modeled as opposed to experts in the solution techniques
themselves. If realized, this meta-modeling system would truly be a tool for

magnifying the power of the human brain.

1.1.1 Goal

The goal of this dissertation is to begin to put in place the technology out of
which an advanced modeling environment could be constructed. We propose a

programming langunage based on a combination of the logic and object-oriented

programming paradigms. We argue that both the declarative knowledge rep-
resentation via logic and the hierarchical organization and modularization of
object-oriented structuring are critical to the flexible modeling environment prob-
lem. We identify a critical weakness of all existing programming paradigms, the
inability to bind a function name to an implementation for a given target object
(model) in a flexible manner. In response, we propose a new concept, seman-
tic binding, to deal with the problem. Finally, we demonstrate the effectiveness
of this new hybrid-paradigm language in combination with semantic binding by
presenting a prototype modeling environment. The Tangram Object-Oriented
Modeling Environment is operational and being used to model a variety of do-

mains.

1.1.2 The Promise of Prolog

It has been observed that novice Prolog programmers are often lacking in
moderation in extolling the virtues of their new-found panacea [50]. This is not
hard to understand as logic programming seems to offer something for nothing.
One writes a program, not by describing how to solve a problem, but by stating
what is true of the application domain. The built-in inference engine then uses
this information to search for a solution without further guidance from the pro-
grammer. Further, the program can be enhanced incrementally; additional rules
can be added to the domain’s knowledge base which are used automatically with-

out impact on existing knowledge. Prolog’s powerful yet simple pattern match-

ing facility (unification), internal database with associative access, and simulated
nondeterminism combine to free the programmer from tedious low-level concerns.
Finally, logic is a formal way of encoding human language, a much more natural
vehicle of expression for humans than conventional programming languages which
provide an abstraction of the underlying computer hardware. Unfortunately, it
soon becomes clear to programmers that Prolog delivers on these promises only
for “toy” applications.

While it is extraordinarily successful for rapidly prototyping small programs,
Prolog has been largely unused for writing large programs. Its selection as the
basis of the Japanese Fifth Generation Project notwithstanding, most Al ap-
plications are still written in Lisp or conventional algorithmic languages hke C.
The problem is that even the most basic of support for accepted software engi-
neering practices like modularization, data abstraction, scoping, and information
hiding is entirely absent from Prolog [22]. Without these program structuring
techniques, the size of programs that can be constructed in Prolog is severely

Limited.

1.1.3 Programming in the Large

What is needed is a facility for programming in the large. Programming in
the large consists of designing a system out of sufficiently small components that
conventional programming in the small techniques can be employed. While the

application as a whole may be too large to be understood by any one person,

each building block should be entirely comprehensible. These small components
or modules must have a separate interface and implementation. Thus they can
be used by other parts of the program, perhaps by other programmers without
regard to how they are implemented. As the application evolves, the inplemen-
tation may be called upon to change, say to improve performance; the constant
interface shields the rest of the program from concern about the internals of
modules. Further, the low level building blocks should be sufficiently general
that they may be reused in many contexts, reducing the total amount of code
that must be written. The task of programming in the large then becomes one

of linking components.

1.1.4 Object-Oriented Programming

“‘Object-oriented’ is the latest in term, complementing or perhaps replacing
‘structured’ as the high-tech version of ‘good’.” [63] This buzzword is used to de-
scribe languages as different as Smalltalk-80 and Ada and is applied to databases,
operating systems, knowledge representation schemes, and user interfaces [27).
Clearly it means many things to many people.

The Object-Oriented paradigm is an anthropomorphic style of programming
in which the physical and conceptual entities of the problem domain are modeled
as autonomous information processing agents called objects. Each object contains
a piece of the domain knowledge and may be be thought of as an expert on that

piece of the application domain. Objects consist of a hidden state and a public

interface in the form of a set of messages to which the object will respond. In our
view, object-oriented implies three essential concepts: encapsulation, inheritance,
and late binding. A full introduction to the object-oriented paradigm is found in
Chapter 2.

Objects inherit their behavior (the methods by which they respond to mes-
sages) from their class. Thus all instances of a class share their method im-
plementations creating a first level of code reuse. The classes are arranged in
a specialization-generalization hierarchy such that instances can inherit method
implementations from their ancestor classes. Late (run-time) binding (as opposed
to compile-time binding) insulates clients (object users) from changes made by
class suppliers. Combined with inheritance, late binding creates an extremely
flexible environment where great leverage is obtained from code reuse, reducing
implementation time and enhancing software quality.

The primary appeal of the object-oriented paradigm is its capacity for struc-
turing large systems. The design of a large facility begins with identifying the
objects in the application domain. Tightly circumscribed modules of code which
model the behavior of the domain entities can be designed, coded, debugged,
and documented independent of the rest of the system. Moreover, the paradigm
is a packaging technique whereby objects can be supplied by a programmer to a
client and integrated into an application in a structured manner. Insulated by
a well-defined interface, the implementation of an object may change without

impact on the rest of the system. Thus the paradigm offers benefits, not only

at system design and implementation time, but also over the life-time of the

application as it inevitably evolves.

1.1.5 Combining Logic and Object-Oriented Programming

While a very valuable structuring tool, when it comes to actually program-
ming the methods, current object-oriented languages are essentially procedural
programming languages. Many types of knowledge are best expressed declara-
tively. If we can think, as stated above, of an object as an expert on its piece
of the domain knowledge, we should be able to implement the object by stating
what the object knows rather than how it answers messages. This goal leads us
to the desire to create a combined object-oriented logic programming paradigm.

This dissertation proposes a hybrid programming paradigm which smoothly
integrates object-oriented programming with Prolog. We have implemented the
paradigm in a new language called Object-Oriented Prolog (O-OP). It is based
on the “message-passing interpretation of logic” [91] which interprets a message
M to an object O as a request to prove the goal corresponding to M in the context
of the set of axioms defined by O. Because this is an interpretation of message
passing within logic there is no “impedance mismatch” between the paradigms.

! The sending of a message is a goal like any other in Prolog and may be freely

1The term “impedance mismatch” has been used in the past to describe the mixture of
paradigms resulting from embedding a database query (set oriented) in a general programming
languange program (often tuple at-a-time). Here, we refer to the potential for confusion due
to possible mismatches in the computation model of logic programming and object-oriented
progrogramming.

intermixed with other Prolog goals.

While the two paradigms can be mixed freely, it makes the most sense to
use each paradigm for what it can do best; logic for programming in the small,
and objects for programming in the large. The application as a whole is struc-
tured out of communicating objects. The individual methods for these objects
are programmed declaratively; an object deduces the bindings for the message
arguments both from its local knowledge base and by sending messages to consult

other objects.

1.2 Significance of the Work

Today, many of us have more computing power on our desk than did the
entire university campus merely one decade ago. This exponential growth in
machine speeds has been accompanied by a revolution in the way hardware is
designed and built. Each new device is not designed from scratch. Rather it 1s
assembled from integrated circuits with well defined parameters and interfaces.

Many have observed that we are experiencing a software crisis. When a
large project fails or experiences huge cost overruns, it is most often because
of the software. The productivity of software producers as we have migrated
slowly from assembly languages to Fortran, C and higher level languages has
failed to keep up with that of hardware designers. It is estimated that software
productivity has increased at a rate of 3-8 percent per year while processing

capability has increased at 40-200 percent per year [69]. The advent of distributed

systems promises continued dramatic increases in processing speed while vastly
complicating the job of the programmer. The productivity crisis is accompanied
by a similar crisis in software quality.

“Why isn’t software more like hardware? Why must every new development
start from scratch? There should be catalogs of software modules, as there are
catalogs of VLSI devices: when we build a new system, we should be ordering
components from these catalogs and combining them, rather than reinventing
the wheel every time.”? Cox, the inventor of Objective-C, an object-oriented
extension to C, asserts that objects (which he calls Software-ICs) might do for
software what the silicon chip did for hardware [27]. That is, applications could
be assembled from existing pieces that have very well defined functions and inter-
faces, These component pieces could be very finely crafted due to the tremendous
leverage obtained by reusing code.

The combination due to this dissertation of declarative programming with
object-oriented structure is a leap forward in the object-oriented revolution.

The primary contribution of this dissertation is language which can take
advantage of a declarative programming and object-oriented structuring. An
object-oriented design coupled with a declarative statement of the behavior of
each object becomes an ezecutable specification in the Object-Oriented Prolog
environment, Very complex programs may be very rapidly prototyped in this

hybrid paradigm. Once the knowledge base of each object is debugged, critical

?From a 1968 speech by Mellroy later published in [60].

sections of the application may be reimplemented in an algorithmic language for
greater efficiency; the paradigm naturally hides the internal implementation of
objects so that such reimplementation may occur without impact on the rest of
the system. The Object-Oriented Prolog language represents a leap forward in

the object-oriented revolution in software crafting.

1.2.1 Significance of the Modeling Application

In order to demonstrate the viability of the Object-Oriented Prolog language
as a tool for building a knowledge-based application which would not be possible
by conventional means, we have designed and prototyped the Tangram Modeling
Environment using O-OP. Tangram features a graphical interface for defining and
querying models, an object-oriented organization of models and sub-models, a
tool-kit of solution techniques, animated simulation, an extensible set of applica-
tion domains with a customizable interface and query language, and declarative
domain-expert knowledge bases for translating models and queries into a form
that can be solved by one of the system’s mathematical solvers.

The experience of the implementors is that the Tangram system could not
have been built without the combined strengths of object-oriented structuring
and Prolog’s declarative knowledge representation. Customized application do-
mains have been constructed in a very short time (2 to 4 man-weeks). This
rapid response is made possible by the ability to create domains by specializing

existing domains via object-oriented inheritance and by the facility of Prolog for

10

rapid prototyping and ease of expression of expert knowledge. New solver pack-
ages have also been integrated quite easily due to the ability of the paradigm to
treat them as abstract “black boxes”. The Tangram Modeling Environment is
already in use outside of the implementation group and the approach potentially

represents a great leap forward in the practice of modeling.

1.2.2 Further Contributions

This dissertation also demonstrates the integration of the third major pro-
gramming paradigm, functional programming, via the integration of the Log(F)
language with Object-Oriented Prolog. A very important class of objects are
stream valued; that is, they consist of an ordered sequence of values. One of the
most common examples of object is temporal data. Often the most convenient
way to process streams is via rewrite rules which apply a function to each element
of the stream.

Previous work [73] has shown that functional programming can be smoothly
accomplished in Prolog. We have shown how object-oriented programming can be
realized cleanly in Prolog. We have the unique opportunity to combine the three
major paradigms in one seamless language. As all three programming paradigms
are interpreted in the context of Prolog there is no impedance mismatch as there
are in hybrid languages which merely embed one type of language within another.
The resulting multi-paradigm language can be compiled into modular Prolog and

thus be implemented very efficiently.

11

An outgrowth of the design of the Tangram environment is a new concept,
semantic binding, which goes beyond conventional object-oriented binding with
multiple inheritance. In a system such as Tangram which must maintain an
extensible set of tools, it 15 not sufficient simply to inherit a method based on
a static typing of objects. An appropriate solver binding, in general, depends
on the dynamic state of the object and the actual query posed (or the message
parameters). No existing paradigm can handle this situation.

With semantic binding, user defined code or rules are used to either bind func-
tion names with implementations or to reclassify an object dynamically when the
object receives a message. A reclassified object is moved to the most specific class
for which it satisfies membership constraints and thereby inherits the appropri-
ate method. The rules by which the semantic binding is achieved constitute a
domain-specific knowledge base. Domains are structured hierarchically and do-
main knowledge expressed declaratively. Again, the combination of logic and

object-oriented programming found in Object-Oriented Prolog is key.

1.3 Organization of the Dissertation

Chapter 2 presents necessary background material. The concept of logic pro-
gramming, and its realization in the Prolog langunage is introduced. An overview
is given of the Warren Abstract Machine (WAM), the current state of the art in
implementation techniques for Prolog. The level of detail presented is sufficient

to understand the modifications to the WAM made as part of this research. The

major concepts and terminology from the object-oriented paradigm are intro-
duced. Finally, related research on the integration of logic and object-oriented
programming is reviewed.

Chapter 3 discusses the design and implementation of the Object-Oriented
Prolog language. We first present the overall philosophy of our approach to
integrating the two paradigms. Then we detail the design of the underlying
modules facility for the WAM upon which the object-oriented language is built.
This is followed by a detailed description of the design of Object-Oriented Prolog.

Scholarship dictates that when we propose a new language, we define its
formal semantics. In addition to rigorously specifying the meaning of a program,
the formal semantics serves as a guide to and a test of the implementation of
the language. Chapter 4 presents two equivalent formal semantics for Object-
Oriented Prolog. First, conventional Prolog semantics are reviewed. We then
detail an operational and denotational semantics for Prolog with modules. We
show how with the addition of the send and inherit predicate to each module
we can define the semantics of message passing and inheritance. The chapter
concludes by showing the correspondence between the two semantic definitions.

Chapter 5 examines approaches to and benefits of integrating a third par-
adigm, stream processing, with logic and object-oriented programming. Two
approaches are presented, both of which have been implemented. An example
application using temporal data is used to illustrate the combined paradigms.

Chapter 6 presents the novel variation on object-oriented name binding we

13

call semantic binding. We introduce the issue and present two classes of solutions.

If the proof is in the pudding, Chapter 7 is the pudding. It presents an
overview of the Tangram Object-Oriented Modeling Environment which is writ-
ten in and relies upon Object-Oriented Prolog. We introduce the problem of
designing a modeling environment. We show how the problem of semantic bind-
ing occurs in practice and how it is solved in Tangram. A detailed example of
an object-oriented model is presented.

Conclusions and a summary of the dissertation follow in Chapter 8.

14

CHAPTER 2

Background and Related Work

2.1 Introduction

This chapter provides background information necessary to the dissertation.
Section 2 introduces Prolog and logic programmingin general and may be skipped
by readers already familiar with these areas. Section 3 introduces the basic con-
cepts, motivations, and terminology of the object-oriented programming para-
digm. This section may also be conveniently skipped by readers not requiring
such an introduction. Section 4 summarizes other related research in the combi-

nation of logic and object-oriented programming.

2.2 Prolog and Logic Programming

Logic was developed as a means of expressing the exact meaning of sentences
in natural language [56]. It has long been used in computer science as a specifica-
tion language because of its precise declarative semantics [35]. In 1972 Kowalski
[61,52] showed that the Horn clause subset of first order logic could have a pro-
cedural interpretation in addition to its traditional declarative semantics; this

makes possible its use as a programming language. Prolog is an example (per-

15

haps the first and most important) of a programming language based on this
reading of Horn clause logic [25]. In the declarative interpretation, a Prolog pro-
gram can be viewed as a hypothesis and a query as a theorem to be proved in
using the hypothesis. A logic program, P, consists of a finite set of Horn clauses

of the form
A e Bl,Bz,...,Bn

containing exactly one positive literal, 4, called the head [55]. The conjunction
of n > 0 negative literals By, B;,..., B, is called the body. A and each B; have
the form R(ai,a3,...,am), m 2 0, where R is a relation (predicate) symbol and
each a; is a term. A term consists of either a variable, constant, or function
application of the form f(#1,¢,...,¢,), p > 0, where f is a function symbol and
each #; is a term. Such a clause is interpreted as defining a procedure for A
whose head defines the input and output parameters and whose body specifies a
conjunction of procedure calls with the semantics, “For each assignment of each

kb

variable, if By, By,..., B, is true then A is true.” A unit clause has the form

A+ with the empty collection of sub-goals and is interpreted as “A is true”.

A query on P is an existentially quantified conjunction of the form
— C,Cy,...,Cy g>1.

If the query contains variables vy, vy, ..., vy, * > 0, a substitution is a set of pairs

of the form

{<un/t; > <vfta >,...,<v./t, >} 720

16

where each v; is one of the variables and t; is a term, to which v; is bound.
The application of a substitution € to an expression E, stated E§, is formed by
simultaneously replacing each occurrence of v; with the term t; for each . The
proof procedure must find the most general substitution 8 such that every ground
instance of (Cy,Cs,...,C,)0 is a logical consequence of the set of clauses P. The
proof proceeds by picking some clause C; from the query and replacing the goal

with

(C1,Cs,...,Cj1,B1,Ba, ..., Bn,Cit1,...,Cy)b:
where

A «— B,By,...,B,

is a clause in P such that C; unifies’ with the head A with unifying substitution
8;. The proof terminates successfully when the goal clause is replaced with the
empty clause. The composition of the sequence of substitutions 6,6, ...6y5 1s
one answer to the query. This proof procedure, known as SLD-resolution, is
due to Kowalski and is a practical version of general resolution with unification
discovered by Robinson in 1965 [81].

Prolog is an approximate implementation of logic programming. ? The fol-
lowing is an example of a Prolog program to compute the append relation on

lists. The first clause declares that the result of appending any list, say X, with

1Two clauses ¢; and ¢ unify if there exists a substitution # such that ¢;6 = ca8.
2The omission for efficiency of the occurs check and the addition for practical reasons of
extra-logical features keep Prolog from being a true implementation of logic programming,.

17

the empty list denoted by [], is X. The second clause declares that the result of
appending two lists, X and Y, can be obtained by consing the first element of X

(its head) to the result of appending the rest of X (its tail) to Y. ®

append([],X,X).
append([H|T],Y,[H[W]) :- append(T,Y,W).

The above is not an algorithm for appending two lists, but rather statements
about what is true of the append relation. Thus, in addition to being able to
query “What is the result of appending [a], and [b,c]?”, we can also say, “Is
there any X and Y such that appending X and Y results in [a,b]?” and get
the three answers X=[], Y=[a,b]; X=[a], Y=[b]; and X=[a,b], Y=[]. Were the
predicate for appending two lists expressed as in most languages as an algorithm
rather than assertions of truth, using the predicate “backwards” to split a list
non-deterministically would not be possible. This ability to use knowledge in a
way which was perhaps not anticipated when the knowledge was codified is one
of Prolog’s great strengths®.

In theory, a logic program is purely an expression of the knowledge about
an application; the control is left to the system. In practice, the SLD resolution
procedure is simple enough that programiners arc aware of how the system will

proceed to evaluate a query against their database. Programmers often take

3| is the cons function and the list notation [E1T], read “H cons T7, is short for the structure
.(H,T) where T is a list. The notation [a,b,c] is short for . (a,.(b,. (¢, [J))) or equivalently,
[al[b] [c]]]. The :~ symbol is used instead of — in the Edinburgh family of Prologs.

41t is unfortunately the case, however, that due to the use of the non first-order logic capabil-
ities within Prolog (such as arithmetic expression evaluation) many predicates work only when a
certain set of variables are bound on input. Note that constraint-oriented Prologs seek to repair
precisely this problem.

18

advantage of this awareness to control the evalnation procedure through their

use of explicit clause orderings, and extra-logical features such as the cut.

2.2.1 The Warren Abstract Machine

The current state of the art in high performance implementations of Prologs
are based on the Warren Abstract Machine (WAM) [100] (for example: Quin-
tus Prolog [1], Sicstus Prolog [20])°. While intended for logic programming and
theorem provers in general, the WAM is much like any abstract machine for the
execution of recursive, block-structured languages like Pascal or C [34]. A Pro-
log program is compiled into “WAMcode”, the instruction set of the abstract
machine, and is then interpreted by an emulator. We expect to see actual im-
plementations on WAMs in silicon in the near future. We will not present here a
complete tutorial on the WAM; for that the reader should see the excellent tuto-
rial from the Argonne National Laboratory [34]. Rather, we will present only a
high level overview of the architecture necessary to understand our modifications

detailed in the next Chapter.

2.2.1.1 Data Structures

There are four main data areas in the WAM:

1. The argument registers contain the input/output arguments of a procedure

call. There is no firm distinction between input and output arguments;

SFaster implementations may soon be available which compile Prolog directly to machine
code.

19

a particular argument may sometimes be unbound on input being later
bound in a procedure, thereby becoming an output argument; at other
times the same argument may be bound at call time acting purely as an

input variable.

. The local stack {often just called “the stack”) has two primary functions.
First, the stack is used to store choice points. A choice point is a record
used to store the information necessary to maintain alternative approaches
to solving a goal. If one alternative fails and backtracks, information in
the last choice point is used to reset the machine’s state to try the next

alternative.

Second, the local stack is used as a scratch area to save critical information
from registers which may be destroyed by a procedure. This information is
saved in an environment. The most important information saved in an en-
vironment are the continuation instruction, the current environment, and
the argument registers. The continuation instruction points to the mstruc-
tion in the invoking procedure to execute next if the current procedure
terminates successfully. The current environment is a pointer back into the
stack at the environment in effect when the current procedure was called.
The argument registers may need to be saved if the procedure is going to
call other procedures internally with different arguments. The compilers

are smart enough to save registers only when necessary.

3. The heap {sometimes called the global stack) is used to construct logical
formulas to which procedure arguments are bound. A machine register
contains a pointer to the current top of heap. Space on the heap is reclaimed

by garbage collection.

4. The code area contains the actual compiled WAMcode instructions.

The registers may contain variables, constants (atoms, integers, floating point
numbers, the nil list), lists, or structures. A register contains a value cell, a data
item typed by the leftmost four bits (the tag bits). The remaining bits point
to an object of the type specified. An unbound variable points to itself. An
atom is represented as a pointer into the atom table. The atom table is a hash
table where the string associated with the atom is actually stored. Integers and
floating points employ similar hash tables.

The state of the WAM is suminarized by the contents of the stack and the

heap, the program counter, and by the following runtime registers:

Continuation Instruction: the address where control is to return upon suc-

cessful termination of the current procedure,

Current Environment: a pointer to the calling environment stored in the

stack.

Last Choice Point: a pointer to the latest choice point in the local stack.

Top of Stack: the current top of the stack.

21

Top of Heap: the current top of the heap.

Top of Trail: the current top of the trail, a data structure used to record vari-

able bindings that must be undone on backtracking,

Argument Register: see above.

Next Clause: a pointer to the next alternative to be tried.

2.2.1.2 Backtracking

When multiple alternatives for a given goal are encountered, the WAM creates
a choice point and saves the contents of the above registers in it. If the procedure
backtracks, the state of the machine can be reset to try the next alternative by
restoring the register values saved in the choice point. Variables that must be
uninstantiated on backtracking are recorded on the trail. Upon backtracking,
pointers to value cells are popped off the trail and reset to point to themselves
until the value of the Top of Trail register reaches the value of Top of Trail saved
in the choice point. Note that the effect of a cut is to remove choice points
from the stack. Also note that good compilers implement last call optimization
which removes the choice point from the stack when the last call in a determinate
procedure is entered. This optimization (combined with garbage collection [94])
allows tail recursive programs to run in constant space rather growing with each

recursive call.

8]
%]

2.2.1.3 Indexing

Alternative clauses making up procedures are linked in index structures to
quickly eliminate clauses that could not possibly unify with the input arguments.
The index key is the principal functor of the first argument. The switch_on_term
instruction dispatches to one of four addresses depending on whether the first
argument dereferences to a variable, constant, list, or structure. If the first
argument is a constant or structure, the clauses will be further indexed using
the switch_on_constant or switch_on_structure which make nse of hash table

accCess.

2.2.1.4 Sicstus WAM Implementation

The prototype implementation of architectural changes to the WAM proposed
in the next chapter were done in the Swedish Institute of Computer Science ver-
sion of the WAM. In Sicstus Prolog, predicates may be compiled or interpreted.
There is a global functor table into which all principal functors of predicates
are hashed. A bit in this table indicates whether a particular predicate is static
(compiled) or dynamic (interpreted). Code for static predicates is stored in the
code area as discussed above. Code for dynamic predicates is represented as
structures on the heap and executed by an interpreter. The WAM emulator
check the type of each predicate when it is called, setting the program counter to
the first instruction of the procedure if it is compiled or to the first instruction

of the interpreter if the procedure is interpreted.

23

2.3 Concepts from Object-Oriented Programming

As a means of knowledge structuring, the object-oriented programming para-
digm is closely related to the concepts of frames and semantic networks in Al and
to semantic models in knowledge based systems [35]. The ideas behind object-
oriented programming originated in Simula 67 [28] and were first fully realized in
Smalltalk-80 [38]. Entities in a model of a real world system are represented by
computational objects each with an associated set of private local state variables
and a public interface. The ohjects in a model “come alive” when they receive
messages. Messages are used to query individual objects, to ask them to perform
operations on their internal state or on other objects. In fact, messages are the
only way to interact with an object. Sending a message to an object is analogous
to calling a function with arguments in a conventional language or calling an ex-
ported procedure in a modular language. However, one cannot call a procedure
to do something to an object. One can never “do something to” an object, only
request an object to do something to itself by sending it a message which it is
free to accept or reject.

Many people mean many different things by “object-oriented” programming,.

We take the view that there are three essential concepts:

1. Encapsulation: The details of an object’s internal implementation are not

visible.

2. Inheritance: Code is modularized according to class or type. Code copying

24

is avoided for similar objects by inheritance from ancestor classes.

3. Late binding: The code actually run depends on the type of the object,
which is not known until runtime. Late binding may be relaxed (bindings

may be compilted) for improved performance at the expense of flexibility.

Notice that messages are not viewed as an essential concept but rather as
a metaphor for the “arms-length” relationship between objects. The message
interface seems to impart intuition to users about encapsulation and late bind-
ing. The following sections examine these essential concepts and introduce the

terminology of the object-oriented methodology.

2.3.1 Encapsulation

Objects combine the properties of procedures and data in a way analogous
to abstract data types. They both perform computations and have local state.
The messages to which an object responds define its interface. Receipt of an
acceptable message causes an object to execute one of its methods. The mes-
sage selector specifies which operation the object is being requested to perform.
Thus, object-oriented programming implements the principle of data abstraction,
i.e. that consumer programs should not know details about the implementation
of an object. Consequently, the implementation can change without affecting

consuimers.

2.3.2 Late Binding

The recipient of a message decides what code to execute to implement a
method. This allows for polymorphism, which in the object-oriented context
corresponds to the ability for many types of objects to respond to exactly the
same messages [93]. Thus a consumer need not know exactly what type of object
is the recipient of a message, only that the object supports the message type.
New types of objects can be created which respond to existing message protocols
without affecting consumers. For example, a window manager program does not
need to know about a new type of icon that is added in order to be able to
display it, so long as that new object supports the basic set of messages that the
window manager expects. Shifting the burden of binding from the consumer to
the supplier of a service makes growth and change in a software system much
more manageable.

From a different point of view, operators may be said to be overloaded. That
is, the same operator (message selector) invokes different code, depending on the
type of the object to which the operator is applied. Name conflicts are not a
problem because names are resolved in the context of a single type. Different
types of objects may have operators with the same names without interference.

This is in contrast to Prolog which has a global name space.

26

2.3.3 Classes and Inheritance

Continuing the above analogy to abstract data type languages, in object-
oriented programming, a cless corresponds to a data type and an object to an
instance of that type. A class may be thought of as a set of similar objects all of
which support the same methods, but which will, in general, have different values
in their instance variables. For example, “Unix file” is a class with methods such
as open, close, read and write; “/etc/passwd” is an object which is an instance
of a Unix file. “/etc/passwd”, the file, can be opened and read. “Unix File”, the

class, cannot. “/etc/passwd” responds to the same methods as other Unix files.

2.3.3.1 Inheritance

Inheritance provides an economical way to define classes which are like some
other class but have a few differences. For example, consider a system in which
we need to model both cars and trucks. Many of the methods for these two classes
will be identical. Rather than repeat the definition of the redundant code, we can
define a vehicle class and in it represent those characteristics common to both
cars and trucks. We can then define both cars and trucks as sub-classes which
inherit these common methods from the vehicle class.

In general, if a class A is a sub-class of class B, it inherits all of the methods
defined for B. B is said to be a super-class of A. Whenever an object of type
A receives a message with a selector for a method not defined by class A, the

system uses the definition found in class B. The definition for class B may itself

27

be inherited from its super-class. Classes may have multiple sub-classes. If
the definition of class A reimplements some its parent’s methods, then the local
method takes precedence. That is, the search for an implementation for a method
starts in the class of the object which receives a message, and proceeds up the

hierarchy.

2.3.3.2 Swuper and Self

It is often the case that the implementation of a specialized version of a
method in a sub-class is very similar to the code used in the parent. Thus it
is often convenient to write the method by doing some computation, calling the
parent’s version, and then doing some final computation. However, there is no
simple way to name the parent’s version of the method because the name binding
always searches the class hierarchy bottom up. Thus, it is convenient to provide
a mechanism to indicate an alternate name binding strategy for these explicit
calls to the parent. This is accomplished with a super message. Similarly, it is
often desirable that the implementation of one method make use of an existing
method inherited by the same object. This i1s accomplished by a self message.
Super messages send the message to the current object but begin trying to bind
the selector to an implementation in the object’s super-class. Self messages

simply send a message to the current object.

28

2.3.3.3 Class and Instance Creation

Classes are generally implemented as objects themselves [27]. They are all
instances of the metaclass, the class of all classes. Subclasses and instances are
created by sending messages to a class. Some object-oriented languages make
a distinction between objects and classes while others do not. Since objects
generally greatly outnumber classes, there is the potential to optimize the im-
plementations if a distinction is made. However, the optimization may be at the

expense of conceptual purity.

2.3.3.4 Multiple Inheritance

The inheritance graph may be constrained to be a tree. That 1s, each class
is a sub-class of only one super-class. The root of the tree is an object which
implements the methods which all objects must support. Some languages allow
multiple inheritance in which an object may be an instance of more than one
class or a class can be a subclass of more than one superclass. This creates an
inheritance structure which is a directed acyclic graph.® For example, a tape
drive is both a node in the Unix filesystem and a piece of hardware. The set
of methods inherited by instances of the tape drive class is the union of the
locally defined methods and the inherited methods from both super classes in

the absence of name conflicts among methods. There must be some precedence

61t is often called a lattice in the literature (see [93] for example) but multiple inheritance does
not guarantee a unique least upper bound and greatest lower bound and so, strictly speaking,
does not define a lattice.

rules for cases where both super-classes define methods with the same name.
The technique of modifying a generic class of objects for a more specific use
is called specialization. A tape drive is simultaneously a specialization both of
the Device class, and the Hardware class. This practice provides great leverage
in building large software systems as it provides a model for creating reusable

code.

2.3.4 Composite Objects

The inheritance hierarchy is a partial ordering based on the isa relationship.
We can also define hierarchies based on the is-a-part-of relationship. Hierarchies
of this type create composite objects which allow sets of objects to be manip-
ulated as a single entity. Computer aided design (CAD) is an example of an
application area where is-a-part-of is a primary structuring relation among ob-
jects. In addition to the added semantic power of composite objects, they may
be exploited to improve performance of object-oriented database systems. The
object server may cluster the components of a composite object to take advan-
tage of the locality of access that is likely to occur among objects in the same
collection [49].

Most object-oriented languages provide some sort of primitive collection class
which provides for sets of arbitrary numbers of members. Basic methods typically
include adding and deleting elements, reporting the number of elements, looping

through all members of the collection, etc. Specialized collections may be created

30

which, for example, maintain ordering, use hashing, or perform type checking.

