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Abstract 

This paper describes the design and implementation of vir- 
tual memory management within the CMU Mach Operating 
System and the experiences gained by the Mach kernel group 
in porting that system to a variety of architectures. As of this 
writing, Maeh runs on more than half a dozen uniprocessors 
and multiprocessors including the VAX family of uniproces- 
sors and multiprocessors, the IBM RT PC, the SUN 3, the 
Encore MultiMax, the Sequent Balance 21000 and several 
experimental computers. Although these systems vary con- 
siderably in the kind of hardware support for memory 
management they provide, the machine-dependent portion of 
Mach virtual memory consists of a single code module and its 
related header file. This separation of software memory 
management from hardware support has been accomplished 
without sacrificing system performance. In addition to im- 
proving portability, it makes possible a relatively unbiased 
examination of the pros and cons of various hardware 
memory management schemes, especially as they apply to the 
support of multiprocessors. 

1. Introduct ion 
While software designers are increasingly able to cope with 

variations in instruction set architectures, operating system 
portability continues to suffer from a proliferation of memory 
structures. UNIX systems have traditionally addressed the 
problem of VM portability by restricting the facilities 
provided and basing implementations for new memory 
management architectures on versions already done for pre- 
vious systems. As a result, existing versions of UNIX, such 
as Berkeley 4.3bsd, offer little in the way of virtual memory 
management other than simple paging support. Versions of 
Berkeley UNIX on non-VAX hardware, such as SunOS on 
the SUN 3 and ACIS 4.2 on the IBM RT PC, actually simu- 
late internally the VAX memory mapping architecture -- in 
effect treating it as a machine-independent memory manage- 
ment specification. 
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Over the last two years CMU has been engaged in the 
development of a portable, multiprocessor operating system 
called Mach. One of the goals of Mach has been to explore 
the relationship between hardware and software memory ar- 
chitectures and to design a memory management system that 
would be readily portable to multiprocessor computing en- 
gines as well as traditional uniprocessors. 

Mach provides complete UNIX 4.3bsd compatibility while 
significantly extending UNIX notions of virtual memory 
management and inteerprocess communication [1]. Mach sup- 
ports: 

* large, sparse virtual address spaces, 

• copy-on-write virtual copy operations, 

• copy-on-write and read-write memory sharing 
between tasks, 

• memory mappedfiles and 

n user-provided backing store objects andpagers. 
This has been accomplished without patterning Mach's in- 

ternal memory representation after any specific architecture. 
In fact, Math makes relatively few assumptions about avail- 
able memory management hardware. The primary require- 
ment is an ability to handle and recover from page faults (for 
some arbitrary page size). 

As of this writing, Math runs on more than half a dozen 
uniprocessors and multiprocessors including the entire VAX 
family of uniprocessors and mulfiprocessors, the IBM RT PC, 
the SUN 3, the Encore MultiMax and the Sequent Balance 
21000. Implementations are in progress for several ex- 
perimental computers. Despite differences between supported 
architectures, the machine-dependent portion of Mach's vir- 
tual memory subsystem consists of a single code module and 
its related header file. All information important to the 
management of Mach virtual memory is maintained in 
machine-independent data structures and machine-dependent 
data structures contain only those mappings necessary to run- 
ning the current mix of programs. 

Mach's separation of software memory management from 
hardware support has been accomplished without sacrificing 
system performance. In several eases overall system perfor- 
mance has measurably improved over existing UNIX im- 
plementations. Moreover, this approach makes possible a 
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relatively unbiased examination of the pros and cons of 
various hardware memory management schemes, especially 
as they apply to the support of multiprocessors. This paper 
describes the design and implementation of virtual memory 
management within the CMU Mach Operating System and 
the experiences gained by the Mach kernel group in porting 
that system to a variety of arChitectures. 

2. M a c h  D e s i g n  
There are five basic Mach abstractions: 

1. A task is an execution environment in which 
threads may run. It is the basic unit of resource 
allocation. A task includes a paged virtual ad- 
dress space and protected access to system 
resources (such as processors, port capabilities 
and virtual memory). A task address space con- 
sists of an ordered collection of mappings to 
memory objects (see below). The UNIX notion 
of a process is, in Mach, represented by a task 
with a single thread of control. 

2. A thread is the basic unit of CPU utilization. It 
is roughly equivalent to an independent program 
counter operating within a task. All threads 
within a task share access to all task resources. 

3. A port is a communication channel -- logically a 
queue for messages protected by the kernel. 
Ports are the reference objects of the Mach 
design. They are used in much the same way 
that object references could be used in an object 
oriented system. Send and Receive are the fun- 
damental primitive operations on ports. 

4. A message is a typed collection of data objects 
used in conmmnication between threads. Mes- 
sages may be of any size and may contain 
pointers and typed capabilities for ports. 

5. A memory object is collection of data provided 
and managed by a server which can be mapped 
into the address space of a task. 

Operations on objects other than messages are performed by 
sending messages to ports. In this way, Mach permits system 
services and resources to be managed by user-state tasks. For 
example, the Mach kernel itself can be considered a task with 
multiple threads of control. The kernel task acts as a server 
which in turn implements tasks, threads and memory objects. 
The act of creating a task, a thread or a memory object, 
returns access rights to a port which represents the new object 
and can be used to manipulate it. Incoming messages on such 
a port results in an operation performed on the object it 
represents. 

