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Abstract 

 

This Project involves the study of the principles of Adaptive Noise Cancellation 

(ANC) and its Applications. Adaptive 
oise Cancellation is an alternative technique 

of estimating signals corrupted by additive noise or interference. Its advantage lies in 

that, with no apriori estimates of signal or noise, levels of noise rejection are 

attainable that would be difficult or impossible to achieve by other signal processing 

methods of removing noise. Its cost, inevitably, is that it needs two inputs - a primary 

input containing the corrupted signal and a reference input containing noise correlated 

in some unknown way with the primary noise. The reference input is adaptively 

filtered and subtracted from the primary input to obtain the signal estimate. Adaptive 

filtering before subtraction allows the treatment of inputs that are deterministic or 

stochastic, stationary or time-variable.  

 

The effect of uncorrelated noises in primary and reference inputs, and presence of 

signal components in the reference input on the ANC performance is investigated. It 

is shown that in the absence of uncorrelated noises and when the reference is free of 

signal, noise in the primary input can be essentially eliminated without signal 

distortion. A configuration of the adaptive noise canceller that does not require a 

reference input and is very useful many applications is also presented. 

  

Various applications of the ANC are studied including an in depth quantitative 

analysis of its use in canceling sinusoidal interferences as a notch filter, for bias or 

low-frequency drift removal and as Adaptive line enhancer. Other applications dealt 

qualitatively are use of ANC without a reference input for canceling periodic 

interference, adaptive self-tuning filter, antenna sidelobe interference canceling, 

cancellation of noise in speech signals, etc. Computer simulations for all cases are 

carried out using Matlab software and experimental results are presented that illustrate 

the usefulness of Adaptive Noise Canceling Technique.  

 
 

 

 

 



I. Introduction 
 

The usual method of estimating a signal corrupted by additive noise is to pass it 

through a filter that tends to suppress the noise while leaving the signal relatively 

unchanged i.e. direct filtering.  

 

                                 s + n      Filter     ŝ  

 

The design of such filters is the domain of optimal filtering, which originated with the 

pioneering work of Wiener and was extended and enhanced by Kalman, Bucy and 

others. 

 

Filters used for direct filtering can be either Fixed or Adaptive.  

1. Fixed filters - The design of fixed filters requires a priori knowledge of both 

the signal and the noise, i.e. if we know the signal and noise beforehand, we 

can design a filter that passes frequencies contained in the signal and rejects 

the frequency band occupied by the noise.  

2. Adaptive filters - Adaptive filters, on the other hand, have the ability to adjust 

their impulse response to filter out the correlated signal in the input. They 

require little or no a priori knowledge of the signal and noise characteristics. 

(If the signal is narrowband and noise broadband, which is usually the case, or 

vice versa, no a priori information is needed; otherwise they require a signal 

(desired response) that is correlated in some sense to the signal to be 

estimated.) Moreover adaptive filters have the capability of adaptively 

tracking the signal under non-stationary conditions. 

 

 

Noise Cancellation is a variation of optimal filtering that involves producing an 

estimate of the noise by filtering the reference input and then subtracting this noise 

estimate from the primary input containing both signal and noise. 

                 

                                 s + n                     ∑            ŝ = s + (n - n̂ ) 

 

 

n0                      Filter          n̂  

 

   

It makes use of an auxiliary or reference input which contains a correlated estimate of 

the noise to be cancelled. The reference can be obtained by placing one or more 

sensors in the noise field where the signal is absent or its strength is weak enough.  

 

Subtracting noise from a received signal involves the risk of distorting the signal and 

if done improperly, it may lead to an increase in the noise level. This requires that the 

noise estimate n̂ should be an exact replica of n. If it were possible to know the 

relationship between n and n̂ , or the characteristics of the channels transmitting noise 

from the noise source to the primary and reference inputs are known, it would be 

possible to make n̂  a close estimate of n by designing a fixed filter. However, since 

the characteristics of the transmission paths are not known and are unpredictable, 

filtering and subtraction are controlled by an adaptive process. Hence an adaptive 

+ 

- 



filter is used that is capable of adjusting its impulse response to minimize an error 

signal, which is dependent on the filter output. The adjustment of the filter weights, 

and hence the impulse response, is governed by an adaptive algorithm. With adaptive 

control, noise reduction can be accomplished with little risk of distorting the signal. 

Infact, Adaptive Noise Canceling makes possible attainment of noise rejection levels 

that are difficult or impossible to achieve by direct filtering. 

 

The error signal to be used depends on the application. The criteria to be used may be 

the minimization of the mean square error, the temporal average of the least squares 

error etc. Different algorithms are used for each of the minimization criteria e.g. the 

Least Mean Squares (LMS) algorithm, the Recursive Least Squares (RLS) algorithm 

etc. To understand the concept of adaptive noise cancellation, we use the minimum 

mean-square error criterion. The steady-state performance of adaptive filters based on 

the mmse criterion closely approximates that of fixed Wiener filters. Hence, Wiener 

filter theory (App.I) provides a convenient method of mathematically analyzing 

statistical noise canceling problems. From now on, throughout the discussion (unless 

otherwise stated), we study the adaptive filter performance after it has converged to 

the optimal solution in terms of unconstrained Wiener filters and use the LMS 

adaptive algorithm (App.IV) which is based on the Weiner approach.  

 

 

 

  

  

  

  

  

  

  

  

  

  

  
 

 

  
 

 

 

 

 

 

 

 



II. Adaptive 
oise Cancellation – Principles 
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    i/p                error, ε 
 
                     ADAPTIVE NOISE CANCELLER 

 

  Fig. 1 Adaptive Noise Canceller 

 

As shown in the figure, an Adaptive Noise Canceller (ANC) has two inputs – primary 

and reference. The primary input receives a signal s from the signal source that is 

corrupted by the presence of noise n uncorrelated with the signal. The reference input 

receives a noise n0 uncorrelated with the signal but correlated in some way with the 

noise n. The noise no passes through a filter to produce an output n̂ that is a close 

estimate of primary input noise. This noise estimate is subtracted from the corrupted 

signal to produce an estimate of the signal at ŝ , the ANC system output. 

 

In noise canceling systems a practical objective is to produce a system output ŝ = s + 

n – n̂ that is a best fit in the least squares sense to the signal s. This objective is 

accomplished by feeding the system output back to the adaptive filter and adjusting 

the filter through an LMS adaptive algorithm to minimize total system output power. 

In other words the system output serves as the error signal for the adaptive process. 

 

Assume that s, n0, n1 and y are statistically stationary and have zero means. The signal 

s is uncorrelated with n0 and n1, and n1 is correlated with n0. 

      ŝ  = s + n – n̂   

⇒   ŝ
2
 = s

2
 + (n - n̂ )

2
 +2s(n - n̂ ) 

Taking expectation of both sides and realizing that s is uncorrelated with n0 and n̂ ,  

                             E[ ŝ
2
] = E[s

2
] + E[(n - n̂ )

2
] + 2E[s(n - n̂ )] 

        = E[s
2
] + E[(n - n̂ )

2
]   

The signal power E[s
2
] will be unaffected as the filter is adjusted to minimize E[ ŝ

2
]. 

⇒ min E[ ŝ
2
] = E[s

2
] + min E[(n -  n̂ )

2
]  

 

Thus, when the filter is adjusted to minimize the output noise power E[ ŝ
2
], the output 

noise power E[(n - n̂ )
2
] is also minimized. Since the signal in the output remains 

constant, therefore minimizing the total output power maximizes the output signal-to-

noise ratio. 

 

Since                               ( ŝ - s) = (n – n̂ ) 



This is equivalent to causing the output ŝ  to be a best least squares estimate of the 

signal s. 

 

 

IIA. Effect of uncorrelated noise in primary and reference 

inputs 
 

As seen in the previous section, the adaptive noise canceller works on the principle of 

correlation cancellation i.e., the ANC output contains the primary input signals with 

the component whose correlated estimate is available at the reference input, removed. 

Thus the ANC is capable of removing only that noise which is correlated with the 

reference input. Presence of uncorrelated noises in both primary and reference inputs 

degrades the performance of the ANC. Thus it is important to study the effect of these 

uncorrelated noises. 

 

 

Uncorrelated noise in primary input 
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     Fig. 2 ANC with uncorrelated noise m0 in primary input 

 

The figure shows a single channel adaptive noise canceller with an uncorrelated noise 

mo present in the primary input. The primary input thus consists of a signal and two 

noises mo and n. The reference input consists of n* h( j ), where h(j) is the impulse 

response of the channel whose transfer function is H(z). The noises n and n* h( j ) 

have a common origin and hence are correlated with each other but are uncorrelated 

with s. The desired response d is thus s + mo + n. 