2.4 Related Work on Objects in Prolog

There are numerous object-oriented programming languages. Some, like
Smalltalk [38], are completely object-oriented. Many others graft object-oriented
constructs onto other languages, e.g. Loops [14] for Lisp, or Objective-C [27] and
C++ [97]. Another recently exploding line of research concerns languages for
querying databases of complex objects (see [8,6,4,13,21,30,47,49,56,74,99,103])
We concentrate here on related research concerning the combination of object-
oriented concepts with logic programming languages, recogmzing the potential

of such a hybrid paradigm for database query languages’.

2.4.1 Concurrent Logic Programming

An interesting approach, very different to that taken here, is based on Con-
current Prolog (CP) [91] and is being pursued by Shapiro [92], with syntactic
enhancements in the Vulean language (via a preprocessor) by Kahn et al. [46,98].
CP is based on the behavioral reading of guarded Horn clauses in which a goal
corresponds to a process and a conjunction of goals corresponds to a set of pro-
cesses. Shared variables between goals denote communication channels between

processes. The clause

7Prolog subsumes the relational data model and is more expressive in many ways than conven-
tional relational algebras and caleuli. With Prolog, we can represent richer relationships between
complex objects, supporting queries involving closures, metadata, non first-normal-form data,

etc.

31

A :-G | BL, ..., Bn. n>o0

is read as, “Process A can replace itself with a system of processes B1 through
Bn if the guard G is satisfiable”. Normally a process terminates when it replaces
itself with the empty process. A process survives to become a persistent object
by calling itself recursively.

The simplest objects in CP have two arguments. The first argument is a
shared variable or stream used to send messages to the object. The variable
is annotated read-only. The processes implementing objects are realized in an
And-parallel fashion and so, suspend until their read-only input variable is in-
stantiated. Thus an object remains inactive until it receives a message on its
input stream. Response to messages is via uninstantiated variables in the mes-
sage selector.

The second argument is private to the object and implements its internal
state. An object which changes its internal state does so by calling itself recur-
sively with its new state. More sophisticated objects may have more than these
two arguments. There may be additional stream channels for two way commu-
nication. The state may be represented in more than one argument. While CP
maintains objects with mutable internal state, it does so in a very different way
from that proposed in this dissertation. Objects do not have names or point-
ers; their identity is maintained by the message stream. Messages are sent by

unifying the uninstantiated head of the stream with the message. Broadcasting

32

messages is easy because multiple processes can share a read-only variable. Si-
multaneously sending different messages from two processes to a single object is
problematic. One will succeed but the other will not generally be able to unify
with the already instantiated head of the stream (unless the messages are the
same). When an object is shared by multiple processes, it must have a merge
process which merges the message streams from each of the clients into the one
input stream for the shared object. The merge process must order the messages
fairly so that all clients see the object in the same state.

Objects in CP are persistent only to the extent that processes are persistent;
that is, there are no long-lived objects with disk based representations. CP
implements object identity as changes to internal state which are visible to all
branches which hold the stream variable for the object. However, CP’s object
identity is not meant to span long periods of time. Our goal, by contrast, 1s
to implement objects which are persistent in the long term. We store object
representations in the database, activating them when they are addressed with
messages, and returning them to the disk when they are dormant.

Creation of an object B occurs in CP when an object A replaces itself with
B via

A - ...B...

The only name of the new object is the stream variable that it shares with its

And-paralle] siblings.

33

The following CP code defines a counter with methods clear (set to zero),

up, and show.

counter([clear|S], State) :-
counter(S?, 0).
counter{[up|S], State) :-
plus(State, 1, NewState), counter(S?, NewState).
counter([show(State) 5], State) :-
counter(S?, State).
counter([], State). % for termination

Upon receiving a clear message on the head of the input stream, counter re-
places itself with a new process having the same input stream but the new state
of 0. The up message causes the object to reduce itself to a call to plus with
the result of plus shared by the recursive call to counter. Receipt of a show(X)
message causes X to be instantiated to the current state and the process replaced
with another of the same state. Note that the correct operation of this counter
object depends on the implementation of the plus predicate; plus must suspend
until both of its first two arguments are available.

CP does not directly support inheritance though it can simulate class hier-
archies by linking objects in filter chains. If an object receives a message which
it does not support, it may forward that message to its parent, the next object
in the chain. The hierarchical relationships among objects are simulated by the
structure of the chain. Object creation is very expensive in CP with this kind of
inheritance as an object {process) for each level of the hierarchy must be created.

Data encapsulation is achieved because there is no access to internal state

other than via messages with uninstantiated variables. Component objects are

34

also completely encapsulated since they are only nameable via their shared in-
put variable which exists only in the protected state of the parent object. Even
though they possess internal state, CP objects operate without side-effects. After
processing each message, a process terminates replacing itself with a new pro-
cess reflecting the changed state avoiding some of the problems associated with
destructive assignment [3].

The object-oriented paradigm is particularly suited to CP since CP does ac-
tually pass messages between processes which act non-sequentially. CP and the
Vulcan language are particularly interesting because they realize true concur-
rency in the sense of Hewitt’s Actor model [24,43].

Programming in concurrent logic languages has been somewhat difficult; it
is hoped that the object-oriented framework will alleviate this problem. Vulcan
is an object-oriented language which compiles its more standard object-oriented
syntax into CP. It retains the advantages of Shapiro’s approach without the

verbose and awkward syntax of CP [46].

2.4.2 Zaniolo

Zaniolo proposes a limited form of object-oriented programming which is
implemented as a meta-interpreter in Prolog [102]. His work views an object
as a parameterized theory. It does not support objects with state and does not
hide implementations from clients. Zaniolo adds predicates with, isa, and :

to denote method definition, inheritance, and message passing respectively. An

35

object is defined via

object isa object2 with [method_list].
methodl: code() ...

methodN: code() ...

and a message sent to an object using the syntax

object : selector.

The infix operator : invokes the interpreter to locate code which implements the

method indicated by the selector. For example, the declaration

reg_polygon(N,L) with [(perimeter(P) :- P is NxL)]

is implemented by asserting

perimeter(reg_polygon(N,L), P) :- P is N=xL.

The interpreter first tries to unify a goal of the form object : perimeter(P)
with perimeter(object,P). If that fails, it tries with each of the ancestors of
object as indicated by the isa hierarchy.

Zaniolo’s system implements a flavor of specialization which is common in
mathematical models but is seldom discussed in an object-oriented context. Comn-
sider a parallelogram which has state variables (base, height).®* A rhombus also
with (base, height) is a special case of a parallelogram. A square with (side) is a

rhombus with (side, side); that is, we have rules

80f course another piece of information such as another side or angle is required to fully
specify a parallelogram. However, it is not necessary for purposes of calculating the area.

36

square(side) isa rhombus(side, side).
rhombus (base, height) isa parallelogram(base, height).

The parallelogram has a method “area” which computes area = base * height.
Objects of type square can inherit this method, but only via the isa rule which
tells how to translate the instance variables of the square into those of a paral-
lelogram. Unlike more common examples, the specialized class, square, did not
have additional variables, but rather fewer. However, it had a non-trivial isa
rule which specified how to translate the instance variables of the sub-object into
those of the super-class. Whereas in Concurrent Prolog, actual objects for the
ancestors must be created, in Zaniolo’s language, rules for creating the ancestors
are declared but the objects do not actually exist.

This approach to object-oriented programming in Prolog amounts to provid-
ing a message sending predicate with the semantics, “Given an object O, what
would be the response to a message M?” There are no object identifiers; objects

exist only in the message and thus cannot be shared and cannot persist.

2.4.3 McCabe

McCabe’s work [59] is similar to that of Zaniolo in that both view objects as
parameterized theories and both propose a meta-interpreter or translator from
their object-oriented language to a conventional Prolog. McCabe is primarily
concerned with the semantics of the logic programming equivalents of object-

oriented concepts. He examines a declarative first-order semantics, a higher order

37

meta-linguistic semantics based on Bowen and Kowalski [15], and an operational
semantics.

Objects are represented as class bodies, sets of clauses with a parameterized
label. The translation to flat Prolog involves name extending the clauses with
the label achieving a similar effect to our use of modules but without building

on top of an underlying modules facility. An example of a class body is:

animal{(Color,Transport) : {

color(Color).

transport(Transport).

lives_on(land) :- transport{walking).
lives_on(sea) :- transport(swimming).
lives_on(sky) :- transport(flight).

}

Inheritance relationships are expressed as class rules. For example, the rule

bird(Color) <= animal(Color, flight).

says, “A bird is an animal with attribute transport equal to flight.” or “Whatever
is true of flying animals is true of birds.” An instance of a particular object is

achieved by instantiating the parameter in a class label. For example,

toucan_Sam <= bird(multi_colored).

Structured objects can bhe created by using the labels of objects as parameters
to instantiate new objects. There are no objects with mutable state, but the effect
is simulated by allowing methods to return the label of a newly created object.
This is not the same as true mutable state as other holders of the original label

will not see the effect of the method which created a new object.

38

2.4.4 Spool

Spool is an object-oriented meta-interpreted extension of VM-Prolog done at
IBM Japan [33]. Similar to Smalltalk-80, a class has four properties: superclasses,

metaclass, instance variables, and methods. A Class definition takes the form

class Classname has Properties.

A method consists of a head and an optional body.

head :- body

where normal Prolog goal invocations ate distinguished by prefixing a “#”. In-

stance variables are accessed using the syntax

Name :: Value.

Sending a message is accomplished by

Receiver << Message

where the receiver may be bound or unbound thus allowing for anonymous mes-
sage passing. Anonymous messages allow a sender to ask, “Is there anyone who
can respond to this message?” Side effects are permitted; objects have mutable
state. State changes are not undone by backtracking.

Spool does not attempt to unify object-oriented programming with logic pro-
gramming as we do in this dissertation. It is simply an implementation of object-
oriented programming on top of Prolog. It does take advantage of Prolog features
to allow broadcast or anonymous messages as do CP and McCabe. Fukunaga re-

ports experience with the Spool language in building a program annotator which

39

works in both directions, producing annotations from a program or a program
from annotations. These experiences support the value of these broadcast and

anonymous message features of Prolog.

2.4.5 Bowen and Kowalski

Bowen and Kowalski propose a meta-level extension to Prolog in which the-
ories and names of theories are first-class objects which may be the value of
variables [15]. Later work by Bowen [16,17] shows how these extensions can rep-
resent frames, semantic nets, scripts and message passing. They view objects
as theories and compile message passing into calls to their demo predicate which

implements the proof theory. Thus,

send(<theory>, <message>, <response>)

is handled by the predicate

react(Theory, send(Destination_Theory, Message, Response),
send(Destination_Theory,Message, Response, Trace), true)

demo(Destination_Theory, receive(Message, Response), Trace).

where the Destination_Theory must contain a receive clause for the given mes-
sage. While ascending to second-order logic, this approach still does not permit
mutable state.

2.4.6 Biggertalk

Gullichsen {41,42] at MCC has proposed and prototyped an object-oriented

Prolog front-end to the Gordion object server [31]). Though similar in aim to our

40

work, Biggertalk is not built on top of a modules facility. Rather, it implements
its own encapsulation.

Instance variables are stored just like methods only the name of the object is
instantiated and the body of the axiom is simply true.

For each class, there is a clause of the form:

class(classname, [Super], [Subl, [Instances]).

which indicates the class’s name, list of super-classes, list of sub-classes, and list

of object instances. There is a clause of the form:

inst(objectname, [Classes]).

for each object instance which contains its name and list of classes (multiple
inheritance is supported), Methods are stored in tuples of the form:

method(Tag,Name,Head,Body) .

where the Tag is the unbound variable whiclh will be dynamically instantiated to
the name of the current object. Instance variables are stored just like methods
only the name of the object is instantiated and the body of the axiom is simply
true. Message passing is via an interpreter invoked by the send predicate.
Biggertalk takes advantage of the fact that Prolog has a printable external
representation to store objects on disk and thus permit them to persist beyond
a single session. The Gordion object server permits these disk-based object rep-

resentations to be accessed concurrently by Biggertalk and Lisp users on remote

41

workstations. The store message causes an object to write its external represen-
tation to the socket connected to the server. A retrieve message is forwarded
to the server causing the external representation to be returned to Biggertalk,
parsed by a definite clause grammar, and reconstructed in Biggertalk format.
The system will automatically retrieve an object which exists in the server and
not in Biggertalk if that object is sent a message. However, as in our work,

updated objects are not automatically replaced in the database.

2.5 Summary

In this chapter we have introduced logic programming and its partial real-
ization in the Prolog language. We have given a high level description of the
Warren Abstract machine and essential details of the Sicstus Prolog implemen-
tation which forms the basis for our extensions to Prolog. We then defined the
concepts of the object-oriented programming paradigm and reviewed other pieces
of related work concerned with combining Prolog and objects.

The next chapter presents the design and implementation of our Object-

Oriented Prolog language.

CHAPTER 3

Design and Implementation of Object-Oriented Prolog

3.1 Introduction

There are two fundamental ways to modularize programs. Programs may be
divided into packages of related functions usually called libraries (e.g. a math
library, a statistics library, a strings library). Alternatively, we may group func-
tions according to the set of objects they may be applied to. The same function
name may bind to different code when applied to different objects. The latter 1s
the object-oriented approach.

This chapter presents the overall philosophy, design, and implementation of
our Object-Oriented Prolog (O-OP) language. It will be seen that, in our view,
object-oriented programming in Prolog amounts to a modules facility for encap-

sulation plus a set of name binding rules for inheritance and late binding.

3.2 Philosophy of Objects in Logic

Central to object-oriented programmingis the equation Module = Class [62].
“Module” is an implementation level construct that governs scoping of names.

Class is a programmning abstraction that governs applicability of procedure im-

43

plementations to objects. OQur overall philosophy for combining object-oriented
organization with logic programming is to use a low-level modules facility to en-
capsulate objects and classes. That is, modules will provide “fire walls” around
code. An interpreter will provide structured binding of names across module
boundaries. Both the concepts of modularity and typing are conspicuously ab-
sent from Prolog.

There are a myriad of design decisions implicit in this design. The previous
chapter surveys previous “object-flavored” Prologs by other groups who have
made different design decisions which, in our view, have yet to produce a useful
programming language.

In making each decision, we are guided by a desire to create a more gener-
ally useful and usable programming language for implementing large systems,
while retaining the most important advantages of Prolog. To that end, we elect
to employ a strong concept of object identity, sacrificing logic programming’s
referential integrity. Referential integrity is of dubious value as it implies that
predicates at high levels of a program structure are cluttered with arguments
whose only function is to pass data between two low-level predicates. We base
our language extensions on Prolog rather than one of its concurrent (committed
choice) cousins in order to retain backtracking. We believe in the software en-
gineering methodologies espoused by the object-oriented paradigm: structured
design, data abstraction code reuse, rapid prototyping and iterative refinement,

and specialization. To this end, we support a message passing interpretation

44

of logic, encapsulation via modules, inheritance, multiple inheritance, default

values, super and self messages, and libraries of classes.

3.2.1 Message = Goal

In Object-Oriented Prolog, the database of axioms is partitioned into mod-
ules. A module constitutes a named set of axioms or theory. The axioms within a
theory comprise assertions about what is true for the model object! to which the
theory refers. These assertions consist of both instance variables which contain
the state of the object, and procedures that implement the methods.

Sending a message is interpreted as proving a goal. The recipient of a mes-
sage identifies the set of axioms that are to be used to prove the goal. The goal
itself is identified by the message selector. A message with selector g and argu-
ments (aq,4as,...,a,) to an object O is interpreted as a request to prove the goal
glai,az,...,a,) using the axioms in the theory which defines object Q. This is

the “message passing interpretation of logic” [59].

3.2.2 Inheritance

As a large number of objects share many of their methods, differing only in
their instance variables, the set of axioms which make up an object’s theory are
divided into two parts: the shared part and the private part. The shared part

contains the method definitions and are stored in the class module. The private

!We will sometimes use the term “model” interchangeably with “object”. Programming
language level objects correspond to models of application domain entities.

45

part contains the instance variables and are kept in a module for each object
instance. There is therefore a module for each class and for each instance of a
class.

The recipient of a message identifies the set of axioms which are to be used
to prove the goal indicated by the message. However, a module containing all of
the axioms to be used is never actually assembled as that would require making
a copy of all of the shared code for each object. Rather a set of inheritance rules
with run-time binding achieve equivalent logical semantics.

Classes are linked in an 2sa hierarchy; the process of deciding which module
in which to prove a goal involves searching the inheritance structure starting
with the class of the object that received the message, continuing upward until
a class defining code for the method is found or the root of the hierarchy is
reached. Failure to find an ancestor class implementing a method or failure (in
the Prolog sense) of the method itself results in the send goal failing and causes

backtracking.

3.2.3 Programming in the Large

While the logic and object-oriented paradigms may be freely mixed in O-OP,
it is natural to organize high levels of a program in an object-oriented (procedu-
ral) framework, while employing a more declarative style for the small, tightly
circumscribed methods which implement object behavior. That 1s, a program is

constructed first by identifying the conceptual entities in the problem domain.

46

These entities are grouped into classes and the operations on these classes iden-
tified. The classes are organized in an inheritance hierarchy to facilitate sharing
of code among similar objects.

Next, the methods themselves must be programmed; that is, the code must
be written that defines what each object type does in response to each type of
message which it is capable of receiving. Methods consist of a set of Prolog clauses
whose principle functor is the same as the message selector and whose body may
involve sending messages to other objects or may simply query or modify the
state of the recipient. The method clauses are treated non-deterministically
(with backtracking), permitting multiple solutions to a send goal. In this hybrid
paradigm each style may be used to its best advantage: Prolog for programming-
in-the-small, and objects for programming-in-the-large.

In summary, an object names a set of axioms with which goals can be proved.
The theory is partitioned into modules which correspond to the class hierarchy.

So, the basic building blocks of O-OP are a modules facility and a run-time

binder.

3.3 Design of Underlying Modules Facility

Each object and each class in O-OP has associated with it a module of Prolog
code/data. Since standard Prolog has no notion of modules, we first present our
design of a modules facility for Prolog.

The concept of reducing software complexity through modularization is well-

47

known and essential. Conventional languages have employed procedures and
abstract data typing techniques to achieve modularity. Program modules can
be constructed independently and composed to form larger systems. Access to
a module is permitted only via its published interface. Internal data structures
and procedures are invisible outside the module. Correctness and reliability can
be analyzed within modules in a way which is impossible in large, unconstrained
systems. The software design and implementation process can be facilitated
by transparently replacing initial, simple implementations of data structures or
services with more sophisticated versions which maintain the same well-defined
interface.

By contrast, relatively little work has been done on modularization in logic
programmung systems. In logic programming, all formulae are independent, any
relationships being established at run-time by inferencing [19]. This degenerate
case of modularity is a boon in prototyping small applications but renders Prolog

very difficult to use for moderate to large problems.

3.3.1 Name Conflicts

Name conflicts present the major problem. A Prolog procedure is identified
by its name and arity. When a large system is composed of several parts, possibly
written by different programmers, it is likely that the same names have been used
for different procedures. For example, one part of the program might implement

a tree and employ a procedure called delete/2 to delete a node from the tree.

43

Another part of the system might use a predicate called delete/2 to remove an
element from a queue. Depending on which part of the code was loaded first, one
part of the system or the other will use the wrong version of the delete procedure.
Even the one which uses the correct version might fail and backtrack into the
other. The basic principle of data abstraction has been violated, i.e. a program
cannot be composed out of building blocks without regard to how those pieces
are implemented.

The solution to this problem is to partition the global database of a Prolog
program into separate modules. Within a given module, the only visible predi-
cates are those defined in that module, explicitly imported into the module, or
perhaps inherited by that module. The scope of all the predicates defined in a
module is limited to the module itself unless those predicates are explicitly ez-
ported (made visible outside). The ability to limit scoping allows the hiding of
local objects, permitting the construction of modular software in which large sys-
tems are composed of independent components which may be integrated knowing
only their interfaces.

Adding modules to Prolog is essentially a naming problem. When a goal is
invoked, it names a procedure to be used to prove that goal. The naming mech-
anism of Prolog unifies the name of the called goal with the names of procedures
in its internal database. The naming mechanism must be made to implement
the scoping rules discussed above; that is, it must only unify with predicates that

are currently visible in the calling environment or contezt.

49

3.3.2 Naming in Modules

Let us derive these naming rules, first for a simple modular Prolog, and then
for object-oriented behavior. In standard Prolog, all procedures are visible to
unification. We want to group procedures into modules such that by default,
only those within the same module are visible. One way to look at this is to
say that procedure “p” in module “M” has a unique global name “M:p”. If all
clauses are written using only the global names of procedures, we achieve the
effect of normal Prolog without name conflicts.

‘We now add the notion of a context for resolving shorthand names so that

we can use “p” or “q” instead of “M:p” or “M:q”. The initial context consists of

the current module, a state variable of the computation. So if the name “p” is

used while the current module is M, the name refers to the global object “M:p”.

3.3.3 Exports and Imports

If all names used within each module are “name extended” with that mod-
ule’s name, then no predicate is accessible outside of its defining module?. The
information hiding in this scheme is absolute. We would like for modules to pro-
vide an interface; that is, a module should “export” a few entry points. These
exported procedures can be named or called from other modules. The hidden,

internal procedures can be called by the exported predicates but not directly by

2Within module M1 one might try to access the implementation of p in module M by calling
M:p. However, when module M1 is name extended, this reference becomes M1:M:p which does
not unify with M:p.

50

anyone outside of the module.

If a name is exported, we can think of it as being name extended with a
special prefix, e.g. x. So, if module M exports predicate p then all occurrences
of the name p within M are name extended to x:M:p. Another module, say M1
wishing to use the implementation of p exported by M must declare p to be
“imported” from M. If M1 imports p from M, all occurrences of p in M1 are
name extended to x:M:p such that they unify with the implementation in M.
The use of the x name extension allows the system to verify that any imported

predicate is actually exported by the corresponding module.

3.3.4 Implementation Via Name Translation

A name extension preprocessor system has been implemented by the author.
The preprocessor for pure Prolog works just as described above, translating a
modular program into ordinary Prolog. The advantage of such an implementa-
tion of modules is that it is easily portable to any Prolog environment. Most of
the effort in building the modules system was devoted to correctly handling the
extra-logical features of Prolog such as call, clause, assert, and functor.
These require run-time interpretation which is implemented by replacing these
calls with calls to a meta-interpreter. Similar independently developed name

translation strategies are used in Quintus Prolog [1] and in a recent paper by

Dietrich [29].

51

3.3.5 Further Name Binding

There is still one point in the above that causes problems. Consider the

following pseudo code:

beginModule M1
EXPORT g

g(x;Y) M f(x)s
£(X) - ..
endModule

beginModule M2
IMPORT g from M1

h(...) M S(W,Z)s

£(U) - ...
endModule

Module M1 exports g which module M2 imports. Internally, g calls £ for which a
definition exists in both M1 and M2. To which version of £ should the call bind?

In conventional languages it would be clear that the programmer of module
M1 intended for the local definition in M1 to apply and the alternative definition
in M2 is purely a coincidental name conflict. In object-oriented languages, on the
other hand, (assuming £ is a method and M2 inherits from M1) it is clear that
the definition in M2 is meant to override that in M1. That is, M2 objects are like
M1 objects except that a new definition of £ is used. This illustrates the essen-
tial difference between name binding in modular systems and in ob Ject-oriented
systems. It is to indicate which of these forms of name binding applies that

object-oriented languages use a different syntax to apply methods (the message

metaphor) from that used to call local procedures.

3.4 WAM Implementation of Modules

The Warren Abstract Machine provides no support for partitioning the Prolog
name space. In this section, we present our design and implementation of an

enhanced abstract machine supporting modules.

3.4.1 New WAM Architecture

The architecture of the Warren Abstract Machine presented in Chapter Two
is modified to support modules. The WAM’s global functor table is partitioned
into many smaller tables, one for each module. A new register called the Current
Contezt is added which points to the functor table of the current module, a new
state variable of the abstract machine. Unless otherwise specified by a program,
the new architecture treats the functor table pointed to by the Current Context
register as the global database of predicates. That is, the only visible predicates
are those in the functor table of the current module.

A given predicate may be simultancously visible in more than one module as
a result of its having been exported by one module and imported into others.
While there is an entry for an exported predicate in the functor table of every
module which imports it, there is only a single copy of the predicate’s code; all
functor tables point at the same code.

The module table provides access to information about modules. Entries are

53

accessed by hashing on the module’s name. An entry in the table consists of a
pointer to a module structure, and a delete bit used for deallocating modules. A
module structure stores the print name of the module, its property mask bits,

and a pointer to its associated functor table (see Figure 3.1).

curren _mo ule
WAM Register \

[[]
®
[intname .
prin ®
property_mask
*module_pointer E *funetor table ﬂ
delefte BIE Predicate entry _E _>Ccde
. Module Structure Area
® (per module) :
® []
Module Table Functor Table
(per module)

Figure 3.1: The Architecture of WAM Modules

3.4.2 Loading Modules

When the WAM boots, it first allocates all of the data areas (stacks, atom
table, etc.). It then creates the “built-in context”, its initial working module.
All of the Prolog built-in predicates are loaded into the built-in context. For
predicates that are written in C, an entry is created in the functor table for

the built-in module with a pointer to the compiled C routine and a flag set

54

indicating a C built-in. The compiled code for built-in predicates written in
Prolog is consulted and an entry created in the functor table for each predicate.
The built-in module is not visible to users but remains accessible to the system
after booting is complete.

In the final stage of booting, the WAM creates the “user” context which is
the initial module. All code that is not within a begin_module/end module pair
is loaded into the user module. If none of the modular Prolog features are used,
the user module behaves just like the global name space of conventional Prolog.

The user module, and all subsequent modules, are initially created by copy-
ing the built-in module. In this way, modules may be created rapidly and are
initialized with access to all of the Prolog built-in predicates. Measurements of
the unoptimized prototype implementation show that a tight loop of Prolog code
can create 100 modules per second on a Sun 3/60.

When consulting a file, a :-begin module(name, [imports], [exports])
may be encountered. There is no nesting of modules permitted; if the loading
context is anything other than “user” when a :-begin_module directive is con-
sulted, an error is generated. If the module does not already exist, it is created
by allocating a slot in the module table, setting it to point to a new module
structure, and setting that to point to a new functor table. If the module exists
and the module does not have the “multi-file module” property set, an error is
generated indicating a module name conflict.

An entry is created in the functor hash table for each predicate in the List

59

of imports. If the module from which each predicate is imported already exists,
the functor table entry is set to point to the predicate within that module. Thus
the name is bound at load time. If the module has not yet heen consulted, an
initially empty module is created and a slot in its functor table allocated to the
imported predicate. The initial instruction of the predicate is set to “undefined”
until the code is eventually loaded. When code is eventually consulted for a
predicate for which a dummy entry has already been created {as a result of its
having been imported by another module), the loader checks that the predicate
is in fact exported by the defining module. If it is not, an error is generated,

A flag indicating that the entry point is exported is set for every predicate in
the export list. This flag is checked if the predicate is ever imported by another
module.

All hash tables (module table, functor table, etc.) are expandable in size.
Whenever they reach one-half full, their size is doubled. All pointers into tables
are implemented as offsets from the top of the table to allow relocation. Thus,
the only limit on the number of modules or the number of predicates in modules
is the memory available on the machine and the number of bits used for offsets

into the tables.

3.4.3 Procedure Calls and Backtracking

The contents of the Current Context register must be saved in the environ-

ment on the stack when a procedure is called. The register is then reloaded with

56

the context of the called predicate. The new context may be stated explicitly via
the infix colon operator (Module:Predicate). However, even when not explicitly
stated, the context of a subgoal may differ from the calling environment if the
called predicate is imported from another module. Imported predicates must be
run in their defining environment so that names used internally will bind cor-
rectly. While a predicate may be pointed at by many functor tables, the name
of the defining module is stored in the header information and can always be
used to obtain the “home” module (available from Prolog via the new built-in
predicate_owner(Functor,Arity,HomeModule)). The Current Context regis-

ter is restored from the environment upon backtracking or subgoal termination.

3.4.4 User Interface to Modules Implementation

Figure 3.2 summarizes the new built-in predicates which provide the user
interface to the modules system. The interface is a superset of that supported
by Quintus Prolog.

Figure 3.3 summarizes the built-in predicates whose behavior is modified by

the modules facility.

3.5 Design of Object-Oriented Prolog

We now present the design and implementation of the Object-Oriented Prolog
language. It has been implemented on Sicstus Prolog’s Warren Abstract Machine

extended with modules as described above. It has also been ported to Quintus

57

-begin_module(M,(I],[E]) Directive in consulted code. All of the code be-
tween this directive and the next :-end_module(M) is to be asserted into
the module M.

:-end_module(M) Stop asserting clauses into module M.

--import(M:P) All uses of the name P in the current module are to refer to
the definition of P in module M.

:-export(P) The definitions in the active module of the predicates in the list P
are available for import by other modules.

new_module(M) Create a new module named M. Module creation is a side
effect not undone on backtracking.

module(M) Switch context to module M creating it if it does not exist. Context
switch is backtracked, but creation is not.

use_module(M) Import into the active module all predicates exported by mod-
ule M. The module M is loaded from the file of the same name in the di-
rectory named by the Unix environment variable LIBRARY if it is not a
current module.

ensure loaded(M) For Quintus compatibility. If module M is not already
loaded, load the file of the same name from the library directory.

use_module(M,L) Import into the active module the definitions found in mod-
ule M of the predicates in the list L.

active_module(M) Unify M with the name of the module from which the ma-
chine is currently executing. Succeeds once only.

current_module(M) M is the name of an existing module. If M is instantiated
test if module M is in memory. If M is unbound, then backtrack through
all modules currently in memory.

M:P P is implied by the axioms visible in module M. M and P must be non-
variable.

predicate_owner(F,A,M) Module M defines a predicate with functor F and
arity A.

Figure 3.2: New Built-in Predicates for Modules

58

current_predicate(Name,Head) Name is a predicate in the current module
and Head is its most general form.

clause(Head,Body) Similar to current_predicate. Scope limited to current
module.

listing Now lists only those clauses in the currently active module. mlisting is
similar to listing except it does not list the bodies of imported predicates
(whose implementation should not be visible). Instead it prints the clause
head and the name of the source module.

assert(Clause) The clauseis added to the set of axioms for the currently active
module. If the clause is of the form m:p, p is instead asserted into module
m.

retract(Clause) Similar to assert.

predicate_property(Head, Prop) Now has the additional properties
imported and exported.

Figure 3.3: Built-in Predicates Modified by Modules Facility

Prolog.

3.5.1 Object Representation and Identity

An object is represented as a module of Prolog code. Objects do not export
any predicates; thus unless the “backdoor” naming mechanism (the : operator)
is used, there is no access to object internals. Use of : could be restricted to
maintain absolute encapsulation, although in the current system, encapsulation
is obtained by convention.

