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Abstract 

As the Internet grows and network bandwidth continues 
to increase, administrators are faced with the task of 
keeping confidential information from leaving their 
networks. Today’s network traffic is so voluminous that 
manual inspection would be unreasonably expensive. In 
response, researchers have created data loss prevention 
systems that check outgoing traffic for known confidential 
information. These systems stop naïve adversaries from 
leaking data, but are fundamentally unable to identify 
encrypted or obfuscated information leaks. What remains is 
a high-capacity pipe for tunneling data to the Internet. 

We present an approach for quantifying information 
leak capacity in network traffic. Instead of trying to detect 
the presence of sensitive data—an impossible task in the 
general case—our goal is to measure and constrain its 
maximum volume. We take advantage of the insight that 
most network traffic is repeated or determined by external 
information, such as protocol specifications or messages 
sent by a server. By filtering this data, we can isolate and 
quantify true information flowing from a computer. In this 
paper, we present measurement algorithms for the 
Hypertext Transfer Protocol (HTTP), the main protocol for 
web browsing. When applied to real web browsing traffic, 
the algorithms were able to discount 98.5% of measured 
bytes and effectively isolate information leaks. 

1. Introduction 

Network-based information leaks pose a serious threat to 
confidentiality. They are the primary means by which 
hackers extract data from compromised computers. The 
network can also serve as an avenue for insider leaks, which, 
according to a 2007 CSI/FBI survey, are the most prevalent 
security threat for organizations [17]. Because the volume of 
legitimate network traffic is so large, it is easy for attackers 
to blend in with normal activity, making leak prevention 
difficult. In one experiment, a single computer browsing a 
social networking site for 30 minutes generated over 1.3 MB 
of legitimate request data—the equivalent of about 195,000 
credit card numbers. Manually analyzing network traffic for 
leaks would be unreasonably expensive and error-prone. Due 
to the heavy volume of normal traffic, limiting network 

traffic based on the raw byte count would only help stop 
large information leaks.  

In response to the threat of network-based information 
leaks, researchers have developed data-loss prevention 
(DLP) systems [18, 24]. DLP systems work by searching 
through outbound network traffic for known sensitive 
information, such as credit card and social security numbers. 
Some even catalog sensitive documents and look for 
excerpts in outbound traffic. Although they are effective at 
stopping accidental and plain-text leaks, DLP systems are 
fundamentally unable to detect obfuscated information 
flows. They leave an open channel for leaking data to the 
Internet. 

We introduce a new approach for precisely quantifying 
information leak capacity in network traffic. Rather than 
searching for known sensitive data—an impossible task in 
the general case—we aim to measure and constrain its 
maximum volume. This research addresses the threat of a 
hacker or malicious insider extracting sensitive information 
from a network. He or she could try to steal data without 
being detected by hiding it in the noise of normal outbound 
traffic. For web traffic, this often means stashing bytes in 
paths or header fields within seemingly benign requests. To 
combat this threat, we exploit the fact that a large portion of 
legitimate network traffic is repeated or constrained by 
protocol specifications. This fixed data can be ignored, 
which isolates real information leaving a network, regardless 
of data hiding techniques. 

The leak measurement techniques presented here focus 
on the Hypertext Transfer Protocol (HTTP), the main 
protocol for web browsing. They take advantage of HTTP 
and its interaction with Hypertext Markup Language 
(HTML) documents and Javascript code to quantify 
information leak capacity. The basic idea is to compute the 
expected content of HTTP requests using only externally 
available information, including previous network requests, 
previous server responses, and protocol specifications. Then, 
the amount of unconstrained outbound bandwidth is equal to 
the edit distance (edit distance is the size of the edit list 
required to transform one string into another) between actual 
and expected requests, plus timing information. Given 
correct assumptions about timing channel characteristics, 
these results may overestimate, but will never underestimate 
the true size of information leaks, thus serving as a tight 
upper bound on information leakage.  



One option for measuring unconstrained bandwidth 
would be to use a traditional compression algorithm like gzip 
[8] or bzip2 [20]. This would involve building up a library 
from previous messages and only counting the incremental 
size of new requests. Traditional compression can help for 
simple requests that have large repeated substrings. 
However, this protocol-agnostic approach fails to capture 
complex interactions between requests and replies that go 
beyond string repetition. 

The analysis techniques presented in this paper take 
advantage of protocol interactions. Parsing all of the links on 
a web page, for example, helps construct an accurate 
distribution of expected requests. Our analysis also involves 
executing scripts in a simulated browser environment to 
extract links that cannot be derived from static processing.  
These improvements lead to a much more precise 
measurement of information in outbound web traffic than 
conventional compression algorithms. 

Figure 1 illustrates the benefit of precise leak 
quantification. The graphs show bandwidth from legitimate 
web browsing over a one-day period in black. A 100 KB 
information leak was inserted into the traffic and can be seen 
in a lighter color. This leak was deliberately inserted in short 
bursts, so as to more closely resemble legitimate web traffic 
and avoid detection methods that look at request regularity 
[3]. The left graph shows raw request bandwidth. The leak is 
barely noticeable here and easily blends in with the noise of 
normal activity. After running the same traffic through our 
unconstrained bandwidth measurement engine, however, the 
leak stands out dramatically from normal traffic. It is 
important to note that more accurate traffic measurement 
does not completely stop information leaks from slipping by 
undetected; it only makes it possible to identify smaller 
leaks. Our analysis techniques force a leak that would 
normally blend in with a week’s worth of traffic to be spread 
out over an entire year.  

We evaluated our leak measurement techniques on real 
browsing data from 10 users over 30 days, which included 
over 500,000 requests. The results were compared to a 
simple calculation described in prior research [3], and to 
incremental gzip compression [8]. The average request size 
using the leak measurement techniques described in this 
paper was 15.8 bytes, 1.6% of the raw byte count. The 
average size for gzip was 132 bytes, and for the simple 
measurement was 243 bytes. The experiments show that our 
approach is an order of magnitude better than traditional gzip 
compression. 

This work focuses specifically on analyzing leaks in 
HTTP traffic for a few reasons. First, it is the primary 
protocol for web browsing and accounts for a large portion 
of overall traffic. Many networks, particularly those in which 
confidentiality is a high priority, will only allow outbound 
HTTP traffic and block everything else by forcing all traffic 
to go through a proxy server. In this scenario, HTTP would 
be the only option for directly leaking data. Another reason 
for focusing on HTTP is that a high percentage of its request 
data can be filtered out by eliminating repeated and 
constrained values. 

