
An Energy-Efficient MAC Protocol for Wireless
Sensor Networks

Wei Ye, John Heidemann, Deborah Estrin

Abstract—This paper proposes S-MAC, a medium-access control (MAC)
protocol designed for wireless sensor networks. Wireless sensor networks
use battery-operated computing and sensing devices. A network of these
devices will collaborate for a common application such as environmental
monitoring. We expect sensor networks to be deployed in an ad hoc fashion,
with individual nodes remaining largely inactive for long periods of time,
but then becoming suddenly active when something is detected. These char-
acteristics of sensor networks and applications motivate a MAC that is dif-
ferent from traditional wireless MACs such as IEEE 802.11 in almost every
way: energy conservation and self-configuration are primary goals, while
per-node fairness and latency are less important. S-MAC uses three novel
techniques to reduce energy consumption and support self-configuration.
To reduce energy consumption in listening to an idle channel, nodes period-
ically sleep. Neighboring nodes form virtual clusters to auto-synchronize
on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to
sleep during transmissions of other nodes. Unlike PAMAS, it only uses
in-channel signaling. Finally, S-MAC applies message passing to reduce
contention latency for sensor-network applications that require store-and-
forward processing as data move through the network. We evaluate our
implementation of S-MAC over a sample sensor node, the Mote, developed
at University of California, Berkeley. The experiment results show that, on
a source node, an 802.11-like MAC consumes 2–6 times more energy than
S-MAC for traffic load with messages sent every 1–10s.

I. INTRODUCTION

W
IRELESS sensor networking is an emerging technology
that has a wide range of potential applications includ-

ing environment monitoring, smart spaces, medical systems and
robotic exploration. Such a network normally consists of a large
number of distributed nodes that organize themselves into a
multi-hop wireless network. Each node has one or more sen-
sors, embedded processors and low-power radios, and is nor-
mally battery operated. Typically, these nodes coordinate to per-
form a common task.

Like in all shared-medium networks, medium access control
(MAC) is an important technique that enables the successful op-
eration of the network. One fundamental task of the MAC pro-
tocol is to avoid collisions so that two interfering nodes do not
transmit at the same time. There are many MAC protocols that
have been developed for wireless voice and data communication
networks. Typical examples include the time division multiple
access (TDMA), code division multiple access (CDMA), and
contention-based protocols like IEEE 802.11 [1].

To design a good MAC protocol for the wireless sensor net-
works, we have considered the following attributes. The first is
the energy efficiency. As stated above, sensor nodes are likely
to be battery powered, and it is often very difficult to change or
recharge batteries for these nodes. In fact, someday we expect
some nodes to be cheap enough that they are discarded rather

W. Ye (weiye@isi.edu) and J. Heidemann (johnh@isi.edu) are with the In-
formation Science Institute (ISI), University of Southern California (USC). D.
Estrin (destrin@cs.ucla.edu) is with the Computer Science Department, Univer-
sity of California, Los Angeles and USC/ISI.

than recharged. Prolonging network lifetime for these nodes is a
critical issue. Another important attribute is the scalability to the
change in network size, node density and topology. Some nodes
may die over time; some new nodes may join later; some nodes
may move to different locations. The network topology changes
over time as well due to many reasons. A good MAC proto-
col should easily accommodate such network changes. Other
important attributes include fairness, latency, throughput and
bandwidth utilization. These attributes are generally the primary
concerns in traditional wireless voice and data networks, but in
sensor networks they are secondary.

This paper presents sensor-MAC (S-MAC), a new MAC pro-
tocol explicitly designed for wireless sensor networks. While
reducing energy consumption is the primary goal in our design,
our protocol also has good scalability and collision avoidance
capability. It achieves good scalability and collision avoidance
by utilizing a combined scheduling and contention scheme. To
achieve the primary goal of energy efficiency, we need to iden-
tify what are the main sources that cause inefficient use of en-
ergy as well as what trade-offs we can make to reduce energy
consumption.

We have identified the following major sources of energy
waste. The first one is collision. When a transmitted packet
is corrupted it has to be discarded, and the follow-on re-
transmissions increase energy consumption. Collision increases
latency as well. The second source is overhearing, meaning
that a node picks up packets that are destined to other nodes.
The third source is control packet overhead. Sending and re-
ceiving control packets consumes energy too, and less useful
data packets can be transmitted. The last major source of inef-
ficiency is idle listening, i.e., listening to receive possible traf-
fic that is not sent. This is especially true in many sensor net-
work applications. If nothing is sensed, nodes are in idle mode
for most of the time. However, in many MAC protocols such
as IEEE 802.11 or CDMA nodes must listen to the channel
to receive possible traffic. Many measurements have shown
that idle listening consumes 50–100% of the energy required
for receiving. For example, Stemm and Katz measure that the
idle:receive:send ratios are 1:1.05:1.4 [2], while the Digitan 2
Mbps Wireless LAN module (IEEE 802.11/2Mbps) specifica-
tion shows idle:receive:send ratios is 1:2:2.5 [3].

S-MAC tries to reduce the waste of energy from all the above
sources. In exchange we accept some reduction in both per-hop
fairness and latency. Although per-hop fairness and latency are
reduced, we will argue that the reduction does not necessarily
result in lower end-to-end fairness and latency.

In traditional wireless voice or data networks, each user de-
sires equal opportunity and time to access the medium, i.e.,

sending or receiving packets for their own applications. Per-
hop MAC level fairness is thus an important issue. However, in
sensor networks, all nodes cooperate for a single common task.
Normally there is only one application. At certain time, a node
may have dramatically more data to send than some other nodes.
In this case fairness is not important as long as application-level
performance is not degraded. In our protocol, we re-introduce
the concept of message passing to efficiently transmit a very
long message. The basic idea is to divide the long message into
small fragments and transmit them in a burst. The result is that
a node who has more data to send gets more time to access the
medium. This is unfair from a per-hop, MAC level perspec-
tive, for those nodes who only have some short packets to send,
since their short packets have to wait a long time for very long
packets. However, as we will show later, message passing can
achieve energy savings by reducing control overhead and avoid-
ing overhearing.