Objects are named by the corresponding module name. When an object is
instantiated, the creator may assign it a meaningful name (object-id). Alterna-

tively, a unique name may be assigned by the system. Unlike most of the other

o9

object-oriented Prolog’s reviewed in the previous chapter, objects retain their
identity despite changes in their state. Consequently, state changes are visible
to all holders of an object’s identifier.

Instance variables are represented as Prolog clauses in the object’s module.
The clause’s functor is the name of the instance variable; the arguments store
the value of the variable. As there may be more than one argument, an instance
variable is, in general, a vector of values. By convention, the body of an instance
variable clause is typically empty (true) but the system does not prevent non-
empty bodies. There may be more than one clause with the same functor; the
multiple values for instance variables are discovered via backtracking.

All objects have at least one distingnished instance variable, the isa-pointer.

The isa-pointer contains the object-id of the instance’s class.

3.5.2 Class Representation

Classes in O-OP are also represented as objects and hence have a correspond-
ing Prolog module whose name is the same as the class name. The role of a class
is to store the predicates that instances of the class should inherit. Class objects
also play the role of factories[27] for creating instances of their class.

Each class is actually made up of two objects reflecting these two roles. The
first acts as the repository of instance methods. The second is the repository for
class methods, the methods for messages to which the class itself responds.

All class objects have two distinguished instance variables. Like all objects,

60

class objects have an isa-pointer, the pointer to the module from which it should
inherit method code when addressed with a message. When a class object re-
celves a message (usually a request to create a new instance), it inherits its class
methods from its corresponding factory object. Thus the isa-pointer for a class
points to the class’s factory object (see Figure 3.4) where the class methods are
stored. All class objects also have a super-pointer which contains the object-id

of the class’s super class.

isa (student employee). super (employee) . super (emp_factory).
oid{ol). - isa{s_emp_factory). isa (ocbiject).
firstname {jack} . oid{student_employee). old(s_emp factory).
lastname {smith) . method{(} :- ... new{) - ..,

Medule = ol Module = student_employee Module = s_emp_ factory

Figure 3.4: Modules for Object Instance, Class, and Factory

3.5.3 Instantiation

Instances of objects are created at run-time by sending a new message to
a class object. What actually happens when a class receives a new message is
entirely np to the programmer of the class. Even the form of the message, its
functor name and number of arguments depends of the implementation of the
factory methods, However, a base instance creation method is provided by the

built-in Object-object and may be inherited by all classes.

61

This basic method takes two arguments:

new(ObjectID, [InstanceVariables]).

The method creates a new module, generating a unique name and binding
DbjectID to it if ObjectID is uninstantiated, or using its value for the mod-
ule name if it is bound. The distinguished instances variable isa{Self) is first
asserted into the new module followed by each element of the list of initial in-

stance variables®,

3.5.4 Creating Classes

In addition to creating new instances, a class is also responsible for creat-
ing new subclasses. A new subclass is created by sending an existing class a
new_class message. If the class specializes the method, code for it is inherited
from the class’s factory object. Otherwise, as is normally the case, the method
1s inherited from above, often from the built-in Object-object.

The built-in method takes four arguments:

new_class{classname,
[InstanceMethods],
[ClassMethods],
[InstanceVariables]).

The method creates a two new modules; the first is called by the name supplied
in the first argument, the second by an internally generated unique identifier.

The first module is the class object for the new class. Its isa-pointer contains

3581f is the object-id of the original recipient of the message; in this case the class of the new
object instance.

the name (object-id) of the other new module and its super-pointer contains the
object-id of the class which received the new_class message. The value of the
super instance variable for the new factory is the factory object of the message
recipient and the value of its isa instance variable is the object-id of the root
object.

There is also a five argument version of the new_class method provided by
the system’s root object. The arguments are the same as above except that the
super class of the new class is inserted as the second argument. This argument
may be list valued to create classes with multiple inheritance (see section 3.5.6).

The second argument of the new_class message contains a list of the methods
which instances of the new class are to inherit. These clauses are preprocessed
to add an extra argument (see section 3.5.8) and asserted into the new class
module. The third argument contains the class methods for the new class. These
are similarly preprocessed and asserted into the new factory module. The final
argument contains class variables (see section 3.5.9) and local predicates used
by the methods. These are not preprocessed but asserted directly into the class
module.

Having described how objects and classes are represented, we are now in a

position to describe how the interpreter handles inheritance.

63

3.5.5 Sending Messages

Object-Oriented Prolog is a superset of standard Prolog; existing programs
not using the object-oriented features still run and may be embedded within
new object-oriented programs. Since all one can do to an object is address it
with messages, the send/2 predicate is the only user-vistble addition to standard
Prolog.

The infix predicate send/2 may be freely embedded in a program. Informally,
the semantics of a goal send(0Object, Message(Args)), are “prove the goal
Message with arguments Args in the context associated with Object.” For each
object instance, there is a module of Prolog code which contains the instance
variables of that object, including the object identifier of its class (the “isa”
pointer). For each class, there is also a module containing both instance variables
(in particular a pointer to its super class) and method code.

When Prolog tries to prove the goal send(0bject, Message(Args)), it first
locates the module associated with Object and uses its “isa” pointer to locate
the module associated with that object’s class. If an implementation for the
Message(Args) occurs in that class, it is used to attempt to prove the goal and
may succeed (and thus bind some of the arguments) or fail causing backtracking.
If none is found, the interpreter looks for the method in the super class. The

search continues up the hierarchy until an implementation is found or the root

object is reached, causing the send goal to fail, prompting backtracking.

64

RootObject (@

Instance
Methods

Factory
Methods

VehicleClass (3

Instance
Methods

Factory
Methods

CarClass (3
Instance Factory
Metheds Metheds

MyCar Ch Instance
Variables

isa (@

Figure 3.5: Structure of Object System

65

%

% Send a message to an object. Increase the arity of the

h message by 1. This adds the identity the recipient to the
% message for future reference.

A

send(Object ,Message) :-

create_message(Message,Dbject,Newmessage),
Object isa Class,
inherit(Class,Newmessage).

Figure 3.6: Implementation of Send

Figure 3.6 shows part of the implementation of the built-in send predi-
cate. Create message binds Newmessage to a transformed version of the input
Message which differs only by the addition of an extra argument containing the
object-id of the object which received the message (see section 3.5.8 concerning
the implementation of self messages). The isa/2 predicate instantiates Class
to the object-id of the class of the instance receiving the message. Failure of the
isa goal is discussed in section 3.5.11. Inherit then tries to inherit Newmessage
from that class (see figure 3.7).

The first clause for inherit checks whether the module for the specified class
actually contains method code whose head unifies with the message. If there
is such a method, a cut commits to the implementation of the method in the
specified class, causing any implementations in ancestor classes to be overridden.
Then Class:Message tries to prove the goal specified by the message using the

implementation found in the class module.

66

% Try to inherit the method from the superclasses.
A We give up when the superclass of an object is itself.

inherit(Class,Message) :-

Class:current_predicate(_, Message),

1
sy

Class:Message.
inherit(Class,Message) :-
Class super Super,

Class \== Super,
inherit(Super,Message) .

Figure 3.7: Implementation of Inheritance

If Class:current_predicate(M,Message) fails, no implementation of the
method exists in this class and one must be inherited from an ancestor. The
first clause fails and the second clause is tried after backtracking. Class super
Super binds Super with the object-id of the super-class of Class. Class \==
Super makes the check that we have not reached the root of the inheritance
hierarchy (see figure 3.5). If the root is reached, the message goal fails, causing
backtracking. Otherwise, via the final clause, we try to inherit an implementation
from the super class.

In summary, the interpreter always follows the isa-pointer to find the message
recipient’s class. If the class does not implement the method it continues inher-
iting by following the super-pointer. Referring to figure 3.5, when the instance

MyCar receives a message, the interpreter looks for the method in the module in-

67

dicated by the isa instance variable (CarClass in this example). If the method
is not found there, the interpreter continues looking up the hierarchy formed by
the super instance variables until the method is found. The search fails when a
class’s super variable names itself, namely at the Object object.

Note that users are not intended to send messages to factory objects, only to
inherit from them. Thus the isa variable for all factories contains the object-id
of the root factory. That is, factories inherit only those methods which all objects

have in common such as house-keeping methods like delete.

3.5.6 Multiple Inheritance

Multiple inheritance is supported via backtracking. There may be more than
one “isa” or “super” instance variable in an object. Via the multiple solutions
to the isa predicate in figure 3.6 and the super predicate in figure 3.7 the
interpreter backtracks through the multiple inheritance paths if more than one
exists. Multiple inheritance is normally used to allow an object to inherit the
methods of two different classes. Usnually, there is no overlap in the methods
provided by the multiple ancestors. However, if a name conflict does occur, the
ordering of isa and super clauses determines the order in which results are found.
The cut inside the inherit/2 predicate (figure 3.7) ensures that if more than
one ancestor implements a method with the same name, only the first method

found 1s used.

68

3.5.7 Multiple Solutions

4, we do

While we do not permit multiple solutions via multiple inheritance
allow non-determinism within methods. Send goals may backtrack, leading to
the discovery of multiple bindings for message arguments. There may be several

clauses for a given instance variable providing multiple bindings for a single

message.

3.5.8 Self Messages

The programs which implement methods are written in the context of the
class of all objects to which they apply; the programmer does not know the
identity of the object to which the method is applied. In fact, it will be applied
to many different instances. Method execution is triggered by the receipt of a
message by an instance object. Methods must have a way to refer to Self, the
object on whose behalf they are running. The most common reason to refer to
Self is to implement one method in terms of others. For example a bank account
class might have a method which deposits interest in an account. This method
is implemented by sending two messages to Self, first to query the balance and
then credit the account.

The object-1d of the instance on whose behalf a method is triggered is always

added as a hidden additional argument to method predicates by the system.

4This is a somewhat arbitrary decision at this point and could be changed by the removal of
a single cut. To date, little use has been made of multiple inheritance so an informed choice has
yet to be made,

69

Thus if the programmer has written a method pay_interest(Rate), what is
actually stored in the class module is a predicate pay_interest(Rate, Self).
Inside the method, a variable is bound to the object-id of Self using the clause
sender(Self). When the method is loaded, the extra argument is added to
the head, Self is bound to the extra argument, and the clause sender(Selt)
replaced with true. When a message is sent, it is similarly transparently extended
with the hidden arguiment containing the identity of the recipient, thus allowing

it to unify with the method.

3.5.9 Inheriting Instance Variables

When method code stored in a class is running, it is doing so on behalf of an
object instance which received a message. All references to the instance variables
within the method must bind to values in the context of the message recipient.
Default values for instance variables may also be inherited from an object’s class.
Thus instance variable binding is much like message binding with inheritance only
the search starts with the instance itself and not with the instance’s class.

Access to instance variables is via the built-in infix predicate inst/2 which
acts very much like send. The variable Self is instantiate to the object-id of
the message recipient just as with self messages above. The value of an instance
variable named, for example, instname is then unified with the variable Value
via Self inst instname(Value).

The implementation of Inst (figure 3.8) also greatly resembles that of send.

70

h Inherit an instance variable. Different from send in that
A we check for the instance variable in the object instance
% first, and then try to inherit from ancestor classes.

inst(Object,VariableName) :-

Object:current_predicate(_, VariableName),
!

Object:VariableName.
inst(0bject,VariableName) :-

Object isa Class,
inherit(Class,VariableName).

Figure 3.8: Implementation of Instance Variable Access

The first clause checks whether the instance variable is stored in the instance’s
module. If it is (current_predicate succeeds) the code cuts to avoid inherit-
ing any further and unifies its second argument with the stored instance vari-
able. If no clause for the instance variable was found in the instance’s module
(current _predicate fails), the second clause instantiates Class with the class
of the object and tries to inherit the instance variable from above, using the same

inherit/2 predicate used by send (figure 3.7).

3.5.10 Super Messages

When a method in an ancestor class is specialized by creating another of the
same name in a lower level class, the lower level version overrides the higher.

However, it is sometimes convenient to implement a specialized method in terms

71

of the version it is specializing. However, it is impossible just using send to call
the higher level method. The interpreter would repeatedly bind to the specialized
version creating a loop.

In order to call an over-ridden method, some object-oriented languages pro-
vide super messages. In O-OP we provide a version of send called sendsuper. It
behaves just like send only it begins trying to inherit the method from the level

above the class in which it is used. sendsuper only works for messages to Self®.

3.5.11 Persistent Objects

The implementation of send shown in figure 3.6 treated only the case of
active, in memory, objects.

As presented thus far, objects are represented as modules of Prolog code
within the WAM. With each new session, all of the objects making up an appli-
cation program have to be recreated by sending messages to the builtin classes,
At the end of the session, the states of the objects are lost and the are recreated
in their initial state by the next session.

Object-Oriented Prolog has a facility whereby objects may be made persis-
tent. That is, their identity and state may survive the end of the session in which
they are created. When an object receives a save message the method inherited

from the Object-object causes a summary of the current state to be recorded

5In the current implementation, sendsuper requires three arguments: the object-id of the
gsuper class, the message, and the object-id of Self. In principle, however, only the message is
required.

on disk. As usual, intervening classes may further specialize the save method.
Subsequent changes to the object’s state are not reflected in the disk resident
version until another save message is received.

Objects for which a main memory representation (module) exists are called
active, An active object may become dormant by saving its state and then
sending it a drop message. The drop method throws away the in memory rep-
resentation of the object.

Dormant objects are reactivated via a revive message which locates the
object’s image in the system’s database directory and creates the main-memory
representation®. Alternatively, dormant objects may be addressed just as active
objects using their object identifier. If a dormant object is sent a message, the
system transparently reactivates it and delivers the message to the object. Thus

the environment incorporates a very primitive object-oriented database.

3.5.12 Mutable State

Changes in object state in Object-Oriented Prolog are represented by alter-
ing the value of instance variables. As destructive update has no meaning in
pure Prolog this must be accomplished by retracting the old value and asserting
a new value. In most Prolog implementations (including this one), assert and
retract are relatively slow operations. Applications like transaction processing

with frequent update characteristics may be impractical. However, most appli-

5The revive method is cutrently implemented as a builtin addition to the send predicate and
thus cannot be specialized.

cations (our modeling environment in particular) tend not to update frequently,
but rather perform complex queries on mostly static objects. The alternative
of having the representation of objects returned to clients as in the majority of
the related projects reviewed in Chapter 2 sacrifices object identity 48] and is

therefore judged inferior.

3.5.13 Collection Classes

A very useful programming technique is the ability to group a set of objects
into a unit that can be manipulated as a whole. Such a capability allows the
functioning of an object-oriented language as a data model for databases. For
this purpose, the system provides a Collection Class. Collections are a convenient
way to implement many complex (or composite) objects allowing us to model
such things as file folders, part bins, networks of quenes, ledgers, symbol tables,
relations and dictionaries.

An instance of a Collection Class is an object whose only instance variable is
a list of other objects. The class provides basic methods to enumerate (backtrack
through) the elements of a collection, insert a new object into a collection, remove
an existing object from a collection, broadcast a message to all elements of a
collection, etc. Thus a collection class provides a rudimentary object-oriented

database querying facility.

74

3.5.14 Compiling Away Search

We stated that late binding was fundamental to the object-oriented paradigm.
That is, while the programmer names a function to be applied to an object, the
binding to the code that performs that function is not made until run-time.
This maintains great flexibility to make localized changes in a software system
without modifying or recompiling other parts of the system which might be
effected. However, this flexibility coines at the expense of performing a search of
the inheritance hierarchy at run-time.

This search can be avoided with minimal impact on flexibility by compiling

the inheritance. If we are willing to give up the ability to change the structure
of the inheritance hierarch in a particular part of the graph, we can partially
evaluate the program with respect to the current graph, That is, all calls to send
can be replaced by calls to the appropriate predicate in the module from which
the method should be inherited. This partial evaluation strategy can be used
to improve the performance of Object-Oriented Prolog running on top of any
modular Prolog (e.g. Quintus).

An even higher performance approach may employed in our WAM-based Pro-
log engine. During the compilation phase, we can add to the module which con-
tains an object’s instance variables entries for all of its methods. These entries
point to the implementation in the module from which they should be inher-

ited. Thus the search is performed at compile time. A single copy of method

75

code, stored in the class module, is still shared by all instances; multiple copies
are not made; rather, the method is imported into the instance module creating
multiple pointers to the same code. This optimization has not yet been imple-
mented as the performance improvements for current applications (see Chapter
6) are considered small compared to other known potential improvements in the

applications themselves.

3.5.15 Mixing Modules and Objects
We have said that there were two fundamental ways to modularize programs:
1. by grouping related functions {eg. a math library), or
2. by grouping functions by the type of object to which they may be applied.

While the second is the fundamental organizing paradigm of object-oriented pro-
gramming, we do not have to rule out using the first as well. It is likely to be
the case that the developer of an O-OP program would like to access predicates
in existing libraries (e.g. the Quintus library [1]). There is no difficulty with

importing predicates exported by libraries into class modules.

3.6 Example of Object-Oriented Prolog Code

The following example is due to Robert Lindell. Figure 3.9 shows O-OP code
to define the class of all antennas. A new class is created by sending a new_class

message to the super class which the newly defined class is specializing. In this

case, antenna has no super class other than the system defined root object. The

i~ object send new_class(
%
% Class name (new class ID)
%
antenna,
%
% Instance Methods
%
[(gain(Wave,Gain) :-
sender(Self),
Self send capture_area(Wave,Area),
Gain is 4 * 3.1415 * Area / (Wave * Wave))],
%

% Class Methods

%

1,

%

% Instance variables
%

1.

Figure 3.9: The definition of the Antenna class.

antenna class defines only the gain method which unifies Gain with the gain
(ratio of output power to input power) for a given wavelength (Wave). The gain
method is defined in terms of the capture_area method which depends on the
specific geometry of the antenna.

Figure 3.10 shows the implementation of the class of parabolic antennas,
a subclass of antennas. The subclass defines the capture_area method as a
function of the instance variables diameter/1 and efficiency/1.

When the system consults the definitions of the antenna and parabolic an-

77

:— antenna send new_class(

%
%
[

Class name (new class ID)

par_antenna,

A
A
A

Instance Methods

[(capture_area(Wave,Area) :-

h
pA
A
[1,
[
4
%

[1).

sender(Self),

Self inst diameter(Diam),

Self inst efficiency(Eta),

Area is 3.1415 * Diam * Diam * Eta / 4)],

Class Methods

Instance variables (diameter/1, efficiency/1)

Figure 3.10: The definition of the Parabolic Antenna class.

78

tenna classes, it creates the corresponding class and factory objects. Now, to
create an instance of a parabolic antenna, we send a message to the parabolic

antenna class object:

| ?- par_antenna send new_object(0id,
[efficiency(0.6),diameter(5)]).

Since neither the parabolic antenna nor the antenna classes specialize the new_-
object method, the built in implementation is inherited from the root object.
The method creates a new module, instantiating 0id with the newly generated
unique object-id of the new object. In our example the new object-id is 00. It
then asserts the two instance variables into the new module.

We can now exercise the new object by sending it a message:

| ?7- o0 send gain(0.075,G).

Figure 3.11 shows a partial trace of the system sending the above message (some
lines have been deleted for compactness). It first uses create_message to add
the object-id of the recipient object, o0, to the message (line 2 in figure 3.11).
Next, it finds the class of 00 is par_antenna (16) and tries to inherit the message
from there (18). Failing to find an implementation of the gain method in the
par_antenna module (19), it obtains the super class, antenna and tries to prove
inherit there (22). The interpreter finds the gain method in the antenna class
and calls it (26).

The gain method, in turn, sends the capture_area message to Self (27). The

method is inherited from the parabolic antenna class (44). It first retrieves the

79

| 7- 00 send gain(0.075,G).

11 Call: o0 send gain(0.075,95) ?

2 2 Call: create_message(gain(0.075,95),00,231) 7 s

2 2 Exit: createamessage(gain(0.075,.95),00,gain(0.075,95,00)) 7

16 2 Call:
16 2 Exit:

18 2 Call:
19 3 Call:
19 3 Fail:
19 3 Call:
19 3 Exit:
21 3 Call:
21 3 Exit:
22 3 Call:
23 4 Call:
23 4 Exit:
25 4 Call:
26 5 Call:
27 6 Call:
28 7 Call:
28 7 Exit:

42 7 Call:
42 7 Exit;

44 7 Call:
45 8 Call:
45 8 Exit:
47 8 Call:
48 9 Call:

49 10 Call:
50 11 Call:
50 11 Exit:
52 11 Call:
53 12 Call:
53 12 Exit:
52 11 Exit:
49 10 Exit:
54 10 Call:
54 10 Exit:
59 10 Call:
59 10 Exit:

48 9 Exit:
47 8 Exit:
44 7 Exit:
27 6 Exit:
60 6 Call:
60 6 Exit:
26 5 Exit:
25 4 Exit:
22 3 Exit:
18 2 Exit:

o0 isa 2377 s
o0 isa par.antenna 7

inherit(par_antenna,gain(0.075, 95,00)) ?

par_antenna : current_predicate(_1191,gain(0.075,95,00)) 7 s
par_antenna : current_predicate(.1191,gain(0.075,95,00)) ?
par_antenna super 1189 7 s

par_antenna super antenna ?

par_antenna \== antenna ?

par_antenna \== autenna ?
inherit(antenna,gain(0.075,95,00}) ?

antenna : current_predicate(.1571,gain(0.075,95,00)) 7 s
antenna : current_predicate(gain,gain(0.075,95,00)) 7
antenna : gain(0.075,95,00) ?

gain(0.075,.95,00) ?

00 send capture_area(0.075,.1911) ?
create_message(capture_area(0.075,1911),00,2009) ? s
create_message(capture area(0.075,1911),00,capture area(0.075,1911,00)) ?
00 isa 2015 7 s

00 isa par_antenna ?

inherit(par_antenna,capture area(0.075,1911,00)) ?
par.antenna : current_predicate(_ 2969 capture area(0.075,1911,00)) ? s
par_antenna : current_predicate(capture_area,capture area(0.075,1911,00))?
par_antenna : capture_area(0.075,.1911,00} ?
capture_area(0.075,1911,00) ?

o0 inst diameter(_3308) 7

o0 : current_predicate{ 3414,diameter(3308)) 7 s

o0 : current_predicate(diameter,diameter(_3308)) ?

o0 : diameter(_3308) ?

diameter(_3308) 7

diameter(5) ?

o0 : diameter(5) ?

00 inst diameter(5) ?

00 inst efficiency(-3316) 7 s

00 inst efficiency(0.6) ?

1911is 3.1415*5*5* 0.6 / 47

11.7806251is 3.1415*5* 5% 0.6 / 47
capture_area(0.075,11.780625,00) ?
par_antenna : capture_area(0.075,11.780625,00) ?
inherit(par_antenna,capture_area(0.075,11.780625,00)) ?
o0 send capture_area(0.075,11.780625) ?
951is 4 * 3.1415 * 11.780625 / (0.075 * 0.075) 7
26317.392666G6667 is 4 * 3.1415 * 11.780625 / (0.075 * 0.075) ?
gain(0.075,26317.39266666667,00) ?
antenna : gain(0.075,26317.39266666667,00) ?
inherit(antenna,gain(0.075,26317.39266666667,00)) ?
inherit(par_antenna,gain(0.075,26317.39266666667,00)) ?

1 1 Exit: o0 send gain(0.075,26317.39266666667) ?
G = 26317.39266666667 7

Figure 3.11: Trace of message inheritance.

80

values of the diameter and efficiency instance variables (49 and 54). These are
found in the object module itself. The capture area is then calculated (59) and
returned; the capture_area message succeeds. The value of capture area 1s then
used to calculate the gain {(60). The original gain message succeeds instantiating

the unbound variable G in the message to the result (1).

3.7 Summary

This chapter has presented our strategy for exercising the best features of
both the object-oriented and logic programming paradigms in a single language.
We designed and built a modified version of the Warren Abstract Machine to
support a high performance modules facility for Prolog. We then implemented
the Object-Oriented Prolog language using the modules facility for encapsulation
and an interpreter for run-time binding and inheritance.

The O-OP langunage supports most common object-oriented concepts: super
messages, sclf messages, mutable state, multiple inheritance, default class vari-
ables, object persistence. In addition, several features unique to the combination
with Prolog are supported: multiple solutions, backtracking across messages,
enumerating members of a collection via backtracking. An example showed the
definition of a class and its super class and presented a Prolog trace of the inter-
preter’s execution as an instance object was sent a message.

The next chapter presents the formal abstract semantics of Object-Oriented

Prolog.

81

CHAPTER 4

Formal Semantics of Modular and Object-Oriented Prolog

4.1 Conventional Prolog Semantics

Horn clause logic program semantics are usually expressed in terms of the
model theory or fixpoint theory of first-order logic. Briefly, an interpretation of a
program P is a subset of the Herbrand Base of P (the set of all goals formed from
the predicate symbols, constants, and function symbols in P). An interpretation,
I, is a model for P if for each ground instance of a clause A «— B;,..., B, in
P,AeIif By,...,B, are in I. The intersection of two models is also a model.
Most importantly, the intersection of all models is a model, called the minimal
model. The minimal model, M(P), is the declarative meaning of P [7,32,55].

In fixpoint semantics, the meaning of a program is viewed as the input-output
relation as expressed by the least fixpoint of the transformation associated with
the program [95]. Given a program P, there is a mapping on interpretations

denoted Tp : I — I defined:

Tp(I) = {A in B(P) such that A « By,...,B, n > 01is a ground instance of a

clause in P and B,,...,B, arein I}.

Tp(I) simply models a single deduction step. We can define the exponentia-

tion of T to apply the function to an initial interpretation multiple times. As Tp
is continuous and hence monotonic (I) C I, = Tp(I;) C Tp(l,)), by the Tarski
Fixed Point Theorem, T¢ = fia(Tp) = M(P) (where w is the least infinite ordi-
nal). This important result relating the model theoretic (declarative) semantics
with the fixpoint (denotational) semantics is due to Van Emden and Kowalski
[32].

Unfortunately, these “logical” semantics fail to account for the way Prolog is
actually implemented and used in practice {cuts, depth first search, var check,
database access). An operational semantics can come much closer to modeling
practical logic programming languages.

Operational semantics also define the meaning of a program as its input-
output relation, but as computed by the program causing state transitions on
an abstract machine. The machine may or may not model a practical imple-
mentation of the language. Operational semantics for a logic program P are
traditionally expressed as the set of goals G (a subset of the Herbrand Base)
such that Vg € G, P L g where X 1 Y means there exists a derivation of ¥’
from X. When the program is interpreted by SLD resolution [81}, X L ¥ means
there exists a refutation of X A Y and it can be shown that the set G is equal
to the minimal model M(P) [32].

Once again, however, the traditional semantic basis for logic programming is
inadequate for modeling Prolog as it is most often used. In particular, there is

little point in basing our semantics for object-oriented and modular Prolog on

83

the original logical semantics as we make valuable use of cuts, goal ordering, and
access to the database. Further, in practice, we are concerned not simply with the
“success set” of a program, but with the set of substitutions or variable bindings
which result in the refutation. We will therefore define our operational semantics
using a more sophisticated abstract machine and our denotational semantics
using the Strachey-Stoy style more commonly used for specifying conventional

languages.

4.2 Relation to Other Work

There are several proposals for extending the semantics of logic programming
to accommodate modularity. O’keefe proposes an algebra for combining blocks of
code with associated signature morphism (corresponding to our import- export
declarations) {75]. However, this semantics is for a fictional logic language, not
Prolog as it is used. Sannella proposes a similar calculus for modular logic [84].
[68,17,2,64] define interesting higher order or meta-level semantics for modular
logic programming. These proposals take the point of view of constructing a
modules facility out of a mathematically interesting semantic extension to logic
which has the potential to produce a very clean semantics.

We have taken a different tack; we have admitted that Prolog as a program-
ming language is only an approximation of first order Horn clause logic. We have
extended that programming language with modules in such a way as to improve

its usability for programming. At the same time, we have moved it further away

84

from its pure logic semantics. Rather than trying to produce a programming
language based on a mathematically beautiful semantics, we have designed a
programming language and used the available mathematical tools to specify its
semantics. While we are encouraged that the “high road” approach of the above
mentioned related work may one day yield a usable language, our “low road”

approach is in use today.

4.3 Operational Semantics

4.3.1 Background

This operational semantics is loosely based on the definition of standard Pro-
log (without modules) due to Jones and Myeroft [45]. The semantics of a Prolog
program in this model are defined as the (possibly infinite) sequence of substitu-
tions representing the alternative bindings for variables in the query produced by
resolution via backtracking. Thus, we define an abstract machine whose input
is a set of modules of Prolog code along with a query, and whose output is this

sequence of substitutions.

4.3.2 Syntax

We assume the existence of four disjoint sets of symbols: Pred, Functor,
Var, and ModName, ranged over by the syntactic variables P, F, V and M

respectively.

85

Notation

The notation o* stands for the set of finite sequences of elements of the domain
.
o = {nil} + o x a*
Here + is the disjoint union operator. We use ::, a right-associative infix cons
operator to construct sequences. The notation [| will sometimes be used for nil

while [a3, a3, ..., ,] will represent ay :: [aq, ..., &,] where convenient.

4.3.2.1 Domains and Syntactic Equations

t : Term =V + F(t")
a : Atom = P(t*)
b : Body={(a+{*I"} 4+ X)" + true
¢ : Clause =a:—bh.
Z : Sentence=c"
X : ModEzp=M:a
E : EzportList = [P|P"] 4]
I : ImportList =[[P,M]|I"] +]
W : Module = : —beginmodule(M, E,I). ¢* :—end module(M).

@ : Program =W~ b

36

4.3.2.2 Functions
Substitution

8,¢: Subst =Var — Term

Substitutions are applied in a prefix form allowing standard functional com-

position notation (e.g. 8 o ¢). The identity substitution will be written ¢d.

Renaming

Rename functions are used to guarantee that an atom and clause selected
for resolution share no common variables. The method (suggested by [45]) for
performing renaming is as follows: Partition the set Var into a countable number
of disjoint isomorphic sets {Varg, Vary,...} where Varg contains the set of valid
variables that may be used in programs. Then employ a sequence of bijective
renaming functions:
tYn: Varg — Var, (n>0)

where) is the identity function.

Unification

MGU : Atom — Atom — (Subst + {fail})

Robinson first provided an algorithm for determining the most general unifier

87

of two atoms [81]. In the interpreter which follows, a renamed body is represented
by the tuple (body,n) where n represents the renaming ,. By deferring appli-
cation of substitutions and renamings, structure sharing interpreters can avoid
creating new atoms and terms. In our semantics, we will assume the existence
of MGU,,, a version of MGU for structure sharing that is very close to that
used by most modern Prolog implementations. [18] and [80] detail the algorithm

which realizes this function without actually performing the substitutions.

MGU,, : Subst — Atom — Num — Atom — (Subst + {fail})

MGU, (¢, a1,n,a3) = MGU(¢(a1), ¥n(az))

The Prolog Database

D : Database = ModName — Clause”

The abstract machine accepts programs of the form Module™ A —¢*. We
assume that the system can translate Aodule* into the initial database function
Dy. For a more formal treatment, we could include the database function in the
state starting with an initial database Dy = AAModName.nil. We would then
define a built in “consult” predicate which loads modules, changing the Database
function. This method could be used similarly to model other predicates having

non-logical side-effects modify the database (such as assert and retract).

