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Abstract

The well-founded semantics for \normal" logic programs is described using the alternating �xpoint

construction as the basis. The presentation is informal. The semantics is motivated and illustrated

through examples, and is compared brie
y with earlier semantics for negation. Extensions to other forms

of logic program are mentioned brie
y. Recent work on practical implementations and applications is

surveyed.

1 Introduction

The well-founded semantics [VGRS91] is a method for providing a static, or \declarative", meaning for

a certain class of logic programs, called normal logic programs, in the terminology of Lloyd and Topor

[LT84]. This paper provides a tutorial introduction to the well-founded semantics, using the alternating

�xpoint construction (Section 3), which was shown to be equivalent to the original formulation [VG93a].

The main properties are described (Section 4), with emphasis on those that are relevant to implementations

(Section 5). Extensions of the alternating �xpoint construction to other logical systems are also described

brie
y (Section 6).

1.1 Notation and De�nitions

The standard terminology of logic and logic programming will be used as far as possible [Llo87]. We shall

de�ne normal logic programs in a top-down fashion, with a minimum of formality.

De�nition 1.1: A normal logic program is a �nite set of normal rules, or possibly an in�nite set of normal

rules that has a �nite presentation. A normal rule is a syntactic construct of the form

head :- body

where the symbol \:-" is usually read as \if". The head is an atomic formula. The body consists of a �nite

sequence of zero or more subgoals.
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Each subgoal is a literal , which is de�ned as an atomic formula or a negated atomic formula. Negation in

rules is denoted as \:". If the rule body is empty, the symbol \:-" may be omitted; such a rule is often called

a unit clause. A unit clause containing no variables is often called a fact . Following the Prolog convention,

literals in the rule body are separated by commas, and the sequence is terminated with a period.

A query is like a rule with no head, syntactically \:- body". Usually, a query is not part of a logic

program, but is de�ned at \run time", and de�nes the problem to be solved by a particular run of the logic

program. Queries are sometimes called \goals", which are not to be confused with \subgoals".

We assume a logical vocabulary of variables, function symbols, and predicate symbols. The number of

arguments of a function symbol or predicate symbol, called its arity , is part of its identity. Function symbols

of arity zero are called constants.

Terms and atomic formulas are de�ned in the standard way. With a �xed vocabulary a term is a variable

or a function symbol with terms as arguments; an atomic formula (often abbreviated to atom) is a predicate

symbol with terms as arguments. A ground term is a term containing no variables. A ground atom is an

atomic formula whose arguments are ground terms.

By default, arguments of terms and atoms are written with the usual pre�x functional notation, e.g.,

s(0). However, we shall use in�x notation for common arithmetic operators, as in Prolog, e.g., X + 1.

We shall use the ML convention for lists, treating them as terms built with the binary function symbol

\::" (read as \cons") and the constant \[]" (read as \nil"). For easier readability, \::" is used as a right-

associative operator. In addition, there is a square-bracket syntax for instantiated \lists", which is similar to

Prolog. Thus, the term ::(e, ::(+, ::(t, []))) may be written as e :: + :: t :: [], or, using the special

notation of ML and Prolog, as [e, +, t]. Some familiar rules for lists illustrate the syntax:

member(H; H :: T) : (1)

member(X; H :: T) :- member(X; T): (2)

append([]; L2; L2) : (3)

append(H :: T; L2; H :: L3) :- append(T; L2; L3): (4)

Numbers to the right are not part of the rules, but are reference numbers.

The scope of any variable is always the rule or query in which it occurs. That is, variables with the same

name within a rule refer to the same variable, while variable names in separate rules always refer to distinct

variables. Following the Prolog convention, variables begin with capital letters, while function symbols and

predicate symbols begin with lowercase letters.

Literals and subgoals are called positive if they are atoms, and negative if they are negated atoms. A

rule in which all subgoals are positive is called a de�nite rule. The term Horn clause is more general in that

it may refer either to a de�nite rule, or to a query in which all subgoals are positive.
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1.2 Extensional and Intentional Databases

It is customary to divide the predicate symbols of a logic program into two sets, the extensional database

(EDB) and the intentional database (IDB). The EDB is given as a set of facts, or possibly unit clauses with

variables; it is regarded as the input to the program. No new EDB facts can be derived, of course. It is

always assumed that any EDB atoms that are not given explicitly are false.

The IDB consists of rules, which are considered the invariant part of the program. The point of view

for declarative semantics is that the rules with IDB symbols in their heads de�ne a mapping from the EDB

facts to some set of \derivable" IDB facts. The notion of \derivable" depends on the semantics. Therefore,

in describing a model (for two-valued logic), it is common to mention only which IDB atoms are true. If we

are using three-valued logic, it is necessary to specify which IDB atoms are false, as well.

1.3 Herbrand Universe and Basis

For this paper, let some logical vocabulary be �xed, which includes vocabulary of the logic programs and

queries discussed, plus some auxiliary function symbols that do not appear in any program or query. The

set of all ground terms constructible with this vocabulary is called the Herbrand universe, denoted as H.

The set of all ground atoms constructible with this vocabulary is called the Herbrand basis, denoted as B.

These sets play an important role in declarative semantics.

Auxiliary symbols involve technicalities that are beyond the scope of this tutorial [VGRS91, VGS93].

