
Quantifying Information Leaks in Outbound Web Traffic

Kevin Borders
Web Tap Security, Inc.

Ann Arbor, MI
kborders@webtapsecurity.com

Atul Prakash
University of Michigan

Ann Arbor, MI
aprakash@eecs.umich.edu

Abstract

As the Internet grows and network bandwidth continues
to increase, administrators are faced with the task of
keeping confidential information from leaving their
networks. Today’s network traffic is so voluminous that
manual inspection would be unreasonably expensive. In
response, researchers have created data loss prevention
systems that check outgoing traffic for known confidential
information. These systems stop naïve adversaries from
leaking data, but are fundamentally unable to identify
encrypted or obfuscated information leaks. What remains is
a high-capacity pipe for tunneling data to the Internet.

We present an approach for quantifying information
leak capacity in network traffic. Instead of trying to detect
the presence of sensitive data—an impossible task in the
general case—our goal is to measure and constrain its
maximum volume. We take advantage of the insight that
most network traffic is repeated or determined by external
information, such as protocol specifications or messages
sent by a server. By filtering this data, we can isolate and
quantify true information flowing from a computer. In this
paper, we present measurement algorithms for the
Hypertext Transfer Protocol (HTTP), the main protocol for
web browsing. When applied to real web browsing traffic,
the algorithms were able to discount 98.5% of measured
bytes and effectively isolate information leaks.

1. Introduction

Network-based information leaks pose a serious threat to
confidentiality. They are the primary means by which
hackers extract data from compromised computers. The
network can also serve as an avenue for insider leaks, which,
according to a 2007 CSI/FBI survey, are the most prevalent
security threat for organizations [17]. Because the volume of
legitimate network traffic is so large, it is easy for attackers
to blend in with normal activity, making leak prevention
difficult. In one experiment, a single computer browsing a
social networking site for 30 minutes generated over 1.3 MB
of legitimate request data—the equivalent of about 195,000
credit card numbers. Manually analyzing network traffic for
leaks would be unreasonably expensive and error-prone. Due
to the heavy volume of normal traffic, limiting network

traffic based on the raw byte count would only help stop
large information leaks.

In response to the threat of network-based information
leaks, researchers have developed data-loss prevention
(DLP) systems [18, 24]. DLP systems work by searching
through outbound network traffic for known sensitive
information, such as credit card and social security numbers.
Some even catalog sensitive documents and look for
excerpts in outbound traffic. Although they are effective at
stopping accidental and plain-text leaks, DLP systems are
fundamentally unable to detect obfuscated information
flows. They leave an open channel for leaking data to the
Internet.

We introduce a new approach for precisely quantifying
information leak capacity in network traffic. Rather than
searching for known sensitive data—an impossible task in
the general case—we aim to measure and constrain its
maximum volume. This research addresses the threat of a
hacker or malicious insider extracting sensitive information
from a network. He or she could try to steal data without
being detected by hiding it in the noise of normal outbound
traffic. For web traffic, this often means stashing bytes in
paths or header fields within seemingly benign requests. To
combat this threat, we exploit the fact that a large portion of
legitimate network traffic is repeated or constrained by
protocol specifications. This fixed data can be ignored,
which isolates real information leaving a network, regardless
of data hiding techniques.

The leak measurement techniques presented here focus
on the Hypertext Transfer Protocol (HTTP), the main
protocol for web browsing. They take advantage of HTTP
and its interaction with Hypertext Markup Language
(HTML) documents and Javascript code to quantify
information leak capacity. The basic idea is to compute the
expected content of HTTP requests using only externally
available information, including previous network requests,
previous server responses, and protocol specifications. Then,
the amount of unconstrained outbound bandwidth is equal to
the edit distance (edit distance is the size of the edit list
required to transform one string into another) between actual
and expected requests, plus timing information. Given
correct assumptions about timing channel characteristics,
these results may overestimate, but will never underestimate
the true size of information leaks, thus serving as a tight
upper bound on information leakage.

One option for measuring unconstrained bandwidth
would be to use a traditional compression algorithm like gzip
[8] or bzip2 [20]. This would involve building up a library
from previous messages and only counting the incremental
size of new requests. Traditional compression can help for
simple requests that have large repeated substrings.
However, this protocol-agnostic approach fails to capture
complex interactions between requests and replies that go
beyond string repetition.

The analysis techniques presented in this paper take
advantage of protocol interactions. Parsing all of the links on
a web page, for example, helps construct an accurate
distribution of expected requests. Our analysis also involves
executing scripts in a simulated browser environment to
extract links that cannot be derived from static processing.
These improvements lead to a much more precise
measurement of information in outbound web traffic than
conventional compression algorithms.

Figure 1 illustrates the benefit of precise leak
quantification. The graphs show bandwidth from legitimate
web browsing over a one-day period in black. A 100 KB
information leak was inserted into the traffic and can be seen
in a lighter color. This leak was deliberately inserted in short
bursts, so as to more closely resemble legitimate web traffic
and avoid detection methods that look at request regularity
[3]. The left graph shows raw request bandwidth. The leak is
barely noticeable here and easily blends in with the noise of
normal activity. After running the same traffic through our
unconstrained bandwidth measurement engine, however, the
leak stands out dramatically from normal traffic. It is
important to note that more accurate traffic measurement
does not completely stop information leaks from slipping by
undetected; it only makes it possible to identify smaller
leaks. Our analysis techniques force a leak that would
normally blend in with a week’s worth of traffic to be spread
out over an entire year.

We evaluated our leak measurement techniques on real
browsing data from 10 users over 30 days, which included
over 500,000 requests. The results were compared to a
simple calculation described in prior research [3], and to
incremental gzip compression [8]. The average request size
using the leak measurement techniques described in this
paper was 15.8 bytes, 1.6% of the raw byte count. The
average size for gzip was 132 bytes, and for the simple
measurement was 243 bytes. The experiments show that our
approach is an order of magnitude better than traditional gzip
compression.

This work focuses specifically on analyzing leaks in
HTTP traffic for a few reasons. First, it is the primary
protocol for web browsing and accounts for a large portion
of overall traffic. Many networks, particularly those in which
confidentiality is a high priority, will only allow outbound
HTTP traffic and block everything else by forcing all traffic
to go through a proxy server. In this scenario, HTTP would
be the only option for directly leaking data. Another reason
for focusing on HTTP is that a high percentage of its request
data can be filtered out by eliminating repeated and
constrained values.

