
I

!ili ii!i!i ¸

Machine-Independent Virtual Memory Management
for Paged Uniprocessor and Multiprocessor Architectures

Richard Rashid, Avadis Tevanian, Michael Young, David Golub,
Robert Baron, David Black, William Boloaky, and Jonathan Chew

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

This paper describes the design and implementation of vir-
tual memory management within the CMU Mach Operating
System and the experiences gained by the Mach kernel group
in porting that system to a variety of architectures. As of this
writing, Maeh runs on more than half a dozen uniprocessors
and multiprocessors including the VAX family of uniproces-
sors and multiprocessors, the IBM RT PC, the SUN 3, the
Encore MultiMax, the Sequent Balance 21000 and several
experimental computers. Although these systems vary con-
siderably in the kind of hardware support for memory
management they provide, the machine-dependent portion of
Mach virtual memory consists of a single code module and its
related header file. This separation of software memory
management from hardware support has been accomplished
without sacrificing system performance. In addition to im-
proving portability, it makes possible a relatively unbiased
examination of the pros and cons of various hardware
memory management schemes, especially as they apply to the
support of multiprocessors.

1. Introduct ion
While software designers are increasingly able to cope with

variations in instruction set architectures, operating system
portability continues to suffer from a proliferation of memory
structures. UNIX systems have traditionally addressed the
problem of VM portability by restricting the facilities
provided and basing implementations for new memory
management architectures on versions already done for pre-
vious systems. As a result, existing versions of UNIX, such
as Berkeley 4.3bsd, offer little in the way of virtual memory
management other than simple paging support. Versions of
Berkeley UNIX on non-VAX hardware, such as SunOS on
the SUN 3 and ACIS 4.2 on the IBM RT PC, actually simu-
late internally the VAX memory mapping architecture -- in
effect treating it as a machine-independent memory manage-
ment specification.

This xeseareh was sponsored by the Defense Advanced Research l:Xrojeels
Agency (DOD), ARPA Order No. 4864, monitored by the Space and Naval
Warfare Systems Command under contraeet N00039-85-C-1034.
Permission to copy without fee all or pa r t of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
Its date appear , and notice is given that copying Is by permission of the
Association of Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

Over the last two years CMU has been engaged in the
development of a portable, multiprocessor operating system
called Mach. One of the goals of Mach has been to explore
the relationship between hardware and software memory ar-
chitectures and to design a memory management system that
would be readily portable to multiprocessor computing en-
gines as well as traditional uniprocessors.

Mach provides complete UNIX 4.3bsd compatibility while
significantly extending UNIX notions of virtual memory
management and inteerprocess communication [1]. Mach sup-
ports:

* large, sparse virtual address spaces,

• copy-on-write virtual copy operations,

• copy-on-write and read-write memory sharing
between tasks,

• memory mappedfiles and

n user-provided backing store objects andpagers.
This has been accomplished without patterning Mach's in-

ternal memory representation after any specific architecture.
In fact, Math makes relatively few assumptions about avail-
able memory management hardware. The primary require-
ment is an ability to handle and recover from page faults (for
some arbitrary page size).

As of this writing, Math runs on more than half a dozen
uniprocessors and multiprocessors including the entire VAX
family of uniprocessors and mulfiprocessors, the IBM RT PC,
the SUN 3, the Encore MultiMax and the Sequent Balance
21000. Implementations are in progress for several ex-
perimental computers. Despite differences between supported
architectures, the machine-dependent portion of Mach's vir-
tual memory subsystem consists of a single code module and
its related header file. All information important to the
management of Mach virtual memory is maintained in
machine-independent data structures and machine-dependent
data structures contain only those mappings necessary to run-
ning the current mix of programs.

Mach's separation of software memory management from
hardware support has been accomplished without sacrificing
system performance. In several eases overall system perfor-
mance has measurably improved over existing UNIX im-
plementations. Moreover, this approach makes possible a

© 1987 ACM 0-89791-238-1/87/1000-0031 $00.75
31

I I

! !i!i~,

relatively unbiased examination of the pros and cons of
various hardware memory management schemes, especially
as they apply to the support of multiprocessors. This paper
describes the design and implementation of virtual memory
management within the CMU Mach Operating System and
the experiences gained by the Mach kernel group in porting
that system to a variety of arChitectures.

2. M a c h D e s i g n
There are five basic Mach abstractions:

1. A task is an execution environment in which
threads may run. It is the basic unit of resource
allocation. A task includes a paged virtual ad-
dress space and protected access to system
resources (such as processors, port capabilities
and virtual memory). A task address space con-
sists of an ordered collection of mappings to
memory objects (see below). The UNIX notion
of a process is, in Mach, represented by a task
with a single thread of control.

2. A thread is the basic unit of CPU utilization. It
is roughly equivalent to an independent program
counter operating within a task. All threads
within a task share access to all task resources.

3. A port is a communication channel -- logically a
queue for messages protected by the kernel.
Ports are the reference objects of the Mach
design. They are used in much the same way
that object references could be used in an object
oriented system. Send and Receive are the fun-
damental primitive operations on ports.

4. A message is a typed collection of data objects
used in conmmnication between threads. Mes-
sages may be of any size and may contain
pointers and typed capabilities for ports.

5. A memory object is collection of data provided
and managed by a server which can be mapped
into the address space of a task.