Brie
y, their purpose is to ensure that a formula 8X F (X) is not true just because it happens to be true

for the terms that can be constructed with the function symbols of the current program. As an example,

suppose the whole program is p(a). The Herbrand universe based on the vocabulary of the program alone is

fag. However, we do not want 8X p(X) to be true for this program because, if an unrelated fact q(b) were

added, then 8X p(X) would not be true. Essentially, we take the view that the program is always part of

some larger universe.

2 Horn Programs

Horn programs are logic programs in which all rules are de�nite, so that there are no negative subgoals.

Van Emden and Kowalski initiated the research in declarative semantics of logic programs by giving the

declarative semantics for Horn programs with Horn queries [VEK76]. This consists of the minimum model

in the Herbrand universe H.

Here, we are describing an Herbrand model by the set of elements of the Herbrand basis B that are true

in the model. A model is said to be minimal if no proper subset of its true basis elements describes a model.

If there is only one minimal model, it is said to be minimum.

For a �xed query, the answer set for that query is exactly the set of ground substitutions for variables

appearing in the query such that all subgoals of the query occur in the minimummodel mentioned above.

Van Emden and Kowalski demonstrated several important properties of their semantics for Horn programs

with Horn queries [VEK76]. First, the intersection of any set of models over the same structure is also a
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model; thus, a unique minimum model exists. This model consists of those atoms in the Herbrand basis

B that must be true when each rule head :- body is interpreted as the (universally closed) logical formula

8(body ! head ).

Furthermore, the Herbrand basis is a su�ciently re�ned structure to capture all properties of the Horn

program that can be represented as Horn queries. Finally, the minimum model is the least �xpoint of the

logical consequence operator de�ned in Section 2.1, the closure ordinal for this �xpoint is ! (the least in�nite

ordinal), and so the question of membership in the model is recursively enumerable. With these attractive

properties, there is little reason to consider alternatives, and the semantics of Van Emden and Kowalski is

considered standard.

2.1 Logical Consequence Operator and Least Fixpoint

So far we have been careful not to call rules formulas. However, the logical consequence operator, to be

de�ned next, essentially evaluates the body of a Horn rule as a conjunction of its atoms. An empty rule body

is true.

De�nition 2.1: The logical consequence operator TP , for a given Horn logic program P , maps a set of

atoms I into a set of atoms TP (I), where both are subsets of the Herbrand basis B. The mapping is de�ned

as follows. A ground atom q is in the set TP (I) if and only if there is some rule in P , and some assignment

to the variables of the rule such that the head of the rule is q and all atoms in the rule body, as instantiated

by the assignment, are in I.

The operator TP is monotonic. Here, and throughout the paper, ! denotes the least in�nite ordinal. The

sequence I0 = ;, I�+1 = TP (I�), where � ranges over the natural numbers, increases to a limit, denoted as

T!
P (;), where

T!
P (;) = [

�<!
I� (5)

In addition, T!
P (;) is a �xpoint of TP , and by Tarski's theorem, it is the least �xpoint [VEK76].

In general, any monotonic operator � has a least �xpoint, by Tarski's theorem, but �!(;) may not be a

�xpoint. In this case, the iteration must continue past ! [Mos74]. Accordingly, we de�ne the sequence as

I0 = ;, I�+1 = �(I�), and for every limit ordinal �, we de�ne

I� = ��(;) = [
�<�

I� (6)

This tutorial will not have programs or examples where such trans�nite iteration is necessary.

3 Overview of the Alternating Fixpoint

In de�ning the alternating �xpoint of a normal logic program,P0, we wish to build upon the well understood

ideas of de�nite rules, monotonic operators, least �xpoints and minimum models. Therefore, we shall

introduce a set of dual predicate symbols.
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I0 = SP (;)

I1 = SP (~I0)

I2 = SP (~I1)

I3 = SP (~I2)

I4 = SP (~I3)

I5 = SP (~I4)

� � �

I1

� � �

Figure 1: The sequence I� of �xpoints that de�nes the alternating �xpoint. Each ~I� = ~B � (� I�). By

taking alternate terms of the entire sequence, one obtains either a monotonically increasing subsequence,

called underestimates or a monotonically decreasing subsequence, called overestimates. The limit may occur

at an ordinal greater than !. The limiting underestimate, I1, coincides with the well-founded partial model.

De�nition 3.1: Given a logic program, P0, for each predicate symbol pi, its dual symbol is denoted as ~pi.

Now, for each rule in P0, we replace each negative subgoal on pi by its positive version on ~pi. For example,

p1(X) :- p2(X; Y);:p3(Y): becomes p1(X) :- p2(X; Y); ~p3(Y):

Thus, the resulting program, denoted simply as P, consists entirely of de�nite rules. When \� appears as a

pre�x operator on a set of atoms, it denotes the dualization of each element. Thus, (� fp1; ~p2g) = f ~p1; p2g.

Since a dual symbol is never the head of a rule in P, the only way to obtain dual facts is to supply them

externally. We shall let ~I denote some set of dual facts that is taken as true. These facts are trivial de�nite

rules, having empty bodies. The minimummodel of P+ ~I exists, and will be denoted as SP (~I).

We are now ready to de�ne the alternating �xpoint informally. We �x the Herbrand universe H and the

Herbrand basis B, as described in Section 1.3. Let ~B be B restricted to the dual predicate symbols.