88

We have also assumed the ability to freely access another function:

home: atom — ModName — ModName

This function, given a predicate and a module name, returns the module in
which the predicate is defined. Recall that a predicate may be imported from
another module. This function returns the name of the “source” module and
may be thought of as a different view of the database. Again, for a more formal
treatment, we would add a variable ranging over functions of this type to the
state and provide the requisite transition rules to modify the function as modules
are consulted. In keeping with the greater formality customary for denotational
semantics, we will define the database and home functions in a later section

detailing the denotational meaning of modular Prolog programs.

4.3.3 The Abstract Machine

o : State = (GoalStack x Subst x Clause™ x Num)*

s : GoalStack = (Body x Num x Dump x ModName)*
d: Dump = State

Start State = ((g,0,nil, user) :: nil,id, Do{user),0) :: nil

Stop State = nil

The State of the machine is represented as a runtime stack storing a se-

89

quence of choice points. A clioice point is a four-tuple (s, ¢,c*,n) consisting
of a GoalStack, an accumulated answer substitution, a sequence of clauses in
the current module remaining to be tried, and the current renaming index. A
GoalStack is itself a sequence of four-tuples consisting of a goal body, a renaming
index for that goal, the tail of the choice point stack (for cuts), and the name
of the module in which the current goal is to be proved. The Dump portion of
the goal stack saves the state at the time the current goal was called. If a cut is
encountered, the state saved in the Dump is restored thereby removing all choice
points created since the call.

As Jones and Mycroft point out, the sequence of clauses in State as well as
the goals in Stack can be implemented as pointers into the original program to
avoid copying. Similarly, as the Dump is always equal to the terminal segment

of the State, it may be implemented as a pointer.

Transition Rules

The transition rules define a relation — on State x State.

TR1 Apply clause saving ¢ as dump for cuts.

((a Abym,d, M) :s,¢,{a’:=b):c*n):0
— ((M,n+1,0,M"):: (bym,d, M) :: s,
6o¢,D(M'),n+1): 0o where M’ = home(a', M)

if 8 = MGU,(¢ 0 ¢, a,n + 1,a’) exists

20

— ¢’ otherwise

where o' = ((e Abym.,d, M) 1 5,¢,¢",n) 10

Try to unify the current goal, a, with a’ where a’ : —b' is the first clause in
the sequence of untried clauses. If a most general unifier @ exists, compose it
with the existing accumulated substitution ¢ and save it in the State along
with the incremented renaming index. Add a tuple to the top of the Stack
with current goal ¥ renamed using index n 4 1; save the previous State o
in the Dump; and run the new goal in its home module M’. The sequence
of clauses in the State (to be utilized in refuting 3') is also initialized to
D(M"), the complete set of clauses in module M’. If no such unifier exists,
simply remove the top clause from of the sequence of untried clauses and

try the next one.

TR2 Goal not further satisfiable, backtrack.

((eAbym,d, M) ::s,p,nil,n)io— o

If the sequence of untried clauses is exhausted, the interpreter backtracks

resetting the State to the last choice point.

TR3 Cut operator.

((“"Abym,d, M) s, ¢,¢",n) o

— {((bym,d, M) ::5,¢,c*,n) 1 d

91

TR4

TR5

Replace the tail of the choice point stack with the stack saved in the Dump.
This effectively eliminates all choice points created after the Dump was

saved thereby committing to the current bindings.

Satisfied goal. Continue with siblings.

((true,m,d, M) 1 3,d,¢",n) 1 o
— (nil, ¢, c",n) if & = nil
— (3,0, D{(M'),n) :: 0 otherwise

where M’ = ModuleName(Head(s))

When the current goal is reduced to true, pop off the top of the GoalStack,
resetting the current module and sequence of clauses to try, so long as the
GoalStack is not now empty. ModuleName and Head are auxiliary func-
tions, extracting the module name from a GoalStack frame and returning

the top frame from a sequence respectively.

Satisfied main goal. Backtrack.

(nil,¢,e*n) o0 —a

Output answer substitution ¢.

When the GoalStack is empty, output the current answer substitution and

backtrack to produce alternative solutions.

If the machine halts in the stop state never having taken this transition and

thus producing no outputs, the query is said to fail. There is no guarantee

92

TR6

4.4

the machine will ever halt. It may proceed infinitely never producing out-
put; produce an infinite sequence of outputs; or produce a finite number
of outputs but never halt. In practice, real Prolog implementations pro-
vide a way to extract the partial output of the machine even though the

interpreter may never halt.

Goal in another module.

((M':aAbm,d M) s, ¢,¢5n)io

— ((a,m,d,M") : (bym,d, M) ::8,¢,D(M'),n) 1 0

Colon is a binary operator which says, “Run the goal in the second argu-
ment in the module given in the first argument.” Here, the goal M': aA b
is replaced with two goals which first run ¢ in module M’, and then run b

in the original module M. Note that : binds more tightly than does A.

Semantics of Object-Oriented “Send”

The send predicate is the heart of our object-oriented extension to Prolog.

Informally, Object send Message means, “If a predicate unifying with Message

exists in the module associated with the class of Object, then attempt to satisfy

Message in that module. Otherwise, find the super class and try to inherit from

there, failing if the root object is reached without finding a definition.”

We can define the semantics of send by assuming the following two predicates

are defined in every module.

93

send(0Object, Message) :-
Object isa Class,
inherit(Class, Message).

inherit(Class, Message) :-

Class:current_predicate(_, Message),

!
L)

Class:Message.
inherit(Class, Message) :-
Class super Super,
Class \== Super,
inherit(Super, Message).

Adding these predicates to every module is equivalent to adding the following

additional transition rules to the abstract machine.

TR7. Send predicate.

((send(M',a) Ab,m,d, M) 8, ¢,c*n):o
— ((isa(M',M") A inherit{M",a),n + 1,0, M")

w(bym,d, M) s, 0, DIM) n+1) 0

TRS8. Inherit predicate.

((inherit(M’,a),m,d. M) s, ¢,c*n) 1 o
o (M aymyd, M) s, doctn) o
if ¢ defined in A{’
— ((M': super(M', M") A inherit(M", a),n + 1,5, M)

w0, D(MY,n+1)uo

94

if M’ # M"

— o otherwise

Transitions 7 and 8 add no power to the language; equivalent operations could
be obtained by plugging the Prolog definitions above into the first six transitions.
Note that for clarity of presentation, the notation used in transitions 7 and 8 is not
exactly that obtained by pushing the Prolog definitions through the production
rules. In particular, the built in predicate current_predicate/2 is handled
informally, and the “cut” in inherit which commits to an implementation of a

method if one exists is modeled via the if-else construct in rule 8.

4.5 Denotational Semantics

4.5.1 Background

Denotational semantics defines meaning as a function from input to out-
put, skipping over all of the intermediate states. The paradigm is to define the
meaning of the program as a function which is itself defined in terms of other
functions which define the meaning of individual components of the program.
The meaning of each component is further defined by the meaning functions of
its sub-components until a primative layer is reached. The primatives have some
generally agreed to meaning. For example, the meaning of [3] is the number 3.
Following the usual notation, sub-components of the original program are sur-

rounded by double brackets. This approach to programming language semantics

95

has a firm mathematical basis due primarily to the work of Strachey [96] and
Scott [89,87,88] and is written in Church’s A-calculus notation with data-types
[23]. The background assumed for reading this is to be found in 5] or [39].

Qur denotational semantics is loosely based on the definition of standard
Prolog (without modules) due to Jones and Mycroft [45]. Again, the semantics
of a program in this model are defined as the (possibly infinite) sequence of

substitutions representing the alternative bindings for variables in the query.

4.5.2 Syntax

Same as operational semantics.

Further Notation

Using notation from domain theory, we define the sequence of substitutions

output by the denotational semantics as

Substt = {nil}, + Subst x (Subst*),

where -+ is the coalesced sum
x is the smash product

and S, is the domain S augmented with a new least element L.

96

~ is a domain constructor such that o~ defines a finite sequence of elements
from the domain « terminated by nil or cut or an infinite sequence of elements

of a.

a” ={nil,cut}y +a x{a”),

The standard append function @ on sequences is extended as follows:

Q@: a"—a" - a”

(a:: k)@m = a:: (k@m)
nil@m = m

cut@m = cut

1@m = 4

Thus, @ acts like the standard append function on nil-terminated lists but ig-
nores the second parameter if the first is terminated by cut or L. This definition

on finite elements of o~ is lifted to infinite sequences by defining:

[@m = |_| l'@m
'zl
I' finite

What is meant by appending infinite objects? If [is infinite, it can be written

[lo,I1,...] and is the least upper bound of the increasing chain of finite approxi-

o7

mations

1C (s LYE(ou{h oLl .-

The meaning of {@m for infinite ! is the limity_'Qm.

While this limit is a correct mathematical definition for appending infinite
sequences, for all practical purposes, we can define [@m = ! when ever [is
infinite. This can be seen by recalling that the finite approximations of ! are all
terminated by L and the definition of L @m = 1. In the denotational semantics
which follows, this corresponds to the case where depth first search of the left
hand side of the SLD-tree produces an infinite sequence of bindings ({). The right
hand side may produce additional bindings (m) but the the interpreter would
require 2w steps to explore the right branch. The fixpoint semantics, like current
implementations, produces only those bindings discovered in w steps. Thus this

definition of @ conforms with the intuitive intent of the semantics.

4.5.3 Semantic Domains

The semantic function V maps the collection of input modules W* and a
negated query g to the sequence of answer substitutions which define the pro-

gram’s semantics.
V : Program — Subst™

Environments are used to associate meaning with predicate symbols. An

98

environment maps an Atom with appropriate renaming information and input

substitution to a sequence of substitutions.

p: Env = Atom — Num — Subst —+ Num — ModName —

(Subst x Num)*t

Next, the meaning of a program is defined in terms of the meaning of the
components of the program. The function D defines the meaning of a sequence
of modules as a function over environments. The function also requires the
Ezport relation which maps a Pred x ModName pair to a boolean allowing the
semantics to check whether the given predicate is actually exported by the it 1s

imported from.
D : Module® —» Ezport — Env — Env

The meaning of a sequence of clauses is given by E.
E: Sentence — Env — Env

The semantics of importing clauses into a module is defined by the semantic

function F.
F: ImportList — Ezport — Env — Env

Finally, the meaning of a goal with respect to an environment, renaming, and

input substitution is defined by B.

99

B : Body — Num — Env — Subst - Num — ModName —

(Subst x Num)*

4.5.3.1 Definition of Semantic Functions

V [W*:—¢q] = First(B[¢] 0 p id O user)
where p = fizy, D[W*] n
n=¢[W]no

no =9

The operation of V may be understood as follows: First, p : Env is created
by taking the fixpoint of the function D [W*}5. The Env is the initial database
function built out of the input modules which computes the sequence of substitu-
tions refuting a simple query; it may be thought of as a “lookup” function. The
relation 1 : Export on Pred x ModName which allows us to check that a given
predicate is actually exported by the module we try to import it from is built
by passing the initial empty relation through each module accumulating all pairs
(P, M) such that P is exported by M. Since D [W*]» is a continuous, monotone
function on Env — Env, its least fixpoint is guaranteed to exist. fizg,,D[W*]n

is equal to the function p € Env such that D [W*]np = p.

100

Then, the query ¢ is run by the semantic function B. B [¢] is passed the initial
renaming index 0, the initial environment function p, the identity substitution
function ¢d, and the initial module “user”. Finally, the utility function, First,
extracts the sequence of substitutions from the sequence of (Subst, Num) pairs.

Together, D, E and F process the input sequence of modules W* to create the
environment (p : Env). Conceptually, the idea behind D is that given a sum-
mary of what other modules mean as characterized by the input environment,
we can create a “better defined” environment by adding the meanings of the re-

maining modules. Trivially, the empty sequence of modules adds no information:

D[llnpaméonM=]

For a non-empty sequence of modules, D passes the clauses in the first mod-
ule through E, import definitions in the Lieader of the first module through F,
and calls itself recursively on the remaining modules. That is, D steps through
the sequence of modules; it produces an environment p which, when passed a in
module M, peals off modules from the input until the definition of module M’ is
found. It then tries to refute a using the clauses in M’ (via E) or via predicates

imported into M’ in the header (using F).

D [: —begin_module(M', E, I} ¢* : —end module(M') W*]npam¢n M

101

=E[c* lnpamoéenM@F[IlnpameénM fM=M

=D[W*]npamoénM otherwise

The following permits an initial sequence of program clauses to default to the

user module.

D[cW*lnpame¢nM
=E[c'] pam¢nM if M =user

=D[W*]npam¢nM otherwise

E captures the meaning of a sequence of clauses within a model again as a

function on environments. The empty sequence adds nothing to the definition.

Eflf pamé¢nM=]

*

The meaning of a non-empty sequence of clauses a’ : —b' :: ¢* is a function
which, given an initial environment p produces a more defined environment. The
resulting environment, given an Afom a, creates a sequence of substitutions by
appending the sequence of bindings (¢’) produced using only clauses ¢* to the
bindings produced using the first clause (). o is equal to nil unless the head of
the first clause unifies with ¢ under the appropriate renaming and substitution.
If the unifier exists, B is used to refute the body &'. ¢’ is created by calling E

recursively with the tail of the clause sequence (c¢*).

102

Efo':=b ¢ pam ¢ n M = uncut(cQo’)
where o = B[] (n+1) p{(fod) (n+1) M
if 0 = MGU,,(¢ 0 ¥m,a,n +1,a’) exists
= [] otherwise

and o'=E[c*]pam¢n M

F is similar to E except it steps through the list of imports rather than the
sequence of clause definitions. Internally, F ensures that an imported clause is
actually exported by the specified module. This is accomplished by checking that
if P is being imported from module M, the pair (P, M) is in the relation 7. If it
is not, the predicate is simply not used, causing the goal to fail. The semantics

might have been defined to generate an error message in this instance.

F[llnpamoénM=]
FP,M] npaménM=uncut(c@s')
where o = B[M’:a]l mph ¢n M
if (P,M’) € 9 and P = functor(a)
= [] otherwise

and o'=F[I|npaménM

The semantic function B uses its input environment p to map a goal body
to its sequence of substitution functions. When applied to the trivial body frue

representing a successful computation, B returns its current accumulated substi-

tution function.

103

B [true] m p ¢ n M = [(¢,n)]

When applied to a conjunction of the form (a A b) running in module M, the

first atom a is simply replaced with M : a and B is run on the renamed body.
BlaAblmpodn M=B[M:aAb]lmponM

B handles cut (“!”) as the first atom in the body by appending the cut symbol
to the sequence of substitutions produced by calling B recursively on the rest of
the body. Recall at @ behaves like a normal concatination operator if the first
parameter is terminated with nil but ignores the second parameter if the first
ends in cut. Thus, the (¢@Qs’) in the definition of E models cuts by ignoring the
alternative bindings ¢’ if o ends in cut. The uncut function applied to (c@s’)

limits the scope of the cut to the current body.
B[*" A mponM=(B[b] mpédnM)Q cut

Finally, the meaning of M’ : a A b in an environment p with current module
M is the concatination of the sequences of substitutions produced by recursively
calling B on the tail of the body for each set of bindings produced by running
the head of the goal conjunct ¢ in module Af’. That is, the environment p is used
to obtain the sequence of bindings which refute ¢ in module M’. Then, the rest
of the body b is repeatedly refuted in module M, once for each of the bindings

produced by refuting a in M’

B[M':aAb] m p ¢ n M= Bindings(pfa] m ¢ n M’)

104

where Bindings(X)= nil if X =nil
=B m p(fod) n’ M
@Bindings(tail(X)) otherwise

where (8,n') = head(X)

4.5.3.2 Handling Imports and Exports

n: E:cport — 2Pr'edxModName

£: Exp = Module* — Ezxport — Export

EMIn=n

EWW*]n = E[W](€[W]n)

¢[:—begin module(M,E,I). ¢* :—end module(M).]n = 7 [E]nM

m : ExzportList — Export — ModName — Export
x[[[InM =1
~ [[PIP 10 M = = [Pf]naM

where 1, = n U {(P;, M)}

In order to be imported by one module, a predicate must be exported by

another. The function ¢ builds up the Ezport relation n by pushing the cur-

105

V [W*:—¢q] = First(B[q] 0 p id 0 user)
where p = fizp, . D[W*] n
n=¢[W*]no
no =9

D[llnpamé¢nM=]

D [: —begin_module(M’, E,I) ¢* : —end module(M') W*]) npam¢n M
=E[c*]npaménMQ@QF{I|npameénM ifM=M
=D[W*]npam¢nM otherwise

Dc*W*|npame¢nM
=E[c*]pam¢nM if M =user
=D[W*]npam¢nM otherwise

Bl paménM =]
Efad :—b :c*] pam ¢ n M = uncut(c@o')
where 0 = B[¥'] (n+1)p(fod)(n+ 1) M
if # = MGU,,(¢ 0 Ym,a,n+1,a") exists
= [] otherwise
and o'=El]pamén M

FlllnpaménM=]
F[P, Ml npam ¢ nM=uncut(cQc’)
where o = B[M':a] mph o¢n M
if (P,M') € n and P = functor{a)
= [] otherwise
and o'=F[Ilnpame¢é¢nM

Btrucl m p é n M = [(4,n)]
BlaArblmpénM=B[M:aAb)mpe¢nM
B[“"Ab mpédnM=(B[b]mp¢dnM)Qcut
B[M':aAb] mpén M= Bindings(p[a] m ¢ n M')
where Bindings(X)= nil if X = nil
=B} mp(fod)n M
@Bindings(tail(X)) otherwise
where (8,n') = head(X)

Figure 4.1: Denotational Semantics of Modular Prolog

106

rent value of 1 through each module using the function 7 to update n with the
information contained in each module’s ExportLzst.
With this definition of the export function, we are now in a position to for-

mally define the Home function used in the operational semantics.

h: Home = Pred — ModName — ModName
h = H [[W*]] n ho

ho = AP.AM.M

H : Module* — Export - Home — Home

Hnh=n

H[WW*lnh = H{W*InH [W]nh

H[:—begin module(M, E, I). ¢* :—endmodule(M).]nh =

&I Mnh

§ : ImportList — ModName -+ Ezport - Home — Home
§[11Mnk = h
ST([Pr, Mu)|)Mk = 6§ [I] Mnh'

where A'P'M'= M, if P'=P, and (P,M,)€y

= hP'M' otherwise

107

The syntax “begin_module(M, E,I)” where I is a list of pairs of the form
[P, M'] allows module M to import predicate P from another module M’. In the
operational semantics, an imported predicate is added to the sequence of clauses
produced by the Database function for each module. However, the names of
predicates used in the body of the imported predicate must be bound in the
context of the module in which the predicate is defined. The function h : Home
maps the functor of the head of a predicate and the name of the current module
to the predicate’s “home” module. Thus the body can be interpreted in the
defining context.

Starting with an initial function ho, H builds a new h by pushing the initial
value through each module using é to update /& with the information in each
module’s ImportList. Internally, § checks that each predicate that is imported
into a module from another module is actually exported by that module. This

is accomplished by checking that the imported predicate/module pair is in the

Ezxport relation.

4.5.3.3 Auxiliary Functions

First : (Subst x Num)t — Substt
First(z) =z if z € {L,[]}

First ((¢,n) :: LY = ¢ :: First(L)

The utility function, First, extracts the sequence of first components from a

108

sequence of pairs.

functor : atom — Pred

The functor function simply maps an atom (of the form P(t*) to its prin-
cipal functor P. Most Prolog implementations distinguish predicates, not only
by the name of their principal functor, but also by their arity. Strictly speaking,

therefore, functor should map P(t*) to P/arity, where arity = length(t*).

Uncut:a” — at
Uncut(cut) = Uncut(nil) = nil

Uncut{ay :: ag) = aq :: Uncut(ay)

Unecut is used to limit the scope of a cut to immediate subgoal. It replaces
any terminal cut in its parameter with n:l.
This definition can be extended to infinite sequences as with the definition of
the @ function by taking the least upper bound of the ascending chain of finite

prefixes of an infinite input parameter.

109

4.6 Informal Correspondence of Operational and Denotational Se-

mantics

Formal equivalence proofs of operational and denotational semantics are typi-
cally extremely complicated, lengthy, and unreadable; consequently no such proof
is attempted here. Instead we point out how each transition rule in the abstract
machine is modeled in the denotational version.

The operational semantics processes the input database into a function, D :
Database which takes a module name and returns the sequence of clauses in that
module. The machine is initialized with the sequence of clauses for the user
module in the slot in the state which holds the sequence of untried clauses. In
the denotational model, the input database is “compiled” into the the function p
which proves simple queries. p is defined as the fixpoint of the recursively defined
D. Each unwinding of the recursion corresponds to the application of one or more
transitions in the operational model.

The role of the first transition rule (TR1) is to consume the next untried clause
in the current module. Either the head of that clause unifies with the current
goal in which case the body is added to the goal stack, and the remaining clauses
saved as the next choice point, or unification fails and the remaining clauses in
the module are tried immediately. An analogous role is played by the definition
of o in the functions E and F. Each time the recursive function is “unwound”, if

the clause heads unify, the definition of ¢ tries to prove the body. If they do not

110

unify, no bindings are produced (¢ = [}). In either case, the bindings ¢’ produced
by the rest of the clauses in the module are appended to o (corresponding to
the choice point in the operational semantics). Note that the same unification
function (MGU,,} is used in both versions.

TR2, which backtracks to try alternatives if a goal is not further satisfiable
(the sequence of clauses is empty), corresponds to the definition of E[[]] and
F [[]] which produce no bindings, terminating the recursive definitions of E and
F.

The function of TR3, the cut operator, is handled explicitly in the definition
of B which appends a cut to the sequence of bindings it produces. This cut causes
the @ function to ignore any bindings produced by alternative bindings. This
has the same effect as removing the choice points (which prevents the alternative
bindings from ever being generated) in the operational semantics.

TR4, which fires when the current goal is true, corresponds to the definition of
Bindings within B. When the current goal is satisfied producing a substitution 8
and renaming index n/, the remaining goals in the conjunct are attempted using
the bindings generated therein composed with 8 to build the answer substitution.

TR5 which fires when the top level goal is satisfied is again modeled by the
definition of Bindings within B. Backtracking to pick up multiple solutions in
the operational semantics is modeled in the definition of B [M’ : aAb]mpénM by
iterating through the list of alternative substitutions produced by p [a]meén’

(which “looks up” a in p)), resolving B [b]mp(fo¢)n’M for each (6, n') produced.

111

Goals in modules other than the current module (TR6) are handled similarly
in both semantics. Given the conjunct (M : a A b), the semantics “looks up” a
in module M and then proves b in the current module (again see the last case in
the definition of B).

Imports and exports are modeled quite differently, though equivalently in
the two semantics. In the operational semantics, imported clauses are viewed
as being added to the sequence of clauses for a module. This is handled by
the preprocessor which creates the Database function. This preprocessing phase
also creates the home function which returns the name of the module in which
any imported predicate is defined. This function is then used in TR1 to bind
names in the body of an imported predicate in the definition module. In the
denotational semantics, the insertion of imported clauses into the client module
is done by appending the bindings produced by the actual clauses in a module
(E [¢*]) to those produced by using the imported clauses (F [I]). The definition
of ¢ in F takes care to resolve names in the body of an imported clause in its
home module.

In both semantics, name scoping is obtained by always maintaining a “current
module”. The definition of D (in the denotational case) and the reinitialization
of the sequences of clauses from the current module in transition rules 1, 4, and
6 ensures that only clauses currently visible (or explicitly named via :) are used

to resolve a goal.

CHAPTER 5

Combining Object-Oriented Prolog and Stream Processing

5.1 Introduction

Logical or Relational programming is based on set theory; all relations are
viewed as sets of tuples. This concept has been generalized to ordered sets both
for efficient processing and for presentation of semantic content to users. We call
this concept of ordered sets streams [78].

Relational database query processing is potentially an important application
of stream processing. Qur experience with both tuple-at-a-time and whole query
interfaces to a relational database from Prolog has led us to believe that a stream
interface represents a useful middle ground. A stream interface uses iterative (tail
recursive) processing and avoids backtracking through a database. The minor
extensions to Prolog discussed in [77] are sufficient to provide efficient stream
processing,

Narain has shown via the Log(F) language [73] the benefits of extending Pro-
log to handle stream processing. However, the combined logical-functional para-
digm still suffers from several of the shortcomings of Prolog, namely the difficulty

of writing, understanding, debugging, verifying, and maintaining large applica-

113

tions. These are precisely the strengths of the object-oriented paradigm. So, we
can motivate the integration of object-oriented features with Log(F) from the
point of view of adding a stronger program structuring methodology to Log(F).

We can also approach it from the point of view of adding stream processing
to Object-Oriented Prolog. An important class of objects are stream structured;
that is, the object is an ordered collection of other objects. For example, the
employee object might have a sub-object called “salary history” as one of its
attributes. The salary history can be viewed as a stream of event records ordered
in the time domain, each one of which corresponds to a change in the employee’s
salary. We would like to be able to write methods in the employee class which
access the salary history instance variable using an appropriate stream processing
language like Log(F).

Chapters 2, 3, and 4 show how the complementary strengths of logic program-
ming and object-oriented programming can be incorporated in a single language.
Since both Log(F) and O-OP are implemented as modest additions to Prolog,
we have the unique opportunity to harness the advantages of each in one en-
vironment. This chapter now examines integrating elements of the functional

paradigm. We first present as background a review of the Log(F) language.

5.2 Background: Functional Programming in Prolog

Functional programming is a form of declarative programming based on equa-

tional logic, the substitution of equals for equals. While deduction performed by

114

the unconstrained substitution of equals for equals can be very inefficient (due to
the infinite branches introduced by the symmetry property of the equality rela-
tion), directed substitution or rewrite rule systems with appropriate restrictions
offer the potential for high performance [37]. A rewrite rule system simulates a
functional programming system in which the “reduces to” operator is interpreted

as equality.

5.2.1 Log(F)

Stream processing in Tangram is accomplished using Log(F), an integration
of Prolog with a functional language called F*, developed by Sanjai Narain at
UCLA [73,71,72]. Log(F) rests on subsuming within Prolog the concepts of lazy
evaluation and rewrite rules.

A statement in F*, called a reduction rule has the form

LHS = RHS

where both LHS and RHS are terms as previously defined but with some

restrictions!. The statement is read “LHS rewrites to RHS.” A term T is said to

1Rewrite rules in F* must satisfy the following restrictions [71]:
1. LHS is not a variable.

2. LHS is not of the form c¢(t1,...,t,) where ¢ is an n-ary constructor symbol, n > 0.
Constructor symbols are special functors (constants) which are not reducible.

3. If LHS is f(t1,...tn), n > 0, each ?; is a variable or a term of the form ¢(Xi,..., X;n)
where ¢ is an m-ary constructor symbol, m > 0, and each .Xj; is a variable.

4. There is at most one occurrence of any variable in LHS.

5. All variables of RHS appear in LHS.

115

reduce to T if there exists a subterm U in T, a rule A = B, and a substitution
@ such that U = A8 and 7" is the result of replacing U in T by BS§.
Consider a program to append two streams. A program in F* is a set of

reduction rules. A stream is represented syntactically in Log(F) as a Prolog list.
append ([1,W) => W.

append ([U|V],W) => [U|append(V,W)].

Append of the empty stream with another stream rewrites to that other stream.
Append of two arbitrary streams rewrites to a stream whose head is the head
of the first stream and whose tail is the result of appending the tail of the first
stream and the second stream.

An important property of F* is its capacity for lazy evaluation. Notice that
in the application of the rewrite rules for append above, a single reduction step
produces only the head of the output stream U, plus a continuation append (V,W),
which tells how to compute additional elements of the output stream. The con-
tinuation can be further reduced when additional elements of the cutput stream
are required. Thus the execution is demand-driven; computation is only per-
formed when its results are needed. This gives the language the ability to define
computations on infinite streams which would never terminate if the stream was
materialized eagerly, but may succeed in finite time if the stream is materialized

lazily. Similarly, computations on large streams such as database relations are

These rules are sufficient for proving soundness and completeness for F* [73]. These restrictions
also permit high performance as F* programs can use pattern-matching rather than unification.
Determinacy is easily detected syntactically, avoiding backtracking and hence expensive choice
points.

116

possible without requiring large buffers for intermediate results. Programmers
may also specify that some computations be performed eagerly.

* rules are

Log(F) consists of Prolog plus the F* compiler. In Log(F), ¥
compiled into Prolog clauses. For example, the rewrite rules for append above

are compiled into

reduce(append(A,B), C) :- reduce(A,[]),
reduce(B,C).
reduce (append(A,B), C) :- reduce(A,[DIE]),
reduce ([D|append(E,B)], C).

reduce([]1,[]1).
reduce ([HIT], [HIT]).

which is semantically equivalent to and almost as concise as the Prolog definition
of append given in the previous section. The last two reduce rules simply declare
that the empty list, [], and the cons function, |, are constructor symbols and

cannot be further reduced.

5.2.2 Transducers

The basic unit of computation in the Tangram Stream Processing system
(TSP) is the transducer. Informally, a transducer is a mapping from one or more
input streams to one or more output streams. A simple transducer maps each
element on its input stream to a corresponding output value. For example, the

transducer

incr([1) => [].
iner([H|T]) => [H+1lliner(T)].

117

increments each integer on its input stream?.

Another kind of simple transducer is a filter which rewrites some of its input
to its output. The following transducer, for example, rewrites only those values

which are greater than its second argument.

gt (1,5 => (1.
gt (IHIT]1,X) => if (H > X, [HIgt(T,X)], gt(T,X)).

if is a transducer which rewrites to its second argument if its first argument
reduces to true and otherwise rewrites to its third argument. > is an eager
arithmetic operator which reduces to true or false.

Some transducers are generators. That is, they produce output streams but
do not consume an input stream. intsfrom is an example of a generator which

produces an infinite stream of integers counting up from the input integer.

intsfrom(l§) => [N|intsfrom(N+1)].

Database relations are an irnportant form of generator transducer which will be

examined shortly.
Accumulator transducers compute aggregate functions on streams. The sum

transducer produces the sum of the integers on its input stream.

sum{S) => sum(S,0).
sum([],N) => [N].
sum{ [HIT],N) => sum(T,H+K).

Transducers can also be hybrids of these types. For example, the following
transducer, which outputs a runuing total of the values read so far, is both an

accumulator and a mapping transducer.

ZNote that +, like other arithmetic functions, behaves eagerly.

118

runningSum(S) => runningSum2($,0).
runningSum2([],X) => [X].
runningSum2 ([HIT], Sum) => [Sum+H|runningSum2(T,Sum+H)].

Programs or queries are written by composing transducers. For example, a
database relation may be retrieved using the transducer tuples (DatabaseName,
RelationName). Say the database contains a relation “book” whose first at-
tribute is the name of the author. The transducer tuples(dbase,book) returns
a lazy stream of tuples of the form book (Author,Title,Publisher,Date). The
generating transducer, books, defined by

books => tuples(dbase, book).

produces all of the tuples from the book relation. We can print all of the tuples

for books by “smith” by composing several transducers:

print_list(select(books,book(smith,_,_,_),true)).

