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ABSTRACT
Instances of the Boolean satisfiability problem (SAT) arise
in many areas of circuit design and verification. These in-
stances are typically constructed from some human-designed
artifact, and thus are likely to possess much inherent sym-
metry and sparsity. Previous work [4] has shown that ex-
ploiting symmetries results in vastly reduced SAT solver run
times, often with the search for the symmetries themselves
dominating the total SAT solving time. Our contribution is
twofold. First, we dissect the algorithms behind the venera-
ble nauty [9] package, particularly the partition refinement

procedure responsible for the majority of search space prun-
ing as well as the majority of run time overhead. Second,
we present a new symmetry-detection tool, saucy, which
outperforms nauty by several orders of magnitude on the
large, structured CNF formulas generated from typical EDA
problems.

Categories and Subject Descriptors
G.2.2 Discrete Mathematics—Graph algorithms.

General Terms
Algorithms, Verification.

Keywords
Boolean satisfiability (SAT), symmetry, abstract algebra,
backtrack search, partition refinement, graph automorphism.

1. INTRODUCTION
Boolean satisfiability instances arising in electronic design

automation (EDA) applications typically are constructed
from human-designed circuits, layouts, or other designs re-
quiring the creativity and insight of a human engineer. In
the interest of clarity and efficiency, designs will often exhibit
significant structure. We are concerned with two types of
structure: symmetry and sparsity. A design possesses sym-

metry if there is some rearrangement of the components of
the design that preserves its structure. Sparsity is present
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when most design elements are directly related to only a few
other elements in the whole design.

Work begun by Crawford [6], and improved by Aloul et
al. [3, 4, 5], has shown that structural symmetries present
in formulas, represented in conjunctive normal form (CNF),
can be exploited to improve SAT solver performance. The
CNF is converted into a colored undirected graph, whose
symmetries are found and converted back into additional
symmetry-breaking predicates (SBPs) concatenated to the
original formula. These predicates eliminate symmetric re-
gions of the search space explored by the SAT solver. The
addition of the SBPs often reduces the search time so dra-
matically that the search for the symmetries themselves
dominates the SAT-solving time.

In [3, 4, 5], the nauty [9, 10] program is used to extract
the symmetries from the graph constructed from the CNF.
nauty is the dominant publicly-available tool for symme-
try extraction and graph isomorphism detection; however, it
is not optimized for the large, sparse, specially-constructed
graphs arising from EDA designs. Wang et al. [15] propose
a custom symmetry detection engine for structural sym-
metries in Boolean functions. Their work exploits special
properties of Boolean functions but abandons the use of
partition refinement throughout the search due to its poor
performance. Our new symmetry detection tool, saucy,
makes use of the basic search structure of nauty but greatly
improves the performance of the partition refinement pro-
cedure. Our tool outperforms nauty by several orders of
magnitude on many benchmarks, including FPGA channel
routing and microprocessor pipeline verification instances.

The remainder of this paper is outlined as follows. In
Section 2, we discuss the construction of the graphs that
are input to nauty. The partition refinement and search
tree mechanisms employed in nauty are discussed in Sec-
tion 3. In Section 4 we explore the methods of exploiting
structure employed by saucy, and demonstrate saucy’s em-
pirical success. We conclude in Section 5.

2. PREVIOUS WORK
Crawford [6] suggested a graph construction for the dis-

covery of symmetries of formulas represented in CNF. Aloul
et al. [5] extended his work; their construction is considered
here. Let ϕ be a formula in CNF, over v variables and con-
sisting of c clauses. We form a colored undirected graph G

from ϕ using the following construction: (1) add a vertex for
each variable and its negation, and for each clause; (2) add
an edge between each variable and its negation (for Boolean

consistency); (3) add an edge between each clause vertex
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Figure 1: Application of ordered partition refinement. Graph (a) represents a graph generated from a CNF formula,
with an initial coloring differentiating literals and clauses. In graph (b), some vertices have been differentiated by their degree.
Refinement distinguishes two more vertices in (c), yielding a stable coloring.