We de�ne a sequence of sets of atoms, I�, as follows (see Figure 1). Let I0 be the minimummodel of P,

which is clearly an underestimate of the facts that must be true. De�ne ~I0 = ~B � (� I0); this is clearly an

overestimate of the dual facts that must be true (corresponding to facts on the original predicate symbols

that must be false). (Observe that I� ranges over all predicate symbols, while ~I� ranges over only dual

predicate symbols.)
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But the above property of ~I0, together with monotonicity of TP , implies that the minimum model of

(P + ~I0) must be an overestimate of all facts that must be true. Let I1 be this minimum model. De�ne

~I1 = ~B� (� I1); this is clearly an underestimate of the dual facts that must be true. Let I2 be the minimum

model of (P+~I1). By the same reasoning, ~I2 must again be an underestimate of all facts that must be true,

as was I0. By reviewing the above steps, we see that we could have de�ned I2 as a transformation on I0

(with P as a �xed parameter).

De�nition 3.2: Let SP (~I�) denote the operation of constructing the minimum model of (P + ~I�). We

de�ne:

AP (I) = SP ( ~B� (� SP ( ~B� (� I)))) (7)

The transformation AP is easily seen to be monotonic, so it has a least �xpoint, which is called the

alternating �xpoint of P [VG93a]. (The de�nition of AP here varies slightly from the reference.) To see that

I1 in Figure 1 is the least �xpoint of AP , observe that

Ak
P (;) � Ak

P (I0) � Ak+1
P (;)

The main idea should be clear without getting involved in the many technicalities. One of these tech-

nicalities is that the closure ordinal for the alternating �xpoint may be greater than !, the least in�nite

ordinal, even if we regard an application of SP as a single operation. Despite this obstacle, we shall see that

there are a number of useful applications for which queries can be answered with respect to the alternating

�xpoint in �nite time.

4 Comparison of Semantics for Negation

This section will summarize some earlier declarative semantics for normal logic programs with negation, and

compare them with the well-founded semantics by means of examples.

As soon as negative subgoals enter the picture, the nice properties of Horn programs begin to disappear.

If negation appears only in the query, then greatest �xpoints, as well as least �xpoints, need to be considered

[AVE82]. But membership in the greatest �xpoint is neither recursively enumerable nor co-recursively

enumerable. When negative subgoals may appear in rule bodies as well, the model-intersection property no

longer holds. Moreover, the Herbrand universe of the program is no longer a satisfactory structure upon

which to base a declarative semantics [JLL83]. Very technical issues arise, which are treated at some length

in Lloyd's book [Llo87].

Example 4.1: This example shows that a simple minimal model semantics is not satisfactory. We wish

to de�ne rules that will �nd employees that have the maximum salary, based on a set of facts of the

form emp(Name, Sal), meaning that employee Name has salary Sal. We also assume the usual arithmetic

comparison predicates are given.
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The syntax restrictions of normal rules prevents us from expressing the maximumsalary property, denoted

as maxSal, in the simplest way: with a universally quanti�ed �rst order formula in the rule body. Essentially,

we would like to write a rule something like this:

maxSal(Name; Sal) :- emp(Name; Sal)^

8NS (emp(N; S)! (S � Sal)) (8)

This rule can be transformed via DeMorgan's laws, replacing \not �" by \>", into:

maxSal(Name; Sal) :- emp(Name; Sal)^

:9NS (emp(N; S)^ (S > Sal)) (9)

which can now be split up into normal rules, with the aid of an intermediate predicate symbol, higherSal.

The normal rules are:

maxSal(Name; Sal) :- emp(Name; Sal); : higherSal(Sal): (10)

higherSal(Sal) :- emp(N; S); S > Sal: (11)

This type of syntactic transformation is typical for expressing logical properties in the restricted syntax of

normal rules.

The next point we wish to make with this example is that the minimum model idea that is used for

Horn programs does not work here. Consider Rules 10{11 applied to the simple EDB of Figure 2. The

expected model contains the true atoms higherSal(8), higherSal(10) and maxSal(vera, 12), and this

model is minimal. However, there is another minimal model, which contains the true atoms higherSal(8),

higherSal(10), and higherSal(12). Since the latter model does not contain maxSal(vera, 12), it is also

a minimal model.

4.1 Clark Program Completion

As Example 4.1 shows, the criterion of minimality fails immediately as a declarative semantics for rules with

negation. Clark attempted to remedy this problem by introducing the concept of the completed program

[Cla78]. The main idea was that rules are stated as \if" rules, but the programmer really intends that there

is an implicit \only if" version as well.

De�nition 4.1: Informally, the \only if" criterion is that a ground atom q must be false unless it is forced

to be true in the following sense: (after the appropriate substitutions) q is the head of a rule for which all

literals in the body are true. That is, all atoms in positive subgoals of the body are true and all atoms in

negative subgoals of the body are false. See also Example 4.2.

It is worth while to emphasize that the concept of minimal model is not explicitly present in Clark's

completed-program semantics. With Horn programs, minimality meant minimal with respect to true atoms,

because negated atoms simply were not an issue. Once negative subgoals appear, the program must be able

to infer that certain atoms are false. Therefore, minimizing on true atoms is no longer appropriate.

7



emp(alex, 8).

emp(oleg, 10).

emp(vera, 12).

inDept(oleg, shoe).

inDept(alex, shoe).

inDept(vera, hat).

manages(oleg, shoe).

Figure 2: Extensional database (EDB) used in examples.

Returning to Example 4.1, there is no rule instance that forces higherSal(12) to be true, so it must be

false. Thus, the \expected model" is the only model of the completed program. (More precisely, it is only

Herbrand model for the speci�ed vocabulary, but we shall always restrict attention to such models.)