Here, print_list is the stream equivalent of the Prolog findall which re-
duces its argument completely; select (Stream, Template, Condition) lazily
selects from its input Stream all items unifying with Template, and satisfying
Condition. The condition is trivially satisfied by true in this case.

Log(F'} is an appropriate language for stream processing and thus for database
query processing. It combines the declarative nature and power of logic program-
ming with rewrite rules yielding a logic language with a functional flavor. Stream

operators are conveniently expressed as recursive functional programs. Further,

119

streams and transducers are a reasonable paradigm for expressing parallel com-
putation; the design and implementation of a distributed Log(F) is the subject

of on-going research [53,54].

5.3 Combining Paradigms

We have pursued two approaches to integrating object-oriented concepts with
Log(F). In our first approach, we view streams as statically typed objects and
transducers as overloaded operators. We will show how a compiler can pre-
process an object-oriented Log(F) program into a standard Log(F) program.
This approach corresponds to adding object-oriented notions to Log(F). Our
second approach takes advantage of the fact that both O-OP and Log(F) reduce
to Prolog. It permits the free inter-mixing of Log(F) reduction rules with message

sending and ordinary Prolog in method definitions.

5.3.1 Operator Overloading for Transducers

We have seen that it is often convenient to view a relation as a stream. Queries
on a database can then be constructed as networks of transducers which are fed
streams from the database. Operator overloading can allow us to implement
layers of abstraction on streams and hence an extensible database as well as a
degree of modularity in the query language.

Relational databases typically have a two level hierarchical structure; an un-

derlying storage layer with a large amount of uninterpreted data, and a smaller

120

layer consisting of schema or meta-data information which tells how the stored
data is to be interpreted in the relational model [44]. From the point of view
of higher levels of the system, however, the relational database is an underlying
storage facility with “uninterpreted data”. The knowledge to interpet that data
is built into the application programs. This state of affairs is equivalent to giv-
ing a query language access only to the access methods and requiring knowledge
of the schema to be built into the queries. The same data cannot be used by
multiple programs without repeating its interpretation information. Further, the
small, fixed set of types typically supported by relational databases cannot be
extended as applications require.

This leads us to the desire to place higher level schemas on top of the database.
We can have schemas for temporal databases, graphics databases, statistical
databases. The main purpose of the higher level schema is to allow us to view
the stream as an object with a given semantics without regard to its underlying
implementation. Alternatively, it can allow us to specify different semantics for
streams with the same information. Both of these views amounts to operator
overloading. That is, given the name of an operation (transducer) to be applied
to a stream, the correct implementation of that transducer must be antomatically
invoked based on the semantics (type) of the stream specified by the schema. We

will consider for example the definition of a temporal database.

121

5.3.2 Temporal Data

Much of the data generated in the Tangram modeling system is ordered in the
time domain. Unlike traditional business oriented data which is primarily con-
cerned with the current value, in scientific, statistical, and simulation databases,
we are interested in the history of a value over time. In this discussion we will
follow the temporal data model of [90] and show how time series semantics can
be captured using an extended database schema and Log(F) with operator over-
loading.

A temporal data value is a triple < s,¢,a > where s is a surrogate (or key) for
an object, t is a time, and a is the value of an attribute. All of the temporal data
values for a given object are totally ordered in time. This ordered set is called
a time sequence or TS. The collection of TSs for all objects of the same class is
called a time sequence collection or TSC. For example, the salary history for an
individual employee is a TS. The salary history for all employees is a TSC,

It is easy to see how a TS or TSC can be stored in a relational database.
We can use relation with three attributes, eg. <Employee#, Date, Salary>.
This could be viewed in Log(F) retaining this first-normal-form representation
or factoring out the surrogate to obtain a stream of <Date, Salary> pairs for

each Employee.

Time

Figure 5.1: Account balance; step-wise constant

5.3.2.1 Temporal Types

We can have many different semantics for a TS. A step-wise constant TS has
the semantics that each time a value appears in the sequence, that value is in
effect until the time of the next value in the sequence (see figure 5.1). An example
of this type of semantics is the balance of a bank account. Each time the balance
changes, a temporal data value appears in the sequence. If we were to query the
account balance TS about the balance at a time ¢’ which occurs between times ¢,
and t;, the nearest times on either side of ¢’ for which we have temporal tuples,
then the value that should be returned for #' is the value associated with ¢;. That
is, interpolation is done by using the nearest preceding value.

In a discrete TS, the sequence has a value only at those times for which there
is a temporal data value (see figure 5.2). A time series which gives for each
day, the total amount withdrawn from the account that day is an example of a

discrete TS. The temporal value applies only to the time specified; there is no

123

Value

||IIII.

Time

Figure 5.2: Daily account withdrawal summary; discrete

interpolation as the value is undefined between the times for which values are
supplied. That is, we can ask, How much money was withdrawn on the 25th?
but it is meaningless to ask, How much was withdrawn at 2:47PM on the 25th?
given these semantics.

A continuous TS has sample values of a continuous function taken at regular
intervals (see figure 5.3. A sequence of values can be interpreted as samplings
from a continuous wave form. Interpolations between successive values can be
performed if needed. An example might be digitally encoded music on a com-
pact disk. Figures 5.1, 5.2, and 5.3 depict three different interpretations for an
identical sequence of temporal data values. There may be many more reasonable

semantics.

5.3.2.2 Operations on TSs

An operator on a TS is a transducer which takes as input one or more TSs

and produces another TS, some other type of stream, or a value. For example,

124

Value

Time

Figure 5.3: Digitized music; continuous

consider a “lookup” operator which takes as input a TS, T, and a stream of dates,
D, and produces as output a discrete TS, T, containing the temporal data values
found in T for each date in D. As we have seen, the “lookup” operator must be
different depending on the type of T. The operator behaves the same for each
type whenever the date in D corresponds exactly to a date in T. However, if the
date in D falls between two entries in T, interpolation occurs for constant time
sequences, the preceding value is used for stepwise cases, and no value is defined
when T is discrete.

The conventional way of dealing with this situation is to include a “switch”
on the type of the argument in the user’s code which calls the correct flavor of
lookup. However, this requires that users know about all of the sub-types of TS.
Comnsider the addition of another flavor of TS with slightly different semantics
and hence its own implementation of lookup. All existing application programs

(clients) which manipulate time sequences must be tracked down, the additional

125

case added to the switch, and the application recompiled.

The object-oriented methodology gives us an elegant way to handle this situ-
ation. We can view the lookup operator as a method for time sequences. Each of
the sub-types (discrete, stepwise, and continuous) of TS have an implementation
of lookup defined. The name, lookup is an overloaded operator. Users can use
the lookup operator on any TS without even knowing which sub-type of TS to
which it is actually being applied and hence without knowing which implemen-
tation of the function to use. The system automatically binds the name of the
method in the context of the object to which the operator is applied. If a new
sub-type of TS is later added, its supplier simply adds it to the type hierarchy
and its methods are dynamically bound just like any other; no change to client

application programs is required.

5.3.3 Typed Log(F) Compiler

We have prototyped a preprocesser for Log(F) which handles operator over-
loading statically®. Given a Log(F) program, the preprocessor converts it to a
graph representation in which each transducer is a node and each stream is an
arc. The input arcs representing the arguments to the inner most transducers
(leaf nodes) are labeled with the type of the stream obtained from the temporal
database schema. The overloaded operator name for a leaf node is then replaced

with the low level name of the correct implementation of the transducer inherited

3mplementation by Cliff Leung and the author.

126

by the types on its input.” The output arcs are then labeled with their types
obtained from the schema for the transducer. This is repeated for each node and
arc until the whole graph has been labeled. The compiler then uses the input
and output types of each node to look up the correct low-level implementation of
each transducer. The overloaded transducer names in the network are replaced
with the low-level names. The graph is then converted back into Log(F) and
compiled into Prolog by the standard Log(F) compiler.

The compiler is operational and has been demonstrated using time sequences

and temporal schemas stored in an Ingres database and queried using Log(F).

5.3.4 Example

We will demonstrate how our system would handle an example query from
Segev and Shoshani paper on temporal data modeling [90]. Complete code for
the compiler and the schemas for this example are in Appendix 1. The example

utilizes the following two time sequences:

bookSales (type = discrete) - contains the daily sales of books. A tuple in the

bookSales relation has the form:

4For unary operators (operators with only one typed stream input and possibly several un-
typed parameters), the implementation is simply inherited by the type of the input. For higher
arity operations {e.g. stream multiplication), the implementation of the operation is a function
of the tuple of types. We can view higher arity operations as operators on composite objects
and treat them just like unary operators. In general, for each arity n, there is a function of
arity n 4+ 1 which maps an n-tuple containing the operator name and the types of each of the
typed input arguments to a low level implementation name. The role of the compiler is to apply
this function to each transducer. The function may be represented as an n + 1 array as in the
case of a database schema or distributed among the object definitions using inheritance to avoid
redundancy.

127

(book\#,date,qty_sold)

The book# is the surrogate or object identifier field and may be factored
out. The meaning of a tuple (34,3,12) is that on date 3, 34 copies of book
number 12 were sold. If for a given book number, we project out just the
date and quantity sold, we get a time sequence (time/value pair). This TS
has discrete TS semantics (sece figure 5.2 as it represents a sequence of data

values for which there is no value defined in between.

bookPrice (type = stepwise constant) - contains the daily prices of books. A

tuple in the bookPrice relation is of the form

tuple(book#,date,price)

A tuple (34,3,12.0) means the price of book 34 was changed to 12 dollars
on date 3. This is a stepwise semantics {(corresponding to figure 5.1 as each

price value is in effect until it is superceded by the next change.

In this example query, we want to obtain a time sequence which tells, for each
date, the volume of sales in dollars for book number 34. We need to “multiply”
the corresponding entries in the two streams. In typed Log(F) the query is:
execute(

multiply(projectList([2,3],
select(bookSales,tuple(A,B,C), A=34)),

projectList([2,3],
select(bookPrice,tuple(D,E,F), D=34)))).

128

The execute predicate invokes the typed Log(F) compiler on the query given in
its argument.

Both bookSales and bookPrice are gemerating transducers. In our system,
they may be stored as a list of tuples in a file, or be extracted from an In-
gres database. projectList and select are database function transducers pro-
vided in libraries by the stream processing system [78]. The select here unifies
tuple(A,B,C) with each tuple in the input stream, outputting the tuple if the
criteria A=34 is met. The projectList takes a list of attribute numbers and a
stream and outputs a stream of tuples with only the listed attributes.

The multiply transducer is an overloaded operator which takes as input two
time sequences and outputs another; the specific type of the output stream as
well as the implementation of the stream multiply function actually run depend
on the types of the input time sequences. Thus we must have a schema from
which the compiler can look up both the types of the input streams, and the be-
havior of the multiply transducer. Referring to figure 5.4, the transducerName/5
predicate declares that the high level overloaded name (first argument) can be
substituted for by the low-level name (given in the second argument) with the
number of input and output arguinents found in the third and forth arguments
and the definition of the low-level predicate is found in the file named in the fifth
argument. Thus the first three clauses declare that the compiler may replace the
high-level name multiply with multdd, multds, or multss found in the file

library/multiply depending on the types of the input arguments.

129

h

% transducerName(HighName/Arity, LowName/Arity, NoInputArg,
% NoOutputArg, FileLocation)

h

transducerName (multiply/2,multdd/2,2,1,’ library/multiply?’).
transducerName (multiply/2,multds/2,2,1,’library/multiply’).
transducerName (multiply/2,multss/2,2,1,’library/multiply?’).

transducerArg(multiply/2, [pipe,pipel).

% transducerVersion(LowName/Arity,I_0,ArgNo,Type).
%

transducerVersion(multdd/2,i,1,dts).
transducerVersion(multdd/2,i,2,dts).
transducerVersion(multdd/2,0,1,dts).

transducerVersion(multds/2,i,1,dts).
transducerVersion(multds/2,i,2,sts).
transducerVersion{(multds/2,0,1,dts).
transducerVersion(multss/2,i,1,sts).

transducerVersion(multss/2,i,2,sts).
transducerVersion(multss/2,0,1,sts).

Figure 5.4: Schema for multiply transducer

130

The transducerVersion clauses declare the types of the arguments (input
an output for each of the low-level transducer version. They will be used by
the inference engine in the compiler to pick an appropriate low level version
to replace high-level, overloaded transducers. This defines the schema of the
multiply transducer.

Next, the schema for the input data streams must be defined.

bookSales => file_terms{‘data/bookSales’).
bookPrice => file_terms(’data/bookPrice’).

This defines the streams named bookSales and bookPrice to be the streams
of terms from the files ‘bookSales’ and ‘bookPrice’ respectively in the ‘data’

directory.

A
% timesequence(StreamName,RecordStructure,Type,
% LifeSpan,Regularity,TimeGranularity,Ordering) .
A
timeSequence(bookSales/0,
tuple(bno:integer, time:time, value:integer),
dts, (0,20), reg, 1, asc).
timeSequence(bookPrice/0,
tuple(bno:integer, time:time, value:integer),
sts, (0,20), irreg, 1, asc).

The above declares that each element on the bookSales stream has the functor
‘tuple’ and three attributes of type integer, time, and integer respectively. The
system incorporates an ‘isa’ type hierarchy which further defines these types (see

Appendix). The third argument gives the type of the TS (dts = discrete, sts =

stepwise). Next is the lifespan (range of dates that the TS covers. The following

131

field contains either reg (regular) or irreg (irregular). A regular TS contains a
value for each time point within the range {e.g. a number of books sold for each
day). An irregular TS contains temporal data values for only a subset of points
within the range (e.g. a price change entry only when a change occurs). The
‘TimeGranularity’ field declares the granularity of time values. The time can
be either ordinal (1,2,3,...) or calendar (year:month:day:...). In our prototype,
only ordinal times are provided and the granularity of both TSs are 1 unit. The
final ‘Ordering’ attribute tells whether the TS is in ascending (asc) or descending
(dsc) order.

The compiler uses the schema to replace the overloaded transducer name
multiply with the low-level name of the correct implementation of multiply. In
this case, multds is used to multiply a discrete TS with a stepwise TS. The ap-
pendix shows a representation the type-labeled graph of the query. The compiler
translates the graph back into Log{F) yielding
print_list(multds(projectList({2,3],select(bookSales,

tuple(_6949,_6969,_6989),_6 949 = 34)),

projectList([2,3],
select (bookPrice,tuple(_7145,_7165,_7185),_7145 = 34))))

which is called and executed.

5.4 Adding Log(F) to Object-Oriented Prolog

Our second approach to integrating the functional, object-oriented, and logic

programming paradigms is to encorporate Log(F) into O-OP. In our hybrid

132

object-oriented paradigm, at some level, the instance variables of an object are
represented as Prolog terms. If we wish to model objects with stream-valued
instance variables (for example the account balance time sequence), we can rep-
resent them as a Prolog list of terms. In fact, the instance variable can actually
be a generating transducer which retrieves tuples from an Ingres relation. Log(F)
can then be used to write the methods which query the stream-valued attribute.

This capability has been added to O-OP. All methods which contain re-write
rules are preprocessed by the Log(F) compiler before being asserted into their
class module. Within Log(F) rules, messages may be sent to other objects al-
lowing a free and natural intermixing of the three paradigms. Because both the
object-oriented and functional paradigms are given their meaning here in terms

of equivalent Prolog, there is no impedance mismatch as the styles are mingled.

5.4.1 Streams of Objects

We have seen the power of viewing streams as objects and of allowing stream
valued attributes for objects. The full power of combining streams and object-
oriented programming is obtained when we permit streams to be sequences of
typed objects.

For example, imagine a graphics display systemn in which a complex diagram is
composed of many sub-objects. The object corresponding to the whole diagram
has a stream attribute with a method for displaying the diagram represented by

the stream. This transducer rewrites each object on the stream to a sequence

133

of drawing commands to a graphics processor. There is operator overloading
occurring here at multiple levels. First, the display transducer on the stream is
overloaded, selecting the correct version for that type of stream. Then, within
display, there is a re-write rule for each element. This will involve invoking
methods on each of the objects on the stream which select the correct implemen-
tation for their type. These objects may be complex objects themselves, invoking
methods on their sub-objects. This example illustrates the power and economy
of combining stream-based and object-oriented paradigms.

A stream of objects may be implemented as a stream of Oids; this is precisely
what a collection class in O-OP is (see section 3.5.13). When the objects on the
stream are themselves streams, we can represent this as streams of generating
transducers. These transducers may generate the elements of a collection eagerly
by sending a 1ist (L) message. Alternatively, the members of a collection may
be generated lazily via the element(E) message which backtracks through the
sequence of elements of the collection.

This chapter proposes taking advantage of the fact that both object-oriented
and functional programming have convenient interpretations within logic pro-
gramming. By interpreting both in Prolog, we obtain a seamless combination
of the three major paradigms in which each can be used to its best advantage,
without suffering the usual problems with mixed paradigms. The next chapter

exposes a new form of name binding: semantic binding.

134

CHAPTER 6

Semantic Binding and Dynamic Classification

6.1 Introduction

In the conventional object-oriented paradigm, the class is an invariant of an
object. That is, an object is created in a particular class and all methods which
transform that object are guaranteed to transform valid instances of that class
into other valid instances. It is also central to the paradigm that an object’s class
determines what code is riun when the object receives a particular message. In
fact, the primary purpose of classes 1s to group together objects which can share
identical implementations of methods.

While there are many benefits inherent in the object-oriented approach to
software design and construction, we will show that dynamic or evolving software
environments pose problems which the object-oriented paradigm (and in fact any
other existing paradigm) fails to address. That this short-coming has been not
been discussed previously is particularly surprising given that the object-oriented
paradigm is strongly touted {63,27] as the answer to the demands of long term

maintainability and evolvability of large software systems.

135

6.1.1 The Problem

Above, we stated two characteristics of the object-oriented programming par-
adigm: 1) class membership alone determines the binding of an object to the
method code to run in response to a message, and 2) objects do not change
classes. However, as the next two sections demonstrate, under a very reasonable

and expected set of circumstances, 1 and 2 cannot both be true.

6.1.1.1 Multiple Alternative Method Implementations

When an object receives a message, it is requested to perform a function,
identified by the message’s name, on itself. For example, a matrix may be sent
the message “invert”. However, there may be more than one implementation
(solver) for the same logical function, e.g. one invert procedure for small matrices
and another for large, sparse matrices. The version for sparse matrices may not
work for smaller dense matrices or it may exhibit much worse performance than
the more appropriate solver. The choice of which version of the method to employ
depends on the state of the object.

In traditional object-oriented programming, given an object’s class, a func-
tion name, and an inheritance lattice, the system performs the binding to an
implementation of a method. To accommodate more than one implementation
for a method within the object-oriented paradigm, the class (matrices in the case
of this example) may be further specialized into subclasses with each subclass

providing a different implementation of the function. However, this approach,

136

while satisfying 1 and 2, is unsatisfactory in a multiple implementations situation
because 1t is generally not knowable when the object is created which version of
the method is appropriate. If more than one instance of the method is applica-
ble, the best choice is often a non-trivial function of the object’s dynamic state,
not simply its class. Furthermore, there are typically many different messages to
which an object can respond; each corresponding method may have multiple im-
plementations. This situation necessitates further subdividing the classes into as
many as one for each element of the set of cross-products of the sets of alternative
solvers for each method. Thus adding a new solver for one method requires the
creation of many additional subclasses, one for each of the other combinations of
solvers, and the static reclassification of all existing instances of model objects
into one of the subclasses. This approach is clearly untenable.

An alternative to specializing the class with artificial subclasses for each dif-
ferent implementation of the method is to combine all the versions of the solution
into a single method with “switch” logic prepended to choose the most appro-
priate branch. This approach is superior in that the switching logic takes into
account the dynamic state of the object instance in making the choice of a solver.
However, it sacrifices the flexibility of adding new implementations of the func-

tion without changing existing methods.

137

6.1.1.2 Extensible Tool Kits

A large scale programming enviromment must be able to maintain an exten-
sible tool kit of solvers. It must manage solvers as objects themselves providing
a convenient facility to add new solution techniques to a system, and cause them
to be used where appropriate. The choice of the most appropriate solver is gen-
erally a function of the queried object’s structure or instance variables and values
specified in the query. The knowledge about how to select an implementation
for a method must be sufficiently modular that a new solver can be added to the

environment without modifying existing solvers. Further, the new solver should

be used to answer queries on existing objects where appropriate without modify-
ing those objects. Given an object and the name of a function, the system must
dynamically bind to an implementation of the function.

If, as 1in 2, the class is an invarient of an object, class membership alone cannot
determine method bindings as state changes may alter which method version is
appropriate. Thus 1 cannot hold.

If as in 1, the class determines the mapping to implementations, objects must
be permitted to change class when their state changes in order to permit them
to bind to the most appropriate method version given their new state. Thus 2

cannot hold.

138

6.2 Two Solution Approaches

We present two approaches within an object-oriented framework to dealing
with the problem of connecting a version of a method to an object in response to
a given message. The first, semantic binding, corresponds to relaxing 1 while the
second, dynamic classification, is obtained by relaxing 2. The two approaches

will be seen to achieve the same effect.

6.2.1 Semantic Binding

In general, a program must run to choose the correct binding of a function
name to an implementation. We term this process semantic binding. Connecting
a solver to a model for a given query involves running a domain specific expert
system which queries the model and solvers and chooses the most appropriate
binding. We call this binding program an expert system firstly because the choice
of a solution technique for a particular model is an expert decision; a naive user,
for example, need not be concerned with whether or not his queueing network is
product-form. Secondly, the expert knowledge used to select a solver is most often
best expressed in the form of rules. Such declarative knowledge representation is
highly extensible; adding a new solver involves adding rules for that solver, not
modifying rules. This is the programming style of an expert system.

The challenge is to devise a way to organize the knowledge required to perform

the binding. The organization must be sufficiently modular to allow easy addition

139

of new solution methods. As the binding process depends on characteristics of
the candidate solvers and specific attributes of the target model, all model objects
and solver objects must provide a standardized interface to query this type of
information. This standardization is achieved by organizing classes of models
into demains.

A domain is an encapsulated portion of of the class hierarchy and serves as
the granularity for specification of expert knowledge about semantic binding.
The domain is named by the class which forms the root of the subtree. This is
the most general class of models within the domain. For each domain there is a
set of candidate solvers for models. All models and solvers within a particular
domain must satisfy the standard interface so that the semantic binding logic
can query their characteristics. See Sections 7.2.2 and 7.4.2 for a description of
how semantic binding and domains are implemented in the Tangram Modeling

Environment.

6.2.2 Dynamic Classification

Another way to view the process of binding a solver to an object is to re-
classify, automatically and dynamically, an object when it receives a message.
We first introduce the concept of dynamic classification, and then show how it
is used to implement semantic binding,.

In the standard object-oriented paradigm, it is assumed that an object’s class

is fixed when it is created. The creation of an object is generally accomplished

140

by sending a message to the most specific class of which the object is a member
instructing that class to generate an instance of itself. Any methods defined by
more general classes are applied via inheritance. Any method which changes
the state of an object is guaranteed to transform an object in a valid state for
a particular class into another valid state for that class. Methods cannot cause
objects to change class.

This is, in general, too restrictive. For example, suppose we have an financial
investment modeling system. Within the class Investments, we have a subclass
Bonds. Bonds are further specialized into High Grade Bonds and Junk Bonds
based on their rating which is maintained as an instance variable. Some methods
for Bonds may behave differently for the two subclasses; e.g. they may be listed in
separate parts of a balance sheet. It is conceivable that the rating of a particular
instance of an investment grade bond be downgraded say when the company files
for bankruptcy protection. This necessitates the moving of the object instance
from one class to a sibling class. This can only be accomplished in current
systems by deleting the instance and recreating it in the other class, resulting
in an interruption in the object’s identity. Such an interruption is intolerable as
many other objects may contain pointers to the original instance which will be
left dangling.

The above is an example of movement of an object instance from one sib-
ling class to another. Movement up and down in the hierarchy is also possible.

Consider the class Polygon with subclass Rhombus which in turn has a subclass

141

Square. If a shape is represented by instance variables containing the coordi-
nates of all corners, it is clearly possible for a message to a Rhombus to move
two coordinates such that the object becomes a Square. Similarly a message to a
Rhombus could move a single coordinate rendering it no longer a Rhombus, but
still a Polygon. Thus an instance can become more or less generally classified.

How is this related to binding solvers, queries and objects? The above has
argued that it is useful to permit changes of object’s states which affect the
binding to methods. This is only possible if objects can be re-classified. This
approach can also be used to bind to (select) an appropriate solver based on the
values of instance variables.

In our initial statement of the problem, we rejected the idea of specializing
classes into subclasses, one for each solution method. This was based on the
grounds that the choice of the correct solver is a function of the object’s dynamic
state and could not be made a priori. Further, the number of such subclasses
would become unmanageable as we would require [, N; subclasses where n is
the number of methods and N; is the number of alternative implementations of
the i** method. However, if the reclassification is done dynamically and auto-

matically, there is no need ever to actually enumerate all of the possible classes.

6.2.2.1 Classification Via Constraints

Our proposal for dynamic reclassification is as follows: An object is created

within a domain as with semantic binding. The domain fixes the most general

type (class) that the model object can ever take on. Each sub-class within
the domain must supply a set of membership constraints. The constraints are
arranged hierarchically such that each sub-class need only define the additional
requirements that an object must meet for membership given that it is already
a member of its parent class.

When an object within the domain receives a message, it is “pushed” down
the hierarchy to the most specific class for which it satisfies the membership
constraints. The constraints can name the selector and arguments of the message
received by the target object such that the class selection is a function, not only
of the object’s state, but of the message.

The binding to solvers in this approach is “hard-wired” in the class (as with
conventional object-oriented name binding). The selection of the most specific
class for an object with respect to a given message determines the binding to a
solution implementation. Optimizations are clearly possible (e.g. cache previous
bindings which are only invalidated by changes in the object’s state).

The two approaches, semantic binding and dynamic classification offer equiv-
alent functionality. They differ only in the style in which the expert knowledge
which determines the name binding is expressed. Both will incur significant but
as yet unknown run-time overhead for dynamic binding but may benefit from

clever implementation.

143

6.3 Related Work

We are aware of only a single piece of related work, the “law-based approach
to object-oriented programming” by Minsky and Rozenshtein [65] utilized in
the Darwin programming environment [82]. Their premise is that “inheritance,
hierarchical or otherwise, is simply too narrow a concept to serve as a unifying
principle for object-oriented programming.” They propose the concept of a lew
governed system in which the exchange of messages is subject to the law of the

system.

A message of the form < s, m, ¢ > (sender object, message text, target object)
is presented to the system via a send goal: send(s,m,t). This goal is evaluated
by the Prolog interpreter with respect to the set of rules which comprise the law.

There are three possible outcomes:

1. The message is delivered to the target object via the system primitive

deliver(m,t)

2. The message may be modified and/or rerouted. That is send(s,m,t) may

result in deliver(m/, t').

3. The message may be rejected.

Thus the law acts as a filter on the exchange of messages (see Figure 6.1).
The figure illustrates a message (1) from object a to object b which is delivered

unmodified (2) by the law filter. Another message (3) sent by a is blocked by

144

Law Filter

Universe of
Objects

Rercuted Msg Blocked Msg

Figure 6.1: A Law Governed System

the filter. The message (4) sent from b addressed to ¢ is intercepted by the law
and rerouted (5) to object d.

Users may specify their own message exchange discipline by asserting clauses
for the send predicate. Using this very primative base, the authors show how
many of the features found in object-oriented languages including multiple in-
heritance, differential inheritance, active values, etc., may be built using laws.

While they do not address the problem of semantic binding, this work is
related in that it offers a potential framework for a solution. Minsky and Rozen-
shtein are the first to raise the possibility of a user supplied program imposed
between message sending and receiving which can alter the default binding proce-
dure. By themselves, however, completely unconstrained user defined laws offer
too little structure to use as the basis for representing the knowledge required to

bind an object to a solver for a particular query.

145

CHAPTER 7

Application: The Tangram Object-Oriented Modeling Environment

7.1 Introduction

Will an increase in the discount rate drive this country into a recession? Is the
weather going to be good next year for growing avocados? Is the satellite likely
to remain operational for the entire mission time? Getting answers to this type
of question can be of critical importance. Unfortunately, it is generally infeasible
to conduct an experiment to answer these questions without committing to the
very course of action whose outcome is in doubt. Instead, we try to capture
the behavior of these types of systems in a model. Querying this model gives
predictions of the future. These predictions can be anywhere from exact to wildly
inaccurate depending on how well the model represents the essential behavior of
the real world system. Experience with the model as to how well it explains
previous behavior can give confidence in its predictions of the future.

While there have been tremendous advances in the mathematical techniques,
the practice of modeling has advanced more slowly. Modeling typically requires
specialized skills; knowledge of both the problem domain and a solution package.

It is very labor intensive. The process involves an expert abstracting the appli-

146

cation domain, selecting a solution method or solver, translating the abstraction
into the input format of the solver, and then interpreting the numerical results
of the solution. The solution tools typically have a very primitive user interface
requiring input in a rigid format. An expert is often only highly proficient in
one tool; “If you only have a hammer, everything looks like a nail.” In addition,
there is a shortage of experts and using the ones there are is costly.

The answer to these problems is a whole new generation of modeling tools.
Driven by the personal computer revolution and by wider acceptance of primitive
modeling tools such as spreadsheets and databases, the opportunity and the need
for an advanced environment which can harness powerful modeling tools for non
experts has never been greater. This chapter proposes an architecture for such
an advanced modeling environment.

We have implemented Tangram [70,76], a prototype of such a system, using
Object-Oriented Prolog. This modeling environment provides a clear example
of an application for which the effective combination of both logic programrning

and object-oriented organization is essential for success.

7.1.1 Mathematical Modeling

Mathematical modeling spans a large variety of techniques; queucing theory,
mathematical programming, Markov chains, semi-Markov models, ete. In the
same sense that this body of knowledge is organized into areas and subareas,

one of our goals in Tangram is to organize modeling knowledge into modules

147

that we call domains. A domain encompasses a class of models, a set of solution
methods (solvers) and an interpreter for queries. The idea is that models are
created “in a domain” and any such model must be a member of the class of
model associated with that domain. The choice of what class of models a domain
encompasses is a design decision. Basically, one would like to (a) incorporate a
useful, general class of models and (b) subsume within the abstraction provided
by the domain a significant amount of detail. As a simple example, suppose we
construct a domain that deals with finite Markov chains. This domain may have
a number of different solution techniques available; e.g. some may be appropriate
for nearly decomposable chains, others for sparse chains, etc. The idea of the
domain abstraction is that a client should not have to be concerned about details
such as how to choose the best solution methods, but rather just ask for a solution
and have the system choose the appropriate solver.