Latency can be important or unimportant depending on what
application is running and the node state. During a period that
there is no sensing event, there is normally very little data flow-
ing in the network. Most of the time nodes are in idle state.
Sub-second latency is not important, and we can trade it off for
energy savings. S-MAC therefore lets nodes periodically sleep
if otherwise they are in the idle listening mode. In the sleep
mode, a node will turn off its radio. The design reduces the en-
ergy consumption due to idle listening. However, the latency is
increased, since a sender must wait for the receiver to wake up
before it can send out data.

An important feature of wireless sensor networks is the in-
network data processing. It can greatly reduce energy con-
sumption compared to transmitting all the raw data to the end
node [4], [5], [6]. In-network processing requires store-and-
forward processing of messages. A message is a meaningful
unit of data that a node can process (average or filter, etc.). It
may be long and consists of many small fragments. In this case,
MAC protocols that promote fragment-level fairness actually in-
crease message-level latency for the application. In contrast,
message passing reduces message-level latency by trading off
the fragment-level fairness.

To demonstrate the effectiveness and measure the perfor-
mance of our MAC protocol, we have implemented it on our
testbed wireless sensor nodes, Motes, developed by Univer-
sity of California, Berkeley [7]. The mote has a 8-bit Atmel
AT90LS8535 microcontroller running at 4 MHz. It has a low
power radio transceiver module TR1000 from RF Monolithics,
Inc [8], which operates at 916.5 MHz frequency and provides a
transmission rate of 19.2 Kbps. The mote runs on a very small
event-driven operating system called TinyOS [9]. In order to
compare the performance of our protocol with some other pro-
tocols, we also implemented a simplified IEEE 802.11 MAC on
this platform.

The contributions of this work are therefore:
• The scheme of periodic listen and sleep reduces energy con-
sumption by avoiding idle listening. The use of synchroniza-
tion to form virtual clusters of nodes on the same sleep sched-
ule. These schedules coordinate nodes to minimize additional
latency.

• The use of in-channel signaling to put each node to sleep
when its neighbor is transmitting to another node. This method
avoids the overhearing problem and is inspired by PAMAS [10],
but does not require an additional channel.
• Applying message passing to reduce application-perceived la-
tency and control overhead. Per-node fragment-level fairness is
reduced since sensor network nodes are often collaborating to-
wards a single application.
• Evaluating an implementation of our new MAC over sensor-
net specific hardware.

II. RELATED WORK

The medium access control is a broad research area, and many
researchers have done research work in the new area of low
power and wireless sensor networks [11], [12], [13], [14].

Current MAC design for wireless sensor networks can be
broadly divided into contention-based and TDMA protocols.
The standardized IEEE 802.11 distributed coordination function
(DCF) [1] is an example of the contention-based protocol, and
is mainly built on the research protocol MACAW [15]. It is
widely used in ad hoc wireless networks because of its simplic-
ity and robustness to the hidden terminal problem. However, re-
cent work [2] has shown that the energy consumption using this
MAC is very high when nodes are in idle mode. This is mainly
due to the idle listening. PAMAS [10] made an improvement
by trying to avoid the overhearings among neighboring nodes.
Our paper also exploits similar method for energy savings. The
main difference of our work with PAMAS is that we do not use
any out-of-channel signaling. Whereas in PAMAS, it requires
two independent radio channels, which in most cases indicates
two independent radio systems on each node. PAMAS does not
address the issue of reduce idle listening.

The other class of MAC protocols are based on reservation
and scheduling, for example TDMA-based protocols. TDMA
protocols have a natural advantage of energy conservation com-
pared to contention protocols, because the duty cycle of the ra-
dio is reduced and there is no contention-introduced overhead
and collisions. However, using TDMA protocol usually re-
quires the nodes to form real communication clusters, like Blue-
tooth [16], [17] and LEACH [13]. Managing inter-cluster com-
munication and interference is not an easy task. Moreover, when
the number of nodes within a cluster changes, it is not easy for
a TDMA protocol to dynamically change its frame length and
time slot assignment. So its scalability is normally not as good
as that of a contention-based protocol. For example, Bluetooth
may have at most 8 active nodes in a cluster.

Sohrabi and Pottie [12] proposed a self-organization protocol
for wireless sensor networks. Each node maintains a TDMA-
like frame, called super frame, in which the node schedules dif-
ferent time slots to communicate with its known neighbors. At
each time slot, it only talks to one neighbor. To avoid inter-
ference between adjacent links, the protocol assigns different
channels, i.e., frequency (FDMA) or spreading code (CDMA),
to potentially interfering links. Although the super frame struc-
ture is similar to a TDMA frame, it does not prevent two inter-
fering nodes from accessing the medium at the same time. The
actual multiple access is accomplished by FDMA or CDMA. A

drawback of the scheme is its low bandwidth utilization. For
example, if a node only has packets to be sent to one neighbor,
it cannot reuse the time slots scheduled to other neighbors.

Piconet [11] is an architecture designed for low-power ad hoc
wireless networks. One interesting feature of piconet is that it
also puts nodes into periodic sleep for energy conservation. The
scheme that piconet uses to synchronize neighboring nodes is
to let a node broadcast its address before it starts listening. If
a node wants to talk to a neighboring node, it must wait until it
receives the neighbor’s broadcast.

Woo and Culler [14] examined different configurations of
carrier sense multiple access (CSMA) and proposed an adap-
tive rate control mechanism, whose main goal is to achieve fair
bandwidth allocation to all nodes in a multi-hop network. They
have used the motes and TinyOS platform to test and measure
different MAC schemes. In comparison, our approach does not
promote per-node fairness, and even trade it off for further en-
ergy savings.