The principles we use to measure leaks in HTTP traffic 
are likely to work for other protocols as well. Binary 
protocols for instant messaging, secure shell access, and 
domain name resolution all contain a number of fixed and 
repeated values. Furthermore, correlation between protocols 
may enable filtering of DNS lookups. Extending a similar 
methodology to outbound SMTP (e-mail) traffic is likely to 
be more challenging. E-mail primarily consists of free-form 
data and only contains small fixed fields. However, the 
unconstrained data in e-mails is usually text, for which there 
are well-known methods of determining the information 
content [21], or file attachments. These attachments are made 
up of data written out in a specific file format, which could 
be analyzed in a manner similar to HTTP. In fact, researchers 
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   (a)                   (b) 

Figure 1. Graph of outbound web traffic during a typical work day with a 100 Kilobyte  
information leak inserted. (a) shows the raw byte count, where the leak is barely noticeable, and 

(b) shows the precise unconstrained bandwidth measurement, in which the leak stands out prominently. 



have already examined ways of identifying information that 
has been hidden in files with steganography by looking for 
additional unexpected entropy [2]. Further investigation of 
leak measurement techniques for file attachments and other 
protocols is future work. 

The measurement techniques in this paper do not provide 
an unconstrained bandwidth measurement for fully encrypted 
traffic. (If a hacker tries to hide or tunnel encrypted data in 
an unencrypted protocol, it can be measured.) All networks 
that allow outbound encrypted traffic must deal with this 
fundamental problem, and we do not try to solve it here. If 
confidentiality is a top priority, there are a few possibilities 
for obtaining original plain text. One is to force all encrypted 
traffic through a gateway that acts as a man-in-the-middle on 
each connection. This can be achieved by designating the 
gateway as a local certification authority and having it 
rewrite certificates. Another option is to deploy an agent on 
every host in the network that reports encryption keys to a 
monitoring system. With this approach, any connections that 
cannot be decrypted are subsequently blocked or flagged for 
further investigation. 

The leak measurement techniques presented in this paper 
do not constitute an entire security solution, but rather act as 
a tool. We envision the primary application of this work to 
be forensic analysis. One could filter out almost all 
legitimate activity, making it faster and easier to isolate 
leaks.  Another possible application would be detecting leaks 
in live network traffic. Additional research would be 
required to determine appropriate thresholds and optimize 
the algorithms for handling large volumes of traffic. 
Integrating leak quantification into a security application is 
future work. 

The remainder of this paper is laid out as follows. Section 
2 discusses related work. Section 3 poses a formal problem 
description. Section 4 talks about static message analysis 
techniques. Section 5 describes dynamic content analysis 
methodology. Section 6 outlines an approach for quantifying 
timing information. Section 7 presents evaluation results. 
Section 8 discusses potential strategies for mitigating entropy 
and improving analysis results. Finally, section 9 concludes 
and suggests future research directions. 

2. Related Work 

Prior research on detecting covert web traffic has looked 
at measuring information flow via the HTTP protocol [3]. 
Borders et al. introduce a method for computing bandwidth 
in outbound HTTP traffic that involves discarding expected 
header fields. However, they use a stateless approach and 
therefore are unable to discount information that is repeated 
or constrained from previous HTTP messages. In our 
evaluation, we compare the leak measurement techniques 
presented in this paper with the simple methods used by Web 
Tap [3] and demonstrate an order of magnitude 
improvement. 

There are numerous techniques for controlling 
information flow within a program. Jif [16] ensures that 
programs do not leak information to low-security outputs by 
tainting values with sensitive data. More recent work by 
McCamant et al. [13] goes one step further by quantifying 
amount of sensitive data that each value in a program can 
contain. Unfortunately, intra-program flow control systems 
rely on access to source code, which is not always feasible. 
They do not protect against compromised systems. The 
algorithms in this paper take a black box approach to 
measuring leaks that makes no assumptions about software 
integrity. 

Research on limiting the capacity of channels for 
information leakage has traditionally been done assuming 
that systems deploy mandatory access control (MAC) 
policies [5] to restrict information flow. However, mandatory 
access control systems are rarely deployed because of their 
usability and management overhead, yet organizations still 
have a strong interest in protecting confidential information. 

A more recent system for controlling information flow, 
TightLip [27], tries to stop programs from leaking sensitive 
data by executing a shadow process that does not see 
sensitive data. Outputs that are the same as those of the 
shadow process are treated normally, and those that are 
different are marked confidential. TightLip is limited in that 
it relies on a trusted operating system, and only protects 
sensitive data in files. In comparison, our leak measurement 
methods will help identify leaks from a totally compromised 
computer, regardless of their origin. 

A popular approach for protecting against network-based 
information leaks is to limit where hosts can send data with a 
content filter, such as Websense [26]. Content filters may 
help in some cases, but they do not prevent all information 
leaks. A smart attacker can post sensitive information on any 
website that receives input and displays it to other clients, 
including useful sites such as www.wikipedia.org. We 
consider content filters to be complimentary to our 
measurement methods, as they reduce but do not eliminate 
information leaks. 

Though little work has been done on quantifying 
network-based information leaks, there has been a great deal 
of research on methods for leaking data. Prior work on 
convert network channels includes embedding data in IP 
fields [6], TCP fields [22], and HTTP protocol headers [7]. 
The methods presented in this paper aim to quantify the 
maximum amount of information that an HTTP channel 
could contain, regardless of the particular data hiding scheme 
employed. 

Other research aims to reduce the capacity of network 
covert channels by modifying packets. Network “pumps” 
[11] and timing jammers [9] control transmission time to 
combat covert timing channels. Traffic normalizers (also 
known as protocol scrubbers) will change IP packets in flight 
so that they match a normal format [10, 12]. Glavlit is an 
application-layer protocol scrubber that focuses specifically 
on normalizing HTTP traffic from servers [19]. Traffic 



normalization helps eliminate covert storage channels by 
fixing ambiguities in network traffic. Research on 
normalizing network traffic to reduce covert channel 
capacity is complimentary to our work, which focuses only 
on quantifying information content.  

An earlier version of this paper was published at a 
workshop [4].  Previously, the measurement techniques only 
consisted of those discussed in the section on static content 
analysis. The evaluation was also limited to controlled 
scenarios. This paper adds dynamic script analysis, considers 
timing channels, and evaluates our techniques on real web 
traffic. Improvements from the workshop paper have had a 
significant impact on results from common controlled 
scenario experiments. For example, script handling helped 
reduce the average request size from 73.3 bytes to 7.8 bytes 
for the web mail scenario. 