Operations on objects other than messages are performed by
sending messages to ports. In this way, Mach permits system
services and resources to be managed by user-state tasks. For
example, the Mach kernel itself can be considered a task with
multiple threads of control. The kernel task acts as a server
which in turn implements tasks, threads and memory objects.
The act of creating a task, a thread or a memory object,
returns access rights to a port which represents the new object
and can be used to manipulate it. Incoming messages on such
a port results in an operation performed on the object it
represents.

The indirection provided by message passing allows objects
to be arbitrarily placed in the network (either within a mul-
tiprocessor or a workstation) without regard to programming
details. For example, a thread can suspend another thread by
sending a suspend message to that thread's threadport even if
the requesting thread is on another node in a network. It is
thus possible to run varying system configurations on dif-

32

ferent classes of machines while providing a consistent inter-
face to all resources. The actual system running on any
particular machine is thus more a function of its servers than
its kernel.

Traditionally, message based systems of this sort have
operated at a distinct performance disadvantage to conven-
tionally implemented operating systems. The key to efficiency
in Mach is the notion that virtual memory management can be
integrated with a message-oriented communication facility.
This integration allows large amounts of data including whole
files and even whole address spaces to be sent in a single
message with the efficiency of simple memory remapping.

2.1. Basle VM Opera t ions
Each Mach task possesses a large address space that consists

of a series of mappings between ranges of memory addres-
sible to the task and memory objects. The size of a Mach
address space is limited only by the addressing restrictions of
the underlying hardware. An RT PC task, for example, can
address a full 4 gigabytes of memory under Mach I while the
VAX architecture allows at most 2 gigabytes of user address
space. A task can modify its address space in several ways,
including:

allocate a region of virtual memory on a page
boundary,

® deallocate a region ofvirtucd memory,

• set the protection status o f a region o f virtual
memory,

• specify the inheritance of a region o f virtual
memory and

® create and manage a memory object that can
then be mapped into the address space o f another
task.

The only restriction imposed by Mach on the nature of the
regions that may be specified for virtual memory operations is
that they must be aligned on system page boundaries. The
definition of page size is a boot time system parameter and
can be any power of two multiple of the hardware page size.
Table 2-1 fists the set of virtual memory operations that can
be performed on a task.

Both copy-on-write and read/write sharing of memory are
permitted between Mach tasks. Copy-on-write sharing be-
tween unrelated tasks is typically the result of large message
transfers. An entire address space may be sent in a single
message with no actual data copy operations performed.
Read/write shared memory can be created by allocating a
memory region and setting its inheritance attribute. Sub-
sequently created child tasks share the memory of their parent
according to its inheritance value. Inheritance may be
specified as shared, copy or none, and may be specified on a
per-page basis. Pages specified as shared, are shared for read
and write. Pages marked as copy are logically copied by
value, although for efficiency copy-on-write techniques are

1This feature is actively used at CMU by the CMU RT implementation of
CommonLisp.

lcyii!i:i ¸

employed. An inheritance specification of none signifies that
a page is not to be passed to a child. In this case, the child's
corresponding address is left unallocated.

Like inheritance, protection is specified on a per-page basis.
For each group of pages there exist two protection values: the
current and the maximum protection. The current protection
controls actual hardware permissions. The maximum protec-
tion specifies the maximum value that the current protection
may take. While the maximum protection can never be
raised, it may be lowered. If the maximum protection is
lowered to a level below the current protection, the current
protection is also lowered to that level. Each protection is
implemented as a combination of read, write and execute
permissions. Enforcement of access permissions depends on
hardware support. For example, many machines do not allow
for explicit execute permissions, but those that do will have
that protection properly enforced.

Virtual Memory Operat ions

vm allerate(tar ge t_tstsk,addr ess~lze,anywhere)
Allocate and fill with zeros new virtual memory either
anywhere or at a ~pecified address.

vm_copy(targettask,source addr e.~,cotmt,dezt_addre~)
Virtnolly copy a range o/memory from one address to another.

vm~leallocat e(ta r ge t t~k,addr e~ lze)
Dea//ocate a range of addresses, i.e. ~ them no longer wdld.

vm_lnherlt(target..task,address, dze, new_lnherltanee)
Set the inheritance at~rlbute of an addre~ range.

vm proteet(,~rget task,addres~dze,set maxim urn,new protection)
Set the protection attribute of an address range.

vm_r ea d0a rget ~ s k ,addr es, s,sl~,data, da la_eount)
Read tl~ contents of a region of a task's address space.

vra_reglons(larget ta.¢k,addressoIze, elements, elements2munt)
R etwvn description of specO%d region of tazk" s address space.

vm_statlstlcs(target task,vm stats)
Retwpn statistics about the use of memory by targetJask.

vm_wrlte(tar get task,nddr ess,eotmt,data,dala count)
Write the contents of a region of a task's address ~pace.

Table 2-1:

All VM operations apply to a target task (represented by a port) and
all I~ut vm statmties specify aft-address and size in bytes.

anywh, ere is a booloan which indieates whether or not a v m allocate
~lloeates meanery anywhere or at a location specified by address.

Mach's implementation of UNIX fork is an example of how
its virtual memory operations can be used. When a fork
operation is invoked, the newly created child task address
map is created based on the parent's inheritance values. By
default, all inheritance values for an address space are set to
copy. Thus the child's address space is, by default, a copy-
on-write copy of the parent's and UNIX address space copy
semantics are preserved.