Assuming that the adaptive process has converged to the minimum mean square 

solution, the adaptive filter is now equivalent to a Wiener filter. The optimal 

unconstrained transfer function of the adaptive filter is given by (App.I) 

W
∗
(z) = 

δxd (z)
 δxx (z)

 

The spectrum of the filters input δxx (z) can be expressed as 

δxx (z) = δnn (z)Η (z)
2

 

where δnn (z) is the power spectrum of the noise n. The cross power spectrum between 

filter’s input and the desired response depends only on the mutually correlated 

primary and reference components and is given as 

Σ Σ Σ 



δxd (z) = δnn (z)Η (z
-1 

) 

The Wiener function is thus 

W
∗
(z) = 

δnn (z) Η (z
-1 

)

 δnn (z)Η (z)
2

 
 = 

1

 H(z)
 

 

Note that W
∗
(z) is independent of the primary signal spectrum δss(z) and the primary 

uncorrelated noise spectrum δmomo(z).This result is intuitively satisfying since it 

equalizes the effect of the channel transfer function H(z) producing an exact estimate 

of the noise n. Thus the correlated noise n is perfectly nulled at the noise canceller 

output. However the primary uncorrelated noise no remains uncancelled and 

propagates directly to the output.  

 

     

Uncorrelated noise in the reference input  

 

                                                                    

signal                     o/p 

source                           s + n              +                                  signal  ŝ    
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    Fig. 3 ANC with uncorrelated noise in reference input 

 

The figure shows an adaptive noise canceller with an uncorrelated noise m1 in the 

reference input. The adaptive filter input x is now m1+ n* h( j ). The filters input 

spectrum is thus 

δxx (z) = δm1m1 (z) + δnn (z)Η (z)
2

 

 

The Wiener transfer function now becomes 

W
∗
(z) = 

δnn (z) Η (z
-1 

)

 δm1m1 (z) + δnn (z)Η (z)
2

 
 

We see that the filter transfer function now cannot equalize the effect of the channel 

and the filter output is only an approximate estimate of primary noise n. 

 

 

Effect of primary and reference uncorrelated noises on A
C performance 

 

The performance of the single channel noise canceller in the presence of uncorrelated 

noises-mo in primary input and m1 in reference input simultaneously, can be evaluated 

in terms of the ratio of the signal to noise density ratio at the output, ρout (z) to the 

Σ Σ 

Σ 



signal to noise density ratio at the primary input, ρpri (z). Factoring out the signal 

power spectrum yields 

 

ρout (z)
 ρpri (z)

 =  
primary noise spectrum

 output noise spectrum
 

              = 
δnn (z) + δmomo (z)

 δnout (z)
  

The canceller’s output noise power spectrum δnout (z) is a sum of three components: 

1. Due to propagation of mo directly to the output. 

2. Due to propagation of m1 to the output through the transfer function, -W
*
(z). 

3. Due to propagation of n to the output through the transfer function, 1 – 

H(z)W
*
(z). 

The output noise spectrum is thus 

δnout (z)= δmomo (z) + δm1m1 (z) W∗(z)
2

 + δnn (z)1 - Η (z) W
∗
(z)

2

 

 

We define the ratios of the spectra of the uncorrelated to the spectra of the correlated 

noises at the primary and reference as 

 

Rprin (z) = 
δmomo (z)
δnn (z)

 

and 

Rrefn (z) = 
δm1m1 (z)

δnn (z)Η (z)
2 

respectively. 

 

The output noise spectrum can be expressed accordingly as 

δnout (z)= δmomo (z) + 
δm1m1 (z)

 H (z)
2

 Rrefn(z) + 1
2 + δnn (z) 1 - 

1

 Rrefn(z) + 1
 

2

 

            = δnn (z) Rprin (z) + δnn (z)
Rrefn (z)

 Rrefn (z) + 1
 

 

The ratio of output to the primary input noise power spectra can now be written as  

ρout (z)

 ρpri (z)
 = 

(Rprin (z) + 1)(Rrefn(z) + 1)

 Rprin(z) + Rprin(z) Rrefn(z) + Rrefn(z)
 

 

This expression is a general representation of the ideal noise canceller performance in 

the presence of correlated and uncorrelated noises. It allows one to estimate the level 

of noise reduction to be expected with an ideal noise canceling system.  

 

It is apparent from the above equation that the ability of a noise canceling system to 

reduce noise is limited by the uncorrelated-to-correlated noise density ratios at the 

primary and reference inputs. The smaller are Rprin(z) and Rrefn(z), the greater will be 

the ratio of signal-to-noise density ratios at the output and the primary input i.e. 

ρout(z)/ρpri (z) and the more effective the action of the canceller. The desirability of 

low levels of uncorrelated noise in both primary and reference inputs is thus 

emphasized. 

 

∆ 
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IIB. Effect of Signal Components in the reference input 
 

Often low-level signal components may be present in the reference input. The 

adaptive noise canceller is a correlation canceller, as mentioned previously and hence 

presence of signal components in the reference input will cause some cancellation of 

the signal also. This also causes degradation of the ANC system performance. Since 

the reference input is usually obtained from points in the noise filed where the signal 

strength is small, it becomes essential to investigate whether the signal distortion due 

to reference signal components can outweigh the improvement in the signal-to noise 

ratio provided by the ANC. 

 

              primary 

     input       dj           +  

        output 

sj          - 

       

 

nj         xj    yj 

         H(z)    W*(z) 

   reference               εj 
   input 

 

         Fig. 4 ANC with signal components in reference input 

 

The figure shows an adaptive noise canceller that contains signal components in the 

reference input, propagated through a channel with transfer function J(z). If the 

spectra of the signal and noise are given by δss (z) and δnn (z) respectively, the signal-

to-noise density ratio at the primary input is 

  ρpri(z) = 
δss(z) 
 δnn (z)

 

The spectrum of the signal component in the reference input is 

δssref(z) = δss(z) J(z)
2

    

and that of the noise component is 

  δnnref (z) = δnn (z)Η (z)
2

 

Therefore, the signal-to-noise density ratio at the reference input is thus 

  ρref(z) = 
δss(z) J(z)

2

 

 δnn (z)Η (z)
2 

The spectrum of the reference input x can be written as 

 δxx(z) = δss(z) J(z)
2

 + δnn (z)Η (z)
2

  

and the cross spectrum between the reference input x and the primary input d is given 

by 

δxd(z) = δss(z) J(z -1) + δnn (z)Η (z
 -1

) 

When the adaptive process has converged, the unconstrained Weiner filter transfer 

function is thus given by 

  W*(z) = 
δss(z) J(z -1) + δnn (z)Η (z

 -1
)

 δss(z) J(z)
2

 + δnn (z)Η (z)
2

 
 

Σ Σ 

Σ 

J(z) 

∆ 



 

We now evaluate expressions for the output signal-to-noise density ratio and the 

signal distortion and then compare them to see whether the effects of signal distortion 

are significant enough to render the improvement in S
R useless. 

 

Signal distortion D(z): 

 

When signal components are present in the reference input, some signal distortion 

will occur and the extent of signal distortion will depend on the amount of signal 

propagated through the adaptive filter. The transfer function of the propagation path 

through the filter is 

- J(z)W*(z) = - J(z)
δss(z) J(z -1) + δnn (z)Η (z

 -1
)

 δss(z) J(z)
2

 + δnn (z)Η (z)
2

 
  

When |J(z)| is small i.e. signal components coupled to the reference input are small, 

this function can be expressed as  

  - J(z)W*(z) ≅ - 
J(z)

Η (z)
 

The spectrum of the signal component propagated to the noise canceller output 

through the adaptive filter is thus approximately 

  δss(z) 
J(z)

Η (z)
 

2

 

 

Hence, defining the signal distortion D(z) as the ratio of the spectrum of the signal 

components in the output propagated through the adaptive filter to the spectrum of 

signal components in the primary input, we have 

 

                        D(z) =   
δss(z) | J(z) W*(z) |

2 

δss(z) 
 

        = | J(z)W*(z) |
2 

 

When J(z) is small, this reduces to  

   D(z)  ≅ | J(z)/ H(z)|
2
  

From the expressions for S
R at the primary and reference inputs,  

   D(z)  ≅ 
ρref(z)

 ρpri(z)
 

 

This result shows that the relative strengths of signal-to-noise density ratios at the 

primary and reference inputs govern the amount of signal distortion introduced. 

Higher the S
R at the reference input i.e. the larger the amount of signal components 

present in the reference, the higher is the distortion. A low distortion results form high 

signal-to-noise density ratio at the primary input and low signal-to-noise density ratio 

at the reference input. 