III. SENSOR-MAC PROTOCOL DESIGN

The main goal in our MAC protocol design is to reduce en-
ergy consumption, while supporting good scalability and colli-
sion avoidance. Our protocol tries to reduce energy consump-
tion from all the sources that we have identified to cause en-
ergy waste, i.e., idle listening, collision, overhearing and control
overhead. To achieve the design goal, we have developed the S-
MAC that consists of three major components: periodic listen
and sleep, collision and overhearing avoidance, and message
passing. Before describing them we first discuss our assump-
tions about the wireless sensor network and it applications.

A. Network and Application Assumptions

Since sensor networks are somewhat different than traditional
IP networks or ad hoc networks of laptop computers, we next
summarize our assumptions about sensor networks and applica-
tions.

We expect sensor networks to be composed of many small
nodes deployed in an ad hoc fashion. Sensor networks will
be composed of many small nodes to take advantage of phys-
ical proximity to the target to simplify signal processing. The
large number of nodes can also take advantage of short-range,
multi-hop communication (instead of long-range communica-
tion) to conserve energy [4]. Most communication will be be-
tween nodes as peers, rather than to a single base-station. Be-
cause there are many nodes, they will be deployed casually in
an ad hoc fashion, rather than carefully positioned. Nodes must
therefore self-configure.

We expect most sensor networks to be dedicated to a single
application or a few collaborative applications, thus rather than
node-level fairness (like in the Internet), we focus on maximiz-
ing system-wide application performance.

In-network processing is critical to sensor network life-
time [5], [6]. Since sensor networks are committed to one or
a few applications, application-specific code can be distributed
through the network and activated when necessary or distributed
on-demand. Techniques such as data aggregation can reduce

SleepListen Listen Sleep

time

Fig. 1. Periodic listen and sleep.

traffic, while collaborative signal processing can reduce traffic
and improve sensing quality. In-network processing implies that
data will be processed as whole messages at a time in store-and-
forward fashion, so packet or fragment-level interleaving from
multiple sources only increases overall latency.

Finally, we expect that applications will have long idle pe-
riods and can tolerate some latency. In sensor networks, the
application such as surveillance or monitoring will be vigilant
for long periods of time, but largely inactive until something
is detected. For such applications, network lifetime is critical.
These classes of applications can often also tolerate some ad-
ditional latency. For example, the speed of the sensed object
places a bound on how rapidly the network must detect an ob-
ject. (One application-level approach to manage latency is to
deploy a slightly larger sensor network and have edge nodes
raise the network to heightened awareness when something is
detected.)

These assumptions about the network and application
strongly influence our MAC design and motivate its differences
from existing protocols such as IEEE 802.11.

B. Periodic Listen and Sleep

As stated above, in many sensor network applications, nodes
are in idle for a long time if no sensing event happens. Given
the fact that the data rate during this period is very low, it is
not necessary to keep nodes listening all the time. Our protocol
reduces the listen time by letting node go into periodic sleep
mode. For example, if in each second a node sleeps for half
second and listens for the other half, its duty cycle is reduced to
50%. So we can achieve close to 50% energy savings.

B.1 Basic Scheme

The basic scheme is shown in Figure 1. Each node goes to
sleep for some time, and then wakes up and listens to see if any
other node wants to talk to it. During sleep, the node turns off
its radio, and sets a timer to awake itself later.

The duration of time for listening and sleeping can be selected
according to different application scenarios. For simplicity these
values are the same for all the nodes.

Our scheme requires periodic synchronization among neigh-
boring nodes to remedy their clock drift. We use two techniques
to make it robust to synchronization errors. First, all timestamps
that are exchanged are relative rather than absolute. Second,
the listen period is significantly longer than clock error or drift.
For example, the listen duration of 0.5s is more than 105 times
longer than typical clock drift rates. Compared with TDMA
schemes with very short time slots, our scheme requires much
looser synchronization among neighboring nodes. All nodes are
free to choose their own listen/sleep schedules. However, to
reduce control overhead, we prefer neighboring nodes to syn-

���
�

���
�

���
�

���
�

A B DC

Fig. 2. Neighboring nodes A and B have different schedules. They synchronize
with nodes C and D respectively.

chronize together. That is, they listen at the same time and go to
sleep at the same time. It should be noticed that not all neigh-
boring nodes can synchronize together in a multi-hop network.
Two neighboring nodes A and B may have different schedules if
they each in turn must synchronize with different nodes, C and
D, respectively, as shown in Figure 2.

Nodes exchange their schedules by broadcasting it to all its
immediate neighbors. This ensures that all neighboring nodes
can talk to each other even if they have different schedules. For
example, in Figure 2 if node A wants to talk to node B, it just
wait until B is listening. If multiple neighbors want to talk to
a node, they need to contend for the medium when the node is
listening. The contention mechanism is the same as that in IEEE
802.11, i.e., using RTS (Request To Send) and CTS (Clear To
Send) packets. The node who first sends out the RTS packet
wins the medium, and the receiver will reply with a CTS packet.
After they start data transmission, they do not follow their sleep
schedules until they finish transmission.

Another characteristic of our scheme is that it forms nodes
into a flat topology. Neighboring nodes are free to talk to each
other no matter what listen schedules they have. Synchronized
nodes from a virtual cluster. But there is no real clustering and
thus no problems of inter-cluster communications and interfer-
ence. This scheme is quite easy to adapt to topology changes.
We will talk about this issue later.

The downside of the scheme is that the latency is increased
due to the periodic sleep of each node. Moreover, the delay
can accumulate on each hop. So the latency requirement of the
application places a fundamental limit on the sleep time.