When the domain supports what is a classical mathematical abstraction (e.g.
Markov chain, linear programming, queueing network, etc.) then it is perhaps
more appropriate to call this a modeling domain. A specialization-generalization
hierarchy of these domains occurs quite naturally. Further, as we shall demon-
strate later in the paper, it is also convenient to form dormains for particular
applications, which we call application domains.

In addition to the central concept of domains, the following constitute the

goals of the Tangram system which we believe are essential.

148

Extensibility The systemn must be able to cope with a wide variety of appli-
cation areas. In our view, an application dormain will be customized by
an expert for a non-expert to use. New applications may be created by
specializing existing ones. New solution techniques must be incorporated
in the system without modifying existing models or knowledge bases and

be employed when appropriate,

User-friendliness The user interface should make extensive use of graphics for
defining models, queries, and expressing results. The form of the graphical
communications should be customizable for each application. Applications

should provide their own palette of objects customary to their domain.

Flexibility It must handle both top-down and bottom-up modeling. In the top-
down view, models are successively refined into more detailed sub-models.
The bottom-up approach abstracts detailed low-level models into simpler

representations.

Meta-modeling The environment must function as a model-base management
system for creating, storing, retrieving, updating, sharing, and querying

models,

The following simple example is used to illustrate some of these features as

they currently exist in Tangram.

149

7.1.2 Example Modeling Application

The Tangram system contains several base modeling domains (e.g. queueing
networks, Markov chains) from which specialized problem-oriented environments
may be created. We consider a trivial example of an environment for creating
models of car-washes, similar to those in [38] and [66], chosen to be easily un-
derstandable withoug a background in computer system perforamance modeling.
The car-wash domain is constructed (by an expert) as a specialization of the
system’s basic queueing network domain. It provides a set of objects from which
to build car-wash models, consistency constraints, a query language, and rules
for translating a car-wash model into one the system can solve.

First, the user selects the application domain (from a pull-down menu).
Graphical objects are then instantiated by the user from a palette of icons rep-
resenting object classes provided by the creator of the domain. Figure 7.1 shows
a simple model constructed in the car-wash domain using Tangram’s graphi-
cal interface. Model objects include the attendants, car washing facilities (two
shown), and a hand waxing station. In this particular example the user specifies
that 10 percent of customers want their cars waxed (modeled by the branching
probabilities at the exits of the car washing facilities), and that customers arrive
at the attendant at a rate of 20 per hour. In this case, the very primitive query
language consists of a generic query object (icon at upper left corner) with the

attached key word avg wait= requesting the average customer waiting time.

150

e ey —————;

1 2
1 L

1 i L

avg_wait=

799

P S rate=20 —» 4% < - L L :

. attendant

Figure 7.1: A Model in the Car-Wash Domain

When the user selects solve from the pull-down menu (not shown}, the model
is sent the solve message. The rules provided by the domain expert can be viewed
as an expert systern which examines the model and the query and generates
appropriate sub-models. In this case, the system simply derives an equivalent
queueing network model as shown in Figure 7.2. !

In this queueing model, the customer arrival is modeled as a “source” with
Poisson arrival with a rate of 0.3 per minute (20 per hour). The attendant and
car washing facilities are aggregated and modeled as a multi-server (whose name
is wash) with mean service time of 1 minute. The hand waxing facility is modeled
as a first-in-first-out server with mean service time 15. The query to the queueing
model becomes a function of the average waiting time at the ‘wash’ queue and

the ‘wax’ queue.

!Tangram does not currently generate the graphical representation of the derived queueing
model; it exists ouly internally. Such a representation could be generated and would be useful
for model debugging and explanation.

151

B Tangram S |

K lr = —
—>

1 |

l i

1 L : L 1 1 1
I : : © avg_wait{wash)= I
: © o mear_ eervice time=1. Do ‘waitmax?=

S distr‘—pnissun . num 5@7\\19{\9:24 . R R ???

rate=0,3

Figure 7.2: Queueing Model of the Car-Wash

The basic queueing network domain is able to solve the derived queueing
model. The queueing theory expert knowledge base embedded in the queueing
domain is exploited in the car-wash domain by transforming the original problem
into a queueing problem. The answer to the original query is computed from the

answers to the sub-model queries; in this case,

avgwait = avgwait{wash) + (0.1){avg_wait(wazr)).

To illustrate the flexibility required of the modeling system, suppose we are
now interested in the availability of the car-wash; car washing machinery may
break down and the car waxer may call in sick. In this domain’s simple query
language, the user attaches availability= to the query object and re-solves the
model. The domain expert system reinterprets the car-wash model in the relia-
bility domain generating an instance of a reliability model (graphical representa-

tion omitted due to space constraints). The reliability domain, already provided

152

by the base system, solves the model with Markov solution techniques.

Further, we can imagine extending the car-wash domain to handle profit and
loss queries. We could model the effect of throughput on reliability (the waxing
person becomes sick easier when he has to work above some threshold) or add
a backup waxer who works slower, but is healthier. Solving complex models
generally implies approximations and coordinated use of mathematical tools in
problem dependent ways. An advanced modeling environment encourages exper-
imentation with approximate analytic techniques such as decomposing the model
and iteratively solving the sub-models (relaxation). In general, these sub-models
are solved in different domains utilizing their own solution techniques, possibly
using further decomposition. When the analysis procedure is validated through
comparison with measurement data or simulation, it can be incorporated in the

domain knowledge base.

7.1.3 Related Work

Currently, most modeling packages are designed either around one applica-
tion (e.g. communication networks) or around one solver (e.g. simulation). Tools
designed for analyzing the performance and reliability of computer and commu-
nication networks are most similar to Tangram’s. While many packages exist for
modeling reliability (e.g. SAVE [40] from IBM, HARP [10] and SHARPE [83]
from Duke University, ARIES [57] from UCLA and SURF [26] from CNRS), all

have the same problem. They provide a convenient interface for models that fit

153

into the anticipated mode but no others. Tools for modeling queueing networks
have similar problems (e.g. PAW [61], QNA [101] and PANACEA [79] from Bell
Labs, RESQ [85,86] from IBM and PAWS [11] from University of Texas). RESQ
offers both exact solution for a certain class of models and simulation for others,
but the structure of the models is different depending on the analysis method.
PANACEA and PAW go a step further and use the same language for several
different analysis methods, but have no facilities for easily adding new modeling
primitives or new analysis methods. At another extreme are tools such as petri
nets [67,58] that provide generality by using only the most primitive constructs.
This places too much burden on the modeler. More recent efforts are starting to
provide better tools. Structured Modeling [36] is attempting to provide a general
high level interface for linear programming and other operations research tools.
ANALYTICOL [9] attempts to provide a high level interface for statistical anal-
ysis. Finally, [12] describes an environment for generating and analyzing Markov

chains using an object-oriented approach.

7.1.4 About this Chapter

This introduction has motivated the need for an advanced environment for
modeling and has given an example using the prototype Tangram system. The
following section presents our approach of encapsulating models and solvers in
domains using Object-Oriented Prolog and shows how the problems of semantic

binding presented in Chapter 6 are handled in Tangram. Section three discusses

154

the use of Object-Oriented Prolog in the Tangram system and the relevance of
this hybrid paradigm language for modeling. Section four describes the architec-

ture and current state of our prototype and conclusions follow in section five.

7.2 Smart Models

The key to realizing the myriad design goals for a multi-domain modeling
environment is the concept of smart models. A smart model must be able to
respond to messages by performing high-level operations on itself: solve yourself,
display yourself, suggest a solution technique, etc. We call the models “smart”
because much of the burden of solving models is shifted off of the user onto the
system. In order to create a model in an existing application domain, a user need
ounly know what base objects the domain provides, how to connect them, and the
query language for this type of model. The model has the intelligence (inherited
from its domain) to select an appropriate solver, translate itself into the solver’s
input format, interpret the output of the solver, and answer the query.

The concept of smart models is realized in Tangram via the novel combina-
tion of several powerful ideas. The use of object-oriented modeling organized
in domains, declarative programming, non-determinism, and a new variation on
multiple inheritance called semantic binding combine to make possible a very

flexible modeling environment.

155

7.2.1 Object-Oriented Modeling

Foremost for the success of the system is the object-oriented structure of the
modeling environment. It is natural to represent entities in an application domain
as objects which respond to a well defined set of messages. For example, in a
flexible manufacturing system model, domain objects might be tools, parts, and
bins. New types of objects may be created by specializing existing ones. Complex
subsystems can be modeled with composite objects (also called sub-models) and
can be used in other models. A model as a whole is itself a composite object

which responds to a set of messages.

Solvers in Tangram are also represented as objects. This is as opposed to
representing solvers as methods for classes of models. Solvers are a resource that
must be managed by the systein. We must be able to maintain many different
solvers which perhaps perform the same function only with somewhat different
characteristics and would consequently occupy the same method slot (name) if
implemented as methods. Further, the collection of solvers must be extensible,
the addition of a solver being transparent to existing models.

A solver must know what types of models it is capable of solving and be able
to estimate its complexity and accuracy. Solvers must adhere to well defined
interface protocols so that alternative implementations may be substituted. The
object-oriented approach to both models and solvers immediately obviates the

monolithic nature of most modeling tools, naturally distributing model specifi-

156

cations and integrating multiple solvers.

Domain
Knowledge
Base

Domain

Objects

Solvers

Queries

Figure 7.3: Conceptual Diagram of a Domain

Models are declared within domains. A domain is an environment which
encapsulates the object definitions, query language, solvers, and heuristic knowl-
edge base which combine to make up a customized package for models in a
particular application. The knowledge base contains rules for checking the con-
sistency (well-formedness) of a model, selecting a solver for a given model and
query, and selecting an appropriate representation for results. Domains may be
customized by expert users to create problen-specific domains for use by novices.
For example, an environment for modeling the reliability characteristics of com-
puter systems with repairable components Lias been created in Tangram as a
specialization of a general Markov chain domain. Specializing a domain involves
declaring rules for transforming a model and a query in the application domain
into a sub-model and query in a more general domain.

Domain knowledge bases in Tangram are not implemented as separate soft-

ware components. Rather, the knowledge is distributed among the objects in

157

each domain. For example, solvers must “know” their own complexity; model
objects must “know” how to display themselves. These objects must provide
methods which query their portion of the domain knowledge. Details of how this

is implemented are discussed in section 4.

7.2.2 Semantic Binding

The modeling environment application provides an excellent example of the
semantic binding problem presented in Chapter 6. When a query is posed on a
model, the model must first be solved, and then the answer to the query extracted
from the solution. However, the solve method cannot be simply inherited from
the class of the model. There are, in general, multiple solvers which could perform
the task. Selecting the best one depends on the current state of the model. It
may also be the case that the choice of the solver is a function, not only of the
model, but of the query.

There must be an expert user supplied piece of code that runs which performs
the semantic binding of model and query to solver. No other existing paradigm
provides any guidance about how this binding program should be managed.

In the Tangram system, we view this binding program as part of the domain
level expertise. The program which performs query interpretation and solver se-
lection is implemented as a method within the class of models in a given domain
and is inherited by all such model instances. This method must capture the

domain expert’s knowledge to select a solver. In writing the binding method,

158

we take great advantage of Object-Oriented Prolog’s ability to program declara-
tively. The expert’s knowledge can be captured in the form of Prolog rules which
allows the system to deduce an appropriate binding.

In order to maintain extensibility, the data used by the binding method is kept
with the objects to which it pertains. In order to be used by a particular domain,
a solver must provide an interface supporting the set of messages with which
the binding program can query it to determine its characteristics. Similarly,
all models in a given domain support the messages required by the domain to
determine the characteristics of the model.

For example, a model builder in the queueing network domain should not
have to be concerned about whether or not the resulting model has a product
form solution. When a user queries the model, the semantic binding system must
inquire of the state of the model whether any of the centers specifies a scheduling
discipline which renders it non-product form. It must find out if the model
uses state dependent routing (e.g. for load balancing), and whether the model
uses blocking, Depending on the answers to these questions, the system may
select an exact product form solver, a Markov chain solver, or an approximation
technique using decomposition or simulation. Section 7.4.2 gives an example of

how semantic binding is currently implemented in Tangram.

159

7.3 Role of Object-Oriented Prolog

It is crucial to the success of the modeling environment that we harness
the advantages of both the logic and object-oriented paradigms. Declarative
programming is essential to rapidly prototyping the behavior of model objects.
Such rapid prototyping is necessary, as one of the primary characteristics of a
modeling environment is extreme flexibility. Further, the domain expertise is
generally most conveniently and flexibly expressed as rules. For these reasons,
the modeling envrionment application motivated the development of Object-
Oriented Prolog and was the driving force behind this whole dissertation.

Prolog’s powerful knowledge representation and knowledge base querying ca-
pabilities are used in Tangram by specifying object behaviors via Prolog rules.
The built-in unification pattern matching in Prolog allows very general rules to
be expressed quite simply. Solution packages written in other languages may
be encapsulated within Prolog procedures using the foreign function interface
allowing the right language to be used for each task. By combining rule-based
specification with object-oriented structuring and inheritance, O-OP is an ideal
language for building a smart modeling environment. The next section describes

the architecture of Tangram and the current status of the system.

160

7.4 'The Tangram Modeling System

A prototype of the Tangram object-oriented modeling system is operational
on SUN 3/60s. The user can construct models, define new objects, and query
models graphically. The system’s immediate applications are in computer sys-
tems performance modeling and the first domains were chosen to support this
area’s queueing network models and Markov chain analysis. In the queneing
network domain, we have incorporated several exact and approximate analytic
solvers., In addition, animated simulation is available. The Markov chain domain
uses Prolog’s backtracking to generate a set of reachable states of the model and
the state transition rate matrix. Several numeric solvers for Markov chains are
present. A specialized reliability analysis domain for modeling repairable com-
puter systems is operational on top of the Markov chain domain. Each domain

was built in a very short time frame (2 to 3 man-weeks).

7.4.1 The Architecture of Tangram

Figure 7.4 shows the basic components of the Tangram modeling system.
Rectangles represent software components and ovals depict classes and object
instances inside the Object-Oriented Prolog language.

In the Graphical Front-End, models are represented by a collection of icons
(graphical representations of objects) and lines (relationships among icons) with

attributes (graphical instance variables) attached to them as in Figure 7.1. Mod-

161

Object Oriented Prolog |

| update invokes
invokes UYP
l dlsliiay %
Graphical |_ Solvers
Front-End S
send @
L query OO
cmds/msgs— Persistent

Objects
Figure 7.4: The Architecture of Tangram

els are constructed with a MacDraw?-like user interface (all figures in this disser-
tation are generated with this front-end tool), with object orientation extensions,
entirely implemented in C running in the X Window System?® The graphics in-
terface also supports model hierarchies; sub-models may be designed and then
represented by icons as primatives used in higher level models. The user may
highlight an icon in a composite model and then push inside it to view the un-
derlying model.

In our prototype implementation, after the graphical representation of the
model is specified, commands in O-OP to create the objects are generated by a.
translator and batched together to be sent to the object system. In the future,
the front-end will also be implemented in O-OP; instantiation of an object at the
front-end will cause inmediate instantiation of the corresponding object module

in the O-OP language and database.

?MacDraw is a trademark of Apple Computer Inc.
3X Window System is a trademark of the Massachusetts Institute of Technology.

7.4.2 Sample Interaction

We again use the car-wash example to illustrate the features of the Tangram
prototype. When the user selects solve from the pull-down menu after compos-
ing the model shown in Figure 7.1, the translator generates the corresponding
model and associated objects (Figure 7.6) in the object system. The model is
sent the avg_wait query.

The class of all models in the car-wash domain contains a query method
which is inherited by this model instance. The query method invokes the car-
wash domain expert system. From the constituents of the model and the query
posed, the domain expert system generates O-OP code as shown in Figure 7.5 to
create a queueing model and sends it a list of queries. Figure 7.6 shows part of
the object hierarchy after the queueing model is created. Ovals represent classes
and boxes are object instances with instance variables. The small tabs on top
of the objects depict object IDs; internally generated IDs are shown with single
quotes.

Each new_object message in Figure 7.5 causes an instance of the specified
class to be created. The first argument of new_object is bound to the object ID
of the newly created instance and the second argument specifies a list of initial
instance variables. The add_center message registers a list of queue objects
with the model object, and add_routing specifies a list of routes between queues

with associated branching probabilities. Finally, the query(Queries,Results)

163

queueing_model send new_object(M1i, [1).
source send new_object(SrcObj, [distr(poisson), rate(0.3}]).
ms send new_object(MsObj,
[mean_service_time(1),num_servers(2)]).
fifo send new_object(FifoDbj, [mean_service_time(15)]).
sink send new_object(Sink0bj, [1).
M1 send add_center{[SrcObj,Ms0bj,Fifolbj,S5ink0bj]).
Mi send add_routing({
route(SrcObj,Ms0bj,1.0),
route (Ms0bj,Fifo0bj,0.1),
route (Ms0bj,Sink0bj,0.9),
route(FifoObj,Sink0bj,1.0}]).
M1 send query([avg_wait(MsObj),avg_wait(FifoObj)], Results).

Results = [1.023, 27.273]

Figure 7.5: Sample O-OP Code

message causes M1 to solve itself, answering the queries specified in the first

argument.
M1 inherits the query method from the class of all queueing models in the

queueing network domain. The method invokes the queueing domain expert sys-
tem which deduces that this model can be solved directly using numerical solvers.
Each solver implements a query(Model,Queries,Results) method which binds
Results to the list of numerical values of the answers to Queries for Model. The
domain expert system tries to semantically bind the query message sent to the
M1 with the query methods of the numerical solvers in the domain.

To accomplish this, the domain’s semantic binding system asks each element

of the domain’s list of candidate solvers (implemented as the collection object

164

mva

g solvers

collection ([—-ﬁ
linearizer, mc_solvers

mval).

mean_service_time(l5) |

inearizer>
collection{[

%
414
A "of"
b’ ;]
markov]}. i,
mean_service time (1) . T linearizer
aum_Fervers (7} . & o3 l
a1’ | callectiongl
route .

_!‘04- tod’, o8, 1.0},
route{’ss57,’c8’,0.1},
center cel(702”). reute{"o5’,’61",0.9}
distr {polsson) . route Tol{'c3'). route{ ok, o7’ ,1.015).
rate{0.3) .

Figure 7.6: Part of Object Hierarchy Containing A Queueing Model

“q_solvers” in Figure 7.6) to estimate the complexity of answering the query.
The solver with the smallest complexity measure is selected and its query method
is semantically bound to the query message sent to M1. The selected solver is
sent the message query(M1,Queries,Results) which will bind Results to a list
containing the average waiting time for the car wash and the car wax facilities.
If the queueing model is more complicated and can not be solved directly
with numerical solvers, more sophisticated techniques such as decomposition can
be invoked to solve the model. Once the queneing model has solved itself, the
car-wash domain expert system uses the results to compute the answer to the

original query and updates the display in the front-end.

165

7.5 Conclusions

We began with the goal of creating a modeling system which could accom-
modate a variety of analytic and simulation modeling techniques and be easily
extensible with respect to both integrating new solution techniques and tailoring
the system to specialized applications. In support of these goals we developed
a design philosophy that combines features from both the object-oriented and
the logic programming paradigms. We introduced the notion of “smart models”
which allows us to think of models which are not merely passive but rather can
respond to high level queries to solve themselves, suggest solution methods, etc.
This is accomplished by creating models in a “modeling domain” from which a
model instance inherits knowledge of how to solve itself, etc.

A prototype of the system exists and is being used. It currently features
modeling domains for queueing networks and Markov chains. Several specialized
domains (e.g. reliability models) have been built on the basic system. About
35 classes of objects have been defined in the current system from which models
can be created. Most models used to date have been quite small and used for
demonstration purposes only. Models containing over 100 objects have been
created in the system but the performance for these and larger models is currently
limited by the batched translation interface between the graphical front-end and
the object-oriented system. Once translated into Object-Oriented Prolog, the

system’s performance for large models is limited primarily by the speed of the

166

underlying solution techniques and not by the object management system.

Due to the object-oriented structure, we have found it very easy to add new
solution modules to existing domains, create new domains, or specializing existing
domains. In the near future we expect the system to expand quickly. We will be
adding domains for analysis of distributed algorithms, load balancing, etc. The
set of users from outside the implementation group is expanding rapidly both
within the department and in industry. The expanding user base and range of
applications will test our goals of providing a sufficiently flexible and powerful
system satisfying diverse needs. While this remains to be verified, our experience

thus far and the reaction of the user community has been quite positive.

167

CHAPTER 8

Summary and Continuing Research

8.1 Summary

The goal of this dissertation is a language to support the development of an
advanced object-oriented modeling environment. We utilize an object-oriented
structure for the modeling environment. Such a structure allows models to be
constructed top-down (by specializing high level models) or bottom-up (by com-
posing detailed sub-models). It allows for the customizing of model components
and interfaces to individual problem domains by specializing general concepts. It
provides a paradigm for encapsulating “off the shelf” solvers for use by the system
to answer queries on models. As a modeling environment is not a static system
but rather intended to evolve constantly, the software engineering practices the
paradigm encourages and supports are even more important than in conventional
applications. The object-oriented approach is essential to the success of such a
general and flexible modeling environment.

The other key component to the success of the modeling environment is the
ability to specify knowledge declaratively in a logic language. When knowledge

1s represented declaratively instead of algorithmically, it may be used in contexts

168

that were not anticipated when the knowledge was encoded. Human expert
knowledge is often much more conveniently expressed declaratively. Freed from
the burden of stipulating flow of control, programs can be written in logic much

more rapidly than in conventional procedural languages.

8.1.1 Object-Oriented Prolog

In this dissertation, we have designed and implemented a new language,

Object-Oriented Prolog, which delivers the best of both paradigms. The meth-

ods which define an object’s behavior are specified using Prolog while higher

level structure and flow of control are organized using communicating objects.
O-0OP delivers a “seamless” integration of the two paradigms; message sending is
interpreted as goal invocation from the point of view of Prolog allowing messages
to be freely embedded within Prolog clauses. Similarly, within the method code
that runs when an object receives a message, conventional Prolog may be mixed
with messages to other objects.

Object-Oriented Prolog supports the modularization of code into an hierarchy
of classes. Object instances inlierit their behavior from their class. Any methods
not overridden in the object’s class may be inherited from the (or one of the)
super class{es). The system provides a basic set of utility methods which are
inherited from the root object in the class hierarchy. Thus the O-OP language
eliminates the primary impediment to the use of Prolog for large applications by

providing for well structured modularization of programs.

169

8.1.2 Design and Implementation

The Object-Oriented Prolog language is implemented as an interpreter run-
ning on top of a Warrent Abstract Machine extended to support modules. We
have added a modules facility to the Swedish Institute of Technology Warren
Abstract Machine. This modules system partitions the name space of Prolog
into arbitrarily many naming contexts to create the effect of many cooperating
abstract machines. The system supports static or dynamic binding of names
used across context boundaries. The O-OP interpreter has also been ported to

run on Quintus Prolog using their modules implementation.

8.1.3 Formal Semantics

In Chapter 3, we specify the formal semantics of Object-Oriented Prolog. We
first give an operational semantics in which the abstract machine maintains sepa-
rate code databases for each module. The machine also has a state variable which
holds the current module for the goal being tested (the top of the goal stack).
Transition rules which change the current module are provided. The context to
return to upon backtracking is saved on the choice point stack. The semantics
of object-oriented message passing are then defined in terms of the behavior of
the modular Prolog program mto which the message sending is interpreted.

Next, we give a Strachey-Stoy style denotational semantics for the language.
The denotation of a program is modeled as a function from inputs to outputs.

The meaning function is recursively defined in terms of functions which define the

170

meaning of individual components of the program. Each of these functions are,
in turn, defined by the meaning functions of sub-components of the program until
a primative layer is reached. This method has a firm mathematical basis which

ensures the well-formedness {existence of fix points) of the recursive definitions.

8.1.4 Semantic Binding

One of the most exciting aspects of this research is the discovery that a very
important and general class of name binding is not supported by any existing
programming paradigm. In conventional languages, when a function is applied
to an object, the name uniquely identifies the address of the code to run to
realize the function. Later languages allow for some overloading of the function
name such that the code applied to the object depends not only on the name,
but on the type of the object. Object-oriented languages allow for a hierarchical
structuring of types and inheritance. Surprisingly however, this is still far from
being a general enough name binding mechanism for an environment as dynamic
as the Tangram Modeling system.

In general, there may be many alternative implementations for a single logical
function that must be simultaneously maintained by a system. When a program-
mer calls the function by its logical name, the system must bind to the correct,
or one of the correct, implementations or solvers. The object-oriented paradigm
allows for this binding to be made on the basis of the type of the target object.

This is, in general, insufficient as the choice of the best binding often depends

171

on the current state of the dynamic object (type is generally a static property).
It is often the case that expert knowledge must be brought to bear to determine
which solver is correct or most efficient.

We propose two approaches to providing this type of binding. The first we
call semantic binding. In this paradigm, a user supplied program is run to se-
lect a solver to apply to the target object for a given query. This program is
specified in Object-Oriented Prolog allowing for the declarative knowledge rep-
resentation that is generally most convenient for expressing expert knowledge.
The knowledge that this binding program must access is partitioned among the
- solver objects and the target model objects. These objects must obey a standard
interface protocol so that they respond to messages from the binding program
with information about their current state or capabilities. Hence, new solvers
may be added to the system and may be used by the system to solve queries

where appropriate without modification to any other part of the environment.
The second approach is based on relaxing the static typing traditional in
object-oriented systems. Rather than fixing the type of an object at creation
time, we can specify only its most general type. When it receives a message, the
system must classify the object to the most specific type for which it satisfies the
constraints. The name binding is then fixed by the dynamic type. There may,
however, be more than one possible type assignment so an expert decision must
be made. Adding a new solver necessitates creating a new subtype and specifying

its membership constraints. These two approaches are logically equivalent. The

Tangram Modeling Environment employs the first.

8.1.5 Stream Processing

This dissertation also proposes that Prolog be the integrating vehicle for all
three major programming paradigms. We show how object-oriented and logic
programming can be cleanly integrated. Narrain’s dissertation shows via the
Log(F) language that functional programming can be realized within Prolog. In
Chapter 5, we propose to combine all three, taking advantage of the fact that
both Log(F) and O-OP compile to Prolog. This allows each paradigm to be used
to its best advantage: object-oriented for structuring, logic for rapidly specifying
methods and expressing complex queries, and re-write rules for stream processing,.
Many important data types within objects are inherently stream valued and are
most conveniently queried with Log(F). In Object-Oriented Prolog, the Log(F)
super-set of Prolog can be used to write methods and message sending (like any

Prolog goals) can be embedded within re-write rules.

8.1.6 The Tangram Modeling Environment

Its use in implementing the Tangram Modeling Environment is the ultimate
test of the utility of Object-Oriented Prolog. The modeling system is entirely
written in O-OP with the exception of certain solvers and the graphical front-end
(written in C). The combination of object-oriented structuring and software en-

gineering practices with Prolog’s declarative style, backtracking, and unification

173

facilities were essential to the success of the Tangram system. The O-OP lan-
guage will continue to be used beyond this dissertation, as the implementation

language of the modeling environment.

8.2 Avenues for Continued Research

8.2.1 Streams of States

Our desire to allow objects to have mutable state prevents a pure, first-order
logic interpretation of object-oriented programming. The issue of mutable state
of objects arises because we wish to model objects of the real world whose state
changes over time. The concept of temporal series presented above suggests a dif-
ferent approach to modeling objects with mutable state. Instead of implementing
mutable state with destructive assignment, we can implement an evolving object
as a stream of states [3]. A changing quantity such as the balance of a bank
account is modeled as a time sequence history of balances. When the value of
the balance changes, the uninstantiated tail of the stream is instantiated to the
new value. From a logical peoint of view, state is not changing; more state is
being discovered.

This approach is not entirely without problems. First, it is not on completely
sound logical ground as the meta-logical var predicate must be used to find the
“current state”, the last value before the uninstantiated tail {46]. Second, it is

difficult to model concurrent or asynchronous access to objects [3]. As with Con-

174

current Prolog, this approach requires a merge process to combine independent
streams of messages into a single stream of messages in a “fair” way. This is
difficult to do without introducing the same kind of time dependencies which the
avoidance of destructive assignment prevents. Further, the purely functional,
side-effect free programming style is inherently oriented towards modeling ob-
jects with rigid inputs and outputs. It is not clear how to represent constraints

such as X + Y = Z which have no inputs and outputs, but rather are relations.

8.2.2 Compiling Inheritance

One of the primary criticisms of object-oriented languages is the performance
penalty due to late binding. We have the opportunity to trade off the added
flexibility that late binding achieves for higher performance if we are willing
to commit to part of the inheritance hierarchy. Our implementation modules
on the Sicstus Warren Abstract Machine allows us to add physical pointers in
the functor table of an object module so that inherited predicates appear to be
in the object module. Thus, barring any change in the hierarchy, all run-time
interpretation can be avoided. Such a compiler should be investigated and added

to the Object-Oriented Prolog environment.

8.2.3 Formal Semantics of the Three Paradigm Language

While we have defined a formal semantics for the combined object-oriented

logic programming language, no such semantics has been attempted for Log(F}

175

or its combination with O-OP. Log(F) with its functional re-writing paradigm
appears particularly amenable to modeling with a continuation style denotational

semantics.

8.2.4 The Modeling Environment

Further research and development of the Tangram Object-Oriented Modeling
Environment is continuing on several fronts. In the short term, many more
solvers will be added. Another near term task is to redesign the interactive
graphical front-end to integrate its object model with that of O-OP. In such a
design, activity on the screen would be immediately reflected in the underlying
object-oriented model (as opposed to the batched interaction that is currently
used. Performance of the user interface will dramatically improve.

More support and a less ad-hoc structure is needed for the expression of the
domain expert’s knowledge. The system must move more towards a design in
which domain experts can customize the environment for a particular modeling

application without assistance from the implementors.

8.2.5 Distributed Object-Oriented Prolog

The O-OP appears to be an excellent candidate for parallel programming.
The arms length interaction between communicating objects allows objects to
be located on separate machines transparently to the program. The addition of

asynchronous messages would allow programmers to express some of the potential

176

for concurrency in their programs. There is a considerable amount of work
in progress on concurrent Prologs and concurrent object-oriented programming
environments. Parallel versions of Log(F) have already been prototyped [54]. A
distributed computation model for O-OP appears to be a promising direction to

pursue.

8.3 Final Summary In a Nutshell

We have successfully designed and implemented an hybrid object-oriented
logic programming language. We defined its formal semantics and demonstrated
its utility by using it as the implementation language for a large scale application
program, the Tangram Modeling Environment. The resulting modeling system
could not have been achieved in so short a time and with such flexibility without
the Object-Oriented Prolog language. We proposed extensions to the language
to include stream processing via embedding Log(F) in O-OP programs. We
identified an important general type of name binding which is not supported by

current paradigms and showed how it could be provided in O-OP.

177

1]

2]

3]

[4]

[5]

[6]

[10]

[11]

References

Quintus Prolog Development Environment. Quintus Computer Systems,
Inc., Mountain View, California, August, 1987.

M A Nait Abdallah. Procedures in horn-clause programming. In Proceed-
ings The Third International Conference in Logic Programming, pages 433~
447, July 1986.