3. Problem Description 

In this paper, we address the problem of quantifying 
network-based information leak capacity by isolating 
information from the client in network traffic. We will refer 
to information originating from the client as UI-layer input. 
From a formal perspective, the problem can be broken down 
to quantifying the set U of UI-layer input to a network 
application given the following information: 

• I – The set of previous network inputs to an 
application. 

• O – The set of current and previous network outputs 
from an application. 

• A – The application representation, which is a 
mapping: U × I → O of UI-layer information 
combined with network input to yield network output. 

By definition, the set I cannot contain new information 
from the client because it is generated by the server. In this 
paper, the application representation A is based on protocol 
specifications, but it could also be derived from program 

analysis. In either case, it does not contain information from 
the client. Therefore, the information content of set O can be 
reduced to the information in the set U. If the application has 
been tampered with by malicious software yielding a 
different representation A’, then the maximum information 
content of tampered output O’ is equal to the information 
content of the closest expected output O plus the edit 
distance between O and O’. Input supplied to an application 
from all sources other than the network is considered part of 
U. This includes file uploads and system information, such 
as values from the random number generator. Timing 
information is also part of the set U.  

4. Static Content Analysis 

This section describes methods for measuring the amount 
of information in outbound HTTP requests by statically 
analyzing previous requests and responses. Some portions of 
the request headers are fixed and can be immediately filtered 
if they contain the expected values. Most of the header fields 
only change on rare occasion and can be discounted if they 
are the same as previous requests. The request path, which 
identifies resources on the web, is usually derived from 
previous HTML pages returned by the server. Filtering out 
repeated path values requires comparing paths to those in 
both prior requests and responses. Also, HTTP form post 
requests reference field names and default values contained 
in HTML pages. This section elaborates on methods for 
extracting expected HTTP request fields from static content. 

4.1. HTTP Request Overview 

There are two main types of HTTP requests used by web 
browsers, GET and POST. GET typically obtains resources 
and POST sends data to a server. An example of a HTTP 
POST request can be seen in Figure 2. This request is 
comprised of three distinct sections: the request line, headers, 
and the request body. GET requests are very similar except 

1 POST /download HTTP/1.1 
2 Host: www.example.com 
2 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; 
en-US; rv:1.8.1.12) Gecko/20080201 Firefox/2.0.0.12 

2 Keep-Alive: 300 
2 Connection: keep-alive 

2 Referer: http://www.example.com/download.html 
2 Content-Type: application/x-www-form-urlencoded 
2 Content-Length: 73 
3 FirstName=John&LastName=Doe&Email=johndoe%40example.
com&Submit=Download 

<html> 
<body> 
 <form action=”/download” method=”post”> 
  <input type=”text” name=”FirstName”> 
  <input type=”text” name=”LastName”> 
  <input type=”text” name=”Email”> 
  <input type=”submit” value=”Download”> 
 </form> 
</body> 
</html> 

     (a)                  (b) 
Figure 2. (a) A sample HTTP POST request for submitting contact information to download a file. Line 1 is the HTTP 

request line. Lines marked 2 are request headers, and line 3 is the request body.  Bytes counted by a simple algorithm are 
highlighted in gray. UI-layer data is highlighted in black with white text. (b) A sample HTML document at 

http://www.example.com/download.html that generated request (a). 



that they do not have a request body. The request line 
contains the path of the requested file on the server, and it 
may also have script parameters. The next part of the HTTP 
request is the header field section, which consists of 
“<field>: <value>” pairs separated by line breaks. Header 
fields relay information such as the browser version, 
preferred language, and cookies. Finally, the HTTP request 
body comes last and may consist of arbitrary data. In the 
example message, the body contains an encoded name and e-
mail address that was entered into a form. 

4.2. HTTP Header Fields 

The first type of HTTP header field that we examine is a 
fixed header field. Fixed headers should be the same for each 
request in most cases. Examples include the preferred 
language and the browser version. We only count the size of 
these headers for the first request from each client, and count 
the edit distance from the most recent request on subsequent 
changes. Here, we treat all HTTP headers except for Host, 
Referer, and Cookie as fixed. Some of these header fields, 
such as Authorization, may actually contain information 
from the user. When these fields contain new data, we again 
count the edit distance with respect to the most recent 
request.  

Next, we look at the Host and Referer header fields. The 
Host field, along with the request path, specifies the 
request’s uniform resource locator (URL). We only count the 
size of the Host field if the request URL did not come from a 
link in another page. Similarly, we only count the Referer 
field’s size if does not contain the URL of a previous request. 

Finally, we examine the Cookie header field to verify its 
consistency with expected browser behavior. The Cookie 
field is supposed to contain key-value pairs from previous 
server responses. Cookies should never contain UI-layer 
information from the client. If the Cookie differs from its 
expected value or we do not have a record from a previous 
response (this could happen if a mobile computer is brought 
into an enterprise network, for example), then we count the 
edit distance between the expected and actual cookie values. 
At least one known tunneling program, Cooking Channel 
[7], deliberately hides information inside of the Cookie 
header in violation of standard browser behavior. The 
techniques presented here correctly measure outbound 
bandwidth for the Cooking Channel program. 

4.3. Standard GET Requests 

HTTP GET requests are normally used to retrieve 
resources from a web server. Each GET request identifies a 
resource by a URL that is comprised of the server host name, 
stored in the Hostname header field, and the resource path, 
stored in the request line. Looking at each HTTP request 
independently, one cannot determine whether the URL 
contains UI-layer information or is the result of previous 
network input (i.e., a link from another page). If we consider 
the entire browsing session, however, then we can discount 

request URLs that have been seen in previous server 
responses, thus significantly improving unconstrained 
bandwidth measurements. 

The first step in accurately measuring UI-layer 
information in request URLs is enumerating all of the links 
on each web page. We parse HTML, Cascading Style Sheet 
(CSS), and Javascript files to discover static link URLs, 
which can occur in many different forms. Links that are 
written out dynamically by Javascript are covered in section 
5. Examples of static HTML links include: 

• <a href = “http://test.com/page”> Click 
Here! </a> 

• <link rel = stylesheet type = “text/css” 
href = “style.css”> 

• <img src = “image.jpg”> 

• The less common: <script src = 
“//test.com/preload.jpg”> 

These examples would cause the browser to make 
requests for “page”, “style.css”, “image.jpg”, and 
“preload.jpg” respectively. 