B.2 Choosing and Maintaining Schedules

Before each node starts its periodic listen and sleep, it needs
to choose a schedule and exchange it with its neighbors. Each
node maintains a schedule table that stores the schedules of all
its known neighbors. It follow the steps below to choose its
schedule and establish its schedule table.
1. The node first listens for a certain amount of time. If it does
not hear a schedule from another node, it randomly chooses a
time to go to sleep and immediately broadcasts its schedule in
a SYNC message, indicating that it will go to sleep after t sec-
onds. We call such a node a synchronizer, since it chooses its
schedule independently and other nodes will synchronize with
it.
2. If the node receives a schedule from a neighbor before choos-
ing its own schedule, it follows that schedule by setting its
schedule to be the same. We call such a node a follower. It
then waits for a random delay td and rebroadcasts this schedule,
indicating that it will sleep in t− td seconds. The random delay
is for collision avoidance, so that multiple followers triggered
from the same synchronizer do not systematically collide when

rebroadcasting the schedule.
3. If a node receives a different schedule after it selects and
broadcasts its own schedule, it adopts both schedules (i.e., it
schedules itself to wake up at the times of both is neighbor and
itself). It broadcasts it own schedule before going to sleep.

We expect that nodes only rarely adopt multiple schedules,
since every node tries to follow existing schedules before choos-
ing an independent one. On the other hand, it is possible that
some neighboring nodes fail to discover each other at beginning
due to collisions when broadcasting schedules. They may still
find each other later in their subsequent periodic listening.

To illustrate this algorithm, consider a network where all
nodes can hear each other. The timer of one node will fire first
and its broadcast will synchronize all of its peers on its sched-
ule. If instead two nodes independently assign schedules (either
because they cannot hear each other, or because they happen
to transmit at nearly the same time), those nodes on the bor-
der between the two schedules will adopt both. In this way, a
node only needs to send once for a broadcast packet. The dis-
advantage is that these border nodes have less time to sleep and
consume more energy than others.

Another option is to let the nodes on the border adopt only
one schedule, which is the one it receives first. Since it knows
another schedule that some other neighbors follow, it can still
talk to them. However, for broadcast packets, it needs to send
twice to the two different schedules. The advantage is that the
border nodes have the same simple pattern of period listen and
sleep as other nodes.

B.3 Maintaining Synchronization

The listen/sleep scheme requires synchronization among
neighboring nodes. Although the long listen time can tolerate
fairly large clock drift, neighboring nodes still need to period-
ically update each other their schedules to prevent long-time
clock drift. The updating period can be quite long. The mea-
surements on our testbed nodes show that it can be on the order
of tens of seconds.

Updating schedules is accomplished by sending a SYNC
packet. The SYNC packet is very short, and includes the ad-
dress of the sender and the time of its next sleep. The next-sleep
time is relative to the moment that the sender finishes transmit-
ting the SYNC packet, which is approximately when receivers
get the packet (since propagation delays are short). Receivers
will adjust their timers immediately after they receive the SYNC
packet. A node will go to sleep when the timer fires.

In order for a node to receive both SYNC packets and data
packets, we divide its listen interval into two parts. The first
part is for receiving SYNC packets, and the second one is for
receiving RTS packets, as shown in Figure 3. Each part is fur-
ther divided into many time slots for senders to perform carrier
sense. For example, if a sender wants to send a SYNC packet,
it starts carrier sense when the receiver begins listening. It ran-
domly selects a time slot to finish its carrier sense. If it has not
detected any transmission by the end of the time slot, it wins the
medium and starts sending its SYNC packet at that time. The
same procedure is followed when sending data packets.

Sender 2

CS

RTS

Send data if CTS received

Receiver Listen

Sleepfor RTSfor SYNC

Sender 1

CS Sleep

SYNC

RTS

Send data if CTS receivedCS CS

Sender 3 SYNC

Fig. 3. Timing relationship between a receiver and different senders. CS stands
for carrier sense.

Figure 3 also shows the timing relationship of three possi-
ble situations that a sender transmits to a receiver. CS stands
for carrier sense. In the figure, sender 1 only sends a SYNC
packet. Sender 2 only wants to send data. Sender 3 sends a
SYNC packet and a RTS packet.

Each node periodically broadcasts SYNC packets to its neigh-
bors even if it has no followers. This allows new nodes to join an
existing neighborhood. The new node follows the same proce-
dure in the above subsection to choose its schedule. The initial
listen period should be long enough so that it is able to learn
and follow an existing schedule before choosing an independent
one.

C. Collision and Overhearing Avoidance

Collision avoidance is a basic task of MAC protocols. S-
MAC adopts a contention-based scheme. It is common that any
packet transmitted by a node is received by all its neighbors even
though only one of them is the intended receiver. Overhearing
makes contention-based protocols less efficient in energy than
TDMA protocols. So it needs to be avoided.

C.1 Collision Avoidance

Since multiple senders may want to send to a receiver at the
same time, they need to contend for the medium to avoid col-
lisions. Among contention based protocols, the 802.11 does a
very good job of collision avoidance. Our protocol follows sim-
ilar procedures, including both virtual and physical carrier sense
and RTS/CTS exchange. We adopt the RTS/CTS mechanism to
address the hidden terminal problem [15].

There is a duration field in each transmitted packet that indi-
cates how long the remaining transmission will be. So if a node
receives a packet destined to another node, it knows how long
it has to keep silent. The node records this value in an variable
called the network allocation vector (NAV) [1] and sets a timer
for it. Every time when the NAV timer fires, the node decre-

E C A B D F

Fig. 4. Who should sleep when node A is transmitting to B?

ments the NAV value until it reaches zero. When a node has
data to send, it first looks at the NAV. If its value is not zero, the
node determines that the medium is busy. This is called virtual
carrier sense.