The principles we use to measure leaks in HTTP traffic
are likely to work for other protocols as well. Binary
protocols for instant messaging, secure shell access, and
domain name resolution all contain a number of fixed and
repeated values. Furthermore, correlation between protocols
may enable filtering of DNS lookups. Extending a similar
methodology to outbound SMTP (e-mail) traffic is likely to
be more challenging. E-mail primarily consists of free-form
data and only contains small fixed fields. However, the
unconstrained data in e-mails is usually text, for which there
are well-known methods of determining the information
content [21], or file attachments. These attachments are made
up of data written out in a specific file format, which could
be analyzed in a manner similar to HTTP. In fact, researchers

 0

 20

 40

 60

 80

 100

 120

 140

 160

10:00 12:00 14:00 16:00 18:00 20:00

B
a
n
d
w

id
th

 -
 R

a
w

 (
K
B
/m

in
)

Time of day

Information Leak
Normal Traffic

 0

 1

 2

 3

 4

 5

 6

10:00 12:00 14:00 16:00 18:00 20:00

B
a
n
d
w

id
th

 -
 P

re
ci

se
 (

K
B
/m

in
)

Time of day

Information Leak
Normal Traffic

 (a) (b)

Figure 1. Graph of outbound web traffic during a typical work day with a 100 Kilobyte
information leak inserted. (a) shows the raw byte count, where the leak is barely noticeable, and

(b) shows the precise unconstrained bandwidth measurement, in which the leak stands out prominently.

have already examined ways of identifying information that
has been hidden in files with steganography by looking for
additional unexpected entropy [2]. Further investigation of
leak measurement techniques for file attachments and other
protocols is future work.

The measurement techniques in this paper do not provide
an unconstrained bandwidth measurement for fully encrypted
traffic. (If a hacker tries to hide or tunnel encrypted data in
an unencrypted protocol, it can be measured.) All networks
that allow outbound encrypted traffic must deal with this
fundamental problem, and we do not try to solve it here. If
confidentiality is a top priority, there are a few possibilities
for obtaining original plain text. One is to force all encrypted
traffic through a gateway that acts as a man-in-the-middle on
each connection. This can be achieved by designating the
gateway as a local certification authority and having it
rewrite certificates. Another option is to deploy an agent on
every host in the network that reports encryption keys to a
monitoring system. With this approach, any connections that
cannot be decrypted are subsequently blocked or flagged for
further investigation.

The leak measurement techniques presented in this paper
do not constitute an entire security solution, but rather act as
a tool. We envision the primary application of this work to
be forensic analysis. One could filter out almost all
legitimate activity, making it faster and easier to isolate
leaks. Another possible application would be detecting leaks
in live network traffic. Additional research would be
required to determine appropriate thresholds and optimize
the algorithms for handling large volumes of traffic.
Integrating leak quantification into a security application is
future work.

The remainder of this paper is laid out as follows. Section
2 discusses related work. Section 3 poses a formal problem
description. Section 4 talks about static message analysis
techniques. Section 5 describes dynamic content analysis
methodology. Section 6 outlines an approach for quantifying
timing information. Section 7 presents evaluation results.
Section 8 discusses potential strategies for mitigating entropy
and improving analysis results. Finally, section 9 concludes
and suggests future research directions.

2. Related Work

Prior research on detecting covert web traffic has looked
at measuring information flow via the HTTP protocol [3].
Borders et al. introduce a method for computing bandwidth
in outbound HTTP traffic that involves discarding expected
header fields. However, they use a stateless approach and
therefore are unable to discount information that is repeated
or constrained from previous HTTP messages. In our
evaluation, we compare the leak measurement techniques
presented in this paper with the simple methods used by Web
Tap [3] and demonstrate an order of magnitude
improvement.

There are numerous techniques for controlling
information flow within a program. Jif [16] ensures that
programs do not leak information to low-security outputs by
tainting values with sensitive data. More recent work by
McCamant et al. [13] goes one step further by quantifying
amount of sensitive data that each value in a program can
contain. Unfortunately, intra-program flow control systems
rely on access to source code, which is not always feasible.
They do not protect against compromised systems. The
algorithms in this paper take a black box approach to
measuring leaks that makes no assumptions about software
integrity.

Research on limiting the capacity of channels for
information leakage has traditionally been done assuming
that systems deploy mandatory access control (MAC)
policies [5] to restrict information flow. However, mandatory
access control systems are rarely deployed because of their
usability and management overhead, yet organizations still
have a strong interest in protecting confidential information.

A more recent system for controlling information flow,
TightLip [27], tries to stop programs from leaking sensitive
data by executing a shadow process that does not see
sensitive data. Outputs that are the same as those of the
shadow process are treated normally, and those that are
different are marked confidential. TightLip is limited in that
it relies on a trusted operating system, and only protects
sensitive data in files. In comparison, our leak measurement
methods will help identify leaks from a totally compromised
computer, regardless of their origin.

A popular approach for protecting against network-based
information leaks is to limit where hosts can send data with a
content filter, such as Websense [26]. Content filters may
help in some cases, but they do not prevent all information
leaks. A smart attacker can post sensitive information on any
website that receives input and displays it to other clients,
including useful sites such as www.wikipedia.org. We
consider content filters to be complimentary to our
measurement methods, as they reduce but do not eliminate
information leaks.

Though little work has been done on quantifying
network-based information leaks, there has been a great deal
of research on methods for leaking data. Prior work on
convert network channels includes embedding data in IP
fields [6], TCP fields [22], and HTTP protocol headers [7].
The methods presented in this paper aim to quantify the
maximum amount of information that an HTTP channel
could contain, regardless of the particular data hiding scheme
employed.

Other research aims to reduce the capacity of network
covert channels by modifying packets. Network “pumps”
[11] and timing jammers [9] control transmission time to
combat covert timing channels. Traffic normalizers (also
known as protocol scrubbers) will change IP packets in flight
so that they match a normal format [10, 12]. Glavlit is an
application-layer protocol scrubber that focuses specifically
on normalizing HTTP traffic from servers [19]. Traffic

normalization helps eliminate covert storage channels by
fixing ambiguities in network traffic. Research on
normalizing network traffic to reduce covert channel
capacity is complimentary to our work, which focuses only
on quantifying information content.