The indirection provided by message passing allows objects 
to be arbitrarily placed in the network (either within a mul- 
tiprocessor or a workstation) without regard to programming 
details. For example, a thread can suspend another thread by 
sending a suspend message to that thread's threadport even if 
the requesting thread is on another node in a network. It is 
thus possible to run varying system configurations on dif- 
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ferent classes of machines while providing a consistent inter- 
face to all resources. The actual system running on any 
particular machine is thus more a function of its servers than 
its kernel. 

Traditionally, message based systems of this sort have 
operated at a distinct performance disadvantage to conven- 
tionally implemented operating systems. The key to efficiency 
in Mach is the notion that virtual memory management can be 
integrated with a message-oriented communication facility. 
This integration allows large amounts of data including whole 
files and even whole address spaces to be sent in a single 
message with the efficiency of simple memory remapping. 

2.1. Basle VM Opera t ions  
Each Mach task possesses a large address space that consists 

of a series of mappings between ranges of memory addres- 
sible to the task and memory objects. The size of a Mach 
address space is limited only by the addressing restrictions of 
the underlying hardware. An RT PC task, for example, can 
address a full 4 gigabytes of memory under Mach I while the 
VAX architecture allows at most 2 gigabytes of user address 
space. A task can modify its address space in several ways, 
including: 

allocate a region of  virtual memory on a page 
boundary, 

® deallocate a region ofvirtucd memory, 

• set the protection status o f  a region o f  virtual 
memory, 

• specify the inheritance of  a region o f  virtual 
memory and 

® create and manage a memory object that can 
then be mapped into the address space o f  another 
task. 

The only restriction imposed by Mach on the nature of the 
regions that may be specified for virtual memory operations is 
that they must be aligned on system page boundaries. The 
definition of page size is a boot time system parameter and 
can be any power of two multiple of the hardware page size. 
Table 2-1 fists the set of virtual memory operations that can 
be performed on a task. 

Both copy-on-write and read/write sharing of memory are 
permitted between Mach tasks. Copy-on-write sharing be- 
tween unrelated tasks is typically the result of large message 
transfers. An entire address space may be sent in a single 
message with no actual data copy operations performed. 
Read/write shared memory can be created by allocating a 
memory region and setting its inheritance attribute. Sub- 
sequently created child tasks share the memory of their parent 
according to its inheritance value. Inheritance may be 
specified as shared, copy or none, and may be specified on a 
per-page basis. Pages specified as shared, are shared for read 
and write. Pages marked as copy are logically copied by 
value, although for efficiency copy-on-write techniques are 

1This feature is actively used at CMU by the CMU RT implementation of 
CommonLisp. 
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employed. An inheritance specification of none signifies that 
a page is not to be passed to a child. In this case, the child's 
corresponding address is left unallocated. 

Like inheritance, protection is specified on a per-page basis. 
For each group of pages there exist two protection values: the 
current and the maximum protection. The current protection 
controls actual hardware permissions. The maximum protec- 
tion specifies the maximum value that the current protection 
may take. While the maximum protection can never be 
raised, it may be lowered. If the maximum protection is 
lowered to a level below the current protection, the current 
protection is also lowered to that level. Each protection is 
implemented as a combination of read, write and execute 
permissions. Enforcement of access permissions depends on 
hardware support. For example, many machines do not allow 
for explicit execute permissions, but those that do will have 
that protection properly enforced. 

Virtual Memory Operat ions 

vm allerate(tar ge t_tstsk,addr ess~lze,anywhere) 
Allocate and fill with zeros new virtual memory either 
anywhere or at a ~pecified address. 

vm_copy(targettask,source addr e.~,cotmt,dezt_addre~) 
Virtnolly copy a range o/memory from one address to another. 

vm~leallocat e(ta r ge t t~k,addr e~ lze )  
Dea//ocate a range of addresses, i.e. ~ them no longer wdld. 

vm_lnherlt(target..task,address, dze, new_lnherltanee) 
Set the inheritance at~rlbute of an addre~ range. 

vm proteet(,~rget task,addres~dze,set maxim urn,new protection) 
Set the protection attribute of an address range. 

vm_r ea d0a rget ~ s k  ,addr es, s,sl~,data, da la_eount) 
Read tl~ contents of a region of a task's address space. 

vra_reglons(larget ta.¢k,addressoIze, elements, elements2munt ) 
R etwvn description of specO%d region of tazk" s address space. 

vm_statlstlcs(target task,vm stats) 
Retwpn statistics about the use of  memory by targetJask. 

vm_wrlte(tar get task,nddr ess,eotmt,data,dala count ) 
Write the contents of  a region of a task's address ~pace. 

Table 2-1: 

All VM operations apply to a target task (represented by a port) and 
all I~ut vm statmties specify aft-address and size in bytes. 

anywh, ere is a booloan which indieates whether or  not a v m  allocate 
~lloeates meanery anywhere or  at a location specified by  address. 