Physical carrier sense is performed at the physical layer by
listening to the channel for possible transmissions. The pro-
cedure was described in section III-B.3. The randomized car-
rier sense time is very important for collision avoidance. The
medium is determined as free if both virtual and physical carrier
sense indicate that it is free.

All senders perform carrier sense before initiating a transmis-
sion. If a node fails to get the medium, it goes to sleep and wakes
up when the receiver is free and listening again. Broadcast pack-
ets are sent without using RTS/CTS. Unicast packets follow the
sequence of RTS/CTS/DATA/ACK between the sender and the
receiver.

C.2 Overhearing Avoidance

In 802.11 each node keeps listening to all transmissions from
its neighbors in order to perform effective virtual carrier sensing.
As a result, each node overhears a lot of packets that are not
directed to itself. This is a significant waste of energy, especially
when node density is high and traffic load is heavy.

Our protocol tries to avoid overhearing by letting interfering
nodes go to sleep after they hear an RTS or CTS packet. Since
DATA packets are normally much longer than control packets,
the approach prevents neighboring nodes from overhearing long
DATA packets and the following ACKs. In next subsection we
describe how to efficiently transmit a long packet combining
with the overhearing avoidance. Now we look at which nodes
should go to sleep when there is an active transmission going
on.

As shown in Figure 4, node A, B, C, D, E, and F forms a
multi-hop network where each node can only hear the transmis-
sions from its immediate neighbors. Suppose node A is cur-
rently transmitting a data packet to B. The question is, which of
the remaining nodes should go to sleep now.

Remember that collision happens at the receiver. It is clear
that node D should go to sleep since its transmission interferes
with B’s reception. It is easy to show that node E and F do
not produce interference, so they do not need to go to sleep.
Should node C go to sleep? C is two-hop away from B, and its
transmission does not interfere with B’s reception, so it is free
to transmit to its other neighbors like E. However, C is unable to
get any reply from E, e.g., CTS or data, because E’s transmission
collides with A’s transmission at node C. So C’s transmission is
simply a waste of energy. In summary, all immediate neighbors
of both the sender and the receiver should sleep after they hear
the RTS or CTS packet until the current transmission is over.

Each node maintains the NAV to indicate the activity in its
neighborhood. When a node receives a packet destined to other

nodes, it updates its NAV by the duration field in the packet.
A non-zero NAV value indicates that there is an active trans-
mission in its neighborhood. The NAV value decrements every
time when the NAV timer fires. Thus a node should sleep to
avoid overhearing if its NAV is not zero. It can wake up when
its NAV becomes zero.

D. Message Passing

This subsection describes how to efficiently transmit a long
message in both energy and latency. A message is the collection
of meaningful, interrelated units of data. It can be a long series
of packets or a short packet, and usually the receiver needs to
obtain all the data units before it can perform in-network data
processing or aggregation.

The disadvantages of transmitting a long message as a single
packet is the high cost of re-transmitting the long packet if only a
few bits have been corrupted in the first transmission. However,
if we fragment the long message into many independent small
packets, we have to pay the penalty of large control overhead
and longer delay. It is so because the RTS and CTS packets are
used in contention for each independent packet.

Our approach is to fragment the long message into many
small fragments, and transmit them in burst. Only one RTS
packet and one CTS packet are used. They reserve the medium
for transmitting all the fragments. Every time a data fragment
is transmitted, the sender waits for an ACK from the receiver.
If it fails to receive the ACK, it will extend the reserved trans-
mission time for one more fragment, and re-transmit the current
fragment immediately.

As before, all packets have the duration field, which is now
the time needed for transmitting all the remaining data frag-
ments and ACK packets. If a neighboring node hears a RTS
or CTS packet, it will go to sleep for the time that is needed to
transmit all the fragments.

Switching the radio from sleep to active does not occur in-
stantaneously. For example, the RFM radio on our testbed needs
20µs to switch from sleep mode to receive mode [8]. Therefore,
it is desirable to reduce the frequency of switching modes. The
message passing scheme tries to put nodes into sleep state as
long as possible, and hence reduces switching overhead.

The purpose of using ACK after each data fragment is to pre-
vent the hidden terminal problem. It is possible that a neigh-
boring node wakes up or a new node joins in the middle of a
transmission. If the node is only the neighbor of the receiver but
not the sender, it will not hear the data fragments being sent by
the sender. If the receiver does not send ACK frequently, the
new node may mistakenly infer from its carrier sense that the
medium is clear. If it starts transmitting, the current transmis-
sion will be corrupted at the receiver.

Each data fragment and ACK packet also has the duration
field. In this way, if a node wakes up or a new node joins in the
middle, it can properly go to sleep no matter if it is the neighbor
of the sender or the receiver. For example, suppose a neigh-
boring node receives an RTS from the sender or a CTS from
the receiver, it goes to sleep for the entire message time. If the
sender extends the transmission time due to fragment losses or
errors, the sleeping neighbor will not be aware of the extension

immediately. However, the node will learn it from the extended
fragments or ACKs when it wakes up.

It is worth to note that IEEE 802.11 also has the fragmenta-
tion support. We should point out the difference between that
scheme with our message passing.

In 802.11, the RTS and CTS only reserves the medium for
the first data fragment and the first ACK. The first fragment and
ACK then reserves the medium for the second fragment and
ACK, and so forth. So for each neighboring node, after it re-
ceives a fragment or an ACK, it knows that there is one more
fragment to be sent. So it has to keep listening until all the
fragments are sent. Again, for energy-constrained nodes, over-
hearing by all neighbors wastes a lot of energy.

The reason for 802.11 to do so is to promote fairness. If
the sender fails to get an ACK for any fragment, it must give
up the transmission and re-contend for the medium. So other
nodes have a chance to transmit. This causes a long delay if
the receiver really need the entire message to start processing.
In contrast, message passing extends the transmission time and
re-transmits the current fragment. Thus it has fewer contentions
and a small latency. There should be a limit on how many exten-
sions can be made for each message in case that the receiver is
really dead or lost in connection during the transmission. How-
ever, for sensor networks, application-level fairness is the goal
as opposed to per-node fairness.