4.2 Fitting and Kunen Three-Valued Semantics

In general, the completed program does not have a unique model. More troubling is the fact that it

may have no models at all. For example, the one-rule program p :- : p becomes an inconsistent completed

program p ! : p, where \ !" denotes \if and only if". Fitting pointed out this problem and numerous

other anomalies that are even more paradoxical [Fit85]. He proposed a declarative semantics in three-valued

logic. Kunen described a subtle variant [Kun87]. The main idea in both cases was to interpret the completed

program in three-valued logic, with the third truth value being ? (unde�ned). The if-and-only-if operator

has the special evaluation rule: ?  ! ? is true. The practical e�ect is that the head of a rule may be

unde�ned if the rule body evaluates as unde�ned. Then p is evaluated as ? in the program p :- : p.

Although minimal two-valued models were not relevant for the Clark completed-program semantics,

Fitting's semantics corresponds to the minimal three-valued model, which he shows always exists and is

unique. The partial ordering among truth values in this case is: ? < false, ? < true, true and false are

incomparable. Many technicalities are necessarily omitted from this brief review.

We can use the idea of dual predicates from Section 3 to sketch the construction of the Fitting minimum

three-valued model. As in that section, negative subgoals in a program P0 are replaced by positive subgoals

on dual predicate symbols, giving P, which consists entirely of de�nite rules. Let B be the Herbrand basis

of P.

De�nition 4.2: Given a set of atoms, I � B, we say a fully instantiated rule is potentially usable if none of

its subgoals is \contradicted by" I. In this context, atom p \contradicts" atom ~p, and vice versa.

Let I0 = ;. If I� has been computed, let I�+1 = �(I�), where �(I�) is de�ned as follows:

1. For any atom p on an original predicate symbol such that no rule with head p is potentially usable

with respect to I�, declare the corresponding ~p to be true; let J� be the set of all dual atoms declared

true by this process.

2. �(I�) = TP (I� [ J�).
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For limit ordinals, Eq. 6 applies.

The Fitting minimummodel is the least �xpoint of the above operator �. The Kunen semantics is based

on �!(;), even if it is not a �xpoint. As mentioned before, no examples in this tutorial will involve ordinals

greater than !.

Example 4.2: This example prepares the way for Example 4.3, and also illustrates further the formation

of the completed program. The object here is to de�ne rules to specify that employees that are transitively

managed by another employee, i.e., are \subordinates". The EDB is assumed to contain facts of the form

seen in Figure 2. The IDB predicate, subord(Mgr, Name, Sal) means that Name, with salary Sal, is in the

hierarchy managed by Mgr.

subord(Name; Name; Sal) :- emp(Name; Sal): (12)

subord(Mgr; Name; Sal) :- manages(Mgr; Dept); inDept(E; Dept); subord(E; Name;Sal): (13)

Notice that all employees are subordinates of themselves.

In forming the completed program, all rules with the same predicate symbol in the head are collected,

and syntactically transformed if necessary, so that their heads unify. This step might require introducing

equalities in the rule bodies, as seen below. Also, explicit quanti�ers are added to each rule body for its

local variables. Then the bodies are combined disjunctively. The completed form of Rules 12{13 is:

subord(Mgr; Name;Sal)  ! (Mgr = Name ^ emp(Name; Sal)) _

9Dept; E (manages(Mgr;Dept) ^ inDept(E; Dept) ^ subord(E; Name;Sal)) (14)

For Horn programs, such as this, the atoms that are true in the Fitting semantics and the Kunen semantics

are precisely those in the minimum two-valued model of the original rules. For example, let us take the facts

of Figure 2. Then the IDB atoms that are true are:

subord(vera, vera, 12)

subord(oleg, oleg, 10)

subord(alex, alex, 8)

subord(oleg, alex, 8)

In a minimum two-valued model, all other IDB facts would be false. Example 4.3 discusses their status in

program-completion semantics.

4.3 Strati�ed Programs

The database community (primarily) perceived problems with the Clark, Fitting, and Kunen approaches,

all based on the \completed program" idea, because their semantics did not classify many atoms as false,

although they were \obviously" false. As a further e�ect, other atoms were not classi�ed as true. Speci�cally,

when a set of recursive rules, such those of Example 4.2, were applied until a �xpoint was reached, atoms

not derived in the process were not necessarily forced to be false. In the three-valued systems, they might

be merely unde�ned. In the Clark system, they might be true in some models of the completed program,

and false in others.
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Example 4.3: Suppose, building upon Example 4.1 and Example 4.2, we desire rules to �nd those managers

who have no subordinate in their hierarchy with a higher salary than their own. Let bigMgr be the IDB

predicate for this property.

bigMgr(Mgr) :- emp(Mgr; MgrSal);:higherSubSal(Mgr; MgrSal): (15)

higherSubSal(Mgr;MgrSal) :- subord(Mgr; Sub; SubSal); SubSal > MgrSal: (16)

Looking at the facts given and derived in the previous examples, it seems that bigMgr(oleg) should be true,

as the only other employee in the shoe department is alex, whose salary is 8. But surprisingly, there is a two-

valued model of the completed program in which subord(oleg, oleg, 12) is true, higherSubSal(oleg,

12) follows from that, and bigMgr(oleg) is false.

In the minimal three-valued model, these atoms evaluate to ?, because they are not forced to be false

by the \only if" rules, and ? < false in the truth-value order. Therefore, bigMgr(oleg) is not true in any

versions of the program-completion semantics.