 

Output signal-to-noise density ratio 

: 

For this case, the signal propagates to the noise canceller output via the transfer 

function 1-J(z)W*(z), while the noise propagates through the transfer function 1-

H(z)W*(z). The spectrum of the signal component in the output is thus 

∆ 



 

  δssout(z) = δss(z) |1-J(z)W*(z)|  

= δss(z) 
[H(z) - J(z)]δnn (z)Η (z

 -1
)

 δss(z) J(z)
2

 + δnn (z)Η (z)
2 

2

 

 

and that of noise component is similarly  

  δnnout(z) = δnn(z) | 1-H(z)W*(z)|    

 = δnn(z) 
[J(z) - H(z)]δss (z)J (z -1)

 δss(z) J(z)
2

 + δnn (z)Η (z)
2 

2

 

 

The output signal-to-noise density ratio is thus 

  ρout(z) = 
δss(z)
 δnn(z)

   
δnn(z) Η (z

-1
)

 δss(z ) J(z-1) 
 

2

  

             = 
δnn (z)Η (z)

2

 δss(z) J(z)
2

 
 

From the expression for signal-to-noise density ratio at reference input, this can be 

written as  

  ρout(z) = 
1

 ρref(z)
 

This shows that the signal-to-noise density ratio at the noise canceller output is simply 

the reciprocal at all frequencies of the signal-to-noise density ratio at the reference 

input, i.e. the lower the signal components in the reference, the higher is the signal-to-

noise density ratio in the output. 

 

 

Output noise:  

 

When |J(z)| is small, the expression for output noise spectra reduces to  

  δnnout(z) ≅ δnn(z) 
δss(z) J(z -1)
δnn (z)Η (z

 -1
) 
  

2

 

 

In terms of signal-to-noise density ratios at reference and primary inputs,  

  δnnout(z) ≅ δnn(z) |ρref(z)| | ρpri(z)| 
 

The dependence of output noise on these three factors is explained as under: 

1. First factor δnn (z) implies that the output noise spectrum depends on the input 

noise spectrum, which is obvious. 

2. The second factor implies that, if the signal-to-noise density ratio at the 

reference input is low, the output noise will be low, i.e. the smaller the signal 

components in the reference input, the more perfectly the noise will be 

cancelled. 

3. The third factor implies that if the signal-to-noise density ratio in the primary 

input is low, the filter will be trained most effectively to cancel the noise 

rather than the signal and consequently output noise will be low. 

 

 



 

 

IIC. Use of A
C without a reference signal 
 

An important and attractive use of ANC is using it without a reference signal. This is 

possible for the case when one of the signal and noise is narrowband and the other 

broadband. This is particularly useful for applications where it is difficult or 

impossible to obtain the reference signal. 

 

     

sj + nj                                 broadband  

   primary    dj     +       output 

      i/p         - 

 

   reference  

       i/p        xj 

                W
*
(z)              narrowband 

                                       output 

                                 delay                

 
       ADAPTIVE NOISE CANCELLER 

 

       Fig. 5 ANC without reference input 

 

In the case where signal is narrowband and noise is broadband, or signal is broadband 

and noise is narrowband, a delayed version of the input signal can be used as the 

reference input. This is because a broadband signal is not correlated to previous 

sample values unlike a narrowband signal. We only need to insure that the delay 

introduced should be greater than the decorrelation-time of the broadband signal and 

less than the decorrelation-time of the narrowband signal. 

i.e.  τd (BB) < delay < τd (NB) 

 

This concept is applied to a number of problems - 

1. Canceling periodic interference without an external reference source. 

2. Adaptive self-tuning filter 

3. Adaptive Line Enhancer 

These applications are discussed later. 
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III. Applications 
 

 

IIIA. Adaptive 
oise Canceling applied to sinusoidal 

interferences 
 

The elimination of a sinusoidal interference corrupting a signal is typically 

accomplished by explicitly measuring the frequency of the interference and 

implementing a fixed notch filter tuned to that frequency. A very narrow notch is 

usually desired in order to filter out the interference without distorting the signal. 

However, if the interference is not precisely known, and if the notch is very narrow, 

the center of the notch may not fall exactly over the interference. This may lead to 

cancellation of some other frequency components of the signal i.e. distorting the 

signal, while leaving the interference intact. Thus, it may infact lead to an increase in 

the noise level. Also, there are many applications where the interfering sinusoid drifts 

slowly in frequency. A fixed notch cannot work here at all unless it is designed wide 

enough to cover the range of the drift, with the consequent distortion of the signal. In 

situations such as these, it is often necessary to measure in some way the frequency of 

the interference, and then implement a notch filter at that frequency. However, 

estimating the frequency of several sinusoids embedded in the signal can require a 

great deal of calculation.  

 

When an auxiliary reference input for the interference is available, an alternative 

technique of eliminating sinusoidal interferences is by an adaptive noise canceller. 

This reference is adaptively filtered to match the interfering sinusoids as closely as 

possible, allowing them to be filtered out. The advantages of this type of notch filter 

are- 

1: It makes explicit measurement of the interfering frequency unnecessary. 

2: The adaptive filter converges to a dynamic solution in which the time-varying 

weights of the filter offer a solution to implement a tunable notch filter that 

helps to track the exact frequency of interference under non-stationary 

conditions or drifts in frequency. 

3: It offers easy control of bandwidth as is shown below. 

4: An almost infinite null is achievable at the interfering frequency due to the 

close and adjustable spacing of the poles and zeros. 

5: Elimination of multiple sinusoids is possible by formation of multiple notches 

with each adaptively tracking the corresponding frequency. 

 

 

A
C as Single-frequency notch filter: 

 

To understand the operation of an Adaptive Noise Canceller as a Notch filter, we 

consider the case of a single-frequency noise canceller with two adaptive weights.  
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0
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       Fig. 6 Single-frequency adaptive noise canceller 

 

The primary input consists of the signal corrupted by a sinusoidal interference of 

frequency ω0. The reference input is assumed to be of the form Ccos(ω0t + φ), where 

C and φ are arbitrary i.e. the reference input contains the same frequency as the 

interference while its magnitude and phase may be arbitrary. The primary and 

reference inputs are sampled at the frequency Ω = 2π/Τ rad/s. The two tap inputs are 

obtained by sampling the reference input directly and sampling a 90
o
 shifted version 

of the reference as shown in the figure above.  

 

To observe the notching operation of the noise canceller, we derive an expression for 

the transfer function of the system from the primary input to the ANC output. For this 

purpose, a flow graph representation of the noise canceller system using the LMS 

algorithm is constructed. 
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          Fig. 7 Flow diagram representation 
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The LMS weight update equations are given by 

w1j + 1 = w1j + 2µ εj x1j  

w2j + 1 = w2j + 2µ εj x2j  

 

The sampled tap-weight inputs are 

x1j = C cos(ωoTj + φ)  
and 

x2j = Csin(ωoTj + φ)  
 

The first step in the analysis is to obtain the isolated impulse response from the error 

εj, point C, to the filter output, point G, with the feedback loop from point G to point 

B broken. Let an impulse of amplitude unity be applied at point C at discrete time j = 

k; that is, 

 εj = δ( j - k) 
where δ( j - k) is a unit impulse. 

 

The response at point D is then  

 εj x1j = Ccos(ωokT + φ) for   j ≠ k and zero for  j = k 

which is the input impulse scaled in amplitude by the instantaneous value of x1j at  

j = k. The signal flow path from point D to point E is that of a digital integrator with 

transfer function 2µ/(z-1) and impulse response 2µu(j-1),where u(j) is a unit-step 

function. 

 

Convolving 2µu( j-1) with εj x1j yields the response at point E: 

w1j = 2µCcos(ωokT + φ) 
where j ≥ k + 1. When the scaled and delayed step function is multiplied by x1j, the 

response at point F is obtained: 

y1j = 2µC2
cos(ωojT + φ) cos(ωokT + φ) 

where j ≥ k + 1. The corresponding response at  J may be obtained in a similar manner 

y2j = 2µC2
sin(ωojT + φ) sin(ωokT + φ) 

 

Combining these equations ,we obtain the response at filter output G: 

   yj = 2µC2
u( j - k - 1) cosωoT(j - k) 

 

We now set to derive the linear transfer function for the noise canceller. When the 

time k is set equal to zero, the unit impulse response of the linear time-invariant 

signal-flow path from C to G is given as 

yj = 2µC2
u( j - 1) cosωojT 

and the transfer funcxtion of this path is 

G (z) = 2µC2







z( z - cosωoT)

 z
2
 - 2z cosωoT + 1

 - 1  

 

This can be expressed in terms of a radian sampling frequency Ω = 2π/T as 

G (z) = 
2µC2( )zcos(2πωoΩ

-1
) - 1

 z
2
 - 2z cos(2πωo Ω

-1
)+ 1

 

 



If the feedback loop from G to B is now closed, the transfer function H(z) from the 

primary input A to the noise canceller output C can be obtained from the feedback 

formula:  

H(z) =  
1

(1 - G (z))
 

        = 
z
2
 - 2z cos(2πωo Ω

-1
)+ 1

 z
2
 - 2(1 - µC2

)zcos(2πωoΩ-1
) + 1 - 2µC2 

 