Mach's implementation of UNIX fork is an example of how 
its virtual memory operations can be used. When a fork 
operation is invoked, the newly created child task address 
map is created based on the parent's inheritance values. By 
default, all inheritance values for an address space are set to 
copy. Thus the child's address space is, by default, a copy- 
on-write copy of the parent's and UNIX address space copy 
semantics are preserved. 

One of the more unusual features of Mach is that fact that 
virtual memory related functions, such as pagein and pageout, 
can be performed directly by user-state tasks for memory 
objects they create. Section 3.3 describes this aspect of the 
system. 

3. The Implementation of Mach Virtual 
M e m o r y  

Four basic memory management data structures are used in 

Mach: 

1. the res ident  p a g e  table -- 

a table used to keep track of information about 
machine independent pages, 

2. the addres s  map  -- 

a doubly linked list of map entries, each of 
which describes a mapping from a range of ad- 
dresses to a region of a memory object, 

3. the m e m o r y  ob jec t  -- 

a unit of backing storage managed by the kernel 
or a user task and 

4. the p m a p  -- 

a machine dependent memory mapping data 
structure (i.e., a hardware defined physical ad- 
dress map). 

The implementation is split between machine independent  

and machine dependen t  sections. Machine dependent code 
implements only those operations necessary to create, update 
and manage the hardware required mapping data structures. 
All important virtual memory information is maintained by 
machine independent code. In general, the machine depend- 
ent part of Mach maintains only those mappings which are 
crucial to system execution (e.g., the kernel map and the 
mappings for frequently referenced task addressees) and may 
garbage collect non-important mapping information to save 
space or time. It has no knowledge of machine independent 
data structures and is not required to maintain full knowledge 
of valid mappings from virtual addresses to hardware pages. 

3.1. Managing Resident Memory  
Physical memory in Mach is treated primarily as a cache for 

the contents of virtual memory objects. Information about 
physical pages (e.g., modified and reference bits) is main- 
tained in page entries in a table indexed by physical page 
number. Each page entry may simultaneously be linked into 
several lists: 

• a m e m o r y  ob jec t  list. 

• a m e m o r y  al locat ion q u e u e  and 

• a object~offset hash  bucket .  

All the page entries associated with a given object are linked 
together in a memory objec t  l ist  to speed-up object dealloca- 
tion and virtual copy operations. Memory object semantics 
permit each page to belong to at most one memory object. 
Allocat ion  q u e u e s  are maintained for free, reclaimable and 
allocated pages and are used by the Mach paging daemon. 
Fast lookup of a physical page associated with an 
object/offset at the time of a page fault is performed using a 
bucket hash table keyed by memory object and byte offset. 

Byte offsets in memory objects are used throughout the 
system to avoid linking the implementation to a particular 
notion of physical page size. A Mach physical page does not, 
in fact, correspond to a page as defined by the memory 
mapping hardware of a particular computer. The size of a 
Mach page is a boot time system parameter. It relates to the 
physical page size only in that it must be a power of two 
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multiple of the machine dependent size. For example, Mach 
page sizes for a VAX can be 512 bytes, 1K bytes, 2K bytes, 
4K bytes, etc. Mach page sizes for a SUN 3, however, are 
limited to 8K bytes, 16K bytes, etc. The physical page size 
used in Mach is also independent of the page size used by 
memory object handlers (see section below). 

3.2. Address  M a p s  
Just as the kernel keeps track of its own physical address 

space, it must also manage its virtual address space and that of 
each task. Addresses within a task address space are mapped 
to byte offsets in memory objects by a data structure called an 
address map. 

An address map is a doubly linked list of address map 
entries each of which maps a contiguous range of virtual 
addresses onto a contiguous area of a memory object. This 
linked list is sorted ixt order of ascending virtual address and 
different entries may not map overlapping regions of memory. 

Each address map entry carries with it information about the 
inheritance and protection attributes of the region of memory 
it defines. For that reason, all addresses within a range 
mapped by an entry must have the same attributes. This can 
force the system to allocate two address map entries that map 
adjacent memory regions to the same memory object simply 
because the properties of the two regions are different. 

This address map data structure was chosen over many alter- 
natives because it was the simplest that could efficiently im- 
plement the most frequent operations performed on a task 
address space, namely: 

® page fault lookups, 

• copy/protection operations on address ranges 
and 

allocationldeallocation of  address ranges. 
A sorted linked list allows operations on ranges of addresses 

(e.g., copy-on-write copy operations) to be done simply and 
quickly and does not penalize large, sparse address spaces. 
Moreover, fast lookup on faults can be achieved by keeping 
last fault "hints". These hints allow the address map list to be 
searched from the last entry found for a fault of a particular 
type. Because each entry may map a large region of virtual 
addresses, an address map is typically small. A typical VAX 
UNIX process has five mapping entries upon creation - one 
for its UNIX u-area and one each for code, stack, initialized 
and uninitialized data. 

3.3. M e m o r y  Objec ts  
A Mach address map need not keep track of backing storage 

because all backing store is implemented by Mach memory 
objects. Logically, a virtual memory object is a repository for 
data, indexed by byte, upon which various operations (e.g., 
read and write) can be performed. In many respects it 
resembles a UNIX file. 