After the set of links has been determined for each page, 
we can measure the amount of UI-layer information 
conveyed by GET requests for those link URLs. The first 
step is identifying the link’s referring page. HTTP requests 
typically identify the referrer in a header field. If the referrer 
is found, then the request URL is compared against a library 
of mandatory and voluntary links on the referring page. 
Mandatory links are those that should always be loaded 
unless they are cached by the browser, such as images and 
scripts. The set of mandatory links is usually smaller and 
more frequently loaded. Voluntary links are those that the 
browser will not load unless the user takes some action, such 
as clicking a link. Voluntary links tend to be more numerous 
and are loaded less often. Finally, if a request does not 
identify the referrer or the referring page cannot be found, 
then we must go to the library of all previously seen links 
(mandatory and voluntary links from all pages) to look for a 
match. 

Once a matching link from one of the three groups 
(mandatory, voluntary, or all) has been found, the amount of 
information in the request is measured as the sum of: 

• 2 bits to identify the link group 
• Log(n) bits to identify the link within the group, 

where n is the total number of links in the group 
• The edit distance from the link URL to the actual 

request URL if it is not an exact match 

For approximate matches, calculating the edit distance 
from all URLs would be prohibitively expensive. Instead we 
select only a few strings from which to compute the edit 
distance, and then take the best answer. This pre-selection is 
done by finding strings with the longest shared substring at 
the beginning. Our original plan for mandatory links was to 
not count any data if all the mandatory links were loaded in 



order. This works in a controlled environment, but our 
experiments showed that local caching prevents the browser 
from loading most of the mandatory links in many cases. A 
simpler and more effective approach is to independently 
count the link information in each request. This includes 
information conveyed by the client about whether it has each 
object in its cache. 

4.4. Form Submission Requests 

The primary method for transmitting information to a 
web server is form submission. Form submission requests 
send information that the user enters into input controls, such 
as text boxes and radio buttons. They may also include 
information originating from the server in hidden or read-
only fields. Form submissions contain a sequence of 
delimited <name, value> pairs, which can be seen in the 
body of the sample POST request in Figure 2a. The field 
names, field ordering, and delimiters between fields can be 
derived from the page containing the form, which is shown 
in Figure 2b, and thus do not convey UI-layer information. 
Field values may also be taken from the encapsulating page 
in some circumstances. Check boxes and radio buttons can 
transmit up to one bit of information each, even though the 
value representing “on” can be several bytes. Servers can 
also store client-side state by setting data in “hidden” form 
fields, which are echoed back by the client upon form 
submission. Visible form fields may also have large default 
values, as is the case when editing a blog post or a social 
networking profile. For fields with default values, we 
measure the edit distance between the default and submitted 
values. We measure the full size of any unexpected form 
submissions or form fields, which may indicate an attempt to 
leak data. 

5. Dynamic Content Analysis 

Very few websites today are free from active content.  
This poses a challenge for leak measurement because such 
content may generate HTTP requests with variable URLs. 
The data in these requests might still be free from UI-layer 
information, but making this determination requires dynamic 
content analysis. This section describes methodology for 
processing and extracting expected HTTP request URLs 
from active web content. 

5.1. Javascript 

The most popular language for dynamic web page 
interaction is Javascript, which is implemented by almost all 
modern browsers. Javascript has full access to client-side 
settings, such as the browser version and window size, which 
help it deliver the most appropriate content to the user. On 
many websites, Javascript will dynamically construct link 
URLs. These URLs cannot be extracted from simple parsing. 
One must execute the Javascript to obtain their true values. 

The leak analysis engine includes a Javascript interpreter, 
SpiderMonkey [15], to handle dynamic link creation. When 
processing an HTML document, the analysis engine first 
extracts static links as described in the previous section, and 
then executes Javascript code. A large portion of links that 
Javascript generates are written out during the page load 
process. This includes tracking images, advertisements, 
embedded media content, and even other scripts. The 
analysis engine executes Javascript as it is encountered in the 
HTML document in the same way as a web browser. This 
includes complex chaining of script tags using both the 
“document.write( ‘<script…’ )” method, and the “node. 
addChild( document.createElement( ‘script’ ) )” method. 
When scripts add HTML or DOM nodes to the document, 
the analysis engine processes the new document text, looking 
for newly created links. Executing scripts allows the engine 
to see a large set of links that are unrecoverable with static 
parsing. 

5.2. The DOM Tree 

Javascript is a stand-alone language that only has a few 
built-in types and objects. Most of the rich interface available 
to scripts inside of web pages is defined by the web browser 
as part of the Document Object Model (DOM). All of the 
elements in an HTML document are accessible to Javascript 
in a DOM tree, with each tag having its own node. Correctly 
emulating the DOM tree is important for accurate analysis 
because many scripts will manipulate the tree to generate 
links. For example, it is common for scripts to create new 
“Image” nodes and directly set their URLs.  Advertisers also 
tend to use complex Javascript code to place ads on pages, 
often going through multiple levels of DOM node creation to 
load additional scripts. This presumably makes it harder for 
hackers to replace the advertisements, and for website 
owners to commit click fraud. 

To obtain an accurate DOM tree representation, our 
analysis engine parses each HTML element and creates a 
corresponding DOM node. This DOM tree is available 
during script execution. We modeled the interface of our 
DOM tree after Mozilla Firefox [14]. Updating it to also 
reflect the quirks of other browser DOM implementations is 
future work. Because we only care about data in HTTP 
requests and not actually rendering the web page, our DOM 
tree does not fully implement style and layout interfaces. 
Ignoring these interfaces makes our DOM implementation 
simpler and more efficient. The DOM tree also contains 
hooks for calls that cause the browser add links to a page. 
When a script makes such a call, the engine adds the new 
link URL to either the mandatory or voluntary link library, 
depending on the parameters. The engine can then filter 
subsequent HTTP requests that match the dynamically 
created link URL. 

Another option for achieving correct DOM interactions 
would have been to render HTML and Javascript in a real 
web browser. We chose not to do this for a few reasons. The 



first is efficiency. Analyzing every page in a real web 
browser would require setting up a dummy server to interact 
with the browser through the local network stack. The 
browser would also render the entire page and make requests 
to the dummy server. This adds a significant amount of 
unnecessary overhead. Our analysis engine cuts out this 
overhead by directly parsing pages and only emulating parts 
of the DOM tree that are relevant to leak measurement. A 
custom DOM tree implementation also makes instrumenting 
and manipulating of the Javascript interpreter much easier. 
For example, tweaking the system time or browser version 
presented to Javascript would require non-trivial patches to a 
real browser. 