It might seem that this behavior is an anomaly because we de�ned employees to be subordinates of

themselves, making the relation re
exive. However, even if Rule 13 were modi�ed to require E to be di�erent

from Mgr, a related problem would occur if the EDB contained the additional fact: manages(alex; shoe):

Then there is a two-valued model of the completed program in which the four facts:

subord(alex; alex; 12) subord(alex; oleg; 12) subord(oleg; alex; 12) subord(oleg; oleg; 12)

are all true.

The problem generally is that cycles of dependencies do not \fail �nitely" in procedural terms. Prolog

would go into in�nite recursion in the previous example, given the goal subord(oleg, oleg, 12). The

program-completion semantics is consistent with this behavior; all versions say that this atom is neither

true nor false. One goal of newer declarative semantics is to provide a framework for a more powerful logic

programming language, rather than just characterize Prolog as it is.

The strati�ed semantics was the �rst to address the problem of cycles of positive dependencies [ABW88,

VG89]. The strati�ed semantics is de�ned only for programs in which no cycles of rule dependencies involve

negation. This is a syntactic condition.

De�nition 4.3: Predicate symbol p is said to depend immediately on predicate symbol q if q appears in

the body of some rule for p. The immediate dependency is negative if q appears in a negative subgoal. The

dependency relation is the transitive closure of the immediate dependency relation.

A program is said to be strati�ed if the only negative dependencies are between predicate symbols in

di�erent strongly connected components (SCCs) of the dependency relation.

When a program is strati�ed, the least �xpoints of the logical consequence operator in each SCC can be

computed \bottom up", beginning with those whose rules have no negative subgoals. All atoms not in the

least �xpoint of their SCC are declared false, those in the least �xpoints are true. Since a negative subgoal
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prodn(e, [t], p01).

prodn(e, [e, +, t], p02).

prodn(t, [s, a], p03).

prodn(t, [t, t], p04).

prodn(a, [b, p], p05).

prodn(a, [p, b], p06).

prodn(b, [], p07).

prodn(b, [u, t, b], p08).

prodn(p, [p, c, t], p09).

prodn(p, [], p10).

terminal(c). % caret

terminal(s). % string

terminal(u). % underscore

nonterm(e).

nonterm(t).

nonterm(a).

nonterm(p).

nonterm(b).

start(e).

Figure 3: A sample set of production rules for a context-free grammar, together with \facts" to specify

terminal, nonterminal, and start symbols. Interpret \a" as \annotation", \b" as \subscripts", and \p" as

\superscripts". Comments are introduced by a percent sign.

is only used after the least �xpoint of its SCC has been computed, its truth value is known. This ideal

computation de�nes the strati�ed model .

The program of Examples 4.2 and 4.3 is strati�ed. For its strati�ed model, the true subord facts are

computed completely �rst, as shown in Example 4.2. Those not found to be true are declared false, including

subord(oleg, oleg, 12). Then the true facts of higherSubSal are computed, and the rest declared false,

including higherSubSal(oleg, 10). Finally, the latter false fact enables bigMgr(oleg) to be derived.

It is straightforward to see that the alternating �xpoint computation on a strati�ed program produces the

strati�ed model. Thus the well-founded semantics is a generalization of the strati�ed semantics to include

unstrati�ed programs. In the next section we shall look at unstrati�ed programs in more detail.

4.4 Unstrati�ed Negative Subgoals

To motivate the choice of the well-founded semantics for normal logic programs, let us examine a typical

application in which unstrati�ed negative subgoals arise. In this application we formulate rules to analyze a

context free grammar (CFG), in preparation for generating a parse table for it. (See Aho, Sethi and Ullman

for a review of parsing concepts and terminology [ASU85].) We assume the production rules of the CFG are

given as a set of atomic formulas on the ternary symbol prodn. A rule of the form

prodn(A; [B1; : : : ; Bk]; PN): k � 0 (17)

represents the production rule: A! B1 � � �Bk. The third argument, PN, is a label or name for the production

rule.

Recall that A is a nonterminal symbol, while Bi are terminal or nonterminal symbols. To complete the

speci�cation of the CFG, additional predicate symbols are used to specify the start symbol (start), the

nonterminal symbols (nonterm), and the terminal symbols (terminal). A sample expression grammar is

shown in Figure 3. However, the grammar itself should be thought of as the IDB, i.e., input to the program,

rather than part of it.
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The concept of nullable symbols (also called erasable symbols) arises in the study of both formal and

natural languages, typically in connection with optional words or phrases. One task of grammar analysis

is to determine certain relationships, called first and follow, between nonterminal symbols and terminal

symbols [ASU85], and their de�nitions involve nullable symbols.

Example 4.4: A nonterminal symbol is nullable if it can possibly derive the empty string (denoted as �)

in some �nite number of steps. In words, we can say that symbol V is nullable if there is some production

rule, V! B1 � � �Bk, k � 0, such that all of the symbols B1; : : : ; Bk are nullable. We shall call this a nullable

production rule. (See Eq. 19.)