A reference counter is maintained for each memory object. 
This counter allows the object to be garbage collected when 
all mapped references to it are removed. In some cases, for 
example UNIX text segments or other frequently used files, it 
is desirable for the kernel to retain information about an 
object even after the last mapping reference disappears. By 

retaining the physical page mappings for such objects sub- 
sequent reuse can be made very inexpensive. Mach maintains 
an cache of such frequently used memory objects. A pager 
may use domain specific knowledge to request that an object 
be kept in this cache after it is no longer referenced. 

An important feature of Mach's virtual memory is the ability 
to handle page faults and page-out requests outside of the 
kernel. This is accomplished by associating with each 
memory object a managing task (called a pager). For ex- 
ample, to implement a memory mapped file, virtual memory 
is created with its pager specified as the file system. When a 
page fault occurs, the kernel will translate the fault into a 
request for data from the file system. 

Access to a pager is represented by a port (called the 
paging_object port) to which the kernel can send messages 
requesting data or notifying the pager about a change in the 
object's primary memory cache. In addition to this pager 
port, the kernel maintains for each memory object a unique 
identifier called the paging_name which is also represented 
by a port. The kernel also maintains some status information 
and a list of physical pages currently cached in primary 
memory. Pages currently in primary memory are managed by 
the kernel through the operation of the kernel paging daemon. 
Pages not in primary memory are stored and fetched by the 
pager. A third port, the paging object_request port is used by 
the pager to send messages to the kernel to manage the object 
or its physical page cache. 

Tables 3-1 and 3-2 list the calls (messages) made by the 
kernel on an external pager and by an external pager on the 
kernel. Using this interface an external pager task can 
manage virtually all aspects of a memory object including 
physical memory caching and permanent or temporary secon- 
dary storage. Simple pagers can be implemented by largely 
ignoring the more sophisticated interface calls and im- 
plementing a trivial read/write object mechanism. 

A pager may be either internal to the Mach kernel or an 
external user-state task. Mach currently provides some basic 
paging services inside the kernel. Memory with no pager is 
automatically zero filled, and page-out is done to a default 
inode pager, The current inode pager utilizes 4.3bsd UNIX 
file systems and eliminates the traditional Berkeley UNIX 
need for separate paging partitions. 

Kernel  to External Pager  Interface 

pager server(messagRoutin called by task to prtxcess a message from the kernel. 

pager_lnlt(pa glng object, pagerrequestport,  pager_name) 
Initialize a paging object (i.e. memory object). 

pager create(old_paging object, new_paging object, new request .port,new_name) 
Accept ownership o f  a memory object. 

pagerjlata request(paging object,pager request .por t,offset,length,deslred access) 
Requests data from an external pager. 

pager jlaL~ unlock(paging_object,pager request por t,offse4 le ngth,desl r ed_access) 
Requests an uMock o f  an object, 

pager~tat~wrRe(paglng object, offset, data, da~3ount)  
Wrlte~ data back to a memory object. 

Table 3-1: 

Calls made by Math kemot to a task providing 
external paging service for a memory object. 
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External  Pager  to Kernel Interface 

vm_allocate with pager(target lask, address, elze, anywhere, paging object, offset) 
Allocate a region o f  m~mory at specified addJ'ess 
backed by a memory object. 

pager data_.provlded(paglng object request, offset, data, dan  count, lock_value) 
Swpplies the kernel with the data contents of a region of a 
a memory object. 

pager data unavailable(paging obJectjequest, offset, size) 
Notifies Icernel thin no data is available for that region of  
a memory object. 

pager data Iock(paglng_obJ oct_request, offset, length, lock_value) 
Prevents further aoce~ to the al~cified data until an unlock or 
it specifies an unlock event. 

pager_clean_request (paglng_obJ ect_request, offset, length) 
Forces raodJfied physicall~ cached data to be written back to 
a memory object. 

pager flush request(paglng_.obJect_request, offset, length) 
Forces physicall~ cached data to be destroyed. 

pager_readonly(paglng obJoct request) 
Forces the kernel to allocate a new memory object should a write 
attempt to this paging object be made. 

pager_cache(paghag_ohJect request, should cache object) 
Notifies the kernel that it should retain knowledge ahout the 
memory object even after all references to it have been removed. 

Table 3-2: 
Calls made by a task on the kernel to allocate and and manage a memory object. 

3.4. S h a r i n g  M e m o r y :  S h a r i n g  M a p s  a n d  S h a d o w  
O b j e c t s  

When a copy-on-write copy is performed, the two address 
maps which contain copies point to the same memory object. 
Should both tasks ordy read the data, no other mapping is 
necessary. 

If one of the two tasks writes data "copied" in this way, a 
new page accessible only to the writing task must be allocated 
into which the modifications are placed. Such copy-on-write 
memory management requires that the kernel maintain infor- 
marion about which pages of a memory object have been 
modified and which have not. Math manages this infor- 
marion by creating memory objects specifically for the pur- 
pose of holding modified pages which originally belonged to 
another object. Memory objects created for this purpose, are 
referred to as shadow objects. 