An earlier version of this paper was published at a
workshop [4]. Previously, the measurement techniques only
consisted of those discussed in the section on static content
analysis. The evaluation was also limited to controlled
scenarios. This paper adds dynamic script analysis, considers
timing channels, and evaluates our techniques on real web
traffic. Improvements from the workshop paper have had a
significant impact on results from common controlled
scenario experiments. For example, script handling helped
reduce the average request size from 73.3 bytes to 7.8 bytes
for the web mail scenario.

3. Problem Description

In this paper, we address the problem of quantifying
network-based information leak capacity by isolating
information from the client in network traffic. We will refer
to information originating from the client as UI-layer input.
From a formal perspective, the problem can be broken down
to quantifying the set U of UI-layer input to a network
application given the following information:

• I – The set of previous network inputs to an
application.

• O – The set of current and previous network outputs
from an application.

• A – The application representation, which is a
mapping: U × I → O of UI-layer information
combined with network input to yield network output.

By definition, the set I cannot contain new information
from the client because it is generated by the server. In this
paper, the application representation A is based on protocol
specifications, but it could also be derived from program

analysis. In either case, it does not contain information from
the client. Therefore, the information content of set O can be
reduced to the information in the set U. If the application has
been tampered with by malicious software yielding a
different representation A’, then the maximum information
content of tampered output O’ is equal to the information
content of the closest expected output O plus the edit
distance between O and O’. Input supplied to an application
from all sources other than the network is considered part of
U. This includes file uploads and system information, such
as values from the random number generator. Timing
information is also part of the set U.

4. Static Content Analysis

This section describes methods for measuring the amount
of information in outbound HTTP requests by statically
analyzing previous requests and responses. Some portions of
the request headers are fixed and can be immediately filtered
if they contain the expected values. Most of the header fields
only change on rare occasion and can be discounted if they
are the same as previous requests. The request path, which
identifies resources on the web, is usually derived from
previous HTML pages returned by the server. Filtering out
repeated path values requires comparing paths to those in
both prior requests and responses. Also, HTTP form post
requests reference field names and default values contained
in HTML pages. This section elaborates on methods for
extracting expected HTTP request fields from static content.

4.1. HTTP Request Overview

There are two main types of HTTP requests used by web
browsers, GET and POST. GET typically obtains resources
and POST sends data to a server. An example of a HTTP
POST request can be seen in Figure 2. This request is
comprised of three distinct sections: the request line, headers,
and the request body. GET requests are very similar except

1 POST /download HTTP/1.1
2 Host: www.example.com
2 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1;
en-US; rv:1.8.1.12) Gecko/20080201 Firefox/2.0.0.12

2 Keep-Alive: 300
2 Connection: keep-alive

2 Referer: http://www.example.com/download.html
2 Content-Type: application/x-www-form-urlencoded
2 Content-Length: 73
3 FirstName=John&LastName=Doe&Email=johndoe%40example.
com&Submit=Download

<html>
<body>
 <form action=”/download” method=”post”>
 <input type=”text” name=”FirstName”>
 <input type=”text” name=”LastName”>
 <input type=”text” name=”Email”>
 <input type=”submit” value=”Download”>
 </form>
</body>
</html>

 (a) (b)
Figure 2. (a) A sample HTTP POST request for submitting contact information to download a file. Line 1 is the HTTP

request line. Lines marked 2 are request headers, and line 3 is the request body. Bytes counted by a simple algorithm are
highlighted in gray. UI-layer data is highlighted in black with white text. (b) A sample HTML document at

http://www.example.com/download.html that generated request (a).

that they do not have a request body. The request line
contains the path of the requested file on the server, and it
may also have script parameters. The next part of the HTTP
request is the header field section, which consists of
“<field>: <value>” pairs separated by line breaks. Header
fields relay information such as the browser version,
preferred language, and cookies. Finally, the HTTP request
body comes last and may consist of arbitrary data. In the
example message, the body contains an encoded name and e-
mail address that was entered into a form.

4.2. HTTP Header Fields

The first type of HTTP header field that we examine is a
fixed header field. Fixed headers should be the same for each
request in most cases. Examples include the preferred
language and the browser version. We only count the size of
these headers for the first request from each client, and count
the edit distance from the most recent request on subsequent
changes. Here, we treat all HTTP headers except for Host,
Referer, and Cookie as fixed. Some of these header fields,
such as Authorization, may actually contain information
from the user. When these fields contain new data, we again
count the edit distance with respect to the most recent
request.

Next, we look at the Host and Referer header fields. The
Host field, along with the request path, specifies the
request’s uniform resource locator (URL). We only count the
size of the Host field if the request URL did not come from a
link in another page. Similarly, we only count the Referer
field’s size if does not contain the URL of a previous request.

Finally, we examine the Cookie header field to verify its
consistency with expected browser behavior. The Cookie
field is supposed to contain key-value pairs from previous
server responses. Cookies should never contain UI-layer
information from the client. If the Cookie differs from its
expected value or we do not have a record from a previous
response (this could happen if a mobile computer is brought
into an enterprise network, for example), then we count the
edit distance between the expected and actual cookie values.
At least one known tunneling program, Cooking Channel
[7], deliberately hides information inside of the Cookie
header in violation of standard browser behavior. The
techniques presented here correctly measure outbound
bandwidth for the Cooking Channel program.

4.3. Standard GET Requests

HTTP GET requests are normally used to retrieve
resources from a web server. Each GET request identifies a
resource by a URL that is comprised of the server host name,
stored in the Hostname header field, and the resource path,
stored in the request line. Looking at each HTTP request
independently, one cannot determine whether the URL
contains UI-layer information or is the result of previous
network input (i.e., a link from another page). If we consider
the entire browsing session, however, then we can discount

request URLs that have been seen in previous server
responses, thus significantly improving unconstrained
bandwidth measurements.

The first step in accurately measuring UI-layer
information in request URLs is enumerating all of the links
on each web page. We parse HTML, Cascading Style Sheet
(CSS), and Javascript files to discover static link URLs,
which can occur in many different forms. Links that are
written out dynamically by Javascript are covered in section
5. Examples of static HTML links include:

• Click
Here!