5.3. Plug-ins and Other Dynamic Content 

Javascript is not the only language that enables rich web 
interaction and can dynamically generate HTTP requests.  
Popular browser plug-ins like Java [23] and Flash [1] also 
have such capabilities. In fact, Java Applets and Flash 
objects are even more powerful than Javascript. Taking 
things a step further, stand-alone executable programs may 
make HTTP requests as well. These applications are free to 
interact with the user, the local system, and the network in 
any way that they please. 

Correctly extracting all possible links from plug-in 
objects and executables is undecidable in the general case. 
This work does not try to analyze plug-ins or dynamic 
content other than Javascript. In the future, we hope to make 
some gains by executing plug-in objects in a controlled 
environment and monitoring their output. It may also be 
possible to achieve some improvement through deep 
inspection and understanding of plug-in objects, but doing so 
yields diminishing returns because of their complexity and 
diversity. 

Instead of examining dynamic content for plug-in 
objects, we look at previous requests to create a library of 
expected URLs. The leak measurement engine compares 
new HTTP requests that do not match a browser link to the 
set of all prior requests. The closest link is determined by 
computing the shortest edit distance from a few candidate 
requests that have the longest matching substring at the 
beginning. This approach is an effective approximation for 
finding the closest URL because similar URL strings are 
much more likely to have common elements at the 
beginning.  The resulting information content is equal to 
log(m), where m is the size of the library of prior requests, 
plus the edit distance with respect to the similar prior 
request, plus two bits to indicate that the request is compared 
to the library of prior requests and did not come from a link 
on a webpage. In practice, many custom web requests are 
similar to previous requests. For example, RSS readers and 
software update services repeatedly send identical requests to 
check for new data. We can effectively filter most of these 
messages when measuring information leaks. 

6. Request Timing Information 

In addition to data in the request, HTTP messages also 
contain timing information. The moment at which a request 
occurs could be manipulated by a clever adversary to leak 
information. It is important to consider the bandwidth of 
timing channels when measuring information leaks. This is 
especially true for the precise unconstrained measurement 
techniques in this paper because they may yield sizes of only 
a few bits per request in some cases.  

The amount of timing information in a request stream is 
equal to the number of bits needed to recreate the request 
times as seen by the recipient, within a margin of error. This 
margin of error is known as the timing interval. It is a short 
length of time during which the presence of a request 
indicates a ‘1’ bit, and the absence of a request indicates ‘0’. 
Using a shorter interval increases the capacity of a timing 
channel, but also increases the error rate. Previous research 
on IP covert timing channels found 0.06 seconds to be an 
effective value for the timing interval in one case [6]. This 
equates to about 16.6 intervals per second. 

Prior work on network timing channels looks at IP 
packets [6]. Cabuk et al. describe a channel where IP packets 
are sent during timing intervals to indicate ‘1’ bits. HTTP 
requests differ from IP packets in that they tend not to occur 
as closely together. Instead of having a regular stream of 
messages throughout a connection, web requests occur in 
short bursts during page loads, and then at long intervals in 
between pages. For normal HTTP traffic, we have a sparse 
timing channel in which a vast majority of the intervals are 
empty.  

For a sparse channel, the timing information in each 
HTTP request is equal to the bits needed to indicate how 
many empty intervals have occurred since the last request. 
The cumulative distribution of inter-request delays for our 
experiments can be seen in Figure 3. This shows that that 
80% of HTTP requests occur within three seconds of each 
other, while 95% of requests occur within a minute and a 
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half. Using a variable-length encoding scheme with the first 
2–6 bits indicating the length, we can count the timing 
information in each request as follows (assuming 16 
intervals per second): 

• Last request <= 3 seconds: 6 bits 
• Last request <= ~100 seconds: 11 + 2 length bits 
• Last request <= ~50 Minutes: 16 + 4 length bits 
• Last request in past 5 years: 32 + 6 length bits 

This encoding provides a reasonable approximation of 
the information content in the timing of each request. It is 
important to note that these figures depend on the number of 
timing intervals per second. If an attacker can view messages 
close to the source network, then there may be more than 
sixteen intervals per second. On the other hand, if a web 
proxy is configured to increase request jitter, then the 
number of viable time intervals per second may be less than 
sixteen.  

In this paper, we assume that HTTP requests are going 
through a layer-7 proxy or gateway for our timing channel 
measurements. This means that the only meaningful time is 
at the start of the request. The timing of subsequent IP 
packets is controlled by the proxy, not the client, under 
normal conditions. We believe the presence of a proxy is a 
reasonable assumption for timing channel measurements. 
Organizations that care enough about leaks to measure 
covert timing channels should already have a web proxy in 
place to mediate outbound information flow (e.g., with data-
loss prevention systems [18, 24]). 

7. Evaluation 

We applied the leak measurement techniques described 
in this paper on web traffic from a controlled environment, 
and on real web browsing data. The controlled tests involved 
six 30-minute browsing sessions at different types of 
websites using a single browser. The real web traffic was 
collected from ten different people using a variety of 
browsers and operating systems over a 30-day period. Only 
data from the controlled scenarios was used for developing 
the leak measurement engine. None of the live traffic results 
were used to modify or improve our analysis techniques. We 

compared the results of our precise unconstrained analysis to 
incremental gzip compression, simple request analysis, and 
raw byte counts. The gzip tests involved measuring the 
amount of new compressed data for each request when using 
a gzip compression stream that has seen all prior requests 
and responses. The simple analysis is a technique described 
in prior research [3] that is stateless and just throws out 
expected request headers. This section presents our 
evaluation results, discusses limitations of our approach, and 
briefly summarizes performance results. 

7.1. Controlled Tests 

We first evaluated our leak quantification techniques on 
browsing traffic from controlled scenarios. The scenarios 
were 30-minute browsing sessions that included web mail 
(Yahoo), social networking (Facebook), news (New York 
Times), sports (ESPN), shopping (Amazon), and a personal 
blog website. The results are shown in Table 1. The precise 
unconstrained leak measurements for all of the scenarios 
were much smaller than the raw byte counts, ranging from 
0.32–1.12% of the original size. 

The results were best for the blog scenario because the 
blog website contained only one dynamic link. The analysis 
engine was able find an exact match for all of the other 
requests.  Of the 262 bytes that were present in the blog 
scenario, 118 (45%) of them were from timing information, 
86 (33%) from link selection, 48 (18%) from text entered by 
the user, and 10 (4%) from a Javascript link that contained a 
random number to prevent caching. The blog scenario 
represents a near ideal situation for our measurement 
techniques because we were able to find an exact URL 
match for all but one request. The resulting average of a few 
bytes per request serves as a lower bound for standard HTTP 
traffic. This traffic must at least leak timing and link 
selection information. One possible way to reduce timing 
and link selection leakage is to employ entropy 
normalization techniques, such as pre-fetching mandatory 
links with a caching proxy. 

