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Abstract

The classical univariate sign and signed rank tests for location have been extended over the years
to the multivariate setting, including recent robust rotation invariant “spatial” versions. Here
we introduce a broad class of rotation invariant multivariate spatial generalized rank type test
statistics. For a given inference problem not restricted to location, the test statistics are linked
through Bahadur-Kiefer representations with spatial median estimators in appropriately matched
U-quantile location models. Under null and contiguous alternative hypotheses, related quadratic
form statistics have central and noncentral chi-square limit distributions. Robustness properties in
terms of breakdown points and influence functions of the associated estimators are quite favorable.
Illustrative applications cover location, multivariate dispersion, and multiple linear regression.
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1 Introduction

Two classical procedures for testing univariate location are the sign and signed rank statistics.
These are formally linked with the sample median and the Hodges-Lehmann location estimator
via Bahadur representations [1], [6], unifying the convergence theory for tests and estimators. For
general background on various extensions of these classical tests to the multivariate location setting,
see Hettmansperger and McKean (1998). Pertinent to the present paper are the robust and rotation
invariant “spatial” multivariate sign and signed rank tests introduced by Möttönen and Oja (1995)
and further studied in [11]. For these test statistics, the respective associated multivariate location
estimators happen to be the “spatial” multivariate median introduced independently by Dudley and
Koltchinskii (1992) and Chaudhuri (1996) and the spatial multivariate Hodges-Lehmann estimator
(spatial median of pairwise averages) introduced by Chaudhuri (1992). The latter paper in fact
treats a family of spatial multivariate Hodges-Lehmann location estimators defined as the spatial
median of m-wise averages, for each choice of m = 1, 2, . . . Recently, Möttönen, Oja and Serfling
(2004) investigated the series of multivariate spatial signed rank methods linked with this family
of estimators and showed that as a group they offer attractive tradeoffs between robustness and
efficiency, competing favorably with the classical Hotelling T 2 test.

Here we introduce a broad class of rotation invariant multivariate spatial generalized rank test
statistics, encompassing not only the above-mentioned tests for multivariate location problems
but also diverse other settings, as noted below. These statistics are given by sample multivariate
centered rank functions which are defined as inverses of sample multivariate spatial U-quantile
functions, which recently have been formulated and studied by Zhou and Serfling (2007), who
establish a Bahadur-Kiefer representation for multivariate spatial U-quantiles in which the leading
terms are the centered rank functions. The relevant background on spatial U-quantiles that we
need here is provided in Section 2.

In Section 3, for convenient quadratic form statistics associated with these generalized rank
type test statistics, we give limiting central and noncentral chi-square distributions under null and
alternative hypotheses. Robustness properties are explored in Section 4, in terms of breakdown
and influence function properties of the associated multivariate location estimators. It is seen that
the favorable robustness of sample spatial quantiles carries over to spatial U-quantiles and their
associated generalized rank test statistics.

As illustrative applications, we treat location, multiple regression, and multivariate dispersion
problems in Section 5. For example, we define a test procedure associated with the extension in [17]
of the Theil-Sen nonparametric simple linear regression slope estimator to the setting of multiple
linear regression.

In general, starting with a given testing problem, which itself need not be a location problem,
we obtain tests for the original problem as the centered rank functions of spatial median estimators
in a related U-quantile location model.
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2 Spatial U-quantiles and corresponding Bahadur-Kiefer repre-

sentations

Following Chaudhuri (1996), the spatial quantile function corresponding to a cdf F on Rd is defined
over u in the open unit ball Bd−1 as the d-vector θ = QF (u) which minimizes E{Φ(u, X − θ) −
Φ(u, X)}, with Φ(u, t) = ‖t‖ + 〈u, t〉, ‖ ·‖ the usual Euclidean norm, and 〈·, ·〉 the usual Euclidean
inner product. Here QF (0) is the well-known spatial median. Equivalently, in terms of the spatial
sign function (or unit vector function),

S(x) =
x

‖x‖ , x ∈ Rd,

the quantile QF (u) at u may be represented as the solution x of

E{S(x − X)} = u. (1)

Thus the quantile function QF (·) has an inverse, given at each point x ∈ Rd by the point u in
Bd−1 for which x has a quantile interpretation as QF (u), that is, by Q−1

F (x) = E{S(x − X)},
the expected direction to x from a random point X ∼ F . The function Q−1

F (x) is also known as
the spatial centered rank function [9]. Thus the spatial quantile function and spatial centered rank
function are simply inverses of each other.