Harold Abelson and Gerald J. Sussman. Structure and Interpretation of
Computer Programs. The MIT Press, Cambridge, MA, 1985,

Hamideh Afsarmanesh, Dennis McLeod, David Knapp, and Alice Parker.
An extensible object-oriented approach to databases for vlsi/cad. In Pro-
ceedings VLDB 85, pages 13-24, Stockholm, Sweden, 1985.

Lloyd Allison. A Practical Introduction to Denotational Semantics. Cam-
bridge Computer Science Texts 23, Cambndge, UK, 1986,

Timothy Andrews and Caraig Harris. Combining language and database
advances in an object-oriented development environment. In Proceedings

OOPSLA 87, pages 430—440, October 1987.

K.R. Apt and M.H. Van Emden. Contributions to the theory of logic
programming. JACM, 29(3):841-862, July 1982.

Malcolm P. Atkinson and O. Peter Buneman. Types and persistence in
database programming languages. ACM Computing Surveys, 19(2):105-
190, June 1987.

AT&T. Analyticol - an analytical computing environment. AT&T Tech-
nical Journal, 64(9), November 1985.

S. J. Bavuso, J. B. Dugan, K. S. Trivedi, E. M. Rothmann, and W. E.
Smith. Analysis of typical fault-tolerant architectures using harp. IEEE
Transactions on Reliability, 36(1):176-185, June 1987.

R. Berry, K. M. Chandy, J. Misra, and D. M. Neuse. Paws 2.0: Per-
formance Analyst’s Workbench Modeling Methodology and User’s Manuel.
Information Research Associates, Austin, Texas, 1982.

178

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

[22]

(23]

S. Berson, E. de Souza e Silva, and R.R. Muntz. An Object Ori-
ented Methodology for the Specification of Markov Models. Technical Re-
port CSD-870030, UCLA Computer Science Department, Los Angeles, CA
90024-1596, 1987.

Toby Bloom and Stanley B. Zdonik. Issues in the design of object-oriented
database programming languages. In Proceedings OOPSLA 87, pages 441
451, Orlando, Florida, October 1987.

D.G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik, and F. Zdybel.
Commonloops: merging common lisp and object-oriented programming.
In Proceedings ACM Conf on Object-Oriented Programming Systems, Lan-
guages and Applications, Portland, OR, September 1986.

K.A. Bowen and R.A. Kowalski. Amalgamating language and metalan-
guage in logic programming. In Clark and Tarnlund, editors, Logic Pro-
gramming, pages 153-172, Academic Press, 1982,

Kenneth A. Bowen. Meta-Level Programming and Knowledge Representa-
tion. OHMSHA, LTD and Springer-Verlag, 5 August 1985.

Kenneth A. Bowen and Tobias Weinberg., A meta-level extension of prolog.
IEEE Symposium on Logic Programmang, 48-53, 1985.

R.S. Boyer and J.S. Moore. The sharing of structure in theorem-proving
programs. In B. Meltzer D. Michie, editor, Machine Intelligence 7, Edin-
burgh University Press, 1972.

Michael L. Brodie and Matthias Jarke. On integrating logic programming
and data bases. In Proceedings 1st International Conference on Expert
Data Base Systems, pages 40-62, Kiowah, SC, October, 1984.

Mats Carlsson and Johan Widen. SICStus Prolog User’s Manual. Techni-
cal Report SICS R88007, Swedish Institute of Computer Science, February
20, 1988.

Michael Caruso and Edward Sciore. Meta-functions and contexts in an
object-oriented database language. In Proceedings ACM, pages 56-65,
1988.

Jan Chomicki and Naftaly H. Minsky. Towards a programming environ-
ment for large prolog programs. In Proceedings Symposium on Logic Pro-
gramming, pages 230-241, 1985.

A. Church. The calculi of A-conversion. In Annals of Mathematical Studies
6, Princeton University Press, 1951.

179

[24]

[25]

[26]

[27]

28]

[29]

30]

[31]

[32]

[33]

[34]

[35]

W. Clinger. Foundations of Actor Semantics. Technical Report AI-TR-
633, MIT, Cambridge, MA, May 1981.

A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero. Un Sysieme de
Communication Homme-Machine en Francais. Group de Recherche en
Intelligence Artificielle, Universite d’Aix-Marseille, 1973.

A. Costes, J. E. Doucet, C. Landrault, and J. C. Laprie. Surf: a program

for dependability evaluation of complex fault-tolerant computing systems.
In Proceedings FTCS-11, pages 72-78, June 1981.

Brad J. Cox. Object-oriented Programming: An Ewvolutionary Approach.
Addison Wesley, 1986.

O.J. Dahl, B. Myhrhang, and K. Nygaard. Simulae67 Common Base Lan-
guage. Technical Report S-22, Norwegian Computing Center, 1970,

Roland Dietrich. A preprocessor based module system for prolog. In
Proceedings TAPSOFT’89 International Joint Conference on Theory and
Practice of Software Development, pages 126-139, Barcelona, Spain, March
13-17, 1989.

Klaus R. Dittrich. Object-oriented database systems: the notion and the
issues. In Association for Computing Machinery, editor, Proceedings 1986
International Workshop on Object Oriented Database Systems, pages 2 —
91, Pacific Grove, California, September 1986.

A. Ege, C.E. Ellis, and A. Wexelblat. Gordion Functional Specification.
MCC-STP, Austin, TX, February 1986.

M.H. Van Emden and R.A. Kowalski. The semantics of predicate logic as
a programming language. JACM, 23(4):733-742, October 1976.

Koichi Fukunaga and Shin-ichi Hirose. An experience with a prolog-based
object-oriented language. In Proceedings OOPSLA 86, pages 224-231,
Portland, Oregon, September 29 -October 2, 1986.

John Gabriel, Tim Lindholm, E.L. Lusk, and R.A. Overbeek. A Tuto-
rial on the Warren Abstract Machine for Compuiational Logic. Technical
Report ANL-84-84, Argonne National Laboratory, Argonne, [llinois, June
1985.

H. Gallaire. Logic programming: further developments. In Proceed-
ings Symposium on Logic Programming 1985, pages 88-96, Boston, Mass-
chusetts, July 1985.

180

[36] A. M. Geoffrion. An introduction to structured modeling. Management
Science, 34(5):547-588, May 1987.

[37] Joseph A. Goguen and Jose Meseguer. Order-sorted Algebra I: Equational
Deduction for Multiple Inheritance, Polymorphism, and Partial Operations.
Technical Report draft, SRI International, Menlo Park CA 94025, Center
for the Study of Language and Information, Stanford University 94305,
May 17 1988.

[38] Adele Goldberg and David Robson. Smalltalk-80: The Language and Iis
Implementation. Addison-Wesley, Reading, Mass., 1983.

[39] M. J. C. Gordon. The Denotational Description of Programming Lan-
guages. Springer-Verlag, 1979.

[40] A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Lavenberg, and K. S.
Trivedi. The system availability estimator. In Proceedings FTCS-16,
pages 84-89, July 1986.

[41] E. Gullichsen. BiggerTalk: Object-Oriented Prolog. Technical Report STP-
125-85, MCC-STP, Austin, TX, November 1985.

[42] Eric Gullichsen. BiggerTalk* = BiggerTalk + Gordion. Technical Re-
port STP-053-86, MCC, Austin, Texas, February 1986.

[43] C. Hewitt. Viewing control structures as patterns of passing messages.
Artificial Intelligence, 8:323-363, 1977,

[44] Matthias Jarke. Control of search and knowledge acquisition in large-
scale kbms. In Michael L. Brodie John Mylopoulos, editor, On Knowledge
Base Management Systems, pages 507-522, Springer-Verlag, New York,
NY, 1986.

[45] N.D. Jones and A. Mycroft. Stepwise development of operational and deno-
tational semantics for prolog. In Proceedings 1st International Conference
on Logic Programming, pages 281-288, 1984,

[46] Kenneth Kahn, E. Tribble, M. Miller, and D. Bobrow. Vulcan: logical
concurrent objects. In Proceedings ACM Object-Oriented Programming,
Systems Languages and Applications Conference, pages 580-618, Oregon,
September 1986.

[47] Martin L. Kersten and Frans H. Schippers. Towards an object-oriented
database language. In Proceedings 1986 International Workshop on Object-
Oriented Database Systems, pages 104-112, Pacific Grove, California,
September 25-26, 1986.

181

[48] Setrag N. Khoshafian and George P. Copeland. Object identity. In Pro-
ceedings OOPSLA 86, pages 406-416, September 1986.

[49] Won Kim, Jay Banerjee, Hong-Tai Chou, Jorge F. Garza, and Darrell
Woelk. Composite object support in an object-oriented database system.
In Proceedings OOPSLA 87, pages 118-125, Orlando, Florida, October
1987.

[50] F. Kluzniak and S. Szpakowicz. Prolog - a panacea? In J. A. Campbell,
editor, Implementations of Prolog, pages 71-84, Ellis Horwood Limited,
Chichester, UK, 1984.

[51] R.A. Kowalski. Logic for Problem Soluing. Elsevier North Holland, New
York, 1979.

[62] R.A. Kowalski. Predicate logic as a programming language. In Proceedings
IFIP 74, pages 569-574, 1974.

[53] Brian K. Livezey. The ASPEN Distributed Stream Processing Environment.
Technical Report CSD-880102 (Master’s Thesis), UCLA Computer Science
Departement, Los Angeles, CA 90025-1596, July 1988.

[54] Brian K. Livezey and Richard R. Muntz. Aspen: a stream processing
environment. In Proceedings PARLE’89, Amsterdam, Netherlands, June
1989. (Also UCLA Technical Report CSD-880080).

[55] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York,
1984.

56] David Maier. A logic for objects. In Jack Minker, editor, Foundations
g
of Deductive Databases and Logic Programming: Preprints of Workshop,
pages 6-26, Washington, DC, August 18-22,1986.

[67] S. V. Makam and A. Avizienis. Aries 81: a reliability and life-cycle evalu-
ation tool for fault tolerant systems. In Proceedings FTCS-12, pages 276-
274, June 1982,

[58] A. M. Marsan, G. Conte, and G. Balbo. A class of generalized stochastic
petri nets for the performance evaluation of multiprocessor systems. ACM
Transactions on Computer Systems, 92-122, May 1984.

[59] F. G. McCabe. Logic and Objects. Technical Report DOC 86/9, Imperial
College, London, England, 14 May 1987.

[60] M. D. Mcllroy. Mass-produced software components. In J. M. Bux-
ton P. Naur B. Randell, editor, Seftware Engineering Concepts and Tech-
niques, pages 88-98, 1976.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

B. Melamed and R. J. T. Morris. Visual simulation: the performance
analysis workstation. IEEE Computer, 87-94, August 1985.

Bertrand Meyer. Genericity versus inheritance. In Proceedings OOPSLA
‘86, pages 391-405, September 1986.

Betrand Meyer. Object-oriented Software Construction. Prentice Hall,
New York, NY, 1988.

Dale Miller. A theory of modules for logic programming. In Proceedings
Symposium on Logic Programming, pages 106-114, Salt Lake City, Utah,
September 22-25,1986.

Naftaly H. Minsky and David Rozenshtein. A law-based approach to
object-oriented programming. In Proceedings OOPSLA ’87, pages 482-
493, Orlando, Florida, October 1987,

J. Misra. Distributed descrete-event simulation. ACM Computing Surveys,
18(1):39-65, March 1986.

M. K. Molloy. Performance analysis using stochastic petri nets. IEEFE
Transactions on Computers, 31{9):913-917, September 1982.

Luis Monteiro and Antonio Porto. Contestual Logic Programming. Techni-
cal Report UNL DI-50/88, Universidade Nova De Lisboa, Portugal, Novem-
ber 1988.

J. H. Morrissey and L. S. Wu. Software engineering- an economic per-
spective. In Proceedings Fourth Conference on Software Engineering,
pages 412-422, New York, NY, 1979.

R.R. Muntz and D.S. Parker. Tangram: Project Overview. Technical Re-
port Technical Report, UCLA Computer Science Dept., Los Angeles, CA
90024-1596, March 1988.

S. Narain. LOG(F): A New Scheme for Integrating Rewrite Rules, Logic
Programming and Lazy Evaluation. Technical Report CSD-870027, UCLA
Computer Science Dept., Los Angeles, CA 90024-1596, 1987.

S. Narain. A technique for doing lazy evaluation in logic. J. Logic Pro-
gramming, 3(3):259-276, October 1986.

Sanjai Narain. LOG(F): An Optimal Combination of Logic Programming,
Rewriting, and Lazy Ewvaluation. Technical Report Ph.D. Dissertation
also CSD-880040, UCLA Computer Science Department, Los Angeles, CA
90024-1596, 1988.

183

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

(84]

[85]

Patrick O’Brien, Bruce Bullis, and Craig Schaffert. Persistent and shared
objects in trellis/owl. In Proceedings 1986 International Workshop on
Object-Oriented Database Systems, pages 113-123, Pacific Grove, Califor-
nia, September 25-26, 1986.

Richard A. O'Keefe. Towards an algebra for constructing logic programs.
In Proceedings Symposium on Logic Programmang, pages 152-160, Boston,
Massachusetts, July 15-18, 1985,

Thomas W. Jr. Page, Steven Berson, William Cheng, and Richard R.
Muntz. An object-oriented modeling enviroment. In Proceedings Object-

Oriented Programming Systems, Languages and Applications’89, New Or-
leans, LA, October 2-6, 1989.

D. Stott Parker, Thomas W. Page Jr., and Richard R. Muntz. Improving
Clause Access in Prolog. UCLA Computer Science Dept., Los Angeles, CA
90024-1596, January 1988.

D. Stott Parker, Richard R. Muntz, and Lewis Chau. The Tangram Stream
Query Processing System. Technical Report preprint, Department of Com-
puter Science, University of California, Los Angeles, Los Angeles, CA
90024-1596, 1988.

K. G. Ramakrishnan and D. Mitra. An overview of panacea, a software
package for analyzing queueing networks. Bell System Technical Journal,
10(, December 1982.

J.A. Robinson. Computational logic: the unification computation. In
B. Meltzer D. Michie, editor, Machine Intelligence 6, Edimburgh University
Press, 1971.

J.A. Robinson. A machine-oriented logic based on the resolution principle.
JACM, 12(1):23-41, Janunary 1965.

D. Rozenshtein and N. H. Minsky. The Darwin Software Evolution En-
vironment. Department of Computer Science, Rutgers University, New
Brunswick, NJ, 1987.

R. A. Sahner and K. S. Trivedi. Reliability modeling using sharpe. IEEE
Transactions on Reliability, 36(2):186-193, June 1987.

D. T. Sannella and L. A. Wallen. A calculus for the construction of modular
prolog programs. In Proceedings SLP °87, pages 368-378, September 1987.

C. H. Sauer, E. A. MacNair, and J. F. Kurose. Computer Communication
System Modeling with the Research Queueing Package Version 2. Technical
Report RA-128, IBM, November 1981.

184

[86] C. H. Sauer, E. A. MacNair, and J. F. Kurose. Queueing network simu-
lations of computer communication. IEEE Journal on Selected Areas in
Communications, 2(1):203-220, January 1984,

[87] D. Scott. Continuous Lattices. Technical Report PRG-7, Oxford University
Programming Research Group, Oxford, UK, 1971.

[88] D. Scott. Data types as lattices. SIAM Journal of Computing, 5(3):522—
587, September 1976.

[89] D. Scott and C. Strachey. Towards a Mathematical Semantics for Com-
puter Languages. Technical Report PRG-6, Oxford University Program-
ming Research Group, Oxford, UK, 1971.

[90] Arie Segev and Arie Shoshani. Logical modeling of temporal data. In
Proceedings ACM SIGMOD, pages 1-13, 1987.

[91] Ehud Shapiro. 4 Subset of Concurrent Prolog and Its Interpreter. Techni-
cal Report TR-003, ICOT, 1983.

[92] Ehud Shapiro and Akikazu Takeuchi. Object oriented programming in
concurrent prolog. In New Generation Computing, pages 25-48, Ohmsha
Ltd. and Springer-Verlag, 1983,

[93] Mark Stefik and Daniel G. Bobrow. Object-oriented programming: themes
and variations. The Al Magazine, 6(4):40-62, 1986.

[94] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press,
Cambridge, MA, 1986.

[95] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, 1977.

[96] C. Strachey. Towards a formal semantics. In T. B. Steel, editor, Formal
Language Description Languages, pages 198-220, North-Holland, London,
UK, 1966.

[97] Bjarne Stroustrup. The C++ Reference Manual. Addison-Wesley, 1986.

[98] Eric Dean Tribble, Mark S. Miller, Kenneth Kahn, Daniel G. Bobrow, Cur-
tis Abbott, and Ehud Shapiro. Channels: a generalization of streams. In
E. Shapiro, editor, Concurrent Prolog: Collected Papers, vol. 1, pages 446—
463, MIT Press, 1987.

[99] O. De Troyer, J. Keustermans, and R. Meersman. How helpful is an object-
oriented langnage for an object-oriented database model? In Proceed-
ings 1986 International Workshop on Object-Oriented Database Sysiems,
pages 124-132, Pacific Grove, California, September 25-26, 1986.

185

[100] David H.D. Warren. An Abstract Prolog Instruction Set. Technical Re-
port 309, SRI International, Menlo Park, CA 94025, October 1983.

[101] W. Whitt. The queueing network analyzer. Bell System Technical Journal,
62(9):2779-2815, November 1983.

[102] Carlo Zaniolo. Object-oriented programming in prolog. In Proceedings Int.
Logic Programming Symposium, pages 265-270, 1984.

[103] Carlo Zaniolo. The representation and deductive retrieval of complex ob-
jects. In Proceedings Very Large Data Bases 85, pages 458—469, Stockholm,
Sweden, 1985.

186

APPENDIX A

Prolog Code for Object Interpreter System

/A The object_system module implements the Object-

A Oriented Prolog interpreter.

A

:- begin_module(object_system,
[isa/2,super/2,send/2,inst/2, make_object/5,
remake_object/5, save_object/2, load_instance/2,
sendsuper/3]) .

:- use_module(basics, [append/3]).

:- prolog_flag(unknown,_,fail).
1~ op(875,xfx,isa).

:— op(875,xfx,super).

:- op(875,xfx,send).

:- op(875,xfx,inst).

[}
%
% Lookup ’isa’ and ’super’ relations.
h
isa(0id,0bject) :-
isa_relation(Did,0Object).

super(Did,Object) :-
super_relation(0id,Object).

% Inherit an instance variable. Different from send in
% that we check for the instance variable in the object
% instance first, and then try to inherit.

h

inst(Object,Message) :-

Object:current_predicate(_, Message),!,
call(Dbject:Message) .

187

inst(0Object,Message) :-
Object isa Class,
inherit(Class,Message) .

%

% Send a message to an object. Increase the arity of the
% message by 1. This adds who was the sender to the

% message for future reference.

%

send (0bject ,Message) :-

create_message(Message,Object,Newmessage},
Object isa Class,
inherit(Class,Newmessage).

send(Object,revive) :-
current_module(Object), !,
format ("Error: cannot revive already active object
("w)“n",0bject),
fail.

send(Object,revive) :-
active_module(Active),
check_exists(0bject),
module(Object),
uge_module(object_system),
load_instance(Object,Isa),
module(Active),
assert(Isa).

send (Object ,Message) :-
\+(Message=revive),
\+(current_module(Object)}),
Object send revive,
create,message(Message,Dbject,Newmessage),
Object isa Class,
inherit(Class,Newmessage) .

%

% sendsuper

%

sendsuper(Super, Message,Sender) :-
create_message(Message,Sender,Nevmessage),

188

inherit (Super,Newmessage) .

% Try to inherit the method from the superclasses.

A We give up when the superclass of an object is itself.
h

inherit(Class,Message) :-

Class:current_predicate(M, Message),
|

call(Class:Message).

inherit(Class,Message) :-
Class super Super,
Class \== Super,
inherit(Super,Message) .

% Make & new object. Create a Prolog module with the

% object’s name and assert the following items.

% 1) oid/1 - this is the object id for this object.

% 2) assert the isa/2 and super/2 relations in the system
h module for this object.

% 3) assert method and instance clauses for this object.

[}

%

make_object(Uid,Isa,Super,Methods,Instances) r-
active_module(X),
module(0id),

use_module(object_system),

assert{oid(0id)),
module(X),
assert_relationships(0id,Isa,Super),
assert_methods(Methods,0id),
assert_instances(Instances,Did).

remake_object(0id,Isa,Super,Methods,Instances) :-

drop(0id),

active_module(X),

module(0id),
use_module(object_system),

assert (oid{(0id)}),

module(X),
retract_relationships(0id),
assert_relationships(0id,Isa,Super),
assert_methods (Methods,0id),
assert_instances(Instances,0id).

189

A Place instance variables in the new object.
h Assert the list of clauses into the module
% for that object.

[}

%

assert_instances([],_).

assert_instances{[(:- Directive) | Tail],0id) :-
call(Directive),
assert_instances(Tail,0id).

assert_instances([Head|Taill,0id) :-
assert(0id:Head),
assert_instances(Tail,0id).

%

% Place methods in an object. Increase the arity of a
% clause by 1 to include the message sender’s oid.

% Substitute sender/1 in the clause body to be unified
% with the sender of the message.

[}

%

assert_methods([],0bject) :-
',

translate_logt,

do(storeNewRules (Object)).

assert_methods([(X=>Y) [Tail] ,0bject) :-

[}
L)

recordz(’$tmp?, (X=>Y),_),
assert_methods(Tail,Object).
assert_methods([],_).

assert_methods([(Head :- Body)|Taill,Object) :-

1
U]

create_message (Head,Sender,Newhead),
create_body(Body,Sender,Newbody),
assertz(0Object: (Newhead :- Newbody)),
assert_methods(Tail,0bject).
assert_methods([Term|Tail],Object) :-
assert_methods([(Term :- true)],0bject),
assert_methods(Tail,Object).

A Parse a Prolog clause body to change a sender/1 term to
A be the send argument of the method message. Replace

190

% gsend/1 with true/0. Doesn’t handle every Prolog
A clause, but this is a prototype.
%
create_body((Bodyl , Body2),Sender, (Newbodyl , Newbody2)) :-
]
create_body(Bodyl,Sender,Newbodyl),
create_body(Body2,Sender,Newbody2).
create_body((Bodyl ; Body2),Sender, (Newbodyl ; Newbody2)) :-
!
‘s
create_body(Bodyl,Sender,Newbodyl),
create_body(Body2,Sender,Newbody2).
create_body{(Bodyl -> Body2),Sender, (Newbodyl -> Newbody2)) :-
'
create_body(Bodyl,Sender,Newbodyl),
create_body(Body2,Sender,Newbody2).

create_body(call(Term),Sender,call(Newterm)) :-

create_body(Term,Sender,Newterm).

create_body((\+ Term),Sender, (\+ Newterm)) :-
!,
create_body(Term,Sender,Newterm).
create_body(sender(Sender),Sender,true) :- !.

create_body(Body,_,Body).

4

% Add a ’isa’ and ’super’ relation.

h

assert_relationships(0id,Isa,Super) :-
assert_isa(Did,Isa),
assert_super(0id,Super).

assert_isa(0id,Isa) :-

nonvar(Isa),
§

assert(isa_relation(0id,Isa)).
assert_isa(_,_).

assert_super(0id,Super) :-

nonvar {Super),

1
A
assert{(super_relation(0id,Super)).

assert_super{_,_).

191

retract_relationships(0id) :-
retract(isa_relation{Did,Isa)),
retract(super_relation(0id,Super)).

%

% Create the real form of message by increasing the arity
% of the message by 1 and adding the sender as the last
% argument.

%

create_message(reduce(X,Y),Sender,reduce(X,Y)) :- !.

create_message(Message,Sender,Newmessage) :-
functor(Message,Name, Arity),
Arityl is Arity + 1,
functor(Newmessage,Name, Arityl),
copy_arguments(0,Arity,Message,Newmessage),
arg(Arityl,Newmessage,Sender).

A
% Copy arguments of of one term on another term.
%
copy_arguments (Arity,Arity,_,.) :~ !.
copy_arguments(N,Arity,Terml,Term2) :-

Ni is N + 1,

arg(N1,Termi, Arg),

arg(Ni,Term2,Arg),

copy_arguments (N1,Arity,Terml,Term2).

do(G) :- G, !.
do(_).

storeNewRules(Object) :-
recorded (’$tmp’ ,R,Ref),
erase(Ref),
assertz((0Object:R)),

fail.
h
% Create a filename by appending Dir and 0id. Write
% necessary info to that file to recomstruct the object.

A

save_object (0id,Dir) :-
name(Dir,DirL),
name (0id,Filel),
append (DirL,FileL,PathL),

name (Path,PathlL),
object_system:isa_relation(0id,Class),
telling(Current),

tell (Path),
portray_clause(isa_relation(0id,Class)),
write_ivs(Did),

told,

tell(Current).

write_ivs(Module) :-
module(Module),
current_predicate(_, Pred),
functor(Pred,F,A),
predicate_owner(F,A,M),
M==Module,
clause(Pred,Body),
portray_clause((Pred :- Body)),
fail.

write_ivs(_):- module(object_system).

%
% check if a saved object exists in the database

h

check_exists(0id) :-
name(’/u/w6/page/objinterp/obase/?,Dirl),
name(0id,FileL)},
append (DirL,FileL,PathL),
name (Path,PathL),
prolog_flag(fileerrors,0ldvalue,off),
see(Path),
prolog_flag(fileerrors,_,0ldvalue).

% Load the instance variables from the saved file,
A Return the isa_relation.

load_instance(0id,isa_relation(0id,Class)) :-
read(isa_relation(0id,Class)),
read_rest(0id),
seen.

193

read_rest(0id) :-
read(Term),
handle{(Term,0id).

handle(’end_of_file’,_).

handle(Term,0id) :-
assert((0id:Term)),
read (NewTerm) ,
handle(NewTerm,0id).

:- end_module(object_system).

194

APPENDIX B

Root (Object) Object Definition

A

h The object object is the root of the inheritance
% hierarchy.

h

:- make_object(

%

A Object Id
%

object,

%

% The isa relation

%

object,

%

% The super relation

%

object,

[/

% Methods of the object

h

[

(list:- sender(Sender), Sender:listing(oid)),
4

% Create a new object by assigning it a unique ID
% and placing it in the class of the caller.

h
(new_object(0id,Super,Methods,Instances) :-

var(0id),

[
L)

[
h

1,

A
%
/
C

h
%
h

generate_oid(0id),

sender (Sender),

make_object(0id,Sender,Super,Methods,Instances)),
(new_object(0id,Super,Methods,Instances) :-

Did isa _,

format("Recreate “w? (y or n)",[0id]),

get (Char), name(C, [Char]),

handle(C,0id),

format ("Recreating ~“w™n",[0id]),

sender (Sender),

remake_object (0id,Sender,Super,Methods,Instances)),

(new_object(0id,Super,Methods, Instances) :-
sender(Sender),
make_object(0id,Sender,Super,Methods,Instances)),

(savestate :-
sender (Sender),
save_obinct (Rendar,’/u/tangram/uw/abase/')),

(set_inst{Inst) :-
sender(Sender),
functor{Inst,F,A),
functor(DldInst,F,A),
((retract(Sender:01dInst)); (true)),
assert(Sender:Inst))

The Instance variables of the object

Object ID’s start at zero and increment by 1.

(generate_oid (Name) :~

retract (current_oid(N)),
{

checkNconvert (N ,NewN,Name),
N1 ig NewN + 1,
assert{current_oid(N1))}),

(generate_oid(’00’)

\+({current_module(’00’)),
assert(current_oid(1))),

196

(:~ object:use_module(basics, [append/3])),

(checkNconvert (N,N,Name) :-
number_chars(N,List),
append("o",List,Listl),
atom_chars(Name,Listl),
\+(current_module(Name)),!),

(checklNconvert(N,New,Name) :=-

N1 is N+1,
checklNconvert(N1,New,Name)),

(handle(’'y?,0id)),

(handle(’n?,0id):-
format("Not creating duplicate object (“w)~“n",0id),
!,fail),

(handle(Other,0id) :-
Other \== ’y’, Other \== ’n’,
format ("Recreate “w? Must answer y or n ",0id),
get(Char), name(C, [Charl),
handle(C,0id)),

(cleanup(0id):-
format("cleanup “w. Do nothing for now. n",[0id]))}

1).

197

APPENDIX C

Class Definition

%

% The current version of the system does not use
4 factory objects. Instead, factory methods are
A asserted along with instance methods. When that
% is fixed, this object will be obsolete. Until then,
% new classes are created by sending a new_object
% message to the class object,

%

:- object send new_object(

%

% Dbject ID

%

clasgs,

A

% superclass

A

object,

h

A Methods

%

[

%

% Create a new instance of a class.

A
(new_object(0id) :-
sender (Sender),
Sender send new_object(Did,[1)),

(new_object(0id,Instances) :=

sender(Sender),
Sender send new_object(0id,_,[],Instances),

198

0id send initialize),

(initialize)
1,
%
% Instance variables
%
1.

199

APPENDIX D

Prolog Code for Typed Log(F) Compiler

4

% Filename: ./execute.pl

% Authors: Tom Page & Cliff Leung

% Remarks: The compiler selects the appropriate implementation

% version of transducers. It first converts the input Log(F)

% query to a network structure and then does some transformation
% which selects the correct version of transducers. Finally it
% converts the (modified) network structure back to a Log(F)

% expression.

h

% Nodes correspond to transducers; pipes correspond to the links
% which connect transducers.