The shopping, news, and web mail scenarios all showed 
similar precise measurement results. Each of these websites 
contained a large number of dynamically constructed links 
that were processed correctly. However, dynamic links often 
contain information from the client computer. Examples 

Scenario # Reqs Raw bytes Simple  bytes/% Gzip bytes/% Precise bytes/% Avg. Req. Size 
Sports News 911 1,188,317 199,857 / 16.8% 116,650 / 9.82%  13,258 / 1.12% 14.5 bytes 

Social Net. 1,175 1,404,268 92,287 / 6.57% 97,806 / 6.96% 12,805 / 0.91% 10.9 bytes 

Shopping 1,530 914,420 158,076 / 17.3% 85,461 / 9.35% 6,157 / 0.67% 4.0 bytes 

News 547 502,638 74,927 / 14.9% 51,406 / 10.2%  3,279 / 0.65% 6.0 bytes 

Web Mail 508 620,065 224,663 / 36.2% 97,965 / 15.8% 3,964 / 0.64%  7.8 bytes 

Blog 136 81,162 10,182 / 12.5% 5,534 / 6.82% 262 / 0.32% 1.9 bytes 

Table 1. Bandwidth measurement results for six web browsing scenarios using four different measurement techniques, 
 along with the average bytes/request for the precise technique. 

 



include the precise system time at execution, browser 
window dimensions, and random numbers to prevent 
caching. This information must be counted because it cannot 
be determined by looking at previous requests and responses. 
From a hacker’s point of view, these fields would be a good 
place to hide data.  Opaque client-side state information was 
particularly prevalent in links for advertisements and 
tracking images on the shopping, news, and web mail sites. 

Precise unconstrained bandwidth measurements for the 
social networking and sports news scenarios were the 
highest. The social networking website (Facebook.com) 
relied heavily on Active Javascript and XML (AJAX) 
requests that constructed link URLs in response to user input. 
Because the analysis engine did not trigger event handlers, it 
was unable to extract these links. The sports news website 
(ESPN.com) contained a number of Flash objects that 
dynamically fetched other resources from the web. The 
analysis engine could not discount these links because it did 
not process the plug-in objects. In the future, the engine 
could improve analysis accuracy by obtaining and replaying 
hints about input events that trigger AJAX requests and 
dynamic link URLs from agents running the clients. These 
agents need not be trusted, because incorrect hints would 
only increase the unconstrained bandwidth measurement. 

Gzip compression [8] was more effective than simple 
request analysis for all but one of the controlled test cases, 
but fell far short of the compression level achieved by 
precise analysis. By running previous requests and responses 
through the compression stream, gzip was able to discount 
84-93% of raw data. URLs and HTTP headers are filled with 
strings that appear elsewhere in previous requests or 
responses, giving gzip plenty of opportunities for 
compression. One benefit that gzip actually has over precise 
analysis, which was not enough to make a big difference, is 
that it compresses UI-layer data. Our analysis engine will 
count the full size of a blog comment, for example, while 
gzip will compress the comment. Running unconstrained 

bytes through an additional compression algorithm on the 
back end may help to further improve precise unconstrained 
bandwidth measurements in the future. 

We did not test generic compression algorithms other 
than gzip, but would expect similar results. Without 
protocol-specific processing, compression algorithms are 
limited in how effective they can be at discounting 
constrained information. 

7.2. Quantifying Information in Real Web Traffic 

We collected web traffic from 10 users over the course of 
a month to evaluate our leak measurement techniques.  
Unlike the controlled scenarios, this traffic came from a 
variety of web browsers, including Firefox, Internet 
Explorer, Safari, and Chrome. The traffic consisted of 
normal daily activity from the volunteers, who consisted of 
co-workers, friends, and family. The data included 507,505 
requests to 7052 unique hosts totaling 475 MB. We also 
recorded 2.58 GB of response data, not including images, 
videos, or other binary objects. The web mail request bodies 
were also ignored to protect privacy. To the best of our 
knowledge, the collected web traffic did not contain any 
information leaks from spyware or unusually large uploads 
that would have negatively skewed the results. 

We ran the leak measurement algorithms on the real web 
traffic one user at a time (the results do not exploit request 
similarities between users). We first computed the 
distribution of measured sizes across all requests. Figure 4a 
shows the probability density function of request sizes for 
raw, simple, gzip, and precise measurements. The precise 
unconstrained bandwidth measurement algorithm 
dramatically outperformed the others on real web traffic. The 
mean precise request size was 15.8 bytes, compared to 132 
for gzip, 243 for simple, and 980 for raw. Despite a low 
average measurement, the precise request size distribution 
exhibited a heavy tail (standard deviation of 287 bytes). 
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Figure 4.  (a) The distribution of precise, gzip, simple, and raw request byte counts for real web traffic. 
(b) Distribution of request byte counts as percentage of raw for precise, gzip, and simple algorithms. 



Requests with exact URL matches were usually a few bytes 
each, while many requests without exact URL matches were 
a few hundred bytes. 

We also calculated the percent reduction in request size 
with respect to raw measurements. These results can be seen 
in Figure 4b. Again, the reduction is much better for the 
precise algorithm. Its measurements averaged 1.48% of the 
corresponding raw values, while the gzip and simple 
algorithms averaged 9.87% and 13.5%, respectively. The 
request measurements for the precise algorithm also have a 
lower variance, with almost all under 20% of corresponding 
raw values. The simple and gzip size reductions are much 
more spread out, with some requests measuring 20-75% of 
the raw size. These requests did not benefit much from gzip 
or simple analysis. 

The unconstrained bandwidth measurement results from 
real traffic yielded larger values than those from the 
controlled test cases.  The largest average request size of 
14.5 bytes from the sports news test was less than the overall 
average of 15.8 bytes per request for real web traffic. One 
reason for this is that the controlled tests were not necessarily 
representative of real web browsing. Other sites that were not 
in the controlled study may not have exhibited the same mix 
of requests from plug-ins or event handlers. We did not 
compute the prevalence of this source of inaccuracy, because 
doing so would have required manually analyzing a 
significant portion of the half million requests. 