The nullable production rule property, denoted as nullProdn, is most naturally expressed with a universal

quanti�er in the rule body:

nullProdn(V; Bs; PN) :- prodn(V; Bs; PN) ^

8W (member(W; Bs)! nullable(W )) (18)

As in Example 4.1, a series of source transformations produces normal rules, introducing an intermediate

predicate symbol, extProdn. The rule for nullable is also included.

nullable(V) :- nullProdn(V; Bs; PN) (19)

nullProdn(V; Bs; PN) :- prodn(V; Bs; PN);:extProdn(Bs) (20)

extProdn(Bs) :- member(W; Bs);:nullable(W) (21)

The rules for member were given in Rules (1{2).

With the production rules of Figure 3, we would expect \b", \p", and \a" to be nullable. We expect \t"

and \e" to be not nullable.

Notice that nullable, nullProdn, and extProdn form an SCC and have negative dependencies. There-

fore the system is not strati�ed.

Next, let us trace the computation of Prolog for the query subgoal nullable(a). As sketched in Figure 4,

nullable(b) does succeed, but Prolog's attempt to derive nullable(p) gets stuck in an in�nite recursion,

using p09, because of its depth �rst search strategy. However, the atoms nullable(p) and nullable(a), as

well as nullable(b), evaluate to true in the Fitting semantics and Kunen semantics. Thus these semantics

capture the idea of �nite failure under a robust search strategy, such as breadth �rst search, which is too

ine�cient for practical use in general.

In the construction of the three-valued minimum model, an atom that fails �nitely under some search

strategy will eventually have no potentially usable rules, as de�ned in De�nition 4.2. At this point it is

declared to be false (or its dual is true). Notation from De�nition 4.2 is used below.

In this example, it is easy to see that member(W, []) has no potentially usable rules for any W , so its

dual appears in J0, and it is false in I1. Then, extProdn([]) has no potentially usable rules, and is false

in I2. The atoms nullProdn(p, [], p10) and nullable(p) enter the model at I3 and I4, respectively.

Similarly, nullable(b) is in I4. Now, extProdn([b, p]) has no potentially usable rules with respect to I4,
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:- nullable(a)?

:- nullProdn(a; Bs; PN)?

:- prodn(a; [b; p]; p05); : extProdn([b; p])?

:- : extProdn([b; p])?

:- extProdn([b; p])?

:- member(W; [b; p]);:nullable(W)?

:- : nullable(b)?

:- nullable(b)?

:- nullProdn(b; Bs; PN)?

:- prodn(b; []; p07); :extProdn([])?

:- : extProdn([])?

:- extProdn([])?

:- member(W; []);:nullable(W)?

:- false:

:- true:

:- false

(backtrack )

:- member(W; [p]);:nullable(W)?

:- : nullable(p)?

:- nullable(p)?

:- nullProdn(p; Bs; PN)?

:- prodn(p; [p; c; t]; p09); : extProdn([p; c; t])?

:- : extProdn([p; c;t])?

:- extProdn([p; c; t])?

:- member(W; [p; c; t]);:nullable(W)?

:- : nullable(p)?

: : :

Figure 4: Prolog cannot derive nullable(a) because the subgoal nullable(p) causes in�nite recursion.

However, a breadth-�rst strategy would permit nullable(p) to succeed and extProdn([b, p]) to fail

�nitely, after which nullable(a) succeeds.

so its dual enters J4 and I5, nullProdn(a, [b, p], p05) enters at I6, and nullable(a) enters the model

at I7.

As a general principle, when rules contain no positive dependency cycles, as in Example 4.4, the well-

founded semantics, Fitting semantics, and Kunen semantics all agree. The exceptions to this general principle

seem to consist of arti�cially composed programs, whose purpose is just to demonstrate di�erences among

the semantics [VGS93].

In the alternating �xpoint construction (Section 3) the analog of �nite failure is that the atom fails to be

derived even in the overestimate. Intuitively, if an atom on an original predicate symbol has no potentially
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usable rules, as de�ned in De�nition 4.2, it will not appear in the overestimate being constructed, and so its

dual will appear in the next underestimate.

The di�erence from the Fitting and Kunen operators arises when there are unsupported cycles of positive

dependencies (even p :- p). In this case the atoms in the unsupported cycle are never declared false

because they do have potentially usable rules. However, they do not get derived in the overestimate of the

alternating �xpoint construction, so their duals do appear in the subsequent underestimates. This was seen

in Example 4.3.

For this example, member(W, []) does not appear in the overestimate I1, for any W , so extProdn([])

is also absent from I1, and its dual appears in the underestimate I2. (The sets I� are now de�ned as in

Section 3.) However, extProdn([b, p]) is derived in the overestimate I1 because the duals of nullable(b)

and nullable(p) are present.

Now, nullProdn(p, [], p10) and nullable(p) are derivable in I2. Similarly, nullable(b) is in I2.

Therefore, their duals are no longer present in the next overestimate I3, so extProdn([b, p]) cannot be

derived in that overestimate. It follows that the dual of extProdn([b, p]) appears in the underestimate

I4, enabling nullable(a) to be derived.

The status of nullable(t) and nullable(e) in all three semantics is \unde�ned". Intuitively, the

symbol t should not be nullable, based on the production rules of Figure 3, but p04 prevents all of the

�xpoint constructions seen so far from making progress. We shall return to this issue in Section 6.

5 Implementations and Applications

This section reviews some of the implementation e�orts for the well-founded semantics, and mentions a few

applications. There have been two main implementation approaches, one for function-free programs and

one for more general programs. For function-free programs, the idea is to imitate the construction of the

alternating �xpoint, but restrict the computation somehow to \relevant" atoms for a given query; this is

essentially a \bottom-up" computation, which relies on the �niteness of the Herbrand basis to guarantee

termination. For general programs, the idea is to strengthen the Prolog search mechanism, while working

back from the query to the subgoals; this is essentially a \top-down" computation. The top-down method

maintains a �nite amount of information at each step, but may not terminate if the Herbrand basis is in�nite.