Benchmark Sym Search Total % Sym
Hole-n 0.38 0.07 0.45 84.4
Urq 0.76 1.17 1.93 39.4
GRoute 38.76 5.08 43.84 88.4
FPGARoute 3.24 0.21 3.45 93.9
ChnlRoute 25.86 0.17 26.03 99.4
XOR 11.43 2.41 13.84 82.6
2pipe 23.50 8.01 31.51 74.6

Table 1: Run times in SAT solving (in seconds),
taken from [4]. Each row represents a class of graphs and
the average run times for symmetry detection with nauty,
SAT solving, and total (symmetry with search) run time.
The % Sym column lists the percentage of total time taken
up by symmetry detection.

and its constituent literals; and (4) provide an initial col-
oring with variables and their negations colored differently
than the clauses.

The graph constructed from the formula (a′ + b + c)(a +
b′ + c′)(b′ + c) is displayed in Figure 1(a); vertices C1, C2,
and C3 are colored differently than the literal vertices.

With this construction, there is a one-to-one correspon-
dence between isomorphic CNF formulas and isomorphic
colored graphs. Aloul et al. considered an alternative graph
construction, where binary clauses are represented by an
edge directly connecting their literals, saving one edge and
one vertex for each such clause. They show in [5] that such
graphs may have more symmetries than the original formula
possesses; fortunately, the spurious symmetries are easy to
detect and remove from the set returned by the symmetry
detector.

Table 1 is taken from [4], using nauty for symmetry de-
tection, and demonstrates the success of using SBPs to trim
the search space explored by SAT solvers. In all but the
synthetic Urquhart instances, the symmetry detection time
dominates the SAT solving time, suggesting that the symme-
try detection process must be optimized to further improve
SAT solver performance.

3. OVERVIEW OF NAUTY
Finding the symmetries of a colored undirected graph is a

complex problem in computational group theory, and thus
our description of nauty will delve into the depths of dis-
crete mathematics. A thorough development of the theory

behind nauty can be found in [8, 9]; a somewhat gentler,
higher-level overview is in [11].

Let G be an undirected graph with n vertices, and let V =
{0, . . . , n − 1}. Each vertex in G is labeled with a unique
value in V . A permutation on V is a bijection γ : V → V .
An automorphism of G is a permutation γ of the labels as-
signed to vertices in G such that Gγ = G; we say that γ is a
structure-preserving mapping, or symmetry. The set of all
such valid relabelings is called the automorphism group of G

and is denoted Aut(G). A coloring is an ordered partition
π of V —the cells of π form a sequence, not simply an un-
ordered set. For example, the coloring provided to nauty
for the graph in Figure 1 would be [aa′bb′cc′|C1C2C3].

nauty uses colorings to distinguish vertices that cannot
possibly map into each other by any symmetry. Thus, given
some coloring π, we can find some finer coloring π′ that
maximally distinguishes unmappable vertices. The process
of creating π′ from π is called refinement. The refinement
procedure employed by nauty is based on Hopcroft’s algo-
rithm for minimizing the number of states in a finite au-
tomaton [2]: intuitively, if v1 and v2 map into each other by
some symmetry, then they have the same degree, and v1’s
neighbors have the same degree as v2’s neighbors, and so on.

As an example, consider the sequence of refinement steps
in Figure 1. Vertices with different degree can never map
into each other by any symmetry, and so can always be dis-
tinguished from each other. Thus, we can distinguish C3

from the other clauses and b′ and c from the other literals,
yielding the refined coloring π(1) = [aa′bc′|b′c|C3|C1C2], dis-
played in Figure 1(b). The process of splitting some of the
cells induces further refinement—each vertex in a cell must
have the same number of connections to vertices in every
cell in the coloring, or else they can be distinguished. In the
example, b and c′ are connected to the second cell ({b′, c}),
while a and a′ are not; we thus split the first cell to arrive
at the further refined coloring π(2) = [aa′|bc′|b′c|C3|C1C2],
shown in Figure 1(c). No further refinement is induced by