During real web traffic processing, we witnessed a few 
sources of inaccuracy that were not present in the controlled 
test cases. One such issue is missing cache objects. Clients 
may cache resources from the server for long periods of 
time, making those resources unavailable in a network trace. 
This is especially problematic for missing scripts that 
perform important tasks. The effects of this problem could be 
reduced by having the analysis engine fetch missing objects 
from the web. However, those objects may no longer be 
available or might have changed since the original request. 

Another source of error only found in real web traffic is 
the effect of different browser versions. The controlled tests 
were all performed with Mozilla Firefox [14]. The analysis 
engine’s Javascript and DOM implementation also mirrored 
Firefox. Real web traffic from other browsers is likely to 
have different dynamic links corresponding to different 
browser behavior. These differences could be reduced by 
implementing other DOM interfaces to match the browser 
version reported in the headers of each request. 

7.3. Analysis Performance 

The real web traffic was analyzed on a commodity laptop 
computer with a dual-core Intel T2500 processor and 2 GB 
of RAM. The analysis algorithms ran in a single thread on 
one core, with the other core being utilized by the operating 
system. The analysis engine was able process the combined 
request and response stream at 1.7 Mbps. The bottleneck 
during processing was CPU. The real web traffic consisted 

of 3.04 GB of total data, 15% of which (475 MB) was 
request data and 85% of which (2.58 GB) was response data. 
The engine processed the requests at an average rate of 0.25 
Mbps, and the responses at an average rate of 10.9 Mbps. 
This disparity in performance is due to the time required to 
compute the edit distance for request URLs. Javascript 
execution was included under the response processing time. 
None of the scripts were given a time limit, and none of them 
entered infinite loops. 

Analysis performance for the prototype implementation 
would need improvement for use in an intrusion detection 
system that inspects large volumes of network traffic. One 
area for optimization is reducing the number of edit distance 
comparisons and approximating the edit distance 
computation by only considering multi-byte chunks. Another 
way to improve performance would be to employ a string co-
processor specially designed for edit distance computations. 
Exploring CPU performance optimizations and maximizing 
the throughput of the unconstrained bandwidth measurement 
engine is future work. 

The memory footprint during analysis was quite large for 
the prototype implementation. It kept all of the observed 
links in memory and did not attempt to free older data that 
was less likely to improve analysis results.  Processing 20 
MB of web browsing traffic from one user during a single 
day required 120 MB of RAM. Although this would be 
unreasonably large for an intrusion detection application, we 
believe that this number could be greatly reduced by simply 
discarding links from old pages. While analysis results may 
be a little bit worse, the number of links that are loaded from 
pages that have been open for hours is far smaller than links 
that are loaded from recent pages. Another possible 
optimization is sharing link information across users.  

8. Entropy Mitigation Strategies 

The evaluation showed that a significant portion of 
information in web requests must be counted because it 
originates from entropy on the client. If this entropy can be 
reduced or measured at a trusted source, then the analysis 
engine can obtain more accurate results. This section 
discusses possible strategies for reducing inaccuracies in 
unconstrained bandwidth measurements due to entropy on 
client computers. 

8.1. System Information and Human Input 

The current leak measurement engine cannot see actual 
system information or human input to a client; it only 
witnesses the resulting requests. Due to the complexity of 
active content on websites, system information and human 
input can sometimes lead to a chain of events that generates 
a much larger output than the size of the original 
information. For example, clicking on a particular place on a 
web page may lead to an AJAX request that contains a few 



hundred bytes of XML. Speculatively firing events would 
help somewhat with determining expected requests, but such 
an approach would quickly lead to an exponential blow-up. 
A better solution would be to obtain system information 
(screen resolution, OS, installed plug-ins, etc.) and human 
input hints from an agent running on the end host. This agent 
could be a browser plug-in that records and sends all of the 
system information and human input events to the analysis 
engine. Instead of having to speculate, the engine could then 
replay the exact sequence of inputs and verify that the output 
is the same. It could only count the size of the original input, 
rather than the larger resulting output. It is also okay if the 
agent reports data incorrectly, because doing so would only 
increase the unconstrained bandwidth measurement and raise 
suspicion. 

Depending on the threat model, it may also be possible to 
reduce unconstrained bandwidth measurements by 
discounting human input entirely. This approach may be 
appropriate if the user is trustworthy, but malware is a 
concern. A trusted device, similar to a hardware key-logger, 
could intercept mouse and keyboard events before they reach 
the computer, and then report them to the leak measurement 
engine. This would aid analysis in a similar manner as a hint 
from a browser plug-in, except that the size of the original 
human input could be discounted as well, assuming that the 
user is trusted. 

8.2. Timing 

The timing of each request has the potential to leak 
several bits of information to an observer stationed outside of 
the network. The traditional method for mitigating timing 
channels is to add entropy to each request. For web traffic, 
this can be achieved by adding a trusted proxy server 
between the client and the web server. This proxy can add 
jitter to each web request by delaying it a random amount of 
time. This could significantly increase the size of the timing 
interval, raising it from 0.06 seconds to 1 second (any more 
might disrupt usage). Randomly delaying requests up to 1 
second would reduce the amount of timing information in 
each request by 5 bits, which can add up to a significant 
savings for a large number of requests. 

Another option available to us that would not be feasible 
for mitigating a traditional IP packet timing channel is 
reducing the total number of requests. Every time a client 
makes a request for a web page, a smart caching proxy could 
pre-fetch all of the mandatory links. Then, when the client 
requests a resource from a mandatory link, the proxy can 
return the result without any information leaving the 
network, thus precluding leakage through those requests. 

In addition to the timing of requests themselves, some 
requests include an explicit time value. This is the system 
time at which a script executed on the end host. Websites 
may include this time value to prevent caching, or to collect 
statistics about latency from their users. In any case, it differs 
slightly from the time that a request actually appears on the 

network, has a high precision, and can therefore leak 
information. A proxy server can eliminate timing 
information of this form by discovering it with the edit 
distance algorithm and then overwriting it with the time that 
the proxy actually sends the request. 

8.3. Random Number Generator 

Many websites have scripts that include random numbers 
in link URLs. The purpose of doing this is to prevent 
caching. At the same time, however, these requests leak data 
in their selection of random numbers. One way of reducing 
entropy from the random number generator (RNG) is to 
instead have a network service that handles random number 
generation. When an executing script makes a call to fetch a 
random number, the Javascript engine could request a new 
random number from a trusted central location instead of 
using the local RNG. This would move random numbers 
from the set U of UI-layer input to the set I of network 
inputs, allowing the analysis engine to discount them from 
the information measurement in outbound web requests 
(assuming they are not modified by malware). 