A shadow object collects and "remembers" modified pages 
which result from copy-on-write faults. A shadow object is 
created as the result of a copy-on-write fault taken by a task. 
It is initially an empty object without a pager but with a 
pointer to the shadowed object. A shadow object need not 
(and typically does not) contain all the pages within the region 
it defines. Instead, it relies on the original object that it 
shadows for all unmodified data. A shadow object may itself 
be shadowed as the result of  a subsequent copy-on-write 
copy. When the system tries to find a page in a shadow 
object, and fails to fred it, it proceeds to follow this list of 
objects. Eventually, the system will f'md the page in some 
object in the list and make a copy, if necessary. 

While memory objects can be used in this way to im- 
plemenring copy-on-write, the memory object data structure is 
not appropriate for managing read/write sharing. Operations 
on shared regions of memory may involve mapping or remap- 
ping many existing memory objects. In addition, several 
tasks may share a region of  memory read/write and yet simul- 
taneously share the same data copy-on-write with another 

task. This implies the need to provide a level of  indirection 
when accessing a shared object. Because operations of shared 
memory regions are logically address map operations, 
read/write memory sharing requires a map-like data structure 
which can be referenced by other address maps. To solve 
these problems, address map entries are allowed to point to a 
sharing map as well as a memory object. The sharing map, 
which is identical to an address map, then points to shared 
memory objects. Map operations that should apply to all 
maps sharing the data are simply applied to the sharing map. 
Because sharing maps can be split and merged, sharing maps 
do not need to reference other sharing maps for the full range 
of task-to-task address space sharing to be permitted. This 
simplifies map operations and obviates the need for sharing 
map garbage collection. 

3.5. Managing the O b j e c t  T r e e  
Most of the complexity of Mach memory management arises 

from a need to prevent the potentially large chains of shadow 
objects which can arise from repeated copy-on-write remap- 
ping of a memory object from one address space to another. 
Remapping causes shadow chains to be created when mapped 
data is repeatedly modified -- causing a shadow object to be 
created -- and then recopied. A trivial example of  this kind of 
shadow chaining can be caused by a simple UNIX process 
which repeatedly forks its address space causing shadow ob- 
jects to be built in a long chain which ultimately points to the 
memory object which backs the UNIX stack. 

As in the fork example, most cases of excessive object 
shadow chaining can be prevented by recognizing that new 
shadows often completely overlap the objects they are 
shadowing. Mach automatically garbage collects shadow ob- 
jects when it recognizes that an intermediate shadow is no 
longer needed. While this code is, in principle, straightfor- 
ward, it is made complex by the fact that unnecessary chains 
sometimes occur during periods of heavy paging and cannot 
always be detected on the basis of  in memory data structures 
alone. Moreover, the need to allow the paging daemon to 
access the memory object structures, perform garbage collec- 
tion and still allow virtual memory operations to operate in 
parallel on multiple CPUs has resulted in complex object 
locking rules. 

3.6. T h e  M a c h i n e - I n d e p e n d e n t / M a c h i n e - D e p e n d e n t  
I n t e r f a c e  

The purpose of Mach's machine dependent code is the 
management of  physical address maps (called prnaps). For a 
VAN, a pmap corresponds to a VAX page table. For the IBM 
RT PC, a pmap is a set of allocated segment regxsters. The 
machine dependent part of  Mach is also responsible for im- 
plementing page level operations on pmaps and for ensuring 
that the appropriate hardware map is operational whenever the 
state of the machine needs to change from kernel to user state 
or user to kernel state. All machine dependent mapping is 
performed in a single module of  the system called pmap.c. 

One of the more unusual characteristics of  the Mach 
dependent]independent interface is that the pmap module 
need not keep track of  all currently valid mappings. Virtual- 
to-physical mappings may be thrown away at almost any time 
to improve either space or speed efficiency and new mappings 
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need not always be made immediately but can often be lazy- 
evaluated. In order to cope with hardware architectures which 
make virtual-to-physical map invalidates expensive, pmap 
may delay operations which invalidate or reduce protection on 
ranges of addresses until such time as they are actually neces- 
sary. 

All of this can be accomplished because all virtual memory 
information cart be reconstructed at fault time from Mach's 
machine independent data structures. The only major excep- 
tions to the rule that pmap maintains only a cache of available 
mappings are the kernel mappings themselves. These must 
always be kept complete and accurate. Full information as to 
to which processors are currently using which maps and when 
physical maps must be made correct is provided to pmap from 
machine-independent code. 

In all eases, machine-independent memory management is 
the driving force behind all Mach VM operations. The inter- 
face between machine-independent and machine-dependent 
modules has been kept relatively small and the implementor 
of pmap needs to know very little about the way Mach func- 
tions. Tables 3-3 and 3-4 list the pmap routines which cur- 
rently make up the Math independent/dependent interface. 

Exported and Required PMAP Routines 

pmap_lnlt(start, end) ivdtiali~ using the specked range of pMsical addressee. 
pmap_t pmap. create0 create a new physical map. 
pmap_reference(pmap) add a reference to a physical map. 
pmap_c:h~troy(pnutp) doference physical map, destroy if no references remain 
pmap remove(pmap~ a~art, end) remove the specified range of ~,irtml addreee from map. 