this split; we say this coloring is stable, and return π′ = π(2).
If the refinement procedure returns a discrete coloring π′,

i.e. every cell of the partition is a singleton, then all ver-
tices can be distinguished, so G must possess no symmetries
besides the identity. However, if π′ is not discrete, then
there is some non-singleton cell in π′ representing vertices
that could not be distinguished based on degree—they may
participate in some symmetry. nauty proceeds by selecting
some non-singleton cell T of π′, called the target cell, and
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Figure 2: Search tree for finding symmetries. Each box represents a search tree node, where the top coloring is the
initial coloring of the node and the bottom coloring is its stable refinement. Colorings πa and πa′ are created from π by
individualizing each element of π’s target cell in front of the others. Automorphisms of the graph G are permutations γ that
map discrete colorings into each other, such that Gγ = G.

forms |T | colorings descendant from π′, each identical to π′

except that one t ∈ T is individualized in front of T − {t}.
Each of these colorings is subsequently refined, and further
descendant colorings are generated if the refined colorings
are not discrete; this process is iterated until discrete color-
ings are reached. The colorings explored form a search tree

with the discrete colorings at the leaves.
The leaves of the search tree represent possible symmetries

of G. Let Gπ be the relabeling of G with respect to discrete
coloring π. If π1 and π2 are discrete colorings, and π1

γ = π2,
then γ is a symmetry of G if and only if Gπ1 = Gπ2 . We can
thus enumerate Aut(G) by fixing the first leaf encountered
in the search, denoted ζ, and comparing it to every other dis-
crete coloring: Aut(G) = {γ : π discrete, ζγ = π, and Gγ =
G}.

The search tree for our running example is shown in Fig-
ure 2. Since our stable coloring π′ is not discrete, we select
({a, a′}) as our target cell, and form descendant colorings
πa and πa′ . After refining these new colorings, we find they
are both discrete. The permutation γ mapping the stable
colorings into each other is γ = (a, a′)(b, c′)(b′, c)(C1, C2); a
check that Gγ = G verifies that γ ∈ Aut(G). In fact, γ is
the only symmetry G possesses besides the identity.

The set of automorphisms of a graph forms a permutation
group under function composition. We can find some set
H ⊆ Aut(G) such that every symmetry can be represented
as a product of integer powers of elements of H. The set H

generates Aut(G); we denote this by 〈H〉 = Aut(G). H is ir-

redundant if no γ ∈ H can be generated from H −{γ}. The
key result [5, 7] from computational group theory is that
if H is irredundant, then it contains at most log2 |G| ele-
ments, providing exponential compression of the solution,
as it implicitly represents all of Aut(G). nauty produces
such a generating set by performing a depth-first traversal
of the search tree, and pruning away subtrees whose leaves
would produce only automorphisms that can already be gen-
erated by previously discovered automorphisms. The details
of determining which subtrees are uninteresting can be found
in [9].

Not all leaves of the search tree are guaranteed to yield au-
tomorphisms of the graph. This occurs when the refinement
procedure is unable to differentiate vertices that cannot be

mapped into each other. However, such behavior only oc-
curs in highly regular graphs, which are not common to those
generated from CNF formulas from EDA applications. Even
if bad leaves are encountered, backtracking can be avoided
if we relax the constraint of determining generators for all of
Aut(G)—we can simply jump back to the greatest common
ancestor of that leaf with ζ to skip the rest of that subtree.
In the case that no bad leaves are generated or backtracked
from, the number of nodes of the search tree is O(n3), but
is often very small due to the considerable pruning possible.
Table 2 shows various CNF formulas, the size of their cor-
responding graphs, and the number of nodes of the search
tree explored.