The above equation shows that the single-frequency noise canceller has the properties 

of a notch filter at the reference frequency ωo. The zeros of the transfer function are 

located in the plane at 

z = exp(±i2πωo Ω
-1
) 

and are located on the unit circle at angles of ±2πωo Ω-1
rad. The poles are located at 

z = (1 -µC2
)cos(2πωo Ω-1

) ± i[(1 - 2µC2
) - (1 - µC2

)cos
2
(2πωoΩ-1

)]
1/2

 

 

The poles are inside the unit circle at a radial distance (1 - 2µC2
)
1/2

, approximately 

equal to 1 - µC2
,from the origin and at angles of 

±arc cos[(1 -µC2
)(1 - 2µC2

)
-1/2

cos(2πωoΩ-1
)] 

 

For slow adaptation, that is, small values of µC2
, these angles depend on the factor 

1 -µC2

(1 - 2µC2
)
1/2 = 







1 - 2µC2

 + µ2
C

4

1 - 2µC2

1/2

  

                               ≅ 1 - 
1

2
µ2

C
4
 + …  

which differs only slightly from a value of one. The result is that, in practical 

instances, the angles of the poles are almost identical to those of the zeroes. 
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       Fig. 8 Location of poles and zeros 

 

Since the zeros lie on the unit circle, the depth of the notch is infinite at the frequency 

ω = ω0. The closeness of the poles to the zeros determines the sharpness of the notch. 

x 

x 



Corresponding poles and zeros are separated by a distance approximately equal to 

µC2
. The arc length along the unit circle (centered at the position of a zero) spanning 

the distance between half-power points is approximately 2µC2
. This length 

corresponds to a notch bandwidth of  

  BW = µC2Ω/π = 2µC2
/T 

 

The Q of the notch is determined by the ratio of the center frequency to the 

bandwidth: 

   Q = ω0/BW =  
ω0π

 µC2Ω 

 

The single-frequency noise canceller is, therefore, equivalent to a stable notch filter 

when the input is a pure cosine wave. The depth of the null achievable is generally 

superior to that of a fixed digital or analog filter because the adaptive process 

maintains the null exactly at the reference frequency. 

 

 

Multiple-frequency notch filter:  

 

This discussion can be readily extended to the case of a multiple-frequency noise 

canceller. The formation of multiple notches is achieved by using an adaptive filter 

with multiple weights. Two weights are required for each sinusoid to achieve the 

necessary filter gain and phase. Uncorrelated broadband noise superposed on the 

reference input creates a need for additional weights.    

Suppose the reference is a sum of M sinusoids 

  jx = ∑
=

+
M

m

mmm jTC
1

)cos( θω  

At the i
th
 tap-weight input of the transversal tapped delay-line filter of order 
,  

  )]1[(cos
1

mm

M

m

mij TijCx θω ++−=∑
=

    i=1… 
 

          ∑
=

+=
M

m

immm jTC
1

)cos( θω  

where Timmim ]1[ −−= ωθθ . 

The filter output at the i
th
 tap-weight yij is given by 

  yij = wij xij 

 

Proceeding as before, we get a similar equation for wij as, 

  ∑
=
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M

m

immmij kTCw
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)cos(2 θωµ   where j ≥  k+1 
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           j ≥  k+1

  

The overall filter output is given as 
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Substituting and taking the Z-transform of both sides, gives the transfer function G(z) 

as 
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Since the input is a unit impulse and time of applying the pulse k is set to zero. 

 

The denominator of G(z) is of the form  

   ∏
=

−− +−
M

n

n zTz
1

21
)cos21( ω   

Therefore, poles of G(z) are located at  

   )2exp( Tiz nπω±=            n = 1…M 

i.e. poles are located at each of the reference frequencies. Since poles of G(z) are the 

zeros of H(z), the overall system function has zeros at all reference frequencies i.e. a 

notch is formed at each of the reference sinusoidal frequencies.  

 

 

IIIB. Bias or low-frequency drift Canceling using Adaptive 


oise Canceller  
 

The use of a bias weight in an adaptive filter to cancel low-frequency drift in the 

primary input is a special case of notch filtering with the notch at zero frequency. A 

bias weight is incorporated to cancel dc level or bias and hence is fed with a reference 

input set to a constant value of one. The value of the weight is updated to match the 

dc level to be cancelled. Because there is no need to match the phase of the signal, 

only one weight is needed.   

 

sj+drift        +     ∑    output 

               wj         - 

+1              yj 

 

          εj 
         LMS Algorithm  

 

  Fig. 9 ANC as bias/low-frequency drift canceller 

 

The transfer function from the primary input to the noise canceller output is now 

derived. The expression of the output of the adaptive filter yj is given by 

   yj = wj .1 = wj 

The bias weight w is updated according to the LMS update equation 

   wj+1 = wj + 2µ(εj .1)   

⇒ yj+1 = yj +2µ(dj – yj) 

      = (1-2µ)yj +2µdj 

Taking the z-transform of both the sides yields the steady-state solution: 

Y(z) =  
2µ

 z - (1 - 2µ)D(z) 

Z-transform of the error signal is  

E(z) = D(z)- Y(z) 

         =  
z - 1

 z - (1 - 2µ)D(z) 

dj 



The transfer function is now 

           H(z) =  
E(z)

D(z)
  =  

z - 1

 z - (1 - 2µ) 

 

This shows that the bias-weight filter is a high pass filter with a zero on the unit circle 

at zero frequency and a pole on the real axis at a distance 2µ to the left of the zero. 

The smaller the µ, the closer is the location of the pole and the zero, and hence the 

notch is precisely at zero frequency i.e. only dc level is removed. The single-weight 

noise canceller acting as a high-pass filter is capable of removing not only a constant 

bias but also slowly varying drift in the primary input. If the bias level drifts and this 

drift is slow enough, the bias weight adjusts adaptively to track and cancel the drift. 

Using a bias weight alongwith the normal weights in an ANC can accomplish bias or 

drift removal simultaneously with cancellation of periodic or stochastic interference. 

 

 

IIIC. Canceling Periodic Interference without an External 

Reference Source 
periodic 
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          Fig.10 Cancellation of periodic interference 

 

There are a number of circumstances where a broadband signal is corrupted by 

periodic interference and no external reference input free of the signal is available. 

This is the case for playback of speech or music in the presence of tape hum or 

turntable rumble. Adaptive Noise Canceling can be applied to reduce or eliminate 

such interference by introducing a fixed delay ∆ in the reference input drawn directly 

from the primary input. The delay chosen must be of sufficient length to cause the 

broadband signal components in the reference input to become decorrelated from 

those in the primary input. The interference components, because of their periodic 

nature, will remain correlated with each other.  

 

IIID. Adaptive Self-tuning filter 
 

The noise canceller without a reference input can be used for another important 

application. In many instances where an input signal consisting of mixed periodic and 

broadband components is available, the periodic rather than the broadband 

components are of interest. If the system output is taken from the adaptive filter in an 

adaptive noise canceller, the result is an adaptive self-tuning filter capable of 

extracting a periodic signal from broadband noise. The configuration for the adaptive 

self-tuning filter is shown below: 
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Fig. 11 ANC as self-tuning filter 

 

With sum of sinusoidal signals in broadband stochastic interference, the adaptive filter 

developed sharp resonance peaks at the frequencies of all the spectral line components 

of the periodic portion of the primary input.  

 

 

IIIE. A
C as Adaptive Line Enhancer  
 
The use of ANC as a self-tuning filter suggests its application as an ALE Adaptive 

Line Enhancer for detection of extremely low-level sine waves in noise. The adaptive 

self-tuning filter, whose capability of separating periodic and stochastic components 

of a signal was illustrated above (where the components were of a comparable level), 

is able to serve as an adaptive line enhancer for enhancing the detectability of 

narrowband signals in the presence of broadband noise.  

 

The configuration of ANC without a reference input, as discussed previously, is used 

here. 
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      Fig. 12 ANC as Adaptive Line Enhancer 

 

The input consists of signal plus noise. The output is the digital Fourier transform of 

the filter’s impulse response. Detection is accomplished when a spectral peak is 

evident above the background noise.  
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Operation of the adaptive line enhancer can be understood intuitively as follows. The 

delay causes decorrelation between the noise components of the input data in the two 

channels while introducing a simple phase difference between the sinusoidal 

components. The adaptive filter responds by forming a transfer function equivalent to 

that of a narrow-band filter centered at the frequency of the sinusoidal components. 

The noise component of the delayed input is rejected, while the phase difference of 

the sinusoidal components is readjusted so that they cancel each other at the summing 

junction, producing a minimum error signal composed of the noise component of the 

instantaneous input data alone.  