One of the more unusual features of Mach is that fact that
virtual memory related functions, such as pagein and pageout,
can be performed directly by user-state tasks for memory
objects they create. Section 3.3 describes this aspect of the
system.

3. The Implementation of Mach Virtual
M e m o r y

Four basic memory management data structures are used in

Mach:

1. the res ident p a g e table --

a table used to keep track of information about
machine independent pages,

2. the addres s map --

a doubly linked list of map entries, each of
which describes a mapping from a range of ad-
dresses to a region of a memory object,

3. the m e m o r y ob jec t --

a unit of backing storage managed by the kernel
or a user task and

4. the p m a p --

a machine dependent memory mapping data
structure (i.e., a hardware defined physical ad-
dress map).

The implementation is split between machine independent

and machine dependen t sections. Machine dependent code
implements only those operations necessary to create, update
and manage the hardware required mapping data structures.
All important virtual memory information is maintained by
machine independent code. In general, the machine depend-
ent part of Mach maintains only those mappings which are
crucial to system execution (e.g., the kernel map and the
mappings for frequently referenced task addressees) and may
garbage collect non-important mapping information to save
space or time. It has no knowledge of machine independent
data structures and is not required to maintain full knowledge
of valid mappings from virtual addresses to hardware pages.

3.1. Managing Resident Memory
Physical memory in Mach is treated primarily as a cache for

the contents of virtual memory objects. Information about
physical pages (e.g., modified and reference bits) is main-
tained in page entries in a table indexed by physical page
number. Each page entry may simultaneously be linked into
several lists:

• a m e m o r y ob jec t list.

• a m e m o r y al locat ion q u e u e and

• a object~offset hash bucket .

All the page entries associated with a given object are linked
together in a memory objec t l ist to speed-up object dealloca-
tion and virtual copy operations. Memory object semantics
permit each page to belong to at most one memory object.
Allocat ion q u e u e s are maintained for free, reclaimable and
allocated pages and are used by the Mach paging daemon.
Fast lookup of a physical page associated with an
object/offset at the time of a page fault is performed using a
bucket hash table keyed by memory object and byte offset.

Byte offsets in memory objects are used throughout the
system to avoid linking the implementation to a particular
notion of physical page size. A Mach physical page does not,
in fact, correspond to a page as defined by the memory
mapping hardware of a particular computer. The size of a
Mach page is a boot time system parameter. It relates to the
physical page size only in that it must be a power of two

33 °

multiple of the machine dependent size. For example, Mach
page sizes for a VAX can be 512 bytes, 1K bytes, 2K bytes,
4K bytes, etc. Mach page sizes for a SUN 3, however, are
limited to 8K bytes, 16K bytes, etc. The physical page size
used in Mach is also independent of the page size used by
memory object handlers (see section below).

3.2. Address M a p s
Just as the kernel keeps track of its own physical address

space, it must also manage its virtual address space and that of
each task. Addresses within a task address space are mapped
to byte offsets in memory objects by a data structure called an
address map.

An address map is a doubly linked list of address map
entries each of which maps a contiguous range of virtual
addresses onto a contiguous area of a memory object. This
linked list is sorted ixt order of ascending virtual address and
different entries may not map overlapping regions of memory.

Each address map entry carries with it information about the
inheritance and protection attributes of the region of memory
it defines. For that reason, all addresses within a range
mapped by an entry must have the same attributes. This can
force the system to allocate two address map entries that map
adjacent memory regions to the same memory object simply
because the properties of the two regions are different.

This address map data structure was chosen over many alter-
natives because it was the simplest that could efficiently im-
plement the most frequent operations performed on a task
address space, namely:

® page fault lookups,

• copy/protection operations on address ranges
and

allocationldeallocation of address ranges.
A sorted linked list allows operations on ranges of addresses

(e.g., copy-on-write copy operations) to be done simply and
quickly and does not penalize large, sparse address spaces.
Moreover, fast lookup on faults can be achieved by keeping
last fault "hints". These hints allow the address map list to be
searched from the last entry found for a fault of a particular
type. Because each entry may map a large region of virtual
addresses, an address map is typically small. A typical VAX
UNIX process has five mapping entries upon creation - one
for its UNIX u-area and one each for code, stack, initialized
and uninitialized data.

3.3. M e m o r y Objec ts
A Mach address map need not keep track of backing storage

because all backing store is implemented by Mach memory
objects. Logically, a virtual memory object is a repository for
data, indexed by byte, upon which various operations (e.g.,
read and write) can be performed. In many respects it
resembles a UNIX file.

A reference counter is maintained for each memory object.
This counter allows the object to be garbage collected when
all mapped references to it are removed. In some cases, for
example UNIX text segments or other frequently used files, it
is desirable for the kernel to retain information about an
object even after the last mapping reference disappears. By

retaining the physical page mappings for such objects sub-
sequent reuse can be made very inexpensive. Mach maintains
an cache of such frequently used memory objects. A pager
may use domain specific knowledge to request that an object
be kept in this cache after it is no longer referenced.

An important feature of Mach's virtual memory is the ability
to handle page faults and page-out requests outside of the
kernel. This is accomplished by associating with each
memory object a managing task (called a pager). For ex-
ample, to implement a memory mapped file, virtual memory
is created with its pager specified as the file system. When a
page fault occurs, the kernel will translate the fault into a
request for data from the file system.