We now introduce spatial U-quantiles following [17], where detailed treatment as well as back-
ground on univariate U-quantiles may be found. Consider i.i.d. observations {X1, . . . , Xn} from a
probability distribution P on any measurable space (X,A) and a vector-valued kernel h(x1, . . . , xm)
mapping Xm into Rd. (The case described above corresponds to X = Rd, m = 1, and h(x) = x.)
Let h(X1, . . . , Xm) have cdf H on Rd. By substituting a random kernel evaluation for X in (1), i.e.,
in terms of Y ∼ H and the sign function S(·) on Rd, the spatial U-quantile function corresponding
to H is defined as the solution y = QH(u) of the equation

E{S(y − Y )} = u, (2)

and the corresponding inverse function is Q−1
H (y) = E{S(y−Y )}, which thus is the spatial centered

rank function corresponding to H . Let H satisfy

(i) H has a density bounded on bounded subsets of Rd.
(ii) If d ≥ 2, H is not concentrated on a line.

Then for any u the solution QH(u) to (2) always exists and is unique.
Associated with H we define a natural empirical cdf Hn by placing equal probability mass on the

n(m) = n(n−1) · · ·(n−m+1) kernel evaluations h(Xi1 , . . . , Xim) taken over all m-tuples (i1, . . . , im)
of distinct indices chosen from {1, . . . , n}. (For h symmetric under permutation of its arguments,
it suffices to define Hn by placing equal probability mass simply on the

(n
m

)
kernel evaluations

h(Xi1 , . . . , Xim) taken over all m-sets {i1, . . . , im} of distinct indices chosen from {1, . . . , n}. The
kernels in the examples of Section 5 are of this type.) The corresponding sample spatial centered
rank function is the vector-valued U-statistic

Q−1
Hn

(y) = n−1
(m)

∑
S(y − h(Xi1 , . . . , Xim)),
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and, accordingly, the sample analogue of QH(u) is given by the solution y = QHn
(u) of the equation

Q−1
Hn

(y) = u. Although the sample spatial U-quantile function QHn
(u) is biased for QH(u) (just as

univariate quantiles are biased), the corresponding sample spatial centered rank function is indeed
unbiased (as in the univariate case):

E{Q−1
Hn

(y)} = E{S(y − h(Xi1 , . . . , Xim))} = E{S(y − Y )} = Q−1
H (y). (3)

In order now to state the relevant Bahadur-Kiefer representation for the sample spatial U-
quantile function, we note that for the function ‖y‖ the gradient or first order derivative is given
by the sign function S(y), and the d × d Hessian or second order derivative is given by

D2(y) =
{

1
‖y‖

[
Id −

1
‖y‖2

yy′
]}

.

Under (i) the matrix

D1(y) = E

{
∂

∂y
S(y − Y )

}
= E{D2(y − h(X1, . . . , Xm))} = E{D2(y − Y )}

is positive definite. Let us also assume

(iii) Q−1
H (y) is continuously differentiable and D1(y) is locally Lipschitz for y in an

open set V in Rd.

Then [17, Theorem 1.1] the sample spatial U-quantile function almost surely satisfies

QHn
(u) − QH(u) (4)

= −[D1(QH(u))]−1 n−1
(m)

∑
[S(QH(u) − h(Xi1 , . . . , Xim))− u] + Rn(u),

with Rn(u) uniformly negligible (e.g., op(n−1/2)) over u in compact K ⊂ Q−1
H (V) ⊂ Bd−1.

3 Generalized Rank Type Test Statistics

We now formulate our generalized rank type test statistics and treat convergence properties. A
central role is played by the Bahadur-Kiefer representation (4).

3.1 Formulation

As in Section 2, our setting is that of a sample of i.i.d. X-valued observations {X1, . . . , Xn}, and
a vector-valued kernel h(x1, . . . , xm) mapping Xm into Rd. Note that the spatial median of H is
given by QH(u) with u = 0, i.e., QH(0). We shall denote this parameter by θ. Our goal is to test
a hypothesis of form H0 : θ = θ0.