 

The advantages of adaptive line enhancing with respect to digital Fourier analysis 

include its effective application over a wide range of input signal and noise 

parameters with little apriori information. It is capable of estimating and tracking 

instantaneous frequencies and hence is especially advantageous in applications like 

where the sine wave is frequency modulated. 

 

We now analyze its steady state behavior with a stationary input consisting of 

multiple sinusoids in uncorrelated noise. Using the method of undetermined 

coefficients, the LxL Weiner-Hopf matrix describing the steady-state impulse 

response of an L-weight ALE with arbitrary delay or “prediction distance”∆ may be 

transformed into a set of 2
 coupled linear equations, where 
 is the number of 

sinusoids in the ALE input. This set of equations, which decouples as the adaptive 

filter becomes longer, provides a useful description of the interaction between the 

sinusoids introduced by the finite-length of the filter. 

 

Using the Weiner-Hopf model for the ALE response, LxL matrix equation can be 

written in component form as: 
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∆+=−
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xxxx lkwkl φφ    0 ≤ l ≤ L-1 

 

where φxx is the autocorrelation of the input 

 w*(k) are the optimal weights 

When x(j) consists of N sinusoids in white noise,  
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nnxx kkk
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22

0 cos)()( ωσδσφ   

where δ(k) is the Kronecker delta function. 

 σ0
2
 is the white noise power 

 σn
2 
is the power in the n

th
 sinusoid 

 ωn represents the frequencies of the sinusoids 

 

To avoid the computational complexity involved in taking matrix inverse, we use the 

method of undetermined coefficients. Since the ALE adaptive filter is expected to 

respond by forming peaks at the input frequencies, we assume the following solution 

for w*(k)  
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where for notational convenience, ωn+N is defined as -ωn (n=1…N); the ωn+N are thus 

the negative frequency components of the input sinusoids. Substituting with φxx(l), 



and equating coefficients of exp(jωrl), leads to the following 2N equations in the 2N 

coefficients A1, …, A2N. 
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The solution for the An completely determine w*(k).  

 

When the input to the ALE consists of N sinusoids and additive white noise, the mean 

steady-state impulse response of the ALE can be expressed as a weighted sum of 

positive and negative frequency components of the input sinusoids. It is seen that the 

coefficients that couple An together are proportional to the L-point Fourier transform 

of exp(jωnk) evaluated at ωr. From the form of γrn, An+N = nA . This shows that w*(k) 

are real. Since the form of γrn is of sinc-type, when L becomes large or when ωn-ωr is 

some integral multiple of 2π/L, γrn can be neglected. Further as L becomes large, the 

ratio of the main lobe (at ωn-ωr =0) to the sidelobe peaks is given approximately by 

1/(p+1/2)π. Even if ωn is within the first few peaks of ωr, the associated γrn can be 

neglected. 

 

As γrn→ 0 for all n and r(i.e. as L becomes large), the An uncouple and are given to a 

good approximation by  
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   n = 1…2N 

Therefore as γrn→ 0, the ALE for N sinusoids will adapt to a linear superposition of N 

independent ALE’s, each adapted to a single sinusoid in white noise.  

 

The frequency response of the steady-state ALE can now simply be expressed as 
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The above equation corresponds to sum of bandpass filters (centers at ±ωn), each 

having a peak value given by  

   (L/2)SNRn/((L/2)SNRn + 1) 

where SNRn = σn
2
/σo

2
. As L→ ∞, all of the peak values and the ALE becomes a super 

position of perfectly resolved bandpass filters, each with unit gain at its center 

frequency. Caution must be exercised in choosing L because as L is increased, the 

weight-vector noise also increases. 

 



The ALE thus provides an alternative to spectral analytic techniques and has the 

advantage of not requiring a priori information and also adaptively tracking the 

sinusoidal frequencies.  

 

 

IIIF. Canceling Antenna sidelobe Interference 
 

Strong unwanted signals incident on the sidelobes of an antenna array can severely 

interfere with the reception of weaker signals in the main beam. The conventional 

method of reducing such interference, adaptive beamforming, is often complicated 

and expensive to implement. When the number of spatially discrete interference 

sources is small, adaptive noise canceling can provide a simpler and less expensive 

method of dealing with this problem. 

  Recieving 
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plane-wave  
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interference      

 

Fig. 13 ANC applied to a receiving array 

 

The reference is obtained by steering the reference sensor in the direction of the 

interference.  
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Conclusion 
 

 

Adaptive Noise Cancellation is an alternative way of canceling noise present in a 

corrupted signal. The principal advantage of the method are its adaptive capability, its 

low output noise, and its low signal distortion. The adaptive capability allows the 

processing of inputs whose properties are unknown and in some cases non-stationary. 

Output noise and signal distortion are generally lower than can be achieved with 

conventional optimal filter configurations. 

 

This Project indicates the wide range of applications in which Adaptive Noise 

Canceling can be used. The simulation results verify the advantages of adaptive noise 

cancellation. In each instance canceling was accomplished with little signal distortion 

even though the frequencies of the signal and interference overlapped. Thus it 

establishes the usefulness of adaptive noise cancellation techniques and its diverse 

applications. 

 

 

Scope for further work: 

 

In this project, only the Least-Mean-Squares Algorithm has been used. Other adaptive 

algorithms can be studied and their suitability for application to Adaptive Noise 

Cancellation compared. Other algorithms that can be used include Recursive Least 

Squares, Normalised LMS, Variable Step-size algorithm etc.  

 

Moreover, this project does not consider the effect of finite-length filters and the 

causal approximation. The effects due to these practical constraints can be studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix 
 

 

I. Weiner Filter Theory 

 
Wiener proposed a solution to the continuous-time linear filtering problem and derived the 

Wiener-Hopf integral equation. The discrete-time equivalent of this integral equation is 

called the ‘Normal equation’. Solution of these two equations defines the Wiener filter. We 

concentrate here on the discrete-time case only. 

 

FFoorrmmuullaattiioonn  ooff  WWiieenneerr  ffiilltteerrss  iinn  ddiissccrreettee--ttiimmee  ccaassee  ffoorr  tthhee  ggeenneerraall  ccaassee  ooff  ccoommpplleexx--vvaalluueedd  

ttiimmee--sseerriieess::  

This discussion is limited to- 1) Filter impulse response of finite duration.                                        

    2) A single input and single output filter. 

  

SSttaatteemmeenntt  ooff  tthhee  OOppttiimmuumm  FFiilltteerriinngg  PPrroobblleemm::  
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                    d(n) 

Fig.A   Linear Transversal Filter 

  

Order of filter = no. of delay elements in the filter = M-1 

Impulse response of the transversal filter  {hk}={wk*}  k = 1,2… M    

Filter output is related to filter input and impulse response of the filter by the convolution 

sum         M 

    d(n|un) = Σ wk* u(n-k+1)      

   
      k =1 

Signal output of the filter at time n = d(n|un), estimate of desired response d(n) assuming 

knowledge of the tap inputs.   

 

The estimation problem is solved by designing filter so that difference between d(n) & 

d(n|un) is made as “small” as possible in a statistical sense. 



 

     estimation error = e(n) = d(n) – d(n|un)  

 

In Wiener theory “minimum mean-squared error criterion” is used to optimize the filter. 

Specifically, tap weights are chosen so as to minimize the “index of performance” J(w) , 

the mean-squared error MSE. 

    J(w) = EE[e(n)e*(n)] 

By minimizing J(w), we obtain the best or optimum linear filter in the minimum mean-

square sense. 

 

EErrrroorr  PPeerrffoorrmmaannccee  SSuurrffaaccee  

Let:   Mx1 tap-weight vector    w
T 
= [w1,,  w2,…., wM] 

   Mx1 input vector    u
T
(n) = [ u(n), u(n-1),…, u(n-M+1)] 

 

Then, filter output d(n|un) = w
H
u(n) 

         where 
H
 denotes the Hermitian Transpose 

      or   d(n|un) = u
H
(n)w 

 

=> Estimation error between desired response d(n) and filter output d(n|un) 

    e(n) = d(n) -  w
H
u(n) 

       or    e*(n) = d*(n) - u
H
(n)w 

Hence, 

  Mean squared error, J(w) = EE[e(n)e*(n)] 

                      = EE[(d(n) - w
H
u(n)) (d*(n) - u

H
(n)w)] 

 

Expanding and recognizing tap-weight vector w is constant, 

      J(w) = EE[d(n)d*(n) – w
H 
EE[u(n)d*(n)] – EE[d(n)u

H
(n)]w + w

H
 EE[u(n)u

H
(n)]w 

 

We make the following assumptions 

- discrete time stochastic process represented by tap inputs u(n), u(n-1)… is weakly 

stationary. 

- Mean value of the process is zero. 

- Tap-input vector u(n) and desired response d(n) are jointly stationary. 

 

We can now identify, 

 1. EE[d(n)d*(n)] = σd
2
 variance of desired response assuming d(n) has  

zero mean. 