Access to a pager is represented by a port (called the
paging_object port) to which the kernel can send messages
requesting data or notifying the pager about a change in the
object's primary memory cache. In addition to this pager
port, the kernel maintains for each memory object a unique
identifier called the paging_name which is also represented
by a port. The kernel also maintains some status information
and a list of physical pages currently cached in primary
memory. Pages currently in primary memory are managed by
the kernel through the operation of the kernel paging daemon.
Pages not in primary memory are stored and fetched by the
pager. A third port, the paging object_request port is used by
the pager to send messages to the kernel to manage the object
or its physical page cache.

Tables 3-1 and 3-2 list the calls (messages) made by the
kernel on an external pager and by an external pager on the
kernel. Using this interface an external pager task can
manage virtually all aspects of a memory object including
physical memory caching and permanent or temporary secon-
dary storage. Simple pagers can be implemented by largely
ignoring the more sophisticated interface calls and im-
plementing a trivial read/write object mechanism.

A pager may be either internal to the Mach kernel or an
external user-state task. Mach currently provides some basic
paging services inside the kernel. Memory with no pager is
automatically zero filled, and page-out is done to a default
inode pager, The current inode pager utilizes 4.3bsd UNIX
file systems and eliminates the traditional Berkeley UNIX
need for separate paging partitions.

Kernel to External Pager Interface

pager server(messagRoutin called by task to prtxcess a message from the kernel.

pager_lnlt(pa glng object, pagerrequestport, pager_name)
Initialize a paging object (i.e. memory object).

pager create(old_paging object, new_paging object, new request .port,new_name)
Accept ownership o f a memory object.

pagerjlata request(paging object,pager request .por t,offset,length,deslred access)
Requests data from an external pager.

pager jlaL~ unlock(paging_object,pager request por t,offse4 le ngth,desl r ed_access)
Requests an uMock o f an object,

pager~tat~wrRe(paglng object, offset, data, da~3ount)
Wrlte~ data back to a memory object.

Table 3-1:

Calls made by Math kemot to a task providing
external paging service for a memory object.

34

External Pager to Kernel Interface

vm_allocate with pager(target lask, address, elze, anywhere, paging object, offset)
Allocate a region o f m~mory at specified addJ'ess
backed by a memory object.

pager data_.provlded(paglng object request, offset, data, dan count, lock_value)
Swpplies the kernel with the data contents of a region of a
a memory object.

pager data unavailable(paging obJectjequest, offset, size)
Notifies Icernel thin no data is available for that region of
a memory object.

pager data Iock(paglng_obJ oct_request, offset, length, lock_value)
Prevents further aoce~ to the al~cified data until an unlock or
it specifies an unlock event.

pager_clean_request (paglng_obJ ect_request, offset, length)
Forces raodJfied physicall~ cached data to be written back to
a memory object.

pager flush request(paglng_.obJect_request, offset, length)
Forces physicall~ cached data to be destroyed.

pager_readonly(paglng obJoct request)
Forces the kernel to allocate a new memory object should a write
attempt to this paging object be made.

pager_cache(paghag_ohJect request, should cache object)
Notifies the kernel that it should retain knowledge ahout the
memory object even after all references to it have been removed.

Table 3-2:
Calls made by a task on the kernel to allocate and and manage a memory object.

3.4. S h a r i n g M e m o r y : S h a r i n g M a p s a n d S h a d o w
O b j e c t s

When a copy-on-write copy is performed, the two address
maps which contain copies point to the same memory object.
Should both tasks ordy read the data, no other mapping is
necessary.

If one of the two tasks writes data "copied" in this way, a
new page accessible only to the writing task must be allocated
into which the modifications are placed. Such copy-on-write
memory management requires that the kernel maintain infor-
marion about which pages of a memory object have been
modified and which have not. Math manages this infor-
marion by creating memory objects specifically for the pur-
pose of holding modified pages which originally belonged to
another object. Memory objects created for this purpose, are
referred to as shadow objects.

A shadow object collects and "remembers" modified pages
which result from copy-on-write faults. A shadow object is
created as the result of a copy-on-write fault taken by a task.
It is initially an empty object without a pager but with a
pointer to the shadowed object. A shadow object need not
(and typically does not) contain all the pages within the region
it defines. Instead, it relies on the original object that it
shadows for all unmodified data. A shadow object may itself
be shadowed as the result of a subsequent copy-on-write
copy. When the system tries to find a page in a shadow
object, and fails to fred it, it proceeds to follow this list of
objects. Eventually, the system will f'md the page in some
object in the list and make a copy, if necessary.

While memory objects can be used in this way to im-
plemenring copy-on-write, the memory object data structure is
not appropriate for managing read/write sharing. Operations
on shared regions of memory may involve mapping or remap-
ping many existing memory objects. In addition, several
tasks may share a region of memory read/write and yet simul-
taneously share the same data copy-on-write with another

task. This implies the need to provide a level of indirection
when accessing a shared object. Because operations of shared
memory regions are logically address map operations,
read/write memory sharing requires a map-like data structure
which can be referenced by other address maps. To solve
these problems, address map entries are allowed to point to a
sharing map as well as a memory object. The sharing map,
which is identical to an address map, then points to shared
memory objects. Map operations that should apply to all
maps sharing the data are simply applied to the sharing map.
Because sharing maps can be split and merged, sharing maps
do not need to reference other sharing maps for the full range
of task-to-task address space sharing to be permitted. This
simplifies map operations and obviates the need for sharing
map garbage collection.