5.1 Bottom-Up Methods for Function-Free Programs

Bottom-up approaches have been based on \magic sets" [BMSU86]. The idea of \magic sets" is to add

a supplementary set of predicate symbols, called \magic predicates", to the program, whose purpose is to

restrict the computation to relevant facts for a given query. The degree to which this is successful varies with

the program rules and with the EDB. Original rules are modi�ed to include additional \magic" subgoals,

and rules for the \magic predicates" are added to the program. Implementations of the methods of this

section have been reported only for function-free programs, and only at a \prototype" level.

\Magic predicates" interact recursively with original predicates. Ross observed that this interaction
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could change the well-founded model of the transformed program [Ros90]. He described a modi�cation that

worked correctly for modularly strati�ed programs [Ros90]. The class of modularly strati�ed programs is a

generalization of strati�ed programs that requires additional constraints on the EDB to be assumed.

Kemp, Srivastava and Stuckey described an application of the magic set idea to the alternating �xpoint

construction [KSS95]. They de�ned a rule to be allowed if each variable of the rule appears in some positive

subgoal. They proved correctness for all allowed programs [KSS95].

Morishita described a novel way to combine the generation and use of \magic tuples" with the alternating

�xpoint construction [Mor96]. The main idea is to generate \magic tuples" normally when computing an

overestimate, then use that same set of \magic tuples" for computing the next underestimate. The sequence

of underestimates no longer increases monotonically, so correctness is not trivial. He de�ned a rule to be

safe if each variable that appears in a negative subgoal also appears in a positive subgoal, or in the head of

the rule. He proved correctness for safe programs.

5.2 Top-Down Methods

An early top-down approach restricted proof searches to \tight" derivations [VG89]. It was designed to

capture strati�ed negation (Section 4.3), but the method functioned on unstrati�ed programs, as well. The

idea of tight derivations underlies the newer top-down methods, and goes back to the Model Elimination

theorem-proving method [Lov78]. The idea is simply that a shortest derivation will not contain any subgoal

that is identical to an ancestor of itself. A derivation that does not have any such subgoals is called tight .

Therefore, if such a subgoal is created, that branch of the search can be abandoned as failing. The more

common occurrence is that the subgoal is not syntactically identical to an ancestor, but is a variant or a

more speci�c subgoal. In this case, the search can be postponed, but not failed. Solutions discovered later

at the ancestor may need to be \recycled" into the postponed node. However, no implementation of tight

derivations was reported.

Researchers at Stony Brook, led by David S. Warren, reported on a series of logic-programming im-

plementations, culminating in a system named XSB [CW93, CSW95, CW96b, SSW96]. This system is

available via ftp and the internet, and appears to be the only \production quality" implementation of the

well-founded semantics. It is based on a conceptual resolution strategy called SLG , The twin themes are

tabling and delays. We will illustrate these ideas, but there are many technical details, for which the reader

should consult the cited papers.

Consider again Rules 19{21 for the nullable symbol property, the example grammar (Figure 3), and the

unsuccessful attempt of Prolog to derive nullable(a) (Figure 4).

Suppose SLG is given the query nullable(X). It creates a table entry to record that this goal is

active, then looks for rules with which to unify it, and �nds Rule 19. Now it creates an entry noting that

nullProdn(X, Bs, PN) is active, and locates Rule 20 with which it uni�es. Then it creates entries for

prodn(X, Bs, PN) and extProdn(Bs) with a notation that the latter is negative.

If the prodn facts in Figure 3 are processed in order, we will go through a number of steps involving goals

nullable(e) and nullable(t), which terminate without �nding any solutions, and are omitted.
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We pick up the computation when the fact prodn(a, [b, p], p05) is processed. This provides a

solution for the active goal prodn(X, Bs, PN). This solution involves a restricting uni�cation, so a new,

more speci�c, table entry is created for extProdn([b, p]), which is the remaining subgoal in the body of

Rule 20. Should this new subgoal succeed or fail, the substitution will be passed back to the more general

goal of which it is a special case.

Except for creating table entries, the SLG computation might proceed along the lines of Figure 4. How-

ever, whenever a new subgoal is encountered, the table is checked to see it is a variant of a goal that is

already active. If so, then that existing table entry is annotated to furnish any solutions to this point in

the derivation structure, and the derivation continues elsewhere. Also, when nullProdn(p, Bs, PN) is

activated, it is recognized as a special case of the already active nullProdn(X, Bs, PN). Therefore, when

the �rst solution of member(W, [p, c, t]) instantiates W to p, and the second nullable(p) goal occurs

(see the end of Figure 4), it is associated with the same table entry as the �rst occurrence of nullable(p),

some seven lines above. Clearly, some very precise bookkeeping is needed!

Having recognized that nullable(p) is already an active subgoal, the new subgoal is delayed . The

procedure looks for somewhere else to make progress, and �nds a di�erent solution for member(W, [p,

c, t]). The new solution instantiates W to c, which is a terminal symbol, and is easily found not to be

nullable. Now extProdn([p, c, t]) succeeds, and nullProdn(p, [p, c, t], p09) fails. However, its

parent subgoal, nullProdn(p, Bs, PN), does not fail yet, because there is another solution for prodn(p,

Bs, PN) that has not been processed, namely prodn(p, [], p10). Indeed, this leads to the success of

nullable(p), along lines similar to nullable(b). As the results are passed back, all attempts to derive

extProdn([b, p]) are found to have actually failed, not merely to have been delayed. Thus it reports

failure, and nullable(a) succeeds.