 2. EE[u(n)d*(n)] = p  Mx1 cross-correlation vector between tap input  

      vector & desired response. 

     i.e. p
T
 = [p(0), p(-1),…, p(1-M)] 

           where  p(1-k) = EE[u(n-k+1)d*(n)]      k=1,2,…M   

 3. EE[d(n)u
H
(n)] = p

H
 

 4. EE[u(n)u
H
(n)] = R  MxM correlation matrix of tap input vector 

 

⇒ J(w) = σd
2
 - p

H
w – w

H
p + w

H
Rw 

 

When u(n) and d(n) are jointly stationary, mean-squared error J(w) is precisely a second-

order function of the tap-weight vector w. Therefore, dependence of J(w) on elements of w 

i.e. tap weights w1, w2, …wM is equivalent to a bowl-shaped surface with a unique 

minimum. This is the eerrrroorr--ppeerrffoorrmmaannccee  ssuurrffaaccee of the transversal filter. 



                                
Fig. B    Error surface for M=2 and filter weights w1=a0 and w2=a1 

 

OOppttiimmuumm  SSoolluuttiioonn::  

Now, requirement is to design the filter so that it operates at this ‘bottom’ or ‘minimum’ 

point. At this point, 

   J(w) has a minimum value, Jmin 

     w has an optimum value, w0  

The resultant transversal filter is said to be ‘optimum in the mean-squared sense’. 

 

To get w0, we apply the condition for minimum J(w) i.e.  

   d J(w)  =  0       

   dw 

We get:  

 d σd
2
 = 0                    (for a weakly stationary process,  

   dw                       variance is constant) 

    d (p
H
w) = 0       

   dw 

   d (w
H
p) =2p       

   dw        

   d (w
H
Rw) =2Rw      

   dw 

 

Hence, gradient vector ∇ = derivative of mean-squared error J(w) wrt tap-weight w 

        ∇ = d J(w)              

               dw   

          = -2p + 2Rw                 …(1) 

At the bottom of the error-performance surface i.e. for the optimal case, this gradient is 

equal to 0 or as earlier mentioned, J(w) is a minimum. 

 

                 ⇒         Rw0  = p     …(2) 

 

This is the discrete-form of the Weiner-Hopf equation, also called normal equation.  

Its solution gives: 

   w0 = R
-1
p    

Computation of optimum tap-weight vector w0 requires knowledge of two quantities: 

1. Correlation matrix R of the tap-input vector u(n). 

2. Cross-correlation vector p between tap-input u(n) and desired response d(n). 



 

The curve obtained by plotting the mean-squared error versus the number of iterations, n is 

called the learning curve. 

                        

II. Adaptive Filters 
 

Adaptive filters are digital filters with an impulse response, or transfer-function, that can 

be adjusted or changed over time to match desired system characteristics. 

 

Unlike fixed filters, which have a fixed impulse response, adaptive filters do not require 

complete a priori knowledge of the statistics of the signals to be filtered. Adaptive filters 

require little or no a priori knowledge and moreover, have the capability of adaptively 

tracking the signal under non-stationary circumstances. 

 

For an adaptive filter operating in a stationary environment, the error-performance surface 

has a constant shape as well as orientation. When, however, the adaptive filter operates in a 

non-stationary environment, the bottom of the error-performance surface continually 

moves, while the orientation and curvature of the surface may be changing too. Therefore, 

when the inputs are non-stationary, the adaptive filter has the task of not only seeking the 

bottom of the error performance surface, but also continually tracking it. 

  

  

III. Steepest Descent Algorithm 
 

An adaptive filter is required to find a solution for its tap-weight vector that satisfies the 

normal equation. Solving this equation by analytical means presents serious computational 

difficulties, especially when the filter contains a large number of tap weights and when the 

data rate is high. An alternative procedure is to use the method of steepest descent, which is 

one of the oldest methods of optimization. 

1. Initial values of w(0) are chosen arbitrarily i.e. initial guess as to where the 

minimum point of the error-performance surface may be located. Typically w(0) = 

null vector. 

2. Using this, we compute the gradient vector, defined as the gradient of mean-

squared error J(n) wrt w(n) at time n (n
th
 iteration).  

3. We compute the next guess at the tap-weight vector by making a change in the 

initial or present guess in a direction opposite to that of the gradient vector. 

4. Go back to step 2 and repeat the process. 

 

⇒   w(n+1) = w(n) + 1 µ [-∇(n)]        µ = positive real-valued constant  

                    2 

From equation (1), 

∇(n) = -2p +2Rw(n) 

For the application of the steepest-descent algorithm, we assume that the correlation matrix 

R and cross-correlation matrix p are known. 

      ⇒  w(n+1) = w(n) + µ[p – Rw(n)]  n = 0, 1, 2,…                   (3) 

 

 We observe that the parameter µ controls the size of the incremental correction applied to 

the tap-weight vector as we proceed from one iteration to the next. Therefore, µ is referred 
to as the step-size parameter or weighting constant.   



The equation (3) describes the mathematical formulation of the steepest-descent algorithm 

or also referred to as the deterministic gradient algorithm. 

 

  

FFeeeeddbbaacckk--MMooddeell  ooff  tthhee  sstteeeeppeesstt--ddeesscceenntt  aallggoorriitthhmm::  

 

                  -µ                 R 

  

 

              I 
 

 

      µ         z
-1
I            

              p                                      w(n+1)          w(n)             

Fig. C  Signal-flow graph representation of the steepest-descent algorithm. 

  

SSttaabbiilliittyy  ooff  tthhee  sstteeeeppeesstt--ddeesscceenntt  aallggoorriitthhmm::  

 

Since the steepest-descent algorithm involves the presence of feedback, the algorithm is 

subject to the possibility of its becoming unstable. From the feedback model, we observe 

that the stability performance of the algorithm is determined by two factors: 

1. the step-size parameter µ 
2. the correlation matrix R of the tap-input vector u(n) 

as these two parameters completely control the transfer function of the feedback loop. 

 

Condition for stability: 

  weight-error vector, c(n) = w(n) – w0 

where w0 is the optimum value of the tap-weight vector as defined by the normal equation. 

Therefore, eliminating cross-correlation vector p in equation (3) and rewriting the result in 

terms of the weight-error vector,  

      c(n+1) = (I - µR) c(n) 

Using unitary-similarity transformation, we may express the correlation matrix R as  

   R = QΛΛQH
            

(refer Appendix B)  

⇒              c(n+1) = (I - µ QΛΛQH
) c(n) 

Premultiplying both sides of the equation by Q
H
 and using the property of unitary matrix 

Q that Q
H
 = Q

-1
, we get 

  Q
H
 c(n+1) = (I - µ ΛΛ) Q

H
 c(n) 

 

We now define a new set of coordinates as follows: 

   v(n) = Q
H
 c(n) 

           = Q
H
 [w(n) – w0] 

Accordingly, we may write 

    v(n+1) = (I - µ ΛΛ)v(n) 

The initial value of v(n) equals  

  v(0) = Q
H
 [w(0) – w0] 

Assuming that the initial tap-weight vector w(0) is zero, this reduces to 

          v(0) = -Q
H
 w0 

For the k
th
 natural mode of the steepest-descent algorithm, we thus have 



 vk(n+1) = (1 - µλk) vk(n)  k=1, 2, …, M  …(4) 

where λk is the k
th
 eigenvalue of the correlation matrix R. This equation is represented by 

the following scalar-valued feedback model: 

 

    

     1-µλk 

   

 

 

        o       z
-1
                 o  

 vk(n+1)                vk(n) 

            Fig. D  Signal-flow graph of the k
th
 mode of the steepest-descent algorithm 

 

Equation (4) is a homogeneous difference equation of the first order. Assuming that vk(n) 

has the initial value vk(0), we readily obtain the solution 

  vk(n) = (1 - µλk)
n
 vk(0),   k=1, 2, …, M         …(5) 

 

Since all eigenvalues of the correlation matrix R are positive and real, the response vk(n) 

will exhibit no oscillations. For stability or convergence of the steepest-descent algorithm, 

the magnitude of the geometric ratio of the above geometric series must be less than 1 for 

all k. 

 ⇒   -1 < 1-µλk < 1   ∀k 

Provided this condition is satisfied, as the number of iterations, n, approaches infinity, all 

natural modes of the steepest-descent algorithm die out, irrespective of the initial 

conditions. This is equivalent to saying that the tap-weight vector w(n) approaches the 

optimum solution w0 as n approaches infinity. 

 

Therefore, the necessary and sufficient condition for the convergence or stability of the 

steepest-descent algorithm is that the step-size parameter µ satisfy the following condition: 

 

    0 < µ < 2/λmax  

where λmax is the largest eigenvalue of the correlation matrix R. 