3.5. Managing the O b j e c t T r e e
Most of the complexity of Mach memory management arises

from a need to prevent the potentially large chains of shadow
objects which can arise from repeated copy-on-write remap-
ping of a memory object from one address space to another.
Remapping causes shadow chains to be created when mapped
data is repeatedly modified -- causing a shadow object to be
created -- and then recopied. A trivial example of this kind of
shadow chaining can be caused by a simple UNIX process
which repeatedly forks its address space causing shadow ob-
jects to be built in a long chain which ultimately points to the
memory object which backs the UNIX stack.

As in the fork example, most cases of excessive object
shadow chaining can be prevented by recognizing that new
shadows often completely overlap the objects they are
shadowing. Mach automatically garbage collects shadow ob-
jects when it recognizes that an intermediate shadow is no
longer needed. While this code is, in principle, straightfor-
ward, it is made complex by the fact that unnecessary chains
sometimes occur during periods of heavy paging and cannot
always be detected on the basis of in memory data structures
alone. Moreover, the need to allow the paging daemon to
access the memory object structures, perform garbage collec-
tion and still allow virtual memory operations to operate in
parallel on multiple CPUs has resulted in complex object
locking rules.

3.6. T h e M a c h i n e - I n d e p e n d e n t / M a c h i n e - D e p e n d e n t
I n t e r f a c e

The purpose of Mach's machine dependent code is the
management of physical address maps (called prnaps). For a
VAN, a pmap corresponds to a VAX page table. For the IBM
RT PC, a pmap is a set of allocated segment regxsters. The
machine dependent part of Mach is also responsible for im-
plementing page level operations on pmaps and for ensuring
that the appropriate hardware map is operational whenever the
state of the machine needs to change from kernel to user state
or user to kernel state. All machine dependent mapping is
performed in a single module of the system called pmap.c.

One of the more unusual characteristics of the Mach
dependent]independent interface is that the pmap module
need not keep track of all currently valid mappings. Virtual-
to-physical mappings may be thrown away at almost any time
to improve either space or speed efficiency and new mappings

35

need not always be made immediately but can often be lazy-
evaluated. In order to cope with hardware architectures which
make virtual-to-physical map invalidates expensive, pmap
may delay operations which invalidate or reduce protection on
ranges of addresses until such time as they are actually neces-
sary.

All of this can be accomplished because all virtual memory
information cart be reconstructed at fault time from Mach's
machine independent data structures. The only major excep-
tions to the rule that pmap maintains only a cache of available
mappings are the kernel mappings themselves. These must
always be kept complete and accurate. Full information as to
to which processors are currently using which maps and when
physical maps must be made correct is provided to pmap from
machine-independent code.

In all eases, machine-independent memory management is
the driving force behind all Mach VM operations. The inter-
face between machine-independent and machine-dependent
modules has been kept relatively small and the implementor
of pmap needs to know very little about the way Mach func-
tions. Tables 3-3 and 3-4 list the pmap routines which cur-
rently make up the Math independent/dependent interface.

Exported and Required PMAP Routines

pmap_lnlt(start, end) ivdtiali~ using the specked range of pMsical addressee.
pmap_t pmap. create0 create a new physical map.
pmap_reference(pmap) add a reference to a physical map.
pmap_c:h~troy(pnutp) doference physical map, destroy if no references remain
pmap remove(pmap~ a~art, end) remove the specified range of ~,irtml addreee from map.

-- [Used in memory deallocatlon]
pmap_r emove_all(p hys) rem~e physic~d pa&e from all maps. [pageout]
pmap_lu~py_on_wr Ire (phys) rc~wrlt~acces#forpagefr_amallmaps.

[virtual copy ofaha~dpages]
pmap_enter(pmap, v, p, prot, wired) ent~mapping.[pagefault]
pmap_protect(map, start, end, prot) set the protectian on the specified range of addreuee.
vm offset t pmap~extract(pmap, va) convert virtual to phyzical.
beolean..t pma p..acce~pnmp, va) report if virtual adA~'ess is mapped.
pmap_updattO one pmap sylt~n.
pmap ~tlvate(pmap, thread, cpu) zet~pmap/threadtoruaoncpu.
pmap~leaetlvate(pmap, th, cpu) map/thread are dane an cpu.
pmap..yzero page(phye) zero fill physical page.
pmap_eopy_pagte(src, de.st) copy physical page. [modJ~/reference bit maimenance]

Table 3-3:

These routines must be implemented, although they may not
necessarily perform any operation on a prnap data structure

ff not r~:luired by the liardwar~ for a givma machine.

Exported but Optional PMAP Routines

pmap_copy(dut pmap, arc pmap, dst addr, len, src sddr)
copy specified virtual mapping.

pmap_pageable(pmap, start, end, pageable)
~l~ciD page.ability of re&ion.

Table 3-4:

These routines need not perform any hardware function.