4. SPARSITY AND SAUCY
Despite the empirical success of nauty, the data in Ta-

ble 1 show that any further dramatic improvements in the
performance of SAT solvers on symmetric instances must be
made in the symmetry detector, not the SAT solver itself.
nauty’s biggest successes have been in the mathematical do-
main, particularly concerning the graph isomorphism prob-
lem; for instance, nauty is the first program to successfully
generate all isomorph-free graphs of degree 11. However, to
achieve such successes nauty is completely general-purpose,
assuming no properties of its input beyond being a colored
undirected graph.

Graphs constructed from CNF formulas arising from EDA
applications share some important characteristics. These
graphs exhibit considerable sparsity—the average degree of
a vertex is small, since most clauses do not have literals pro-
portional to the number of variables. Improvements can be
made to exploit this sparsity during partition refinement.
We can extend the search data structures to include a map-
ping from vertices to their corresponding colorings, and use
that mapping to attempt to refine only directly-connected
cells. Since most cells are connected to only a few others,
this has a dramatic effect on refinement performance. Other
auxiliary structures can be used to annotate information re-
garding cell size and the position of singletons, improving
the performance of target cell selection and refinement as
well.



Instance CNF Graph Symmetry Detection SAT Solving
Name SAT? Vars Clauses Vertices Edges Nodes Nauty Saucy Speedup zChaff w/Sym
2pipe N 892 6695 3575 14625 2415 2.93 0.03 97.67 0.18 0.13
3pipe N 2468 27533 10048 58556 13041 57.53 0.16 359.56 3.20 6.44
4pipe N 5237 80213 21547 167942 43071 523.64 0.77 680.05 228.82 153.50
5pipe N 9471 195452 38746 403799 108345 3144.85 2.86 1099.60 347.92 122.85
6pipe N 15800 394739 65839 812525 229503 mem 8.41 ∞ time time
7pipe N 24065 731850 100668 1498971 431985 mem 18.82 ∞ time time
fpga11 13 N 286 1742 598 2288 1079 0.14 0.02 7.00 time 0.03
fpga11 20 N 440 4220 920 5060 1828 0.37 0.04 9.25 time 0.05
fpga13 10 sat Y 195 905 530 1870 435 0.08 0.01 8.00 time 0.02
fpga13 12 sat Y 234 1242 636 2556 561 0.14 0.01 14.00 time 0.02
hole11 N 132 738 276 990 253 0.02 0.01 2.00 102.25 0.02
hole12 N 156 949 325 1248 300 0.03 0.01 3.00 944.52 0.02
s3-3-3-3 Y 960 9156 2558 11700 465 1.87 0.03 62.33 22.95 0.16
s3-3-3-8 Y 912 8356 2432 10776 435 1.42 0.02 71.00 7.23 0.11
s4-4-3-1 Y 2688 33924 10354 44964 1378 88.74 0.19 467.05 441.18 218.53
s4-4-3-2 Y 2592 31736 9974 42348 1326 79.67 0.17 468.65 204.29 877.59
s4-4-3-3 Y 2592 31738 9970 42348 1326 75.98 0.17 446.94 time 884.78
s4-4-3-4 Y 2784 36176 10714 47580 1711 155.31 0.26 597.35 time 464.46
s4-4-3-5 Y 2880 38504 11072 50280 1378 101.63 0.21 483.95 time 134.09
s4-4-3-6 Y 2496 29628 9620 39888 1431 76.48 0.17 449.88 679.13 13.24
s4-4-3-7 Y 2688 33926 10362 44988 1326 78.96 0.19 415.58 831.04 18.27
s4-4-3-8 Y 1728 15320 6608 22296 1378 28.42 0.09 315.78 123.82 0.68
s4-4-3-9 Y 3360 51222 12920 64968 1596 209.52 0.38 551.37 75.21 time
Urq3 4 N 36 220 292 1208 210 0.02 0.01 2.00 0.07 0.02
Urq3 9 N 37 236 306 1289 231 0.02 0.01 2.00 3.38 0.02
x1 32 N 94 250 436 840 561 0.05 0.01 5.00 time 0.02
x1 36 N 106 282 492 948 867 0.07 0.01 7.00 time 3.47

Table 2: Statistics for various EDA-related instances. All times are in seconds. All programs were executed on a
Pentium 4, 2.5 GHz machine with 1 GB memory. Cells marked “mem” represent executions of nauty which ran out of memory;
those marked “time” are zChaff executions which timed-out after 1000 seconds. The n-pipe instances are microprocessor
verification benchmarks [14]. The fpga, s3, and s4 instances represent FPGA routing problems. The hole instances are from
the DIMACS collection [1]. The Urq instances are from [13]. The x1 instances are XOR-chains.