 

CCoonnvveerrggeennccee  rraattee  ooff  tthhee  sstteeeeppeesstt--ddeesscceenntt  aallggoorriitthhmm::  

  

Assuming that the magnitude of 1-µλk is less than 1 i.e. stability criterion is met, from 

equation (5) the variation of the k
th
 natural mode of the steepest-descent algorithm with 

time is as shown below: 

 

  vk(0) 

 

 

  vk(n) 

 

 

              0        1        2        3        4        5 

           Time, n 

 



We see that an exponential envelope of time constant τk can be fitted to the geometric 

series by assuming the unit of time to be the duration of one iteration cycle and by 

choosing the time constant τk such that  
    1 - µλk = exp( –1/ τk) 

⇒  τk =      -1                    …(6) 

         ln(1 - µλk) 

The time constant τk defines the time required for the amplitude of the k
th
 natural mode 

vk(n) to decay to 1/e of its initial value vk(0). 

For slow-adaptation i.e. small µ, 
          τk  ≈    1    µ <<1 
                    µλk 

We may now formulate the transient behavior of the original tap-weight vector w(n). We 

know, 

   v(n) = Q
H
 [w(n) – w0] 

 

Pre-multiplying both sides by Q, and using the fact that QQ
H
=I, we get: 

    w(n) = w0 + Qv(n) 

            = w0 + [q1, q2,…, qM]    v1(n) 

                v2(n) 

 

                vM(n)    

                M 

            = w0 + ∑ qkvk(n) 

     
          k=1

 

Substituting equation (5), we find that the transient behavior of the ith tap weight is 

described by            M 

  wi(n) = w0i + ∑ qkivk(0) (1-µλk)
n
   i=1, 2,…, M          …(7)

                 k=1
 

where w0i is the optimum value of the ith tap weight, and qki is the ith element of the k
th 
 

eigenvector qk.    

Equation (7) shows that each tap weight in the steepest-descent algorithm converges as the 

weighted sum of exponentials of the form (1 - µλk)
n
. The time τk required for each term to 

reach 1/e of its initial value is given by equation (6). However, the overall time constant, 

τa, defined as the time required for the summation term in (7) to decay to 1/e of its initial 

value, cannot be expressed in a similar simple form.  

Nevertheless, the rate of convergence is bounded on the lower side by the term that decays 

slowest i.e. (1-µλmin) and on the upper side by the fastest decaying term i.e. (1-µλmax). 

Accordingly, the overall time-constant τa for any tap weight of the steepest-descent 

algorithm is bounded as follows: 

          -1          ≤  τa  ≤         -1             

  ln(1- µλmax)                 ln(1- µλmin) 

If we choose µ to be half the upper bound i.e. 1/λmax, then rate of convergence is limited by 

the term  

(1-µλmin) = (1- λmin/λmax) 

⇒ for fast convergence, we want λmin/λmax close to one, that is a small eigenvalue 

spread. 

for slow convergence, λmin/λmax will be small, thus the eigenvalue spread will be 

large. 



A large eigenvalue spread indicates that input is highly correlated. When the eigenvalues 

of the correlation matrix R are widely spread, the settling time of the steepest-descent 

algorithm is limited by the smallest eigenvalue or the slowest mode. 

 

 

IV. Least-Mean-Squares LMS Algorithm 
 

If it were possible to make exact measurements of the gradient vector at each 

iteration, and if the step-size parameter µ is suitably chosen, then the tap-weight 

vector computed by using the method of steepest-descent would indeed converge to 

the optimum Wiener solution. In reality, however, exact measurements of the gradient 

vector are not possible, and it must be estimated from the available data. In other 

words, the tap-weight vector is updated in accordance with an algorithm that adapts to 

the incoming data. 

 

One such algorithm is the least mean square (LMS) algorithm. A significant feature 

of LMS is its simplicity; it does not require measurements of the pertinent correlation 

functions, nor does it require matrix inversion. 

We have earlier found that 

  gradient vector, ∇(n) = -2p +2Rw(n) 

To estimate this, we estimate the correlation matrix R and cross-correlation matrix p 

by instantaneous estimates i.e. 

     R′(n) = u(n)u
H
(n) 

      p′(n) = u(n) d*(n) 

Correspondingly, the instantaneous estimate of the gradient-vector is 

   ∇′(n) = -2 u(n) d*(n) + 2 u(n)u
H
(n)w(n) 

The estimate is unbiased in that its expected value equals the true value of the 

gradient vector. Substituting this estimate in the steepest-descent algorithm, equation 

(3), we get a new recursive relation for updating the tap-weight vector: 

   w′(n+1) = w′(n)+µu(n)[d*(n) – u
H
(n)w′(n)]      …(8) 

Equivalently the LMS update equation can be written in the form of a  pair of 

relations: 

    e(n) = d(n) - u
H
(n)w′(n)       …(9) 

           w′(n+1) = w′(n)+µu(n)e*(n)       …(10) 

 

The first equation defines the estimation error e(n), the computation of which is based 

on the current estimate of the tap-weight vector w′(n). The term µu(n)e*(n) in the 

second equation represents the correction that is applied to the current estimate of the 

tap-weight vector. The iterative procedure is started with the initial guess w′(0), a 

convenient choice being the null vector; w′(0) = 0. 

 

The algorithm described by the equation (8) or equivalently by the equations (9) and 

(10), is the complex form of the adaptive least mean square (LMS) algorithm. It is 

also known as the stochastic-gradient algorithm. 

 

The instantaneous estimates of R and p have relatively large variances. It may 

therefore seem that the LMS algorithm is incapable of good performance. However, 

the LMS algorithm, being recursive in nature, effectively averages these estimates, in 

some sense, during the course of adaptation. 



 

Ideally, the minimum mean-squared error Jmin is realized when the coefficient vector 

w(n) of the transversal filter approaches the optimum value w0. The steepest descent-

algorithm does realize this idealized condition as the number of iterations, n 

approaches infinity, because it uses exact measurements of the gradient vector at each 

iteration. On the other hand, LMS relies on a noisy estimate of the gradient vector, 

with the result that the tap-weight vector only approaches the optimum value after a 

large number of iterations and then executes small fluctuations about w0. 

Consequently, use of LMS results in a mean-squared error J(∞) after a large no. of 

iterations. 

 

EExxcceessss  mmeeaann--ssqquuaarreedd  eerrrroorr::  is defined as the amount by which the actual value of 

J(∞) is greater than Jmin. 

 

MMiissaaddjjuussttmmeenntt::  The misadjustment M is defined as the dimensionless ratio of the 

steady-state value of the average excess mean-squared error to the minimum mean-

squared error. It can be shown that     
       µ ∑ λi 

   
 

M =         
∀i       

  i=1, 2,…, M 

                2 - µ ∑ λi 
                 ∀i 

Now, for convergence 

   µ < 2/λmax  

If µ is small enough so that 

  µ < 2/∑λi  

then the misadjustment M varies linearly with µ.   
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Simulation Results 

 
 

 

(1) Adaptive Noise Canceller 
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(2) ANC with uncorrelated  noises in primary and reference inputs 
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(3) ANC with signal components in reference input 
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(4) ANC – without reference input 
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(5) ANC as notch filter – single and multiple frequency canceller 
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(6) Bias/Drift Removal using ANC 
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(7) ALE as Adaptive Line Enhancer 
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(8) Learning Curves for various step-size parameters 
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(9) Error performance surface 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Matlab codes  
 

 

(1) 
       %Adaptive Noise Canceller 
 
clear; 
M=16;        %order of filter 
mu=0.04;       %step-size 
N=200;       %Iterations 
 
f=750; 
Ts=1/(4*f);      %fs=4 times the freq of the signal 
noise=(rand(N,1)-0.5); 
n=zeros(M,1); 
w=zeros(M,1); 
 
Wn=[0.1 0.5];    %see w/o filter 
[B,A]=BUTTER(2,Wn); 
x=filter(B,A,n); 
 
for i=1:N 
   t=(i-1)*Ts; 
   for k=M:-1:2 
    n(k)=n(k-1); 
   end; 
   s(i)=cos(2*pi*f*t); 
 n(1)=0.2*(cos(2*pi*50*t)+sin(2*pi*100*t)+cos(2*pi*60*t)+ 
         sin(2*pi*80*t)+cos(2*pi*30*t)+ sin(2*pi*20*t)+  
     sin(2*pi*10*t)+ sin(2*pi*90*t));            %noise(i); 
 d(i)=s(i)+n(1); 
 x=filter(B,A,n); 
 d_out(i)=w'*x; 
 e(i)=d(i)-d_out(i); 
   w=w+mu*e(i)*x; 
end; 
 
i=1:N; 
subplot(3,1,1); 
plot(i,d,'g'); 
title('Adaptive Noise Canceller'); 
xlabel('Iterations'); 
ylabel('ANC i/p'); 
axis([1 N -2 2]); 
subplot(3,1,2); 
plot(i,s,'b'); 
xlabel('Iterations'); 
ylabel('desired'); 
axis([1 N -2 2]); 
subplot(3,1,3); 
plot(i,e,'r'); 
xlabel('Iterations'); 
ylabel('ANC o/p'); 
axis([1 N -2 2]); 