• <link rel = stylesheet type = “text/css”
href = “style.css”>

•

• The less common: <script src =
“//test.com/preload.jpg”>

These examples would cause the browser to make
requests for “page”, “style.css”, “image.jpg”, and
“preload.jpg” respectively.

After the set of links has been determined for each page,
we can measure the amount of UI-layer information
conveyed by GET requests for those link URLs. The first
step is identifying the link’s referring page. HTTP requests
typically identify the referrer in a header field. If the referrer
is found, then the request URL is compared against a library
of mandatory and voluntary links on the referring page.
Mandatory links are those that should always be loaded
unless they are cached by the browser, such as images and
scripts. The set of mandatory links is usually smaller and
more frequently loaded. Voluntary links are those that the
browser will not load unless the user takes some action, such
as clicking a link. Voluntary links tend to be more numerous
and are loaded less often. Finally, if a request does not
identify the referrer or the referring page cannot be found,
then we must go to the library of all previously seen links
(mandatory and voluntary links from all pages) to look for a
match.

Once a matching link from one of the three groups
(mandatory, voluntary, or all) has been found, the amount of
information in the request is measured as the sum of:

• 2 bits to identify the link group
• Log(n) bits to identify the link within the group,

where n is the total number of links in the group
• The edit distance from the link URL to the actual

request URL if it is not an exact match

For approximate matches, calculating the edit distance
from all URLs would be prohibitively expensive. Instead we
select only a few strings from which to compute the edit
distance, and then take the best answer. This pre-selection is
done by finding strings with the longest shared substring at
the beginning. Our original plan for mandatory links was to
not count any data if all the mandatory links were loaded in

order. This works in a controlled environment, but our
experiments showed that local caching prevents the browser
from loading most of the mandatory links in many cases. A
simpler and more effective approach is to independently
count the link information in each request. This includes
information conveyed by the client about whether it has each
object in its cache.

4.4. Form Submission Requests

The primary method for transmitting information to a
web server is form submission. Form submission requests
send information that the user enters into input controls, such
as text boxes and radio buttons. They may also include
information originating from the server in hidden or read-
only fields. Form submissions contain a sequence of
delimited <name, value> pairs, which can be seen in the
body of the sample POST request in Figure 2a. The field
names, field ordering, and delimiters between fields can be
derived from the page containing the form, which is shown
in Figure 2b, and thus do not convey UI-layer information.
Field values may also be taken from the encapsulating page
in some circumstances. Check boxes and radio buttons can
transmit up to one bit of information each, even though the
value representing “on” can be several bytes. Servers can
also store client-side state by setting data in “hidden” form
fields, which are echoed back by the client upon form
submission. Visible form fields may also have large default
values, as is the case when editing a blog post or a social
networking profile. For fields with default values, we
measure the edit distance between the default and submitted
values. We measure the full size of any unexpected form
submissions or form fields, which may indicate an attempt to
leak data.

5. Dynamic Content Analysis

Very few websites today are free from active content.
This poses a challenge for leak measurement because such
content may generate HTTP requests with variable URLs.
The data in these requests might still be free from UI-layer
information, but making this determination requires dynamic
content analysis. This section describes methodology for
processing and extracting expected HTTP request URLs
from active web content.

5.1. Javascript

The most popular language for dynamic web page
interaction is Javascript, which is implemented by almost all
modern browsers. Javascript has full access to client-side
settings, such as the browser version and window size, which
help it deliver the most appropriate content to the user. On
many websites, Javascript will dynamically construct link
URLs. These URLs cannot be extracted from simple parsing.
One must execute the Javascript to obtain their true values.

The leak analysis engine includes a Javascript interpreter,
SpiderMonkey [15], to handle dynamic link creation. When
processing an HTML document, the analysis engine first
extracts static links as described in the previous section, and
then executes Javascript code. A large portion of links that
Javascript generates are written out during the page load
process. This includes tracking images, advertisements,
embedded media content, and even other scripts. The
analysis engine executes Javascript as it is encountered in the
HTML document in the same way as a web browser. This
includes complex chaining of script tags using both the
“document.write(‘<script…’)” method, and the “node.
addChild(document.createElement(‘script’))” method.
When scripts add HTML or DOM nodes to the document,
the analysis engine processes the new document text, looking
for newly created links. Executing scripts allows the engine
to see a large set of links that are unrecoverable with static
parsing.

5.2. The DOM Tree

Javascript is a stand-alone language that only has a few
built-in types and objects. Most of the rich interface available
to scripts inside of web pages is defined by the web browser
as part of the Document Object Model (DOM). All of the
elements in an HTML document are accessible to Javascript
in a DOM tree, with each tag having its own node. Correctly
emulating the DOM tree is important for accurate analysis
because many scripts will manipulate the tree to generate
links. For example, it is common for scripts to create new
“Image” nodes and directly set their URLs. Advertisers also
tend to use complex Javascript code to place ads on pages,
often going through multiple levels of DOM node creation to
load additional scripts. This presumably makes it harder for
hackers to replace the advertisements, and for website
owners to commit click fraud.

To obtain an accurate DOM tree representation, our
analysis engine parses each HTML element and creates a
corresponding DOM node. This DOM tree is available
during script execution. We modeled the interface of our
DOM tree after Mozilla Firefox [14]. Updating it to also
reflect the quirks of other browser DOM implementations is
future work. Because we only care about data in HTTP
requests and not actually rendering the web page, our DOM
tree does not fully implement style and layout interfaces.
Ignoring these interfaces makes our DOM implementation
simpler and more efficient. The DOM tree also contains
hooks for calls that cause the browser add links to a page.
When a script makes such a call, the engine adds the new
link URL to either the mandatory or voluntary link library,
depending on the parameters. The engine can then filter
subsequent HTTP requests that match the dynamically
created link URL.

Another option for achieving correct DOM interactions
would have been to render HTML and Javascript in a real
web browser. We chose not to do this for a few reasons. The

first is efficiency. Analyzing every page in a real web
browser would require setting up a dummy server to interact
with the browser through the local network stack. The
browser would also render the entire page and make requests
to the dummy server. This adds a significant amount of
unnecessary overhead. Our analysis engine cuts out this
overhead by directly parsing pages and only emulating parts
of the DOM tree that are relevant to leak measurement. A
custom DOM tree implementation also makes instrumenting
and manipulating of the Javascript interpreter much easier.
For example, tweaking the system time or browser version
presented to Javascript would require non-trivial patches to a
real browser.