-- [ Used in memory deallocatlon ] 
pmap_r emove_all(p hys) rem~e physic~d pa&e from all maps. [ pageout ] 
pmap_lu~py_on_wr Ire (phys) rc~wrlt~acces#forpagefr_amallmaps. 

[ virtual copy ofaha~dpages ] 
pmap_enter(pmap, v, p, prot, wired) ent~mapping.[pagefault] 
pmap_protect(map, start, end, prot) set the protectian on the specified range of addreuee. 
vm offset t pmap~extract(pmap, va) convert virtual to phyzical. 
beolean..t pma p..acce~pnmp, va) report if  virtual adA~'ess is mapped. 
pmap_updattO one pmap sylt~n. 
pmap ~tlvate(pmap, thread, cpu) zet~pmap/threadtoruaoncpu. 
pmap~leaetlvate(pmap, th, cpu) map/thread are dane an cpu. 
pmap..yzero page(phye) zero fill physical page. 
pmap_eopy_pagte(src, de.st) copy physical page. [ modJ~/reference bit maimenance] 

Table 3-3: 

These routines must be implemented, although they may not 
necessarily perform any operation on a prnap data structure 

ff not r~:luired by the liardwar~ for a givma machine. 

Exported but Optional PMAP Routines 

pmap_copy(dut pmap, arc pmap, dst addr, len, src sddr) 
copy specified virtual mapping. 

pmap_pageable(pmap, start, end, pageable) 
~l~ciD page.ability of re&ion. 

Table 3-4: 

These routines need not perform any hardware function. 

4. Porting Mach VM 
The Mach virtual memory code described here was 

originally implemented on VAX architecture machines in- 
eluding the MieroVAX H, 11/'7/80 and a four processor VAX 

system called the VAX 11/784. The first relatively stable 
VAX version was available within CMU in February, 1986. 
At the end of that same month the first port of Mach -- to the 
IBM RT PC -- was initiated by a newly hired programmer 
who had not previously either worked on an operating system 
or programmed in C. By early May the RT PC version was 
self hosting and available to a small group of users. There are 
currently approximately 75 RT PC's running Mach within the 
CMU Department of Computer Science. 

The majority of time required for the RT PC port was spent 
debugging compilers and device drivers. The estimate of time 
spent in implementing the pmap module is approximately 3 
weeks -- much of that time spent understanding the code and 
its requirements. By far the most difficult part of the pmap 
module to "get fight" was the precise points in the code where 
validation/invalidation of hardware address translation buffers 
were required. 

Implementations of Mach on the SUN 3, Sequent Balance 
and Encore MultiMAX have each contributed similar ex- 
periences. The Sequent port was the only one done by an 
expert systems programmer. The result was a bootable system 
only five weeks after the start of programming. In each case 
Mach has been ported to systems which possessed either a 
4.2bsd or System V UNIX. This has aided the porting effort 
significantly by reducing the effort required to build device 
drivers. 

5. Assessing Various Memory Management 
Architectures 

Mach's virtual memory system is portable, makes few as- 
sumptions about the underlying hardware base and has been 
implemented on a variety of architectures. This has made 
possible a relatively unbiased examination of the pros and 
cons of various hardware memory management schemes. 

In principle, Mach needs no in-memory hardware-def'med 
data structure to manage virtual memory. Machines which 
provide only an easily manipulated TLB could be accom- 
modated by Mach and would need little code to be written for 
the pmap module 2. In practice, though, the primary purpose 
of the pmap module is to manipulate hardware defined in- 
memory structures which in turn control the state of an inter- 
nal MMU TLB. To date, each hardware architecture has had 
demonstrated shortcomings, both for uniprocessor use and 
even more so when bundled in a mulfiprocessor. 

5.1. Uniproeessor Issues 
Mach was initially implemented on the VAX architecture. 

Although, in theory, a full two gigabyte address space can be 
allocated in user state to a VAX process, it is not always 
practical to do so because of the large amount of linear page 
table space required (8 megabytes). UNIX systems have 
traditionally kept page tables in physical memory and simply 
limited the total process addressiblity to a manageable 8, 16 
or 64 megabytes. VAX VMS handles the problem by making 
page tables pageable within the kernel's virtual address space. 
The solution chosen for Math was to keep page tables in 

2In fact, a version of Maeh has already run ~ a simulator for the IBM RP3 
which assumed only TLB hardware support. 
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physical memory, but only to construct those parts of the table 
which were needed to actually map virtual to real addresses 
for pages currently in use. VAX page tables in Mach may be 
created and destroyed as necessary to conserve space or im- 
prove runfime. The necessity to manage page tables in this 
fashion and the large size of a VAX page table (partially the 
result of the small VAX page size of 512 bytes) has made the 
machine dependent portion of that system more complex than 
that for other architectures. 

The IBM RT PC does not use per-taskpage tables. Instead 
it uses a single inverted page table which describes which 
virtual address is mapped to each physical address. To per- 
form virtual address translation, a hashing function is used to 
query the inverted page table. This allows a full 4 gigabyte 
address space to be used with no additional overhead due to 
address space size. Mach has benefited from the RT PC 
inverted page table in significantly reduced memory require- 
ments for large programs (due to reduced map size) and 
simplified page table management. 