9. Conclusions and Future Work 

This paper introduced a new approach for quantifying 
information leaks in web traffic. Instead of inspecting a 
message’s data, the goal was to quantify its information 
content. The algorithms in this paper achieve precise results 
by discounting fields that are repeated or constrained by the 
protocol. This work focuses on web traffic, but similar 
principles can apply to other protocols. Our analysis engine 
processes static fields in HTTP, HTML, and Javascript to 
create a distribution of expected request content. It also 
executes dynamic scripts in an emulated browser 
environment to obtain complex request values. 

We evaluated our analysis techniques on controlled test 
cases and on real web traffic from 10 users over a 30-day 
period. For the controlled tests, the measurement techniques 
yielded byte counts that ranged from 0.32%-1.12% of the 
raw message size. These tests highlighted some limitations 
of our approach, such as being unable to filter parts of URLs 
that contain random numbers to prevent caching. For the real 
web traffic evaluation, the precise unconstrained byte counts 
averaged 1.48% of the corresponding raw values. This was 
significantly better than a generic compression algorithm, 
which averaged 9.87% of the raw size for each request. 

In the future, we plan to implement similar leak 
measurement techniques for other protocols. E-mail (SMTP) 
will probably be the most challenging because a majority of 
its data is free-form information from the user. There is also 
a lot of room to improve the dynamic content analysis 
techniques. Obtaining user input hints from clients and 
executing plug-in objects can help extract additional request 
URLs. Finally, we hope to optimize and integrate the 



techniques from this paper into a network intrusion detection 
system that uses bandwidth thresholds to discover 
information leaks. 

Acknowledgements 

We would like to thank friends and students at the 
University of Michigan who participated in this study. Also, 
thanks to Peter Chen, Myron Gutmann, Morley Mao, and 
Patrick McDaniel for their feedback on the research. The 
web traffic study was conducted with IRB approval under 
project HUM00024168 at the University of Michigan. 

References 

[1] Adobe Systems Incorporated. Adobe Flash Player. 
http://www.macromedia.com/software/flash/about,   2008. 

[2] R. Anderson and F. Petitcolas. On the Limits of 
Steganography. IEEE Journal of Selected Areas in 
Communications, 16(4):474-481, 1998. 

[3] K. Borders and A. Prakash. Web Tap: Detecting Covert Web 
Traffic. In Proc. of the 11th ACM Conference on Computer 
and Communications Security (CCS), 2004. 

[4] K. Borders and A. Prakash. Towards Quantification of 
Network-Based Information Leaks Via HTTP. In Proc. of the 
3rd USENIX Workshop on Hot Topics in Security, 2008. 

[5] S. Brand. DoD 5200.28-STD Department of Defense Trusted 
Computer System Evaluation Criteria (Orange Book). 
National Computer Security Center, 1985. 

[6]  S. Cabuk, C. Brodley, and C. Shields. IP Covert Timing 
Channels: Design and Detection. In Proc. of the 11th ACM 
Conference on Computer and Communications Security 
(CCS), 2004. 

[7] S. Castro. How to Cook a Covert Channel. hakin9, 
http://www.gray-world.net/projects/ 
cooking_channels/hakin9_cooking_channels_en.pdf, 2006. 

[8] J. Gailly and M. Adler. The gzip Home Page. 
http://www.gzip.org/, 2008. 

[9] J. Giles and B. Hajek. An Information-Theoretic and Game-
Theoretic Study of Timing Channels. IEEE Transactions on 
Information Theory, 48:2455–2477, 2003. 

[10] M. Handley, V. Paxson, and C. Kreibich. Network Intrusion 
Detection: Evasion, Traffic Normalization, and End-to-End 
Protocol Semantics. In Proc. of the 10th USENIX Security 
Symposium, 2001. 

[11] M. Kang, I. Moskowitz, and D. Lee. A Network Version of 
the Pump. In Proc. of the 1995 IEEE Symposium in Security 
and Privacy, 1995.  

[12] G. Malan, D.Watson, F. Jahanian, and P. Howell. Transport 
and Application Protocol Scrubbing. In Proc. of the IEEE 
INFOCOM 2000 Conference, 2000. 

[13] S. McCamant and M. Ernst. Quantitative Information Flow as 
Network Flow Capacity. In Proc. of the ACM SIGPLAN 
Conference on Programming Language Design and 
Implementation (PLDI), 2008. 

[14] Mozilla. The Firefox Web Browser. 
http://www.mozilla.com/firefox/, 2008. 

[15] Mozilla. SpiderMonkey (Javscript-C) Engine. 
http://www.mozilla.org/js/spidermonkey/, 2008. 

[16] A. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java 
information flow. http://www.cs.cornell.edu/jif, 2001. 

[17] R. Richardson. CSI Computer Crime and Security Survey. 
http://i.cmpnet.com/ v2.gocsi.com/pdf/CSISurvey2007.pdf, 
2007. 

[18] RSA Security, Inc. RSA Data Loss Prevention Suite. RSA 
Solution Brief, 
http://www.rsa.com/products/EDS/sb/DLPST_SB_1207-
lowres.pdf, 2007. 

[19] N. Schear, C. Kintana, Q Zhang, and A. Vahdat. Glavlit: 
Preventing Exfiltration at Wire Speed. In Proc. of the 5th 
Workshop on Hot Topics in Networks (HotNets), 2006. 

[20]  J. Seward. bzip2 and libbzip2, version 1.0.5 – A Program and 
Library for Data Compression. 
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.html, 2007. 

[21] C. Shannon. Prediction and Entropy of Printed English. Bell 
System Technical Journal, 30:50–64, 1951. 

[22] S. Servetto and M. Vetterli. Communication Using Phantoms: 
Covert Channels in the Internet. In Proc. of the IEEE 
International Symposium on Information Theory, 2001. 

[23] Sun Microsystems. Java. http://www.java.com, 2008. 

[24] VONTU. Data Loss Prevention, Confidential Data Protection 
– Protect Your Data Anywhere. http://www.vontu.com, 2008. 

[25] R. Wagner and M. Fischer. The String-to-String Correction 
Problem. Journal of the ACM, 21(1):168–173, 1974.  

[26] Websense, Inc. Web Security, Internet Filtering, and Internet 
Security Software. http://www.websense.com/global/en/, 
2008. 

[27] A. Yumerefendi, B. Mickle, and L. Cox. TightLip: Keeping 
applications from spilling the beans. In Proc. of the 4th 
USENIX Symposium on Networked Systems Design and 
Implementation(NSDI), 2007. 

 