Considering (4) with u = 0, the left hand side thus represents the error in estimating the
unknown location parameter θ by QHn

(0), the spatial median of Hn. Hence a natural test of H0
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is given by comparing QHn
(0) with θ0. Via the right hand side of (4), we equivalently may use

(ignoring a constant factor and a minus sign) the test statistic

W n = n−1
(m)

∑
S(θ0 − h(Xi1, . . . , Xim)), (5)

which we note is simply the relevant sample spatial centered rank function evaluated at θ0, i.e.,
W n = Q−1

Hn
(θ0). Indeed, this fact in itself provides a natural motivation for W n as a test statistic,

since under H0 we have Q−1
H (θ0) = 0 and via (3) we have E{Wn} = Q−1

H (θ0), so that H0 may
be tested by measuring the closeness of the sample analogue Q−1

Hn
(θ0) to 0. Thus, while the

Bahadur-Kiefer representation is a powerful illuminating tool, we do not need all of its underlying
assumptions in order to arrive at W n as a natural test procedure. In particular, the regularity
assumption (iii) can be somewhat relaxed. Another attractive feature of W n is that it is simply a
vector-valued U-statistic in structure.

In what follows, we study the statistic W n in the context of a U-quantile location model, for
which purpose we introduce a further assumption on H :

(iv) H(y) = H0(y − θ), with H0 centrally symmetric about 0,

i.e., for Y 0 ∼ H0, Y 0
d= −Y 0. Hence H0 has spatial median 0 and H spatial median θ [15]. Also,

in order to avoid cumbersome notation and burdensome details of exposition, we now assume that
the kernel h satisfies

(v) h is invariant under permutations of its arguments,

which is satisfied in typical examples. Under (v), the U-statistic W n may be written as

W n =
(

n

m

)−1 ∑
S(θ0 − h(Xi1, . . . , Xim)), (6)

which expression we shall adopt henceforth.

3.2 Null Hypothesis Results

Via standard results for U-statistics, W n is found to be asymptotically d-variate normal and a
suitable quadratic form asymptotically chi-square in distribution. In order to state the relevant
parameters, we develop some details involving U-statistic projections. Unless otherwise indicated,
expectations are in the U-quantile model corresponding to H with spatial median θ.

Define
K(x, y) = EP {S(y − h(x, X1, . . . , Xm−1))}

and note that E{K(X, y)} = E{S(y − Y )} = Q−1
H (y) (= 0 when y = θ). In the θ model, the

projection (e.g., [13, Section 5.3.1]) of the U-statistic W n is given by

Ŵ n =
n∑

i=1

E{Wn|Xi} − (n − 1)E{S(θ0 − h(Xi1, . . . , Xim))}
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and we obtain

Ŵ n − Q−1
H (θ0) =

m

n

n∑

i=1

[K(Xi, θ0) − Q−1
H (θ0)]. (7)

By [13, Section 5.3.4] we readily establish

√
n‖Wn − Ŵ n‖

P−→ 0. (8)

The asymptotic distribution theory of Wn is thus equivalent to that of Ŵ n. We will use the matrix

Bθ = Cov(K(X, θ0))
(
= Eθ0

{K(X, θ0)K(X, θ0)′} under H0

)
,

which represents a generalized rank covariance matrix as for a special case in [10]. We thus have

Lemma 1 √
n[Ŵn − Q−1

H (θ0)]
d−→ Nd(0; m2Bθ), as n → ∞. (9)

In particular, under H0, (7) becomes Wn = m
n

∑n
i=1 K(Xi, θ0) and (9) becomes

√
n Ŵ n

d−→ Nd(0; m2Bθ0
).

By standard transformation results, this immediately yields

Theorem 2 Under H0, the limiting distribution of

Tn = n m−2 W ′
nB−1

θ0
W n

is chi-square with d degrees of freedom.

A consistent estimator of K(x, θ0) is given by

K̂(x, θ0) =
(

n

m − 1

)−1 ∑
S(θ0 − h(x, Xi1, . . . , Xim−1)),

whence Bθ0
may be consistently estimated under H0 by

B̂θ0
= n−1

n∑

i=1

K̂(Xi, θ0)K̂(Xi, θ0)′.

Theorem 2 remains valid with substitution of this estimator for Bθ0
in Tn.
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3.3 Alternative Hypotheses and Asymptotic Relative Efficiencies

Suppressing extensive details, we state convergence results for W n under a sequence of contiguous
alternative hypotheses H(n) represented by the parameter sequence

θn = θ0 +
δ√
n

.