On the other hand, attempts to derive nullable(t) lead to delayed nodes, rather than failures. When

all attempts at progress are exhausted, the delayed nodes are inspected. If a strongly connected component

of positive dependencies is found, all nodes in this SCC are evaluated as false simultaneously, and the

computation resumes. However, in this example, each SCC involves some negative dependency, so all delayed

nodes are evaluated as \unde�ned".

Again, we need to emphasize that SLG is a complex system, and this illustration left out many details.

The papers need to be consulted to gain a thorough understanding.

5.3 Applications

The �rst report of an application that involved unstrati�ed negation, where the well-founded model was

needed, was a program to arbitrate simultaneous moves in the board game,Diplomacy [VG90]. This program

implemented the well-founded model for the speci�c rules it needed to evaluate.

With the availability of XSB as described in Section 5.2, it became feasible to develop applications

directly in the well-founded semantics. For most rules, such powerful machinery as XSB is not required.

However, many natural problems will have sections where strati�ed or unstrati�ed negation needs to be

handled correctly. Stony Brook researchers have reported a parser for the PTQ grammar [War95], program
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analysis tools [DRW96], and a model checker for software veri�cation [RRR+97].

Another kind of application is the support of a library, or toolkit, for other programs to use as needed. Van

Gelder described the use of the well-founded semantics to support aggregation in the presence of recursion

[VG93b]. Chen and Warren described a method to support the computation of stable models [CW96a].

6 Extensions of the Alternating Fixpoint

It is natural to consider the alternating �xpoint construction for more general classes of rules. This section

will mention two directions that have been explored.

Przymusinska and Przymusinski have proposed a stationary semantics for default logic [PP94]. The

main idea is that more general default formulas take the place of dual atoms (or negative literals) in the

alternating �xpoint construction. Przymusinski has investigated further extensions to include autoepistemic

logic, and disjunctive logic programs [Prz94, Prz95]. (Also, see elsewhere in this issue.)

Van Gelder de�ned alternating �xpoint logic as the same basic alternating �xpoint construction, but

applied to rules in which the rule body is any �rst-order formula [VG93a]. He gave an example to show that

the resulting semantics di�ered from the corresponding program with normal rules, with the point being that

some universally quanti�ed subformulas evaluate to false, but after transformation into normal rules, their

counterparts evaluate as unde�ned. However, he did not suggest any practical approaches to implementation

of this logic.

Chen has developed a method to implement a substantial class of programs in alternating �xpoint logic

[Che95]. The method is an extension of the top-down SLG framework (Section 5.2). The key idea is the

evaluation of universally quanti�ed implicational subgoals.

Example 6.1: Let us illustrate Chen's method for evaluating the \ideal" rule for nullProdn (Rule 18),

which is restated here:

nullProdn(V; Bs; PN) :- prodn(V; Bs; PN) ^

8W (member(W; Bs)! nullable(W )) (22)

When the implicational subformula is to be evaluated, Bs will be instantiated to a speci�c list. For the EDB

of Figure 3, we will at some point encounter the goal nullProdn(t, [t, t], p04), as a result of using the

instantiated rule,

nullable(t) :- nullProdn(t; [t; t]; p04) (23)

Recall that the queries nullable(t) and nullable(e) evaluated as \unde�ned" in the well-founded seman-

tics, although it seems intuitively that they should be \false".

Clearly, the implication in the rule body only needs to be evaluated for those values of W that make the

antecedant true. If those values comprise a �nite set (or multi-set), fW1; : : : ; Wkg, then Chen's innovation is

to create an \equivalent" rule in which the universally quanti�ed subformula (with quanti�ed variable W )

is replaced by the k-way conjunction of the consequents, each one having W replaced by a di�erent Wi.
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In this example, the multi-set of solutions is simply ft; tg (the solutions of member(W, [t, t])), so

the created rule is:

nullProdn(t; [t; t]; p04) :- prodn(t; [t; t]; p04);

nullable(t); nullable(t): (24)

What has been accomplished is that nullProdn(t, [t, t], p04) now depends positively on nullable(t),

instead of through two levels of negation. Rules 23{24 de�ne a positive cycle, in which both subgoals get

delayed by SLG. When the delayed cycle was resolved in the normal program, it involved negation, so

all subgoals were evaluated as unde�ned. After the rule transformation, there is no negation, so they are

evaluated as false. Thus the queries nullable(t) and nullable(e) evaluate as \false", which is correct for

alternating �xpoint logic.

The situation becomes much more complicated if the antecedant is recursive with the head of the rule.

7 Conclusion

We have described the well-founded semantics for normal logic programs in terms of the alternating �x-

point construction. We have shown, through examples, its relationship to earlier proposals for semantics of

negation. We have sketched some of the ideas that have been used to implement this semantics, and have

indicated some of its applications. Finally, we mentioned some extensions, based on the alternating �xpoint

idea.

This paper is by no means a survey of all signi�cant work related to the well-founded semantics. There

are hundreds of paper on various aspects of the subject. We have selected a few topics to give the reader a

taste, with emphasis on those directions that look like being of practical use.
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