 

 

 

 

 



(2) 
  %ANC with uncorrelated noises in primary and reference inputs 
 
sampling_time=1/(8*200); 
mu=0.04; 
M=16; 
Iterations=500; 
u=zeros(M,1); 
x=zeros(M,1); 
w=zeros(M,1); 
e=zeros(Iterations,1); 
Wn=[0.1 0.5]; 
[B,A]=BUTTER(4,Wn); 
pri_n=0.5*(rand(Iterations,1)-0.5); 
ref_n=0.5*(rand(Iterations,1)-0.5); 
 
for n=0:Iterations-1 
   t=n*sampling_time; 
   for i=M:-1:2 
      u(i)=u(i-1); 
   end; 
   u(1)=0.5*(cos(2*pi*50*t)+sin(2*pi*100*t)+cos(2*pi*60*t)  
     +sin(2*pi*80*t)+cos(2*pi*30*t)+sin(2*pi*20*t));   
        %rand(1); 
   d(n+1)=cos(2*pi*200*n*sampling_time)+u(1)+pri_n(n+1); 
   x=filter(B,A,u)+ref_n(n+1); 
   d_out=conj(w')*x; 
   e(n+1)=d(n+1)-d_out; 
   w=w+mu*x*conj(e(n+1)); 
end; 
 
n=1:Iterations; 
subplot(3,1,1); 
plot(n,d,'g'); 
title('ANC performance-uncorrelated noise in pri and ref i/p'); 
axis([0,500,-3,3]); 
xlabel('Iterations'); 
ylabel('pri. i/p'); 
subplot(3,1,3); 
plot(n,e','b'); 
axis([0,500,-3,3]); 
xlabel('Iterations'); 
ylabel('ANC output'); 
subplot(3,1,2); 
plot(n,cos(2*pi*200*n*sampling_time)); 
ylabel('desired response'); 
xlabel('Iterations'); 
axis([0,500,-3,3]); 

 

 

 

 

 

 

 

 

 

 



(3) 
     %ANC with signal components in reference inputs 
 
sampling_time=1/(8*200); 
mu=0.05; 
M=16; 
Iterations=1000; 
u=zeros(M,1); 
x=zeros(M,1); 
w=zeros(M,1); 
s=zeros(M,1); 
e=zeros(Iterations,1); 
Wn=[0.1 0.5]; 
[Bn,An]=BUTTER(2,Wn); 
Ws=0.5; 
[Bs,As]=BUTTER(2,Wn); 
 
for n=0:Iterations-1 
   t=n*sampling_time; 
   for i=M:-1:2 
        u(i)=u(i-1); 
        s(i)=s(i-1); 
   end; 
   u(1)= 0.2*(cos(2*pi*50*t)+sin(2*pi*100*t)+cos(2*pi*60*t)      
              +sin(2*pi*80*t) +cos(2*pi*30*t)+sin(2*pi*20*t));  
  %rand(1)-0.5; 
   s(1)=cos(2*pi*200*n*sampling_time); 
   sig(n+1)=s(1); 
   noi(n+1)=u(1); 
   d(n+1)=s(1)+u(1); 
   x=filter(Bn,An,u)+0.04*filter(Bs,As,s); 
   d_out=conj(w')*x; 
   e(n+1)=d(n+1)-d_out; 
   w=w+mu*x*conj(e(n+1)); 
end; 
 
n=0:Iterations-1; 
subplot(3,1,1); 
plot(n,d,'r'); 
title('Noise Canceller-Signal Comps. in ref. input'); 
axis([0 Iterations-1 -2 2]); 
xlabel('Iterations'); 
ylabel('ANC i/p'); 
subplot(3,1,2); 
plot(n,cos(2*pi*200*n*sampling_time),'g'); 
axis([0 Iterations-1 -2 2]); 
xlabel('Iterations'); 
ylabel('desired'); 
subplot(3,1,3); 
plot(n,e','b'); 
axis([0 Iterations-1 -2 2]); 
xlabel('Iterations'); 
ylabel('ANC o/p'); 
 
ZOOM XON; 
 

 

 

 

 



(4) ANC as notch 

 
           %ANC notch 
 
clear; 
mu=0.3; 
M=2; 
Iterations=512; 
 
C=0.2; 
w0=2*pi*30; 
phi=pi/4;         
 
phi1=phi; 
phi2=phi+pi/2; 
 
w=zeros(M,1); 
e=zeros(Iterations,1); 
 
fs=(20:1:40)'; 
ws=2*pi*fs; 
A=rand(size(ws));      
theta=2*pi*rand(size(ws));    
Ts=1/(8*max(fs));  
       
for n=1:Iterations 
    t=(n-1)*Ts; 
    s(1:size(ws),n)=(cos(ws*t)); 
    signal(n)=sum(s(1:size(ws),n)); 
    pri_noise(n)=n_a*cos(w0*t+2*pi*n_p); 
    d(n)=signal(n)+pri_noise(n);   
    x(1,1)=C*cos(w0*t+phi1); 
    x(2,1)=C*cos(w0*t+phi2); 
    y=conj(w')*x; 
    e(n)=d(n)-y; 
    w=w+2*mu*conj(e(n))*x; 
end 
 
f=0:100; 
Se=zeros; 
Sd=zeros; 
Ssignal=zeros; 
for n=1:Iterations 
   Se=Se+e(n)*exp(-sqrt(-1)*2*pi*f*(n-1)*Ts); 
   Sd=Sd+d(n)*exp(-sqrt(-1)*2*pi*f*(n-1)*Ts); 
 Ssignal=Ssignal+signal(n)*exp(-sqrt(-1)*2*pi*f*(n-1)*Ts); 
end; 
subplot(2,1,1); 
xlabel('Iterations'); 
plot(f,abs(Sd),'b'); 
title('Noise Canceller as Notch Filter'); 
ylabel('I/p spectrum'); 
xlabel('Frequency'); 
subplot(2,1,2); 
plot(f,abs(Se),'r'); 
ylabel('ANC o/p spectrum'); 
xlabel('Frequency'); 
text(70,250,'mu = 0.3'); 
text(70,210,'C = 0.2'); 
 
 



(5) ANC for Bias/Drift removal 

 
clear; 
N=1024; 
mu=0.01;    %change mu=0.001 and see the result-mmse vs. speed 
of adaptation 
ws=200; 
Ts=1/(4*ws); 
%drift=1.2;     %constant bias; 
w(1)=0; 
for n=1:N 
   t=(n-1)*Ts; 
   s(n)=cos(ws*t); 
   drift(n)=(-1+exp(0.0008*n)); 
   d(n)=s(n)+drift(n); 
   drift_=w(n); 
   s_(n)=d(n)-drift_; 
   e(n)=s_(n); 
   w(n+1)=w(n)+2*mu*e(n); 
end; 
 
 
subplot(2,1,1); 
plot(d); 
title('Bias/Drift removal using ANC'); 
ylabel('i/p signal'); 
xlabel('Iterations'); 
axis([0 N -2 2]); 
subplot(2,1,2); 
plot(s_); 
ylabel('ANC o/p'); 
xlabel('Iterations'); 
axis([0 N -2 2]); 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(6) ANC as Adaptive Line Enhancer 

 
clear; 
f=200; 
Ts=1/(16*f); 
 
L=1024; 
for l=1:L 
   t=(l-1)*Ts; 
   s(l,1)=0.1*cos(2*pi*f*t); 
end; 
 
N=8; 
for l=1:L 
    n(l,1:N)=normrnd(0,0.8,1,N); 
end; 
 
mu=0.01; 
M=128; 
for i=1:N 
   w=zeros(M,N); 
 d=s+n(1:L,i); 
 ref=zeros(M,1); 
 for l=1:L 
    for k=M:-1:2 
     ref(k)=ref(k-1); 
    end; 
    ref(1)=n(l,i); 
   d_out(l)=w(1:M,i)'*ref; 
    e(l)=d(l)-d_out(l); 
    w(1:M,i)=w(1:M,i)+2*mu*ref*conj(e(l));   
   end; 
end; 
 
w_avg=zeros(M,1); 
for i=1:N 
   w_avg=w_avg+w(1:M,i); 
end; 
w_ens=w_avg/N; 
 
DFT=DFTMTX(length(w_ens))*w_ens; 
Power_spec=DFT.*conj(DFT); 
 
plot(Power_spec); 
title('ALE - Adaptive Line Enhancer'); 
xlabel('frequency'); 
ylabel('Transfer function freq. response'); 

 