Given the particular construction discussed earlier, we can
conclude that any vertex representing a clause is directly
connected only to vertices representing variables or their
complements; clauses are never connected to each other. In
terms of partition refinement, suppose we are trying to refine
cell S1 with respect to S2, and both S1 and S2 consist of
clauses. Then for each x ∈ S1, x has no connections to S2;
thus, vertices in S1 are indistinguishable with respect to S2,
and no splitting is performed. Since this is true of every pair
of clause cells, we can always use clause cells to refine only
cells of literals, saving considerable work.

Motivated by these observations, we implemented a new
symmetry detection tool, saucy1, which capitalizes on these
characteristics of graphs from CNF to improve performance.
These improvements are focused around the partition refine-
ment procedure, central to the search process. Indeed, in
our experiments, typically over 80% of the execution time
of symmetry detection engines is spent in refining the color-
ings produced as the search tree is traversed. By improving
the refinement procedure, saucy delivers greatly improved
run times over nauty on these specialized graphs.

Table 2 contains statistics on a variety of CNF formulas,
their corresponding undirected graphs, and a performance
comparison of nauty and saucy. These instances include
FPGA routing (fpga, s3, s4 ) and microprocessor pipeline
verification (pipe) problems. Clearly, saucy exhibits signifi-
cant speedups on these structured graphs. Figure 3 demon-

1Available on the GSRC Bookshelf for VLSI CAD at
http://vlsicad.eecs.umich.edu/BK/SAUCY.
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Figure 3: Relation of saucy’s speedup over nauty
to graph size, for graphs listed in Table 2 and requiring
> 0.01 seconds for saucy. saucy exhibits a linear speedup
over nauty on sparse EDA-related instances.

strates that saucy’s speedup is roughly linear in the size
of the formulas given to it. The last two columns of Ta-
ble 2 show the impact of adding symmetry breaking predi-
cates [4] to the formulas input to the zChaff [12] SAT solver;
the impact of symmetries should be comparable with other
DPLL-based SAT solvers, as shown in [5]. Addition of the
symmetry breaking predicates results in poor performance
for a few of the instances; for most, however, the impact
of adding the SBPs is dramatic, and the execution time of
saucy does not dominate the SAT solving time.

In order to quantify saucy’s performance on dense graphs,
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Figure 4: saucy (+) and nauty (×) slowdowns on
dense graphs. The programs were executed on the comple-
ments of the graphs listed in Table 2, except 4pipe through
7pipe, for which saucy ran out of memory.

we constructed the complement of each graph in Table 2,
defined as the graph with an edge wherever the original
graph had none, and vice versa. Taking the complement of
a graph preserves its automorphism group, and isolates run
time overhead solely in the partition refinement algorithm.
Figure 4 shows that nauty is relatively unaffected by the
dense representation, while saucy exhibits a slowdown pro-
portional to the size of the graph, which is expected since
saucy is designed to take advantage of the sparsity present
in realistic instances.

5. CONCLUSIONS AND FUTURE WORK
We have presented saucy, a new implementation of the

nauty system specialized to the structured graphs gener-
ated from CNF formulas. By utilizing the sparsity and par-
ticular construction of these colored graphs, saucy achieves
considerable performance improvements over nauty, mak-
ing symmetry detection a feasible part of the satisfiability
solving flow.

Future work will further utilize structure within refine-
ment, and apply saucy to other discrete domains, such
as constraint satisfaction problems, for which knowledge of
symmetry might improve algorithmic performance.
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