One drawback of the RT, however, is that it allows only one 
valid mapping for each physical page, making it impossible to 
share pages without triggering faults. The rationale for this 
restriction lies in the fact that the designers of the RT targeted 
an operating system which did not allow virtual address alias- 
ing. The result, in Mach, is that physical pages shared by 
multiple tasks can cause extra page faults, with each page 
being mapped and then remapped for the last task which 
referenced it. The effect is that Mach treats the inverted page 
table as a kind of large, in memory cache for the RT's trans- 
lation lookaside buffer (TLB). The surprising result has been 
that, to date, these extra faults are rare enough in normal 
application programs that Mach is able to outperform a ver- 
sion of UNIX (IBM ACIS 4.2a) on the RT which avoids such 
aliasing altogether by using shared segments instead of shared 

pages. 
In the ease of the SUN 3 a combination of segments and 

page tables are used to create and manage per-task address 
maps up to 256 megabytes each. The use of segments and 
page tables make it possible to reasonably implement sparse 
addressing, but only 8 such contexts may exist at any one 
time. If there are more than 8 active tasks, they compete for 
contexts, introducing additional page faults as on the RT. 

The main problem introduced by the SUN 3 was the fact that 
the physical address space of that machine has potentially 
large "holes" in it due to the presence of display memory 
addressible as "high" physical memory. This can complicate 
the management of the resident page table which becomes a 
"sparse" data structure. In the SUN version of Mach it was 
possible to deal with this problem completely within machine 

dependent code. 
Both the Encore Multimax and the Sequent Balance 21000 

use the National 32082 MMU, This MMU has posed several 
problems unrelated to multiprocessing: 

• Only 16 megabytes of virtual memory may be 
addressed per page table. This requirement is 
very restrictive in large systems, especially for 

the kernel's address space. 

• Only 32 megabytes of physical memory may b e  

addressed 3. Again, this requirement is very 
restrictive in large systems. 

o A chip bug apparently causes read-modify-write 
faults to always be reported as read faults. Mach 
depends on the ability to detect write faults for 
proper copy-on-write fault handling. 

It is unsurprising that these problems have been addressed in 
the successor to the NS32082, the NS32382. 

5.2. Mul t iproeessor  Issues 
When building a shared memory muldprocessor, care is 

usually taken to guarantee automatic cache consistency or at 
least to provide mechanisms for controlling cache consis- 
tency. However, hardware manufacturers do not typically 
treat the translation lookaside buffer of a memory manage- 
ment unit as another type of cache which also must be kept 
consistent. None of the mulfiprocessors running Mach sup- 
port TLB consistency. In order to guarantee such consistency 
when changing virtual mappings, the kernel must determine 
which processors have an old mapping in a TLB and cause it 

to be flushed. Unfortunately, it is impossible to reference or 
modify a TLB on a remote CPU on any of the multiprocessors 
which run Mach. 

There are several possible solutions to this problem, each of 
which are employed by Mach in different settings: 

1.forcibly interrupt all CPUs which may be using 
a shared portion of an address map so that their 
address translation buffers may be flushed, 

2. postpone use of  a changed mapping until all 
CPUs have taken a timer interrupt (and had a 
chance to flush), or 

3. allow temporary inconsistency. 

Case (1) applies whenever a change is time critical and must 
be propogated at all costs. Case (2) can be used by the paging 
system when the system needs to remove mappings from the 
hardware address maps in preparation for pageout. The sys- 
tem first removes the mapping from any primary memory 
mapping data structures and then initiates pageout only after 
all referencing TLBs have been flushed. Often case (3) is 
acceptable because the semantics of the operation being per- 
formed do not require or even allow simultaneity. For ex- 
ample, it is acceptable for a page to have its protection 
changed first for one task and then for another. 

6. Integrating Loosely-coupled and 
Tightly-coupled Systems 

The introduction of mulfiprocessor systems adds to the dif- 
ficulty of building a "universal" model of virtual memory. In 
addition to differences in address translation hardware, exist- 
ing multiprocessors differ in the kinds of shared memory 
access they make available to individual CPUs. Examples 
strategies are: 

• fully shared memory with uniform access times as 
in the Encore MultiMax and Sequent Balance, 

3The Multimax has howewr added special hardware to allow a full 4 
gigabytcs to b~ addressed 
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® shared memory with non-uniform access as in the 
BBN Butterfly and I B M RP3 and 

o message-based, non-shared memory systems as 

in the Intel  Hypercube. 