4. Porting Mach VM
The Mach virtual memory code described here was

originally implemented on VAX architecture machines in-
eluding the MieroVAX H, 11/'7/80 and a four processor VAX

system called the VAX 11/784. The first relatively stable
VAX version was available within CMU in February, 1986.
At the end of that same month the first port of Mach -- to the
IBM RT PC -- was initiated by a newly hired programmer
who had not previously either worked on an operating system
or programmed in C. By early May the RT PC version was
self hosting and available to a small group of users. There are
currently approximately 75 RT PC's running Mach within the
CMU Department of Computer Science.

The majority of time required for the RT PC port was spent
debugging compilers and device drivers. The estimate of time
spent in implementing the pmap module is approximately 3
weeks -- much of that time spent understanding the code and
its requirements. By far the most difficult part of the pmap
module to "get fight" was the precise points in the code where
validation/invalidation of hardware address translation buffers
were required.

Implementations of Mach on the SUN 3, Sequent Balance
and Encore MultiMAX have each contributed similar ex-
periences. The Sequent port was the only one done by an
expert systems programmer. The result was a bootable system
only five weeks after the start of programming. In each case
Mach has been ported to systems which possessed either a
4.2bsd or System V UNIX. This has aided the porting effort
significantly by reducing the effort required to build device
drivers.

5. Assessing Various Memory Management
Architectures

Mach's virtual memory system is portable, makes few as-
sumptions about the underlying hardware base and has been
implemented on a variety of architectures. This has made
possible a relatively unbiased examination of the pros and
cons of various hardware memory management schemes.

In principle, Mach needs no in-memory hardware-def'med
data structure to manage virtual memory. Machines which
provide only an easily manipulated TLB could be accom-
modated by Mach and would need little code to be written for
the pmap module 2. In practice, though, the primary purpose
of the pmap module is to manipulate hardware defined in-
memory structures which in turn control the state of an inter-
nal MMU TLB. To date, each hardware architecture has had
demonstrated shortcomings, both for uniprocessor use and
even more so when bundled in a mulfiprocessor.

5.1. Uniproeessor Issues
Mach was initially implemented on the VAX architecture.

Although, in theory, a full two gigabyte address space can be
allocated in user state to a VAX process, it is not always
practical to do so because of the large amount of linear page
table space required (8 megabytes). UNIX systems have
traditionally kept page tables in physical memory and simply
limited the total process addressiblity to a manageable 8, 16
or 64 megabytes. VAX VMS handles the problem by making
page tables pageable within the kernel's virtual address space.
The solution chosen for Math was to keep page tables in

2In fact, a version of Maeh has already run ~ a simulator for the IBM RP3
which assumed only TLB hardware support.

36

i~i: : : ~

physical memory, but only to construct those parts of the table
which were needed to actually map virtual to real addresses
for pages currently in use. VAX page tables in Mach may be
created and destroyed as necessary to conserve space or im-
prove runfime. The necessity to manage page tables in this
fashion and the large size of a VAX page table (partially the
result of the small VAX page size of 512 bytes) has made the
machine dependent portion of that system more complex than
that for other architectures.

The IBM RT PC does not use per-taskpage tables. Instead
it uses a single inverted page table which describes which
virtual address is mapped to each physical address. To per-
form virtual address translation, a hashing function is used to
query the inverted page table. This allows a full 4 gigabyte
address space to be used with no additional overhead due to
address space size. Mach has benefited from the RT PC
inverted page table in significantly reduced memory require-
ments for large programs (due to reduced map size) and
simplified page table management.

One drawback of the RT, however, is that it allows only one
valid mapping for each physical page, making it impossible to
share pages without triggering faults. The rationale for this
restriction lies in the fact that the designers of the RT targeted
an operating system which did not allow virtual address alias-
ing. The result, in Mach, is that physical pages shared by
multiple tasks can cause extra page faults, with each page
being mapped and then remapped for the last task which
referenced it. The effect is that Mach treats the inverted page
table as a kind of large, in memory cache for the RT's trans-
lation lookaside buffer (TLB). The surprising result has been
that, to date, these extra faults are rare enough in normal
application programs that Mach is able to outperform a ver-
sion of UNIX (IBM ACIS 4.2a) on the RT which avoids such
aliasing altogether by using shared segments instead of shared

pages.
In the ease of the SUN 3 a combination of segments and

page tables are used to create and manage per-task address
maps up to 256 megabytes each. The use of segments and
page tables make it possible to reasonably implement sparse
addressing, but only 8 such contexts may exist at any one
time. If there are more than 8 active tasks, they compete for
contexts, introducing additional page faults as on the RT.

The main problem introduced by the SUN 3 was the fact that
the physical address space of that machine has potentially
large "holes" in it due to the presence of display memory
addressible as "high" physical memory. This can complicate
the management of the resident page table which becomes a
"sparse" data structure. In the SUN version of Mach it was
possible to deal with this problem completely within machine

dependent code.
Both the Encore Multimax and the Sequent Balance 21000

use the National 32082 MMU, This MMU has posed several
problems unrelated to multiprocessing:

• Only 16 megabytes of virtual memory may be
addressed per page table. This requirement is
very restrictive in large systems, especially for

the kernel's address space.

• Only 32 megabytes of physical memory may b e

addressed 3. Again, this requirement is very
restrictive in large systems.

o A chip bug apparently causes read-modify-write
faults to always be reported as read faults. Mach
depends on the ability to detect write faults for
proper copy-on-write fault handling.