%

% execute a Log(F) query

execute(LogfQuery) :-
compile(LogfQuery,Nodes,Pipes), % generate network structure
translate(Nodes,Pipes,NewNodes), % transform network
codeGenQuery(NewNodes,Pipes,Goal) ,) convert back to Log(F)

writeQuery(NewNodes,Pipes), % debugging
nl, nl, writeq(Goal), =nrl, nl, % debugging
call(Goal), % execute the query

compile(LogfQuery,Nodes,Pipes) : -
LogfQuery =.. [_|Args],
functor(LogfQuery,Name,N),
graphGen(Name/N,Args,Nodes,Pipes,output).

graphGen(Name, Args, [node(ID,Name, [], [OPID], [1)],
[pipe(OPID,_,ID,ParentNodeID)],ParentNodeID) :-
gtream(Name),

Args=[],
1

genID(ID),
genID(OPID) .

graphGen(Name,Args, [node (ID,Name, InPipes, [OPID] ,ListArgs) |Nodes],
[pipe(OPID,_,ID,ParentNodelID) |Pipes],ParentNodeID) :-
transducers(Name),
genID(ID), genID(OPID),
transducerArg(Name, ArgTypes),
procArgs(ID,Args, ArgTypes,Nodes,Pipes,ListArgs),
findInPipes(ID,Pipes,InPipes).

procargs(_,[1,[1,01,01,11).
procArgs(ID, [ArgllArgs], [reg|ArgTypes],Nodes,Pipes,
[reg(Argl) |ListArgs]) :-
procArgs (ID,Args,ArgTypes,Nodes,Pipes,ListArgs).
procArgs(ID, [ArgliArgs], [pipelArgTypes] ,Nodes,Pipes,
[pipe(PID) |ListAxrgs]) :-
Argl=..[_l|Arglel,
functor(Argl,Name,N),
graphGen(Name/N,Argls,Nodesl,Pipes1,ID),
[pipe(PID,_,_,_) |RestPipes] = Pipesi,
procArgs(ID,Args,ArgTypes,Nodes2,Pipes2,ListArgs),
append (Pipes1,Pipes2,Pipes),
append (Nodes1,Nodes2,Nodes) .

h

%

codeGenQuery(Nodes,Pipes,print_list(NewGoal)) :-
findDutputTransducer(Pipes,Nodes,UutputTransducer,RestNodes),
codeGenNode (OutputTransducer,RestNodes,Pipes,Goal),
makeVariable(Goal,NewGoal).

codeGenNode (node (ID,Name/N,ListInput,ListOutput,ListArgs) ,Nodes,
Pipes,Goal) :-
codeGenArg(ListArgs,Nodes,Pipes,Goallist),
Goal =.. [Name|Goallist].

codeGenArg([},_,_,[1).
codeGenArg([pipe(X) |Args] ,Nodes,Pipes, [Goal|Goals]) :-

pickPrecedingNode(X,Nodes,Pipes,Node,RestNodes),
codeGenNode (Node,RestNodes,Pipes,Goal),
codeGenArg(Args ,RestNodes,Pipes,Goals).
codeGenArg([reg(X) | Args] ,Nodes,Pipes, [X|Goals]) :-
codeGenArg(Args ,Nodes,Pipes,Goals).

pickPrecedingNode(X,Nodes,Pipes,node(Y,N,I,0,Info),RestNodes) :-
member (pipe(X,_,Y,_) ,Pipes), % pick the preceding node
separate(node(Y,N,I,0,Info),Nodes,RestNodes).

findDutputTransducer(Pipes,Nodes,node(X,N,I,0,Arglist),
RestNodes) :-
member (pipe(_,_,X,output),Pipes),
separate(node(X,N,I,0,Arglist) ,Nodes,RestNodes).

% this has to be fixed...
makeVariable(Goal,NewGoal) :-
telling(0ldOutput),
tell(’/tmp/query’),
write(Goal), write(’.’), nl,
told,
tell(0ld0utput),
seeing(01dInput),
see(’/tmp/query’),
read (NewGoal),
seen,
see(01ldInput).

% find all stream types and then translate all transducer nodes

% and find the type of remaining pipes.

A

translate(Nodes,Pipes,NewNodes) :-
findDBStreamTypes(Nodes,Pipes,StreamNodes,TransducerNodes),
translateNodes(Pipes,TransducerNodes,NewTransducerNodes),
append(StreamNodes,NewTransducerNodes,NewNodes).

O sk ok ook o ok ks o o koo ok ol koo o ok o ok ok o o o s o s Sk ook o ok ok oo o o K o o ks ok e ok s sk e o

% the following code figures out the types of stream from the DB

A

findDBStreamTypes(Nodes,Pipes,SNodes, TNodes) :-
findDBStreamTypes (Nodes,Pipes, [1,SNodes, []1,TNodes).

findDBStreamTypes{[],Pipes,SNodes,SNodes,TNodes, TNodes) .

g%}
joans]
(]

findDBStreamTypes ([Node|Nodes] ,Pipes, InSNodes,0utSNodes,InTNodes,
OutTNodes) :-
Node = node(_,Name,_, [Outpipelol,.), % only one output!
(streamInfo(Name, Type) Y DB stream retrieval??
-> setPipe(Type,OutpipeNo,Pipes),
findDBStreamTypes(Nodes,Pipes,InSNodes,TmpNodes,
InTNodes,DutTNodes),
OutSNodes = [Node|TmpNodes]
; findDBStreamTypes{(Nodes,Pipes,InSNodes,0utSNodes,
InTNodes,TmpNodes),
OutTNodes = [Node|TmpNodes]

./. e e 96 3l 3 e Sl e e e e 3k a3 e vk 2 o sk ke ok ke e e e ol ke e ke e e she ek ok e e 3k ke ke e ke ok ke e ke e 3k ke s 3k ke Ak dk sk e ok ke e e ok ok

% meat the output pipes te their corvespending type
% -- can’t use forall/2.

% setPipes(Types,OutPipeNos,Pipes).

A

gsetPipes([],[1,.) :- !.

setPipes ([TypelTypesl, [P|Ps] ,Pipes) :-
setPipe(Type,P,Pipes),
setPipes(Types,Ps,Pipes).

setPipe(Type,P,Pipes) :- % via unification!

member (pipe(P,Type,_,_),Pipes),
|

Yo otk st st bk sk sk bk ks ok ko o o o o sk ok ok o ok ok ok ok ok ok kK ok Ao o oo o ok 3 o ok ok ok ok o o o e ook ok

% translate transducer nodes -- pick appropriate implementation

% version.

% translateNodes(Pipes,TransducerNodes,NewTransducerNodes),

%

translateNodes(_,[]1,[]) :- !.

translateNodes (Pipes,Nodes, [NewNode|NewNodes]) :-
pickOneNode(Pipes,Nodes,Node,RestNodes),
translateNode(Pipes,Node,NewNode),
translateNodes(Pipes,RestNodes,NewNodes).

% Node is transducer being picked with all input streams defined.
% pickOneNode(Pipes,Nodes,Node,RestNodes).

A
pickOneNode(_,{],_,.) :-

1
L)

nl, nl, % should execute this clause
write(’Error:pickOneNode/4 -- cannot execute the query!’),
nl, nl.

pickOneNode(Pipes, [node(N,A,InPipes,B,C)|Nodes],
node(N,A,InPipes,B,C),Nodes) :-
forall (member(PipelNo,InPipes),
(member (pipe (PipeNo,Type,_,_) ,Pipes) ,nonvar(Type))),
|
pickOneNode(Pipes, [Node|Nodes] ,NodePicked, [Node|NewNodes]) :-
picaneNode(Pipes,Nodes,NodePicked,NewNodes).

% translateNode finds the correct implementation version of the
% transducer and figures out the correct output type(s).
A
translateNode(Pipes,node(Tno,Name,Input,Output,Information),
node(Tno,NewlName,NewInput,Output,Information)) :-
matchHighTransducer(Name, Input,Output),
selectLowTransducer(Name,Pipes,Input,NewInput,NewName),
findOutputTypes (NewName, Information,Pipes,NewInput,
OQutputTypes),
setPipes(OutputTypes,Output,Pipes). % set the output pipes.
translateNode{_,Node,_) :-
nl, nl, % should execute this clause
write(’#%* Error:translateNode/3’),
write(’ -- cannot translate this transducer!’),
nl, nl,
write(’ ----- 1), write(Node),
nl, nl.

findOutputTypes(Name,Information,Pipes,Input,ButputTypes) :-
getInputTypes(Pipes, Input, InputTypes),
defaultOutputTypes{(Name,Information,InputTypes,OutputTypes) .

getInputTypes(_,[],[1).

getInputTypes(Pipes, [Pno|Pnos], [Info|Output]) :-
member (pipe(Pno,Info,_,_),Pipes),
getInputTypes(Pipes,Pnos,Qutput).

¥ does the high level transducer name (HighLevelName) exist??

% matchHighTransducer(+HighLevelName,+Input,+Output) :-
%
matchHighTransducer (HighLevelName, Input,Output) :-

count (Input,NumInput),

count (Output,NumOutput),

transducerName (HighLevelName, _,NumInput,NumOutput,_.).

% select a correct version of transducer given

% 1) Name of the transducer,

% 2) pipes connecting transducers, and

% 3) a list of (input) pipe numbers.

% selectLowTransducer(+Name,+Pipes,+Input,-NewINput,-NewName)

h

selectLowTransducer(Name,Pipes,Input,NewInput,VersionName) :-
getInputStreamTypes(Pipes, Input,InputTypes),
transducerName (Name,VersionName,N,_,_),
getTransducerInputTypes(VersionName,N,Trans_Types),
matchInputTypes (InputTypes,Trans_ Types,NawInput),

getTransducerInputTypes(VersionName,N,Types) :-
getTransducerInputTypes(VersionName,1,N,Types).

getTransducerInputTypes(VersionKame,N,N, [Typel) :-
transducerVersion(VersionName,i,N,Type),
LN % to avoid backtracking... speed.
getTransducerInputTypes(VersionName,I,N, [Typel|Types]) :-
I <N,
transducerVersion(VersionName,i,I,Type),
Next is I + 1,
getTransducerInputTypes(VersionName,Next,N,Types).

matchInputTypes([1,[1,(]).

matchInputTypes(L1, [Type{L2], [PipeNolL3]) :-
match(L1,Type,PipeNo,NewlLl),
matchInputTypes(NewlL1,L2,L3).

% this is done non-deterministically

A

match(List,Type,PipeNo,RestList) :-
member ((PipeNo,Subtype),List),
once{({ Subtype = Type ; isa(Subtype,Type))),
once(separate((PipelNo,Subtype),List,RestList)).

% From a list of input pipe numbers (Input) and the pipes (Pipes),
% find the corresponding stream types.
A
getInputStreamTypes(_,[]1,[]).
getInputStreamTypes(Pipes, [Pno|Pnos], [(Pno,Type) |Output]) :-
member (pipe(Pno,Info,_,_),Pipes),
streamType(Info,Type),
getInputStreamTypes(Pipes,Pnos,Dutput).

% separate the one qualified from the Input and return the rest.
% This assumes that the qualified one is unique in the Input.
% separate(X,Input,RestOfInput).
% e.g. separate(t(1,R),[t(3,a),t(4,b),t(1,a),t(2,b)],Rest) yields
% R = a and Rest = [t(3, a),t(4, b),t(2, b)].
%
separate(X,[],Rest0fInput) :- !, fail.
separate(X, [X|Rest] ,Rest) :- !.
separate(X, [Y|Rest],[Y|NewRest]) :-
separate(X,Rest,NewRest).

%
% Generate a unique ID (Probably should be more sophisticated)
%
genID(Y) :- clause(currentID(X),true)->
(retract(currentID(X)),
Y is X+1,
asserta(currentID(Y)));
(Y is 0,
asserta(currentID(0))).

findInPipes(_,[],{]).

findInPipes(ID, [pipe(Pid,_,_,ID)|Pipes],[Pid|InPipes]) :- !,
findInPipes(ID,Pipes,InPipes).

findInPipes(ID, [P|Pipes],InPipes) :-
findInPipes(ID,Pipes,InPipes).

count ([]1,0).
count([_|L]),N) :- count(L,NL), N is NL + 1.

member (X, [X]_]1).
member (X, [_|L]) :- member(X,L).

once(G) :- call(@), !.

writeQuery(Nodes,Pipes) :-
nl, nl, write(’[’), nl,
forall (member(Node,Nodes), (writeq(Node),nl)),
write(’]1?), nl, nl, write(’[’), nl,
forall{(member(Pipe,Pipes), (writeq(Pipe),nl)),
write(’]’), nl, nl.

forall(Condition,Goal) :=-
\+ (Condition, \+ Goal).

9% o s sk ko ok sk ke s o ok ok ke s o sk o R o sk b ke o o o ke ok ok ok o ol sk ok ok o sk ok ol o ke sk ok ke s sk ook o o e sk ok

% Facts about the library of transducers.

% (high-level) transducers that are available to programmers.
transducers(Hname/A) :- transducerName(Hname/A,_,_,_,.).

transducerNames (HighName/A,LowName/B) :-
transducerName (HighName/A,LowName/B,_,_,.).

% transducerName(HighName/Arity,LowName/Arity,NoInputArg,
% NoOutputArg, FileLocation)

% SELECT

transducerName(select/3,select/3,1,1,
’/u/s4/tangram/epigram/stream_ops.logf’).
transducerArg(select/3, [pipe,reg,reg]).

% projectlist

transducerName(projectlist/2,projectList/2,1,1,
’/u/s4/tangram/epigram/stream_ops.logf’).

transducerArg(projectList/2, [reg,pipel).

% MULTIPLY

transducerName(multiply/2,multdd/2,2,1,
*/u/s4/tangram/epigram/schema/multiply’).

transducerName(multiply/2,multds/2,2,1,
*/u/s4/tangram/epigram/schema/multiply’).

transducerName(multiply/2,multss/2,2,1,
’/u/s4/tangram/epigram/schema/multiply’).

transducerArg(multiply/2, {pipe,pipel).

% transducerVersion(LowName/Arity,I_0,Argho,Type).
%

transducerVersion(select/3,i,1,stream).
transducerVersion(select/3,0,1,stream).

transducerVersion(projectList/2,i,1,stream).
transducerVersion(projectList/2,0,1,stream).

¥, multiply discrete times discrete

transducerVersion(multdd/2,i,1,dts).
transducerVersion(multdd/2,i,2,dts).
transducerVersion(multdd/2,0,1,d4ts).

% multiply discrete times stepwise

transducerVersion(multds/2,i,1,dts).
transducerVersion(multds/2,i,2,sts).
transducerVersion(multds/2,0,1,dts).

% multiply stepwise times stepwise

transducerVersion{multss/2,i,1,sts)}.
transducerVersion{multss/2,i,2,sts).
transducerVersion{multss/2,0,1,8ts).

% ootk b oot ket ke stk et fe s s ks o o e o s ks ke ok R K o ok R o Ko Ko o o o
%
% This is the inference engine!!!
%
% defaultOutputTypes(LowName,Info,InputTypes,OutTypes).
h
% projectArgs/3 is defined in the file stream_ops.logf.
h
defaultOutputTypes(Name,_, [X],[X]) :-
transducerNames (select/_,Name),
.
defaultOutputTypes(Name, [reg(List0fProjectFields)|_], [X], [Y]) :-

transducerNames (projectlList/_,Name),

1

streamStructure(X,Structure),

projectArgs (List0fProjectFields,Structure,NewStructure),

setStreamStructure(¥,NewStructure,Y).
defaultOutputTypes(Name,List0fProjectFields, [X1,X2], [Y]) :-

transducerNames (multiply/_,Name),

I

streamType (X1,X1Type),

streamType (X2,X2Type),
multiplyOutputType(X1Type,X2Type,QutputType),

setStreamType(X1,0utputType,Y). % can do a lot more..

multiplyCutputType(dts,dts,dts).
multiplyOutputType(dts,sts,dts).
multiplyQutputType(dts,cts,dts).
multiplyOutputType(ste,dts,dts).
multiplyOutputType(sts,sts,sts).
multiplyDutputType(sts,cts,sts).
multiplyOutputType(cts,dts,dts).
multiplyOutputType(cts,sts,sts).
multiplyOutputType(cts,cts,cts).

% problems remained to be solved

%4 1) properties of transducers e.g. commutativity, sorting
% 2) type hierarchy

%A 3) relation types...

% 4) intermediate transducer network structure

A node = (NodeID,HighName,ListInputPipes,ListOutputPipes,
% Information)

% i.e. node = (NodeID,HighName, [PipeID|_], [PipeID|_])

% pipe = (PipelD,TypeOfData,InputNodeID,OutputNodeID)

4 5) several implementations for the same operations e.g. join,
% and the cost model associated with them.

i~ op(999, xfy, *:?).

./. o e e o de e e e 3 de e 2 e ol e sk e s e e e ok sk fe e e sk e e e e e e e 3k sk e o e sfe e e ke Ak e e e s e e ke ke e e ok ok ok Ak ok ok ok K
%

{]

% SCHEMA for streams

%

(]

stream(StreamName) :- timeSequence(StreamName).
stream(StreamName) :=- nonTimeSequence(StreamName).

setStreamStructura(Info,Structure,NewInfo) :-
Info =.. [Functor,_|Taill,
NewInfo =.. [Functor,Structure|Taill.

setStreamType (Info,Type,NewInfo) :-
Info =.. [Functor,Structure,_[Tail],
NewInfo =.. [Functor,Structure,TypelTaill].

streamStructure(Info,Type) :-
arg(1,Info,Type).

streamType(Info,Type) :-
arg(2,Info,Type).

streamInfo(Name,type{Structure,Type,LS,Rag,Gran,SortOrder)) :-
timeSequence(Name,Structure,Type,LS,Reg,Gran,SortOrder) .

streamInfo(Name,type(Structure,Type,SortOrder)) :-
nonTimeSequence(Name,Structure, Type,SortOrder) .

% TS stream type in the DBMS

%

dbStreamType (Name,Struct,Type) :-
timeSequence(Name,Struct,Type,_,_,_,_).

dbStreamType(Name,Struct,Type) :-
nonTimeSequence(Name,Struct,Type,_,_,_,.) .

% non-TS streams in the DBMS (StreamName names a relation)
%

nonTimeSequence(StreamName) :- nonTimeSequence(StreamName,_,_,_).

% TS streams in the DBMS (StreamName refers to a relation name)
%

timeSequence(StreamName) :~ timeSequence(StreamName,_,_,_,_,_,_).
% timeSequence(StreamName,RecordStructure,Type,LifeSpan,

% Regularity, TimeGranuarity,Ordering).

4

% bookSales DISCRETE

%

timeSequence(bookSales/0,

tuple(bno:integer,time:time,value:integer),
dts, (0,20) ,reg,1,asc).
bookSales => file_terms{’/u/s4/tangram/epigram/schema/bookSales’).
bookSales(Book) => projectList([2,3],select(book_sales,
tuple(Book,D,V), true)).
%
% bookPRICE STEPWISE
%
timeSequence (bookPrice/0,
tuple(bno:integer,time:time,value:integer),
sts, (0,20),irreg,1,asc).
bookPrice => file_terms(’/u/s4/tangram/epigram/schema/bookPrice’).
bookPrice(Book) => projectList([2,3],select(book_price,
tuple(Book,D,V), true)).

%
% book STREAM
%
nonTimeSequence(book/0,
tuple(bno:integer,subject:string,author:string,
count:integer), nonTSstream, asc).
book => file_terms(’/u/s4/tangram/epigram/schema/book’).

%

% ibookSales DISCRETE (from ingres database)

4

timeSequence(ibookSalas/0,tuple(bno:integer,time:time,
value:integer),dts, (0,20),reg,1,asc).

h

%ibookPrice STEPWISE (from ingres database)

%

timeSequence(ibookPrice/0,
tuple(bno:integer,time:time,value:integer),sts,
(0,20),irreg,1,asc).

%

% ibook STREAM (from ingres database)

%

nonTimeSequence(ibook/0,
tuple(bno:integer,subject:string,author:string,count:integer),
nonTSstream,
asc) .

h

% definition of ingres db based streams.

%

ibook => newfunctor(tuples(times,book)).

ibookSales => newfunctor(tuples(times,book_sales)).
ibookPrice => newfunctor(tuples(times,book_price)).

ibookSales{(Book) => projectlist([2,3],select(ibook_sales,
tuple(Book,D,V), true)).

ibookPrice(Book) => projectList([2,3],select(ibook_price,
tuple(Book,D,V), true)).

newfunctor(X) => newfunctori(reduce(X)).

newfunctor1 ([1) => [].

newfunctor1([S1Ss]) => if(success((S=..[F{Xs], A=..[tuplelXs])),
[Alnewfunctor(Ss)],[]).

:- multifile user_reduce/2.

% type (isa) hierarchy -- isa(4,B) means A is a subtype of B.
%
% term is the root of the type hierarchy.
%
isa(X,Y) :- isSubtype(X,Y).
isa(X,Y) :-
isSubtype(X,2),
isa(Z,Y).

isSubtype(stream,term).
isSubtype(time,term).
isSubtype(integer,term).
isSubtype(float,term).
isSubtype(string,term).

isSubtype(tsStream,stream).
isSubtype(nonTSstream,stream) .
isSubtype(dts,tsStream).
isSubtype(sts,tsStream).
isSubtype(cts,tsStream).

isSubtype(ordinal,time).

isSubtype(integer,ordinal).
% isSubtype(date,time).

%

% multss: multiply two stepwise.

%

multes(S1,82) => multr(t2r(S1),t2r(S2)).

multr(R1,R2) => multrl(reduce(R1),reduce(R2)).

multri([],_) => [].
multri{_,[1) => [].
multrli({tuple(T1,T2,T3)|Ts], [tuple(D1,D2,D3)IDs]) =>
if(T1e<D1, multr(Ts, [tuple(D1,D2,D3)|Ds]),
if(success((T1>=D1,T2==end,D2\==end,Vnew is T3%D3)),
[tuple(T1,Vnew) |
multr(Ds, [tuple(T1,T2,T3) |Tsl}],
if(success ((T1>=D1,T2==end ,D2\==end,Vnew ig T3*D3)),
[tuple(T1,Vnew) |
multr(Ds, [tuple(T1,T2,T3)ITs])],
if(success((T1>=D1,T2==end,D2==end,Vnew is T3%D3)),
[tuple(T1,Vnew)],
if(success((T1>=D1,T2\==end,D2==end,Vnew is T3*D3)),
[tuple(T1,Vnew) |
multr(Ts, {tuple(D1,D2,D3)])],
if(success((T1>=D1,T2<D2,Vnew is T3%D3)), [tuple(T1,Vnew) |
multr{Ts, [tuple(D1,D2,D3)[Ds])],
if(success((T1>=D1,T2>D2,Vnew is T3%*D3)), [tuple(T1,Vnew) |
multr(Ds, [tuple(T1,T2,T3)ITs])1],
multr(Ds,Ts)))))))).
%
% multdd: multiply two discretes.
]
h
multdd(D1,D2) => multddil(reduce(D1),reduce(D2)).
multdd1 (],) => [].
multdd1(_,[1) => {J].
multddl([tuple(D1,V1)|D1s], [tuple(D2,V2)|D2s8]) =>
if{success((D1==D2, Vnew is V1*V2)),
ftuple(D1,Vnew) |multdd(Dis,D28)],
if(D1@<D2, multdd(Dis, [tuple(D2,V2)|D2s]l),
multdd([tuple(D1,V1i){D1s], D2s))).

%

%
h
%

multds: multiply a stream of discretes by a stream of type
stepwise to produce a stream of type discrete.

multds(D,S) => multdsi(reduce(D),reduce(S)).

multdsi([1,_) => [J.
multds1(_,[]) => [I.
multds1(D,S) => concatDV(project(l,common(T,D)),

h
%
%
A
%

mult (lookupst(common(T,D),S),project(2,common(T,D)))}).

t2r(A) given a stepwise time sequence A, produce a sequence
of tuples (t1,t2,vl) which means vl is the value in effect
from time t1 until time t2.

t2r(4) => £2r2(reduce(4,2)).

t2r2([tuple(T1,V1) | [1]1)=> [tuple(Ti,end,V1)].
t2r2([tuple(T1,V1),tuple(T2,V2)ITs]) =>

[tuple(T1,T2,V1) |t2r({tuple(T2,V2) |Ts])].

t2r2([1) => [1.

%
A
4

lookup(R,D) =>... given a time sequence R of type range,
and a stream of dates D, produce the value for each date.

lookup{R,D) => lo(reduce(R),reduce(D)).
lo([],D) => [I.

lo(R,[1) => [1.
lo([tuple(T1,T2,V1) [Rs]l, [DIDs]) =>

%
h
%
h
%

if(D @< T1,[undefined|lookup({tuple(T1,T2,V1)|Rs],Ds)],

if(success((D @>= Ti, (D @< T2; T2=end))),
[V1|lookup([tuple(T1,T2,V1)|Rs],Ds)],

if(D @= T2,lookup(Rs,[DIDs]),[1))).

lookupst: Given a discrete and a stepwise, produce the
stream of values for the stepwise for the dates in the
discrete.

lookupst(D,S) => lookupstl(reduce(D),reduce(S)).
lookupst1([1,_) => [].

lookupsti(_,[]1) => [].

lookupst1(D,S) => lookup(t2r(S),project(1,D)).

% concatDV: take a date stream and a value stream and produce a
% stream of structures in the form of a time series.

L}

%

concatDV(D,V) => concatDVi(reduce(D),reduce(V)).

concatDV1i(_,[1) => [].

concatDV1([],_) => [].

concatDV1([DIDs],[ViVs]) => [tuple(D,V)lconcatDV(Ds,Vs)].

/

% multiply two streams of numbers assuming each stream has the
% same number of elements.

%

mult(D,S) => multl(reduce(D),reduce(S)).

mult1(_,[1) => [].
mult1([},_) => {].
mult1([D|Ds],[SIS88]) => ([D * SImult(Ds,Ss)].

user_reduce(common(T,G), H) :-

nonvar(T),
!
H=T.
user_reduce(common(T,G), T) :-
reduce(G,R),
common(R,T).
common([A|B], [Alcommon(L,B)1).

common([1,1).

%

81 sk s s ke ke sk ook ok ok 3k ok ks ok ok sk 3k ok o o 8 ok s ok e 3 6 3K o ko o e ok o ok ok ok ke sk o ke ok e e ke ok e ke 3 e ke ok ke K oK
(]

% reduceTwice (Author: Cliff Leung) - reduce the first two
% elements in the stream.

% It handles when the stream is nil or has only one element.
h

:~ eager reduceTwice/1.

reduceTwice(X,[]) :- reduce(X,[]).

reduceTwice(X, [A11L]) :- reduce(X,[A1]Xs]), reduce(Xs,L).

% constructor symbol.
%
tuple(A,B,C) => tuple(4,B,C).

O sk o ok ok s o ok o o o s o ok o ok ok o o ke sk KR K K Sk ko o o ok o o K K ok o oK R o ke
%
steplookup(X,State,L) =>
stepLookupReducedTwice(X,State,reduceTwice(L)).
stepLookupReducedTwice(tuple(A,T1,), tuple(A,_,V),[]1) =>
[tuple(A1,T1,V)].
stepLookupReducedTwice
(tuple(A1,T1,_) ,tuple(A,T,V), [tuple(41,T2,V2)]) =>
if(T1 @>= T2, tuple(A1,T1,V2), tuple(Al,T1,V)).
stepLookupReducedTwice(tuple(A1,T1,) ,tuple(A,T,V),
[tuple(A1,T2,V2),tuple(A3,T3,V3)|L]) =>
if(Al == A3,
if(T1 @< T2,
tuple(Al,T1,V),
if(TL @< T3, tuple(Al,T1,V2),
stepLookup(tuple(A1,T1,_), [tuple(A3,T3,V3)IL]))
),
if(T1 @>= T2, tuple(Ai,T1,V2), tuple(A1,T1,V))
).

:- eager ti1LTt2/2.

t1LTt2(tuple(Al,T1),State,L,V) :-
L = [tuple(A1,T2,V2){L2],
Tl < T2,
reduce(stepLookup(tuple(Al,Ti,_),State,L),tuple(A1,T1,V)).

:- eager t2LTt1/2.

t2LTt1(L,State,tuple(A1,T2),V) :-
L = [tuple(A1,T1,V1){L1],
Tt > T2,
reduce(stepLookup(tuple(Al,T2,_),State,L),tuple(A1,T2,V)).

multiplyss(S51,82) =>
multiplyssReduced (reduceTwice(S1),tuple(0,0,0),
reduceTwice(S2),tuple(0,0,0)).
multiplyss(S1,Statel,52,5tate2) =>

multiplyssReduced(reduceTwice(S1),Statel,
reduceTwice(S52),State2).
multiplyssReduced({],_,[3,.) => [I.
multiplyssReduced([],tuple(SA1,ST1,SV1), [tuple(A2,T2,V2) |Newl2],)

=>
if(A2==SA1,
[tuple(AQ,TZ,V2*SV1) |
multiplyss([],tuple(SA1,ST1,5V1),Newl2,)],
.
multiplyssReduced([tuple(A1,T1,V1)|NewL1],_,[]1,tuple(SA2,8T2,5V2))
=>
if(A1==S42,

[tuple(Al,T1,V1*SV2) |
multiplyss(NewLl,_,[],tuple(SA2,S8T2,8V2))],
(1).
multiplyssReduced([tuple(A1,T1,V1) |NewL1],tuple(SA1,ST1,5V1),
[tuple(A2,T2,V2) |NewL2],tuple(SA2,8T2,8V2)) =>
if(Al==A2,
if(success(tiLTt2(tuple(Al,T1),tuple(SA2,5T2,S8V2),
[tuple(A2,T2,V2) |Newl2],V)),
[tuple(A1,T1,V1*V) Imultiplyss(NewL1,tuple(A1,T1,V1),
[tuple(A2,T2,V2) |NewL2],
tuple(SA2,8T2,58V2))],
if(success(t2LTt1([tuple(Al,T1,V1) |NewLl],
tuple(SAl,STi,SVi), tuple(AZ,TE),V)),
[tuple(A2,T2,V2*V) Imultiplyss([tuple(Al,T1,V1) |Newll],
tuple(SA1,ST1,8V1),
NewL2,tuple(A2,T2,V2))],
(tuple(A1,T1,V1*V2) Imultiplyss(NewL1,tuple(Al,T1,V1),
NewL2,tuple(A2,T2,V2))]
)

),

if(SA1l==A1,

[tuple(A1,T1,V1*SV2) Imultiplyss(NewLl,tuple(Al,T1,V1),
[tuple(A2,T2,V2) |NewL2],
tuple(SA2,5T2,5V2))],

(tuple(A2,T2,V2+SV1) Imultiplyss ([tuple(Al,T1,V1) |NewL1],
tuple(SA1,ST1,8V1),
NewL2,tuple(A2,T2,V2))]

).

8L sk sk ok s sk ke s sk o s sk e o sk ok e s o ok s e e s S ok o s s s o e s e o o ok o ok o sk ke s ok o ok ke sk e sk e o ke

%
%
%
%
%
%
%
%
%
%
%
%
%
%

Stepwise interpolation of an sts-stream -- it converts an
sts-stream into a regular dts-stream. For example,
[tuple(1,0,W),tuple(1,2,X),tuple(2,2,Y),tuple(2,3,2)]

is interpolated as

[tuple(1,0,W), tuple(1,1,W), tuple(1,1,X), tuple(2,2,Y),
tuple(2,3,Z}]

It assumes each element in the stream is in the form
tuple(4,B,C),

where A is the surrogate (of integer), B is the time (of ordinal

value) and C is the value. Also, the input stream is clustered

on A (essentially a group_by operation & not necessarily sorted)

and then sorted on B in ascending order.

gstepInt(L) => stepIntReduced(reduce(L)).
stepIntReduced([]) => [].
stepIntReduced([X|L]) => reduce(stepInterpolate(X,L)).

stepInterpolate(X,L) => stepInterpolateReduced(X,reduce(L)).
stepInterpolateReduced(X,[]) => [X].
stepInterpolateReduced(tuple(A1,T1,V1), [tuple(A2,T2,V2)|L]) =>

if(Al==A2,
if{ success((NewTime is Ti+1,T2==NewTime}),
[tuple(A1,T1,V1) |stepInterpolate(tuple(A2,T2,V2),L)],
if(success(NewTime is Ti1+1),
[tuple(A1,T1,V1) |stepInterpolate(tuple(Al,NewTime,V1),
[tuple(42,T2,V2) L],
[]
)
),
[tuple(A1,T1,V1) |stepInterpolate(tuple(a2,T2,V2),L)]

218