5.3. Plug-ins and Other Dynamic Content

Javascript is not the only language that enables rich web
interaction and can dynamically generate HTTP requests.
Popular browser plug-ins like Java [23] and Flash [1] also
have such capabilities. In fact, Java Applets and Flash
objects are even more powerful than Javascript. Taking
things a step further, stand-alone executable programs may
make HTTP requests as well. These applications are free to
interact with the user, the local system, and the network in
any way that they please.

Correctly extracting all possible links from plug-in
objects and executables is undecidable in the general case.
This work does not try to analyze plug-ins or dynamic
content other than Javascript. In the future, we hope to make
some gains by executing plug-in objects in a controlled
environment and monitoring their output. It may also be
possible to achieve some improvement through deep
inspection and understanding of plug-in objects, but doing so
yields diminishing returns because of their complexity and
diversity.

Instead of examining dynamic content for plug-in
objects, we look at previous requests to create a library of
expected URLs. The leak measurement engine compares
new HTTP requests that do not match a browser link to the
set of all prior requests. The closest link is determined by
computing the shortest edit distance from a few candidate
requests that have the longest matching substring at the
beginning. This approach is an effective approximation for
finding the closest URL because similar URL strings are
much more likely to have common elements at the
beginning. The resulting information content is equal to
log(m), where m is the size of the library of prior requests,
plus the edit distance with respect to the similar prior
request, plus two bits to indicate that the request is compared
to the library of prior requests and did not come from a link
on a webpage. In practice, many custom web requests are
similar to previous requests. For example, RSS readers and
software update services repeatedly send identical requests to
check for new data. We can effectively filter most of these
messages when measuring information leaks.

6. Request Timing Information

In addition to data in the request, HTTP messages also
contain timing information. The moment at which a request
occurs could be manipulated by a clever adversary to leak
information. It is important to consider the bandwidth of
timing channels when measuring information leaks. This is
especially true for the precise unconstrained measurement
techniques in this paper because they may yield sizes of only
a few bits per request in some cases.

The amount of timing information in a request stream is
equal to the number of bits needed to recreate the request
times as seen by the recipient, within a margin of error. This
margin of error is known as the timing interval. It is a short
length of time during which the presence of a request
indicates a ‘1’ bit, and the absence of a request indicates ‘0’.
Using a shorter interval increases the capacity of a timing
channel, but also increases the error rate. Previous research
on IP covert timing channels found 0.06 seconds to be an
effective value for the timing interval in one case [6]. This
equates to about 16.6 intervals per second.

Prior work on network timing channels looks at IP
packets [6]. Cabuk et al. describe a channel where IP packets
are sent during timing intervals to indicate ‘1’ bits. HTTP
requests differ from IP packets in that they tend not to occur
as closely together. Instead of having a regular stream of
messages throughout a connection, web requests occur in
short bursts during page loads, and then at long intervals in
between pages. For normal HTTP traffic, we have a sparse
timing channel in which a vast majority of the intervals are
empty.

For a sparse channel, the timing information in each
HTTP request is equal to the bits needed to indicate how
many empty intervals have occurred since the last request.
The cumulative distribution of inter-request delays for our
experiments can be seen in Figure 3. This shows that that
80% of HTTP requests occur within three seconds of each
other, while 95% of requests occur within a minute and a

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

P
(t

<
=

x
)

Seconds
Figure 3. Cumulative distribution of delay times for all

observed HTTP requests. P(t<=3) = .794,
P(t<=192) = .976, P(t<=3600) = .9996.

half. Using a variable-length encoding scheme with the first
2–6 bits indicating the length, we can count the timing
information in each request as follows (assuming 16
intervals per second):

• Last request <= 3 seconds: 6 bits
• Last request <= ~100 seconds: 11 + 2 length bits
• Last request <= ~50 Minutes: 16 + 4 length bits
• Last request in past 5 years: 32 + 6 length bits

This encoding provides a reasonable approximation of
the information content in the timing of each request. It is
important to note that these figures depend on the number of
timing intervals per second. If an attacker can view messages
close to the source network, then there may be more than
sixteen intervals per second. On the other hand, if a web
proxy is configured to increase request jitter, then the
number of viable time intervals per second may be less than
sixteen.

In this paper, we assume that HTTP requests are going
through a layer-7 proxy or gateway for our timing channel
measurements. This means that the only meaningful time is
at the start of the request. The timing of subsequent IP
packets is controlled by the proxy, not the client, under
normal conditions. We believe the presence of a proxy is a
reasonable assumption for timing channel measurements.
Organizations that care enough about leaks to measure
covert timing channels should already have a web proxy in
place to mediate outbound information flow (e.g., with data-
loss prevention systems [18, 24]).

7. Evaluation

We applied the leak measurement techniques described
in this paper on web traffic from a controlled environment,
and on real web browsing data. The controlled tests involved
six 30-minute browsing sessions at different types of
websites using a single browser. The real web traffic was
collected from ten different people using a variety of
browsers and operating systems over a 30-day period. Only
data from the controlled scenarios was used for developing
the leak measurement engine. None of the live traffic results
were used to modify or improve our analysis techniques. We

compared the results of our precise unconstrained analysis to
incremental gzip compression, simple request analysis, and
raw byte counts. The gzip tests involved measuring the
amount of new compressed data for each request when using
a gzip compression stream that has seen all prior requests
and responses. The simple analysis is a technique described
in prior research [3] that is stateless and just throws out
expected request headers. This section presents our
evaluation results, discusses limitations of our approach, and
briefly summarizes performance results.

7.1. Controlled Tests

We first evaluated our leak quantification techniques on
browsing traffic from controlled scenarios. The scenarios
were 30-minute browsing sessions that included web mail
(Yahoo), social networking (Facebook), news (New York
Times), sports (ESPN), shopping (Amazon), and a personal
blog website. The results are shown in Table 1. The precise
unconstrained leak measurements for all of the scenarios
were much smaller than the raw byte counts, ranging from
0.32–1.12% of the original size.