It is unsurprising that these problems have been addressed in
the successor to the NS32082, the NS32382.

5.2. Mul t iproeessor Issues
When building a shared memory muldprocessor, care is

usually taken to guarantee automatic cache consistency or at
least to provide mechanisms for controlling cache consis-
tency. However, hardware manufacturers do not typically
treat the translation lookaside buffer of a memory manage-
ment unit as another type of cache which also must be kept
consistent. None of the mulfiprocessors running Mach sup-
port TLB consistency. In order to guarantee such consistency
when changing virtual mappings, the kernel must determine
which processors have an old mapping in a TLB and cause it

to be flushed. Unfortunately, it is impossible to reference or
modify a TLB on a remote CPU on any of the multiprocessors
which run Mach.

There are several possible solutions to this problem, each of
which are employed by Mach in different settings:

1.forcibly interrupt all CPUs which may be using
a shared portion of an address map so that their
address translation buffers may be flushed,

2. postpone use of a changed mapping until all
CPUs have taken a timer interrupt (and had a
chance to flush), or

3. allow temporary inconsistency.

Case (1) applies whenever a change is time critical and must
be propogated at all costs. Case (2) can be used by the paging
system when the system needs to remove mappings from the
hardware address maps in preparation for pageout. The sys-
tem first removes the mapping from any primary memory
mapping data structures and then initiates pageout only after
all referencing TLBs have been flushed. Often case (3) is
acceptable because the semantics of the operation being per-
formed do not require or even allow simultaneity. For ex-
ample, it is acceptable for a page to have its protection
changed first for one task and then for another.

6. Integrating Loosely-coupled and
Tightly-coupled Systems

The introduction of mulfiprocessor systems adds to the dif-
ficulty of building a "universal" model of virtual memory. In
addition to differences in address translation hardware, exist-
ing multiprocessors differ in the kinds of shared memory
access they make available to individual CPUs. Examples
strategies are:

• fully shared memory with uniform access times as
in the Encore MultiMax and Sequent Balance,

3The Multimax has howewr added special hardware to allow a full 4
gigabytcs to b~ addressed

37

® shared memory with non-uniform access as in the
BBN Butterfly and I B M RP3 and

o message-based, non-shared memory systems as

in the Intel Hypercube.

As yet, Mach, like UNIX. has been ported only to mul-
tiprocessors with uniform shared memory. Mach does,
however, possess mechanisms unavailable in UNIX for in-
tegrating more loosely coupled computing systems. An im-
portant way in which Mach differs from previous systems is
that it has integrated memory management and communica-
tion. In a tightly coupled multiprocessor, Mach implements
efficient message passing through the use of memory manage-
ment "tricks" which allow lazy-evaluation of by-value data
transmission. It is likewise possible to implement shared
copy-on-reference [13] or read/write data in a network or
loosely coupled multiprocessor. Tasks may map into their
address spaces references to memory objects which can be
implemented by pagers anywhere on the network or within a
multiprocessor. Experimentation with this approach, which
offers the possibility of integrating loosely and tightly coupled
multiprocessor computing, is underway. A complete descrip-
tion of this work is currently being written up in [12]. Im-
plementations of Mach on more loosely coupled multiproces-
sors are in progress.

7. Measuring VM Performance
Tables 7-1 and 7-2 demonstrate that the logical advantages

of the Mach approach to machine independent memory
management have been achieved with little or no effect on
performance as compared with a traditional UNIX system. In
fact, most performance measures favor Mach over 4.3bsd.

Performance of M a c h VM Operations

Operation Mach UNIX

zero fill IK (RT PC) .45ms .58ms
zero fill 1K(uVAX If) .58ms 1.2ms
zero fill 1K(SUN 3/160) .23ms .27ms

fork 256K (RT PC) 41ms 145ms
fork 256K (uVAX U) 59ms 220ms
fork 256K (SUN 3/160) 68ms 89ms

read 2.5M file(VAX 8200) (systertdelap~.d s¢¢)
first time 5.2/Usec 5.0/llsec
~econd time 1.2/1.4ace S.O/llsec

read 50K file (VAX 8200) (system/elapsed sec)
first time .2/.Tee .2/.5s¢¢
second time .1/.lsec .2/.2~e

Table 7-1:
The cost o f various measures of virtual memory ~_rformancee

for Mach, ACIS 4.2a, SunOS 3.2, and 4.3bsd UNIX.

Overa l l Compi la t ion Pe fo rmance : M a c h vs. 4.3bsd

VAX 8650:400 buffers
Operation Mach 4.3bsd

13 programs 23see 28sec
Math Kernel 19:58rain 23:38rain

VAX 8650: Generic configuration
Operation Math 4.3bsd

13 programs 19sec l:16sec
Mach kernel 15:50rain 34:10mln

SUN 3/160:
Operation Mach StmOS 3.2

Compile fork test pr~ram 3sec 6sec

Table 7-2:

Cost of compiling the entire Maeh kernel and a, sct of,13 C l)rograr~rs
on a V A X 8650 witl~ 36 megabytes ot memory unaer oom macn ano *.~bsd

UNIX. Generic configuration reflects the normal allocation of 4.3bsd
buffers. The 400 buffer times reflect specific limits set on the

use of disk buffers by both systems. Also included is the cost of
compiling the fork test program (used above) on a S U N 3/160 under

Mach and under SunOS 3.2.