E. Energy Savings vs. Increased Latency

This subsection analyzes the trade-offs between the energy
savings and the increased latency due to nodes sleep schedules.
We compare our protocol with protocols that do not have peri-
odic sleep such as the IEEE 802.11,

For a packet moving through a multi-hop network, it experi-
ences the following delays at each hop:

Carrier sense delay is introduced when the sender performs
carrier sense. Its value is determined by the contention window
size.

Backoff delay happens when carrier sense failed, either be-
cause the node detects another transmission or because collision
occurs.

Transmission delay is determined by channel bandwidth,
packet length and the coding scheme adopted.

Propagation delay is determined by the distance between the
sending and receiving nodes. In sensor networks, node distance
is normally very small, and the propagation delay can normally
be ignored.

Processing delay. The receiver needs to process the packet
before forwarding it to the next hop. This delay mainly depends
on the computing power of the node and the efficiency of in-
network data processing algorithms.

Queuing delay depends on the traffic load. In the heavy traffic
case, queuing delay becomes a dominant factor.

The above delays are inherent to a multi-hop network using
contention-based MAC protocols. These factors are the same
for both S-MAC and 802.11-like protocols. An extra delay in
S-MAC is caused by nodes periodic sleeping. When a sender
gets a packet to transmit, it must wait until the receiver wakes

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Percentage energy savings (%)

A
ve

ra
ge

 s
le

ep
 d

el
ay

 (
s)

Delay vs. energy savings

Listen time 300ms
Listen time 200ms

Fig. 5. Energy savings vs. average sleep delay for the listen time of 30ms.

up. We call it sleep delay since it is caused by the sleep of the
receiver.

We call a complete cycle of the listen and sleep a frame. As-
sume a packet arrives at the sender with equal probability in time
within a frame. So the average sleep delay on the sender is

Ds = Tframe/2 (1)

where

Tframe = Tlisten + Tsleep (2)

Comparing with protocols without periodic sleep, the relative
energy savings in S-MAC is

Es =
Tsleep
Tframe

= 1−
Tlisten
Tframe

(3)

The last item in the above equation is the duty cycle of the
node. It is desirable to have the listen time as short as possible
so that for a certain duty cycle, the average sleep delay is short.
In our implementation we set the listen time as 300ms. Figure 5
shows the percentage of energy savings Es vs. average sleep
delay Ds on each node for the listen time of 300ms and 200ms.
We can see that even if the sleep time is zero (no sleeping) there
is still a delay. This effect is because contention only starts at
the beginning of each listen interval.

IV. PROTOCOL IMPLEMENTATION

The purpose of our implementation is to demonstrate the ef-
fectiveness of our protocol and to compare our protocol with
802.11 through some basic experiments.

A. Testbed

We use Rene Motes, developed at UCB [7], as our develop-
ment platform and testbed (see Figure 6). A mote is slightly
larger than a quarter. The heart of the node is the Atmel

Fig. 6. The UCB Rene Mote.

AT90LS8535 microcontroller [18], which has 8K bytes of pro-
grammable flash and 512 bytes of data memory.

The radio transceiver on the mote is the model TR1000 from
RF Monolithics, Inc [8]. When using the OOK(on-off keyed)
modulation, it provides a transmission rate of 19.2 Kbps. It
has three working modes, i.e., receiving, transmitting and sleep,
each drawing the input current of 4.5mA, 12mA (peak) and 5µA
respectively.

Our motes use TinyOS, an efficient event-driven operating
system [9], [19]. It provides the basic mechanism for packet
transmitting, receiving and processing. TinyOS promotes mod-
ularity, data sharing and reuse.

As of July 2001, the standard release of TinyOS has only one
type of packet, which consists of a header, the payload and a
cyclic redundancy check (CRC). The length of the header or the
payload can be changed to different values. However, once they
are defined, all packets have the same length and format. In our
MAC implementation, the header, payload and CRC fields have
6B, 30B and 2B respectively.

Normally the control packets, such as RTS, CTS and ACK,
are very short and without payload. So we have created an other
packet type in TinyOS, the control packet, which only has the
6-byte header and the 2-byte CRC. We have modified several
TinyOS components to accommodate the new packet. This en-
ables us to efficiently implement MAC protocols and accurately
measure their performance.

B. Implementation of MAC Protocols

We have implemented three MAC modules on the mote and
TinyOS platform, as listed below.
1. Simplified IEEE 802.11 DCF
2. Message passing with overhearing avoidance
3. The complete S-MAC

For the purpose of performance comparison, we first imple-
mented a simplified version of IEEE 802.11 DCF. It has the fol-
lowing major pieces: physical and virtual carrier sense, back-
off and retry, RTS/CTS/DATA/ACK packet exchange, and frag-
mentation support.

The duration of each carrier sense is a random time within
the contention window. The randomization is very important to
avoid collisions at the first step. For simplicity, the contention
window does not exponentially increase when backoff happens.
The fragmentation support follows the same procedure as in

A

B

C

Source 1

Source 2 Sink 1

Sink 2

E

D

Fig. 7. Topology used in experiments: two-hop network with two sources and
two sinks.

IEEE 802.11 standard [1] and is described in Section 3 of this
paper.

With 802.11 the radio of each node does not go into sleep
mode. It is either in listen/receiving mode or transmitting mode.

The second module is the message passing with overhearing
avoidance. It achieves energy savings by avoiding overhearing,
reducing control overhead and contention times. It does not in-
clude the period listen and sleep. So there is no additional delay
comparing with the simplified IEEE 802.11. The radio of each
node goes into the sleep mode only when its neighbors are in
transmission.