The results were best for the blog scenario because the
blog website contained only one dynamic link. The analysis
engine was able find an exact match for all of the other
requests. Of the 262 bytes that were present in the blog
scenario, 118 (45%) of them were from timing information,
86 (33%) from link selection, 48 (18%) from text entered by
the user, and 10 (4%) from a Javascript link that contained a
random number to prevent caching. The blog scenario
represents a near ideal situation for our measurement
techniques because we were able to find an exact URL
match for all but one request. The resulting average of a few
bytes per request serves as a lower bound for standard HTTP
traffic. This traffic must at least leak timing and link
selection information. One possible way to reduce timing
and link selection leakage is to employ entropy
normalization techniques, such as pre-fetching mandatory
links with a caching proxy.

The shopping, news, and web mail scenarios all showed
similar precise measurement results. Each of these websites
contained a large number of dynamically constructed links
that were processed correctly. However, dynamic links often
contain information from the client computer. Examples

Scenario # Reqs Raw bytes Simple bytes/% Gzip bytes/% Precise bytes/% Avg. Req. Size
Sports News 911 1,188,317 199,857 / 16.8% 116,650 / 9.82% 13,258 / 1.12% 14.5 bytes

Social Net. 1,175 1,404,268 92,287 / 6.57% 97,806 / 6.96% 12,805 / 0.91% 10.9 bytes

Shopping 1,530 914,420 158,076 / 17.3% 85,461 / 9.35% 6,157 / 0.67% 4.0 bytes

News 547 502,638 74,927 / 14.9% 51,406 / 10.2% 3,279 / 0.65% 6.0 bytes

Web Mail 508 620,065 224,663 / 36.2% 97,965 / 15.8% 3,964 / 0.64% 7.8 bytes

Blog 136 81,162 10,182 / 12.5% 5,534 / 6.82% 262 / 0.32% 1.9 bytes

Table 1. Bandwidth measurement results for six web browsing scenarios using four different measurement techniques,
 along with the average bytes/request for the precise technique.

include the precise system time at execution, browser
window dimensions, and random numbers to prevent
caching. This information must be counted because it cannot
be determined by looking at previous requests and responses.
From a hacker’s point of view, these fields would be a good
place to hide data. Opaque client-side state information was
particularly prevalent in links for advertisements and
tracking images on the shopping, news, and web mail sites.

Precise unconstrained bandwidth measurements for the
social networking and sports news scenarios were the
highest. The social networking website (Facebook.com)
relied heavily on Active Javascript and XML (AJAX)
requests that constructed link URLs in response to user input.
Because the analysis engine did not trigger event handlers, it
was unable to extract these links. The sports news website
(ESPN.com) contained a number of Flash objects that
dynamically fetched other resources from the web. The
analysis engine could not discount these links because it did
not process the plug-in objects. In the future, the engine
could improve analysis accuracy by obtaining and replaying
hints about input events that trigger AJAX requests and
dynamic link URLs from agents running the clients. These
agents need not be trusted, because incorrect hints would
only increase the unconstrained bandwidth measurement.

Gzip compression [8] was more effective than simple
request analysis for all but one of the controlled test cases,
but fell far short of the compression level achieved by
precise analysis. By running previous requests and responses
through the compression stream, gzip was able to discount
84-93% of raw data. URLs and HTTP headers are filled with
strings that appear elsewhere in previous requests or
responses, giving gzip plenty of opportunities for
compression. One benefit that gzip actually has over precise
analysis, which was not enough to make a big difference, is
that it compresses UI-layer data. Our analysis engine will
count the full size of a blog comment, for example, while
gzip will compress the comment. Running unconstrained

bytes through an additional compression algorithm on the
back end may help to further improve precise unconstrained
bandwidth measurements in the future.

We did not test generic compression algorithms other
than gzip, but would expect similar results. Without
protocol-specific processing, compression algorithms are
limited in how effective they can be at discounting
constrained information.

7.2. Quantifying Information in Real Web Traffic

We collected web traffic from 10 users over the course of
a month to evaluate our leak measurement techniques.
Unlike the controlled scenarios, this traffic came from a
variety of web browsers, including Firefox, Internet
Explorer, Safari, and Chrome. The traffic consisted of
normal daily activity from the volunteers, who consisted of
co-workers, friends, and family. The data included 507,505
requests to 7052 unique hosts totaling 475 MB. We also
recorded 2.58 GB of response data, not including images,
videos, or other binary objects. The web mail request bodies
were also ignored to protect privacy. To the best of our
knowledge, the collected web traffic did not contain any
information leaks from spyware or unusually large uploads
that would have negatively skewed the results.

We ran the leak measurement algorithms on the real web
traffic one user at a time (the results do not exploit request
similarities between users). We first computed the
distribution of measured sizes across all requests. Figure 4a
shows the probability density function of request sizes for
raw, simple, gzip, and precise measurements. The precise
unconstrained bandwidth measurement algorithm
dramatically outperformed the others on real web traffic. The
mean precise request size was 15.8 bytes, compared to 132
for gzip, 243 for simple, and 980 for raw. Despite a low
average measurement, the precise request size distribution
exhibited a heavy tail (standard deviation of 287 bytes).

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000

P
(X

=
n
)

Bytes

Precise
Gzip

Simple
Raw

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100

P
(X

=
n
)

Percentage of Raw

Precise
Gzip

Simple

 (a) (b)

Figure 4. (a) The distribution of precise, gzip, simple, and raw request byte counts for real web traffic.
(b) Distribution of request byte counts as percentage of raw for precise, gzip, and simple algorithms.

Requests with exact URL matches were usually a few bytes
each, while many requests without exact URL matches were
a few hundred bytes.

We also calculated the percent reduction in request size
with respect to raw measurements. These results can be seen
in Figure 4b. Again, the reduction is much better for the
precise algorithm. Its measurements averaged 1.48% of the
corresponding raw values, while the gzip and simple
algorithms averaged 9.87% and 13.5%, respectively. The
request measurements for the precise algorithm also have a
lower variance, with almost all under 20% of corresponding
raw values. The simple and gzip size reductions are much
more spread out, with some requests measuring 20-75% of
the raw size. These requests did not benefit much from gzip
or simple analysis.

The unconstrained bandwidth measurement results from
real traffic yielded larger values than those from the
controlled test cases. The largest average request size of
14.5 bytes from the sports news test was less than the overall
average of 15.8 bytes per request for real web traffic. One
reason for this is that the controlled tests were not necessarily
representative of real web browsing. Other sites that were not
in the controlled study may not have exhibited the same mix
of requests from plug-ins or event handlers. We did not
compute the prevalence of this source of inaccuracy, because
doing so would have required manually analyzing a
significant portion of the half million requests.