8. Relation to Previous Work
Mach provides a relatively rich set of virtual memory

management functions compared to system such as 4.3bsd
UNIX or System V, but most of its features derive from
earlier operating systems. Accent [8] and Mulfics [7], for
example, provided the ability to create segments within a
virtual address space that corresponded to files or other per-
manent data. Accent also provided the ability to efficiently
transfer large regions of virtual memory in memory between
protected address spaces.

Obvious parallels can also be made between Mach and sys-
tems such as Apollo's Aegis [6], IBM's System/38 [5] and
CMU's Hydra [11] -- all of which deal primarily in memory
mapped objects. Sequent's Dynix[4] and Encore's
Umax [10] are multiprocessor UNIX systems which have
both provided some form of shared virtual memory. Mach
differs from these previous systems in that it provides sophis-
ticated virtual memory features without being tied to a
specific hardware base. Moreover, Mach's virtual memory
mechanisms can be used either within a multiprocessor or
extended transparently into a distributed environment.

9. Conclusion
An intimate relationship between memory architecture and

software made sense when each hardware box was expected
to run its own manufacturer's proprietary operating system.
As the computer science community moves toward UNIX-
style portable software environments and more sophisticated
use of virtual memory mechanisms 4 this one-to-one mapping
appears less and less appropriate.

To date Mach has demonstrated that it is possible to imple-
ment sophisticated virtual memory management making only
minimal assumptions about the underlying hardware support.
In addition, Mach has shown that separation of machine inde-
pendent and dependent memory management code need not

4e.g. for transaction processing, database management [9] and AI knowledge
representation [2, 3]

38

result in increased runtime costs and can in fact improve
overall performance of UNIX-style systems. Maeh currently
runs on virtually all VAX architecture machines, the IBM RT
PC, the SUN 3 (including the virtual-address-cached SUN 3
260 and 280), the Encore MultiMAX and the Sequent
Balance. All implementations are built from the same set of
kernel sources. Machine dependent code has yet to be
modified as the result of support for a new architecture. The
kernel binary image for the VAX version runs on both
uniprocessor and multiprocessor VAXes. The size of the
machine dependent mapping module is approximately 6K
bytes on a VAX -- about the size of a device driver.

10. Acknowledgements
The implementors and designers of Maeh are (in alphabeti-

cal order): Mike Accetta, Bob Baron, Bob Beck (Sequent),
David Black, Bill Bolosky, Jonathan Chew, David Golub,
Glenn Marcy, Fred Olivera (Encore), Rick Rashid, Avie
Tevanian, Jim Van Sehiver (Encore) and Mike Young.

11. Wulf, W.A., R. Levin and S.P. Harbison. Hydra/C.mmp: An
Experimental Computer System. McGraw-Hill, 1981.

12. Young, M. W. et. al. The Duality of Memory and Communica-
tion in Mach. Prec. 11th Symposium on Operating Systems Prin-
ciples, ACM, November, 1987, pp..

13. Zayas, Edward. Process Migration. Ph.D. Th., Department of
Computer Science, Camegie-MeUon University, January 1987.

References

1. Mike Accetta, Robert Baron, William Bolosky, David Golub,
Richard Rashid, Avadis Tevanian, Michael Young. Mach: A New
Kernel Foundation for UNIX Development. Proceedings of Summer
Usenix, July, 1986.

2. Bisiani, R., AUeva, F., Forin, A. and R. Lerner. Agora: A
Distributed System ArchRecmre for Speech Recognition. Inter-
national Conference on Acoustics, Speech and Signal Processing,
IEEE, April, 1986.

3. Bisiani,R. and Forin,A. Architectural Support for Multilanguage
Parallel Programming on Heterogeneous Systems. 2nd International
Conference on Architectural Support for Programming Languages
and Operating Systems, Palo Alto, October, 1987.

4. Sequent Computer Systems, Inc. DynixProgrammer's Manual.
Sequent Computer Systems, Inc., 1986.

5. French, R.E., R.W. Collins and hW. Loen. "System/38 Machine
Storage Management". IBM System/38 Technical Developments,
IBM General Systems Division (1978), 63-66.

6. Leach, P.L., P.H. Levine, B.P. Douros, J.A. Hamilton, D.L
Nelson and B.L Stumpf. "The Architecture of an Integrated Local
Network". IEEE Journal on Selected Areas in Communications
SAC-], 5 (November 1983), 842-857.

7. Organick, E.L. The Multics System: An Examination of Its
Structure. MIT Press, Cambridge, Mass., 1972.

8. Rashid, R. F. and Robertson, G. Accent: A Communication
Oriented Network Operating System Kernel. Proc. 8th Symposium
on Operating Systems Principles, December, 1981, pp. 64-75.

9. Alfred ~ Spector, Jacob Butcher, Dean S. Daniels, Daniel
J. Duchamp, Jeffrey L Eppinger, Charles E. Fineman, Abdelsalam
Heddaya, Peter M. Schwarz. Support for Distributed Transactions in
the TABS Prototype. Proceedings of the 4th Symposium on
Reliability In Distributed Software and Database Systems, October,
1984. Also available as Carnegie-Mellon Report CMU-CS-84-132,
July 1984..

10. Encore Computing Corporation. UMAX42 Programmer's Refer-
ence Manual. Encore Computing Corporation, 1986.

39