Under appropriate Pitman regularity conditions [7] the following result holds.

Theorem 3 Under the sequence of alternatives H(n), the limiting distribution of Tn is noncentral
chi-square with d degrees of freedom and noncentrality parameter

δ′ D1(θ0)′ B−1

θ0
D1(θ0) δ.

Theorem 3 remains valid with B̂θ0
substituted for Bθ0

in Tn. If another test statistic V n satisfies
the convergence result of Theorem 3 with noncentrality parameter

δ′ C δ,

then the Pitman asymptotic relative efficiency of W n with respect to V n is the ratio of the respec-
tive noncentrality parameters,

ARE =
δ′ D1(θ0)′ B−1

θ0
D1(θ0) δ

δ′ C δ
.

While this ARE depends upon the direction of the alternatives from θ0, the maximum and minimum
eigenvalues of the matrix D1(θ0)′ B−1

θ0
D1(θ0) C−1 provide useful bounded upper and lower bounds.

4 Generalized Location Estimators and Robustness Properties

Let us now consider estimation of the true unknown value of θ. Related to the test statistic W n

viewed as a function of θ0 is the rotation equivariant location estimator θ̂n = QHn
(0), which is the

sample analogue of the spatial median QH(0) of H and also is the solution of the equation

W n(θ0) = 0.

Using the Bahadur-Kiefer representation (4) with u = 0 and Lemma 1 with θ0 = θ, we obtain

Theorem 4 √
n(θ̂n − θ) d−→ N(0, m2D1(θ)−1BθD1(θ)−1).

The generalized variance | det D1(θ)−1BθD1(θ)−1| plays a role in asymptotic relative efficiency
comparisons with competing estimators, as described in [7] and [13].
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One popular measure of the robustness is the influence function. It is straightfoward to show
that the functional corresponding to θ̂n has IF given by the projection of the leading term in the
Bahadur-Kiefer representation (4):

IF(θ̂n, θ, x) = D1(θ)−1K(x, θ), x ∈ X.

Since ‖K(x, θ)‖ ≤ 1, this IF is bounded. Another important measure of the robustness is the
breakdown point. It is easily derived (see [12, p. 147] for discussion) that

BP(θ̂n) = 1 − (1/2)1/m. (10)

5 Applications

For different choices of kernel h(x1, . . . , xm), the U-quantile approach yields competitive rank type
test statistics with robust associated estimators. The scope of application of this approach, which
defines the target parameter in the model of interest as a location parameter in a related U-quantile
model, is quite broad. Here we examine three representative examples, covering not only location
but also multiple regression and multivariate dispersion.

Example A Generalized Hodges-Lehmann location inference. Let X = Rd and take

h(x1, . . . , xm) =
x1 + · · ·+ xm

m
,

in which case W n takes the form

W n =
(

n

m

)−1 ∑
S(θ0 − Xi1 − · · · − Xim),

which is equivalent to the generalized spatial signed-rank test statistic of [10] (for m = 1 and 2
the spatial sign and signed rank test statistics, respectively, of [9]). The corresponding generalized
Hodges-Lehmann location estimators

θ̂(m)
n = spatial median

{
X i1 + · · ·+ X im

m

}

for m ≥ 1 are studied by Chaudhuri (1992). For F on Rd centrally symmetric about θ, the cdf H

corresponding to h is also centrally symmetric about θ = QF (0) = QH(0). The same holds true,
more generally, for the kernel

hα(x1, . . . , xm) =
m∑

i=1

αi xi,

with α = (α1, . . . , αm)′ satisfying
∑m

i=1 αi = 1 but otherwise unrestricted (although this kernel,
however, is not symmetric in its arguments). Thus all of these test statistics and estimators for
differing m and α are competitors for inference about the same location parameter. The univariate
case of hα was introduced for m = 2 by Maritz, Wu and Staudte (1977) and treated for general m
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by Choudhury and Serfling (1988). �
Example B Nonparametric inference on multiple regression slope coefficients. Following [17],
where detailed discussion may be found, consider the multiple linear regression model Y = α+β ′Z+
ε, where β = (β1, . . . , βp)′ and Z = (Z1, . . . , Zp)′, with i.i.d. observations (Zi, Yi, εi), 1 ≤ i ≤ n,
the errors {εi} being independent of the random regressors {Zi}. Eliminate the parameter α by
reducing the data to the

(
n
2

)
differences

Yi − Yj = (Zi − Zj)′β + εi − εj , 1 ≤ i < j ≤ n.