During real web traffic processing, we witnessed a few
sources of inaccuracy that were not present in the controlled
test cases. One such issue is missing cache objects. Clients
may cache resources from the server for long periods of
time, making those resources unavailable in a network trace.
This is especially problematic for missing scripts that
perform important tasks. The effects of this problem could be
reduced by having the analysis engine fetch missing objects
from the web. However, those objects may no longer be
available or might have changed since the original request.

Another source of error only found in real web traffic is
the effect of different browser versions. The controlled tests
were all performed with Mozilla Firefox [14]. The analysis
engine’s Javascript and DOM implementation also mirrored
Firefox. Real web traffic from other browsers is likely to
have different dynamic links corresponding to different
browser behavior. These differences could be reduced by
implementing other DOM interfaces to match the browser
version reported in the headers of each request.

7.3. Analysis Performance

The real web traffic was analyzed on a commodity laptop
computer with a dual-core Intel T2500 processor and 2 GB
of RAM. The analysis algorithms ran in a single thread on
one core, with the other core being utilized by the operating
system. The analysis engine was able process the combined
request and response stream at 1.7 Mbps. The bottleneck
during processing was CPU. The real web traffic consisted

of 3.04 GB of total data, 15% of which (475 MB) was
request data and 85% of which (2.58 GB) was response data.
The engine processed the requests at an average rate of 0.25
Mbps, and the responses at an average rate of 10.9 Mbps.
This disparity in performance is due to the time required to
compute the edit distance for request URLs. Javascript
execution was included under the response processing time.
None of the scripts were given a time limit, and none of them
entered infinite loops.

Analysis performance for the prototype implementation
would need improvement for use in an intrusion detection
system that inspects large volumes of network traffic. One
area for optimization is reducing the number of edit distance
comparisons and approximating the edit distance
computation by only considering multi-byte chunks. Another
way to improve performance would be to employ a string co-
processor specially designed for edit distance computations.
Exploring CPU performance optimizations and maximizing
the throughput of the unconstrained bandwidth measurement
engine is future work.

The memory footprint during analysis was quite large for
the prototype implementation. It kept all of the observed
links in memory and did not attempt to free older data that
was less likely to improve analysis results. Processing 20
MB of web browsing traffic from one user during a single
day required 120 MB of RAM. Although this would be
unreasonably large for an intrusion detection application, we
believe that this number could be greatly reduced by simply
discarding links from old pages. While analysis results may
be a little bit worse, the number of links that are loaded from
pages that have been open for hours is far smaller than links
that are loaded from recent pages. Another possible
optimization is sharing link information across users.

8. Entropy Mitigation Strategies

The evaluation showed that a significant portion of
information in web requests must be counted because it
originates from entropy on the client. If this entropy can be
reduced or measured at a trusted source, then the analysis
engine can obtain more accurate results. This section
discusses possible strategies for reducing inaccuracies in
unconstrained bandwidth measurements due to entropy on
client computers.

8.1. System Information and Human Input

The current leak measurement engine cannot see actual
system information or human input to a client; it only
witnesses the resulting requests. Due to the complexity of
active content on websites, system information and human
input can sometimes lead to a chain of events that generates
a much larger output than the size of the original
information. For example, clicking on a particular place on a
web page may lead to an AJAX request that contains a few

hundred bytes of XML. Speculatively firing events would
help somewhat with determining expected requests, but such
an approach would quickly lead to an exponential blow-up.
A better solution would be to obtain system information
(screen resolution, OS, installed plug-ins, etc.) and human
input hints from an agent running on the end host. This agent
could be a browser plug-in that records and sends all of the
system information and human input events to the analysis
engine. Instead of having to speculate, the engine could then
replay the exact sequence of inputs and verify that the output
is the same. It could only count the size of the original input,
rather than the larger resulting output. It is also okay if the
agent reports data incorrectly, because doing so would only
increase the unconstrained bandwidth measurement and raise
suspicion.

Depending on the threat model, it may also be possible to
reduce unconstrained bandwidth measurements by
discounting human input entirely. This approach may be
appropriate if the user is trustworthy, but malware is a
concern. A trusted device, similar to a hardware key-logger,
could intercept mouse and keyboard events before they reach
the computer, and then report them to the leak measurement
engine. This would aid analysis in a similar manner as a hint
from a browser plug-in, except that the size of the original
human input could be discounted as well, assuming that the
user is trusted.

8.2. Timing

The timing of each request has the potential to leak
several bits of information to an observer stationed outside of
the network. The traditional method for mitigating timing
channels is to add entropy to each request. For web traffic,
this can be achieved by adding a trusted proxy server
between the client and the web server. This proxy can add
jitter to each web request by delaying it a random amount of
time. This could significantly increase the size of the timing
interval, raising it from 0.06 seconds to 1 second (any more
might disrupt usage). Randomly delaying requests up to 1
second would reduce the amount of timing information in
each request by 5 bits, which can add up to a significant
savings for a large number of requests.

Another option available to us that would not be feasible
for mitigating a traditional IP packet timing channel is
reducing the total number of requests. Every time a client
makes a request for a web page, a smart caching proxy could
pre-fetch all of the mandatory links. Then, when the client
requests a resource from a mandatory link, the proxy can
return the result without any information leaving the
network, thus precluding leakage through those requests.

In addition to the timing of requests themselves, some
requests include an explicit time value. This is the system
time at which a script executed on the end host. Websites
may include this time value to prevent caching, or to collect
statistics about latency from their users. In any case, it differs
slightly from the time that a request actually appears on the

network, has a high precision, and can therefore leak
information. A proxy server can eliminate timing
information of this form by discovering it with the edit
distance algorithm and then overwriting it with the time that
the proxy actually sends the request.

8.3. Random Number Generator

Many websites have scripts that include random numbers
in link URLs. The purpose of doing this is to prevent
caching. At the same time, however, these requests leak data
in their selection of random numbers. One way of reducing
entropy from the random number generator (RNG) is to
instead have a network service that handles random number
generation. When an executing script makes a call to fetch a
random number, the Javascript engine could request a new
random number from a trusted central location instead of
using the local RNG. This would move random numbers
from the set U of UI-layer input to the set I of network
inputs, allowing the analysis engine to discount them from
the information measurement in outbound web requests
(assuming they are not modified by malware).