With the message passing module we have incorporated peri-
odic listen and sleep, and completed most basic functionalities
in S-MAC. Currently, the listen time for each node is 300ms, and
sleep time can be changed to different values, such as 300ms,
500ms, 1s, etc., which makes different duty cycles of the radio.
We can also specify the frequency that the SYNC packet is sent
for schedule update between neighboring nodes. In our follow-
ing experiments, we have chosen the sleep time as 1 second and
the frequency for schedule update is 10 listen/sleep period, i.e.,
13 seconds.

It should be noted that the energy savings in the current imple-
mentation is only due to the sleep of the radio. In other words,
the microcontroller does not go to sleep. It actually has a sleep
mode, which consumes much less energy and can be waked up
by a low-frequency watchdog timer. If we put the microcon-
troller into the sleep mode as well when the radio is sleeping,
we are able to save more energy.

V. EXPERIMENTATION

The main goal of the experimentation described here is to
measure the energy consumption of the radio for using each of
the MAC modules we have implemented.

A. Experiment Setup

Figure 7 is the topology we used in our experiments. This
is a two-hop network with two sources and two sinks. Packets
from source A flow through node C and end at sink D, while
those from B also pass through C but end at E. The topology is
simple, but it is sufficient to show the basic characteristics of the
MAC protocols.

We will look at the energy consumption of each node when
utilizing different MAC protocols and under different traffic

loads.
The two sources periodically generate a sensing message,

which is divided into some fragments. In the simplified IEEE
802.11 MAC, these fragments are sent in a

burst, i.e., RTS/CTS is not used for each fragment. We did not
measure the 802.11 MAC without fragmentation, which treats
each fragment as an independent packet and uses RTS/CTS for
each of them, since it is obvious that this MAC consumes much
more energy than the one with fragmentation. In our protocol,
message passing is used, and fragments of a message are always
transmitted in a burst.

We change the traffic load by varying the inter-arrival period
of the messages. If the message inter-arrival period is 5 seconds,
a message is generated every 5 seconds by each source node.
In our following experiments, the message inter-arrival period
varies from 1s to 10s.

For each traffic pattern, we have done 10 independent tests
to measure the energy consumption of each node when using
different MAC protocols. In each test, each source periodi-
cally generates 10 messages, which in turn is fragmented into 10
small data packets supported by the TinyOS. Thus in each ex-
periment, there are 200 TinyOS data packets to be passed from
their sources to their sinks. For the highest rate with a 1s inter-
arrival time, the wireless channel is nearly fully utilized due to
its low bandwidth.

We measure the amount of time that each node has used to
pass these packets as well as the percentage time its radio has
spent in each mode (transmitting, receiving, listening or sleep).
The energy consumption in each node is then calculated by mul-
tiplying the time with the required power to operate the radio in
that mode. We found the power consumption from the data sheet
of the radio transceiver, which is 13.5mW, 24.75mW and 15µW,
in receiving, transmitting and sleep respectively. There is no dif-
ference between listening and receiving in this radio transceiver
model.

B. Results and Analysis

The experiments are carried out on the three MAC modules
we have implemented on our testbed nodes. In the result graphs,
the simplified IEEE 802.11 DCF is denoted as ‘IEEE 802.11’.
The message passing with overhearing avoidance is identified
as ‘Overhearing avoidance’. The complete S-MAC protocol,
which includes all pieces of our new protocol, is denoted as ‘S-
MAC’.

We first look at the experiment results on the source nodes
A and B. Figure 8 is the measured average energy consumption
from these two nodes. The traffic is heavy when the message
inter-arrival time is less than 4s. In this case, 802.11 MAC uses
more than twice the energy used by S-MAC. Since idle listening
rarely happens, energy savings from periodic sleeping is very
limited. S-MAC achieves energy savings mainly by avoiding
overhearing and efficiently transmitting a long message.

When the message inter-arrival period is larger than 4s, traffic
load becomes light. In this case, the complete S-MAC protocol
has the best energy property, and far outperforms 802.11 MAC.
Message passing with overhearing avoidance also performs bet-
ter than 802.11 MAC. However, as shown in the figure, when

0 1 2 3 4 5 6 7 8 9 10 11

200

400

600

800

1000

1200

1400

1600

1800
Average energy consumption in the source nodes

Message inter−arrival period (second)

E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

IEEE802.11
Overhearing avoidance
S−MAC

Fig. 8. Measured energy consumption in the source nodes.

idle listening dominates the total energy consumption, the pe-
riodic sleep plays a key role for energy savings. The energy
consumption of S-MAC is relatively independent of the traffic
pattern.

Compared with 802.11, message passing with overhearing
avoidance saves almost the same amount of energy under all
traffic conditions. This result is due to overhearing avoidance
among neighboring nodes A, B and C. The number of packets
to be sent by each of them are the same in all traffic conditions.

Figure 9 shows the percentage of time that the source nodes
are in the sleep mode. It is interesting that the S-MAC protocol
adjusts the sleep time according to traffic patterns. When there
is little traffic, the node has more sleep time (although there is
a limit by the duty cycle of the node). When traffic increases,
nodes have fewer chances to go to periodic sleep and thus spend
more time in transmission.

This is a useful feature for sensor network applications, since
the traffic load indeed changes over time. When there is no sens-
ing event, the traffic is very light. When some nodes detects an
event, it may trigger a big sensor like a camera, which will gen-
erate heavy traffic. The S-MAC protocol is able to adapt to the
traffic changes. In comparison, the module of message passing
with overhearing avoidance does not have periodic sleep, and
nodes spend more and more time in idle listening when traffic
load decreases.

Figure 10 shows the measured energy consumption in the in-
termediate node C. We can see in the light traffic case, it still
outperforms 802.11 MAC. In heave traffic case, it consumes
slightly more energy than 802.11. One reason is that S-MAC
has synchronization overhead of sending and receiving SYNC
packets. Another reason is that S-MAC introduces more latency
and actually uses more time to pass the same amount of data.