Let us denote the
(
n
2

)
pairs (i, j) by K. For each set K of p pairs {(i1, j1), . . . , (ip, jp)} from K with

all indices {i1, j1, . . . , ip, jp} distinct, let Y (K), Z(K), and ε(K), respectively, denote the p-vector of
differences Yim − Yjm , the p × p matrix of differences Zim − Zjm , and the p-vector of differences
εim − εjm , for m = 1, . . . , p. Thus

Y (K) = Z(K)
′β + ε(K) (11)

for each such K. We now define a relevant kernel as the least squares estimate of β based on
equation (11). That is, for K = {(i1, j1), . . . , (ip, jp)},

h((zi1 , yi1), (zj1 , yj1), . . . , (zip , yip), (zjp , yjp)) = (z(K)
′z(K))

−1z(K)
′y(K). (12)

By distinctness of the indices in K, each εim − εjm is a difference of independent and identically
distributed observations and hence is symmetric about 0, and also the components of ε(K) are
independent. It easily follows that the vector ε(K) in the model (11) has joint distribution centrally
symmetric about the p-dimensional origin, i.e., ε(K) and −ε(K) are equal in distribution. This
yields, that the random kernel evaluations have cdf in Rp centrally symmetric about β, so that a
natural nonparametric and robust estimator is thus given by

β̂ = spatial median{h((Zi1 , Yi1), (Zj1 , Yj1), . . . , (Zip , Yip), (Zjp , Yjp))}, (13)

which for the simple linear regression case p = 1 reduces to the classical estimator of Theil (1950).
By (10), β̂ is robust with BP equal to 1 − (1/2)1/(p+1). Our Bahadur-Kiefer representation (4)
and equation (6) provide an associated rotation invariant test statistic Wn whose corresponding
quadratic form statistics have convenient limiting chi-square distributions. �
Example C Robust multivariate dispersion inference. For F on Rd, classical methods for inference
about dispersion are based on the covariance matrix Σ and its sample analogue

S =
1

n − 1

n∑

i=1

(X i − X)(Xi − X)′,

which we note may be expressed equivalently as a U-statistic,
(n
2

)−1 ∑
1≤i<j≤n h(X i, Xj), based

on the matrix-valued kernel h(x1, x1) = (x1 − x2)(x1 − x2)′/2, where x1 = (x11, x12)′, etc. While
unbiased for Σ, the estimator S is not robust. Following [17], where detailed discussion may
be found, we consider an alternative target parameter, Σ(2) = the spatial median of the cdf H of
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h(X1, X2), with robust sample analogue estimator QHn
(0). (The spatial median of the distribution

of a random matrix M is defined as the usual spatial median of the distribution of vec M .)
More generally, for integer m ≥ 2, consider the matrix-valued kernel

h(m)(x1, . . . , xm) =
1

m − 1

m∑

i=1

(xi − x)(xi − x)′ =
(

m

2

)−1 ∑

1≤i<j≤m

h(xi, xj),

with kernel h as above. The U-statistic estimator based on h(m) is unbiased for Σ but nonrobust.
The alternative target parameter Σ(m), however, defined as the spatial median of the cdf H(m)

of h(m)(X1, . . . , Xm), has a robust sample analogue estimator Q
H

(m)
n

(0), with BP equal to 1 −
(1/2)1/m independently of the dimension d.

For F a normal model in Rd, H
(m)
F is the Wishart(Σ, m− 1) distribution with mean Σ, and for

this distribution we have that the spatial median Σ(m) = cm Σ for some constant cm. Thus, for
each m = 2, 3, . . ., a robust estimator for the usual covariance matrix Σ is given by

Σ̃(m) = c−1
m Q

H
(m)
n

(0)

and related hypothesis testing may be carried out with the test statistic W (m) corresponding to
Q

H
(m)
n

(0). For the univariate case this estimation approach has been investigated in detail in [14].

In robust correlation inference based on Σ̃(m) the constant c−1
m conveniently becomes eliminated.

�
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