9. Conclusions and Future Work

This paper introduced a new approach for quantifying
information leaks in web traffic. Instead of inspecting a
message’s data, the goal was to quantify its information
content. The algorithms in this paper achieve precise results
by discounting fields that are repeated or constrained by the
protocol. This work focuses on web traffic, but similar
principles can apply to other protocols. Our analysis engine
processes static fields in HTTP, HTML, and Javascript to
create a distribution of expected request content. It also
executes dynamic scripts in an emulated browser
environment to obtain complex request values.

We evaluated our analysis techniques on controlled test
cases and on real web traffic from 10 users over a 30-day
period. For the controlled tests, the measurement techniques
yielded byte counts that ranged from 0.32%-1.12% of the
raw message size. These tests highlighted some limitations
of our approach, such as being unable to filter parts of URLs
that contain random numbers to prevent caching. For the real
web traffic evaluation, the precise unconstrained byte counts
averaged 1.48% of the corresponding raw values. This was
significantly better than a generic compression algorithm,
which averaged 9.87% of the raw size for each request.

In the future, we plan to implement similar leak
measurement techniques for other protocols. E-mail (SMTP)
will probably be the most challenging because a majority of
its data is free-form information from the user. There is also
a lot of room to improve the dynamic content analysis
techniques. Obtaining user input hints from clients and
executing plug-in objects can help extract additional request
URLs. Finally, we hope to optimize and integrate the

techniques from this paper into a network intrusion detection
system that uses bandwidth thresholds to discover
information leaks.

Acknowledgements

We would like to thank friends and students at the
University of Michigan who participated in this study. Also,
thanks to Peter Chen, Myron Gutmann, Morley Mao, and
Patrick McDaniel for their feedback on the research. The
web traffic study was conducted with IRB approval under
project HUM00024168 at the University of Michigan.

References

[1] Adobe Systems Incorporated. Adobe Flash Player.
http://www.macromedia.com/software/flash/about, 2008.

[2] R. Anderson and F. Petitcolas. On the Limits of
Steganography. IEEE Journal of Selected Areas in
Communications, 16(4):474-481, 1998.

[3] K. Borders and A. Prakash. Web Tap: Detecting Covert Web
Traffic. In Proc. of the 11th ACM Conference on Computer
and Communications Security (CCS), 2004.

[4] K. Borders and A. Prakash. Towards Quantification of
Network-Based Information Leaks Via HTTP. In Proc. of the
3rd USENIX Workshop on Hot Topics in Security, 2008.

[5] S. Brand. DoD 5200.28-STD Department of Defense Trusted
Computer System Evaluation Criteria (Orange Book).
National Computer Security Center, 1985.

[6] S. Cabuk, C. Brodley, and C. Shields. IP Covert Timing
Channels: Design and Detection. In Proc. of the 11th ACM
Conference on Computer and Communications Security
(CCS), 2004.

[7] S. Castro. How to Cook a Covert Channel. hakin9,
http://www.gray-world.net/projects/
cooking_channels/hakin9_cooking_channels_en.pdf, 2006.

[8] J. Gailly and M. Adler. The gzip Home Page.
http://www.gzip.org/, 2008.

[9] J. Giles and B. Hajek. An Information-Theoretic and Game-
Theoretic Study of Timing Channels. IEEE Transactions on
Information Theory, 48:2455–2477, 2003.

[10] M. Handley, V. Paxson, and C. Kreibich. Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End
Protocol Semantics. In Proc. of the 10th USENIX Security
Symposium, 2001.

[11] M. Kang, I. Moskowitz, and D. Lee. A Network Version of
the Pump. In Proc. of the 1995 IEEE Symposium in Security
and Privacy, 1995.

[12] G. Malan, D.Watson, F. Jahanian, and P. Howell. Transport
and Application Protocol Scrubbing. In Proc. of the IEEE
INFOCOM 2000 Conference, 2000.

[13] S. McCamant and M. Ernst. Quantitative Information Flow as
Network Flow Capacity. In Proc. of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 2008.

[14] Mozilla. The Firefox Web Browser.
http://www.mozilla.com/firefox/, 2008.

[15] Mozilla. SpiderMonkey (Javscript-C) Engine.
http://www.mozilla.org/js/spidermonkey/, 2008.

[16] A. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java
information flow. http://www.cs.cornell.edu/jif, 2001.

[17] R. Richardson. CSI Computer Crime and Security Survey.
http://i.cmpnet.com/ v2.gocsi.com/pdf/CSISurvey2007.pdf,
2007.

[18] RSA Security, Inc. RSA Data Loss Prevention Suite. RSA
Solution Brief,
http://www.rsa.com/products/EDS/sb/DLPST_SB_1207-
lowres.pdf, 2007.

[19] N. Schear, C. Kintana, Q Zhang, and A. Vahdat. Glavlit:
Preventing Exfiltration at Wire Speed. In Proc. of the 5th
Workshop on Hot Topics in Networks (HotNets), 2006.

[20] J. Seward. bzip2 and libbzip2, version 1.0.5 – A Program and
Library for Data Compression.
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html, 2007.

[21] C. Shannon. Prediction and Entropy of Printed English. Bell
System Technical Journal, 30:50–64, 1951.

[22] S. Servetto and M. Vetterli. Communication Using Phantoms:
Covert Channels in the Internet. In Proc. of the IEEE
International Symposium on Information Theory, 2001.

[23] Sun Microsystems. Java. http://www.java.com, 2008.

[24] VONTU. Data Loss Prevention, Confidential Data Protection
– Protect Your Data Anywhere. http://www.vontu.com, 2008.

[25] R. Wagner and M. Fischer. The String-to-String Correction
Problem. Journal of the ACM, 21(1):168–173, 1974.

[26] Websense, Inc. Web Security, Internet Filtering, and Internet
Security Software. http://www.websense.com/global/en/,
2008.

[27] A. Yumerefendi, B. Mickle, and L. Cox. TightLip: Keeping
applications from spilling the beans. In Proc. of the 4th
USENIX Symposium on Networked Systems Design and
Implementation(NSDI), 2007.