As yet, Mach, like UNIX. has been ported only to mul- 
tiprocessors with uniform shared memory. Mach does, 
however, possess mechanisms unavailable in UNIX for in- 
tegrating more loosely coupled computing systems. An im- 
portant way in which Mach differs from previous systems is 
that it has integrated memory management and communica- 
tion. In a tightly coupled multiprocessor, Mach implements 
efficient message passing through the use of memory manage- 
ment "tricks" which allow lazy-evaluation of by-value data 
transmission. It is likewise possible to implement shared 
copy-on-reference [13] or read/write data in a network or 
loosely coupled multiprocessor. Tasks may map into their 
address spaces references to memory objects which can be 
implemented by pagers anywhere on the network or within a 
multiprocessor. Experimentation with this approach, which 
offers the possibility of integrating loosely and tightly coupled 
multiprocessor computing, is underway. A complete descrip- 
tion of this work is currently being written up in [12]. Im- 
plementations of Mach on more loosely coupled multiproces- 
sors are in progress. 

7. Measuring VM Performance 
Tables 7-1 and 7-2 demonstrate that the logical advantages 

of the Mach approach to machine independent memory 
management have been achieved with little or no effect on 
performance as compared with a traditional UNIX system. In 
fact, most performance measures favor Mach over 4.3bsd. 

Performance  of M a c h  VM Operations 

Operation Mach UNIX 

zero fill IK  (RT PC) .45ms .58ms 
zero fill 1K(uVAX If) .58ms 1.2ms 
zero fill 1K(SUN 3/160) .23ms .27ms 

fork 256K (RT PC) 41ms 145ms 
fork 256K (uVAX U) 59ms 220ms 
fork 256K (SUN 3/160) 68ms 89ms 

read 2.5M file(VAX 8200) (systertdelap~.d s¢¢) 
first time 5.2/Usec 5.0/llsec 
~econd time 1.2/1.4ace S.O/llsec 

read 50K file (VAX 8200) (system/elapsed sec) 
first time .2/.Tee .2/.5s¢¢ 
second time .1/.lsec .2/.2~e 

Table 7-1: 
The  cost o f  various measures of  virtual memory  ~_rformancee 

for Mach, ACIS 4.2a, SunOS 3.2, and 4.3bsd UNIX. 

Overa l l  Compi la t ion  Pe fo rmance :  M a c h  vs. 4.3bsd 

VAX 8650:400 buffers 
Operation Mach 4.3bsd 

13 programs 23see 28sec 
Math Kernel 19:58rain 23:38rain 

VAX 8650: Generic configuration 
Operation Math 4.3bsd 

13 programs 19sec l:16sec 
Mach kernel 15:50rain 34:10mln 

SUN 3/160: 
Operation Mach StmOS 3.2 

Compile fork test pr~ram 3sec 6sec 

Table 7-2: 

Cost of compiling the entire Maeh kernel and a, sct of,13 C l)rograr~rs 
on a V A X  8650 witl~ 36 megabytes ot memory  unaer  oom macn  ano *.~bsd 

UNIX.  Generic configuration reflects the normal allocation of  4.3bsd 
buffers. The  400 buffer times reflect specific limits set on the 

use  of  disk buffers by both systems. Also included is the cost of 
compiling the fork test program (used above) on a S U N  3/160 under 

Mach and under SunOS 3.2. 

8. Relation to Previous Work 
Mach provides a relatively rich set of virtual memory 

management functions compared to system such as 4.3bsd 
UNIX or System V, but most of its features derive from 
earlier operating systems. Accent [8] and Mulfics [7], for 
example, provided the ability to create segments within a 
virtual address space that corresponded to files or other per- 
manent data. Accent also provided the ability to efficiently 
transfer large regions of virtual memory in memory between 
protected address spaces. 

Obvious parallels can also be made between Mach and sys- 
tems such as Apollo's Aegis [6], IBM's System/38 [5] and 
CMU's Hydra [11] -- all of which deal primarily in memory 
mapped objects. Sequent's Dynix[4] and Encore's 
Umax [10] are multiprocessor UNIX systems which have 
both provided some form of shared virtual memory. Mach 
differs from these previous systems in that it provides sophis- 
ticated virtual memory features without being tied to a 
specific hardware base. Moreover, Mach's virtual memory 
mechanisms can be used either within a multiprocessor or 
extended transparently into a distributed environment. 

9. Conclusion 
An intimate relationship between memory architecture and 

software made sense when each hardware box was expected 
to run its own manufacturer's proprietary operating system. 
As the computer science community moves toward UNIX- 
style portable software environments and more sophisticated 
use of virtual memory mechanisms 4 this one-to-one mapping 
appears less and less appropriate. 

To date Mach has demonstrated that it is possible to imple- 
ment sophisticated virtual memory management making only 
minimal assumptions about the underlying hardware support. 
In addition, Mach has shown that separation of machine inde- 
pendent and dependent memory management code need not 

4e.g. for transaction processing, database management [9] and AI knowledge 
representation [2, 3] 
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result in increased runtime costs and can in fact improve 
overall performance of UNIX-style systems. Maeh currently 
runs on virtually all VAX architecture machines, the IBM RT 
PC, the SUN 3 (including the virtual-address-cached SUN 3 
260 and 280), the Encore MultiMAX and the Sequent 
Balance. All implementations are built from the same set of 
kernel sources. Machine dependent code has yet to be 
modified as the result of support for a new architecture. The 
kernel binary image for the VAX version runs on both 
uniprocessor and multiprocessor VAXes. The size of the 
machine dependent mapping module is approximately 6K 
bytes on a VAX -- about the size of a device driver. 
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