In fact, if the traffic is extremely heavy and a node does not
have any chance to follow its sleep schedule, the scheme of pe-
riodic listen and sleep does not benefit at all. However, message
passing and overhearing avoidance are still effective means of
saving energy. This has been illustrated in the results of the

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100
Percentage time source nodes in sleep

Message inter−arrival period (second)

P
er

ce
nt

ag
e

tim
e

Overhearing avoidance
S−MAC

Fig. 9. Measured percentage of time that the source nodes in the sleep mode.

0 1 2 3 4 5 6 7 8 9 10 11
0

200

400

600

800

1000

1200

1400

1600

1800
Energy consumption in the intermediate node

Message inter−arrival period (second)

E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

IEEE802.11
Overhearing avoidance
S−MAC

Fig. 10. Measured energy consumption in the intermediate node.

source nodes (Figure 8). But we cannot see similar results on
the intermediate node C, since all packet transmissions involve
this node. In this case, its energy consumption is about the same
as that of using the 802.11 MAC.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a new MAC protocol for wireless sensor
networks. It has very good energy conserving properties com-
paring with IEEE 802.11. Another interesting property of the
protocol is that it has the ability to make trade-offs between en-
ergy and latency according to traffic conditions. The protocol
has been implemented on our testbed nodes, which shows its
effectiveness.

Future work includes system scaling studies and parameter
analysis. More tests will be done on larger testbeds with differ-
ent number of nodes and system complexity.

ACKNOWLEDGMENTS

This work is supported by NSF under grant ANI-9979457
as the SCOWR project (http://robotics.usc.edu/projects/
scowr/), and by DARPA under grant DABT63-99-1-0011 as
the SCADDS project (http://www.isi.edu/scadds/) and un-
der contract N66001-00-C-8066 as the SAMAN project (http:
//www.isi.edu/saman/) via the Space and Naval Warfare Sys-
tems Center San Diego.

The authors would like to acknowledge the discussions and
suggestions from members of the SCOWR, SCADDS and
SAMAN projects.

We would also like to thank the TinyOS group (http://
tinyos.millennium.berkeley.edu/) at UCB for their support
with TinyOS and Motes.

REFERENCES

[1] LAN MAN Standards Committee of the IEEE Computer Society, Wireless
LAN medium access control (MAC) and physical layer (PHY) specifica-
tion, IEEE, New York, NY, USA, IEEE Std 802.11-1997 edition, 1997.

[2] Mark Stemm and Randy H Katz, “Measuring and reducing energy con-
sumption of network interfaces in hand-held devices,” IEICE Transactions
on Communications, vol. E80-B, no. 8, pp. 1125–1131, Aug. 1997.

[3] Oliver Kasten, Energy Consumption, http://www.inf.ethz.ch/
˜kasten/research/bathtub/energy_consumption.html,
Eldgenossische Technische Hochschule Zurich.

[4] Gregory J. Pottie and William J. Kaiser, “Embedding the internet: wireless
integrated network sensors,” Communications of the ACM, vol. 43, no. 5,
pp. 51–58, May 2000.

[5] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin, “Di-
rected diffusion: A scalable and robust communication paradigm for sen-
sor networks,” in Proceedings of the ACM/IEEE International Conference
on Mobile Computing and Networking, Boston, MA, USA, Aug. 2000, pp.
56–67, ACM.

[6] John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh
Govindan, Deborah Estrin, and Deepak Ganesan, “Building efficient wire-
less sensor networks with low-level naming,” in Proceedings of the Sym-
posium on Operating Systems Principles, Lake Louise, Banff, Canada,
Oct. 2001.

[7] http://www.cs.berkeley.edu/˜awoo/smartdust/.
[8] RF Monolithics Inc., http://www.rfm.com/, ASH Transceiver

TR1000 Data Sheet.
[9] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister, “System architecture directions for networked sensors,” in
Proceedings of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems, Cambridge, MA,
USA, Nov. 2000, pp. 93–104, ACM.

[10] S. Singh and C.S. Raghavendra, “PAMAS: Power aware multi-access pro-
tocol with signalling for ad hoc networks,” ACM Computer Communica-
tion Review, vol. 28, no. 3, pp. 5–26, July 1998.

[11] Frazer Bennett, David Clarke, Joseph B. Evans, Andy Hopper, Alan Jones,
and David Leask, “Piconet: Embedded mobile networking,” IEEE Per-
sonal Communications Magazine, vol. 4, no. 5, pp. 8–15, Oct. 1997.

[12] Katayoun Sohrabi and Gregory J. Pottie, “Performance of a novel self-
organization protocol for wireless ad hoc sensor networks,” in Proceedings
of the IEEE 50th Vehicular Technology Conference, 1999, pp. 1222–1226.

[13] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrish-
nan, “Energy-efficient communication protocols for wireless microsensor
networks,” in Proceedings of the Hawaii International Conference on Sys-
tems Sciences, Jan. 2000.

[14] Alec Woo and David Culler, “A transmission control scheme for media
access in sensor networks,” in Proceedings of the ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking, Rome, Italy,
July 2001, ACM.

[15] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “Macaw: A media
access protocol for wireless lans,” in Proceedings of the ACM SIGCOMM
Conference, 1994.

[16] Jaap C. Haartsen, “The Bluetooth radio system,” IEEE Personal Commu-
nications Magazine, pp. 28–36, Feb. 2000.

[17] Bluetooth SIG Inc., “Specification of the Bluetooth system: Core,” http:
//www.bluetooth.org/, 2001.

[18] Atmel Corporation, http://www.atmel.com/, AVR Microcontroller
AT90LS8535 Reference Manual.

[19] http://tinyos.millennium.berkeley.edu/.

