Chapter 4

TRANSFORMATIONS

4.1 TRANSFORMATIONS, ISOMETRIES. The term transformation has several
meanings in mathematics. It may mean any change in an equation or expression to simplify
an operation such as computing a derivative or an integral. Another meaning expresses a
functional relationship because the notion of afunction is often introduced in terms of a
mapping

f-A® B

between sets A and B; for instance, the functiony = x* can be thought of as a mapping

f: x® x° of one number lineinto another. On the other hand, in linear algebra courses a
linear transformation maps vectors to vectors and subspaces to subspaces. When we use
the term transformation in geometry, however, we have all of these interpretationsin mind,
plus another one, namely the ideathat the transformation should map a geometry to a
geometry. A formal definition makesthis precise.

Recall firstthat if f: A® B isamapping such that every point in the range of f has a
unique pre-image in A, then f is said to beone to oneor injective. If therange of fis all of B,
then f is said to be onto or surjective. When the function is both one to one and onto, it is
caled abijection or is said to bebijective. The figures below illustrate these notions
pictorialy.
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4.1.1 Definition. Letg, = (?,, £,) and G, = (P,, L,) be two abstract geometries, and let f :
P, ® P, afunction that is bijective. Then we say that f is ageometric transformationif f
also maps .z, onto ~,.

In other words, a 1-1 transformation f : #; ® P, is geometric if takes the set 2, of all
pointsin g, onto the set #, of all pointsin G,, and takesthe set £, of al linesin g, onto the
set £, of al linesin G,. Itisthislast property that distinguishes geometric transformations
from more generd transformations. A more sophisticated way of formulating definition
4.1.1issmplytosay that f: g, ® g, ishijective. Notice that the definition makes good
sense for models of both Euclidean and hyperbolic geometries. For instance, we shall see
later that there is geometric bijection from the model H? of hyperbolic geometry in terms of
lines and planesin three space and the Poincaré disk model D in terms of points and arcs of
circles.

Some simple examples from Euclidean plane geometry make the formalism much
clearer. Let g, and g, both be models of Euclidean plane geometry so that #, and #, can be
identified with all the pointsin the plane. For f: », ® %, to be geometric it must map the
plane onto itself, and do so in a1-1 way, aswell as map any straight linein the planeto a
straight line. It will be important to see how such transformations can be described both
algebraically and geometrically. It iseasy to come up with functions mapping the plane
onto itself, but it is much more restrictive for the function to map a straight line to a straight

line. For example, (x,y)® (x,y’) maps the plane onto itsalf, but it maps the straight line

y =X tothecubic y= x°.

4.1.2 Examples. (a) Let

f:(xy)® (y.x)
be the function mapping any point P =(X,y) inthe planeto itsreflection P¢= (y, X) inthe
line y = x. Since successive reflectionsP ® P¢® P maps P back to itself, this mapping is
1-1 and maps the plane onto itself. But does it map a straight line to a straight line? Well the
equation of anon-vertica straight lineis y = mx + b. The mapping f interchanges x and y,
so f mapsthe straight line y = mx + b tothe straight line y = (x - b)/ m. Algebraicaly, f
maps a non-vertical straight lineto itsinverse. Geometrically, f maps the graph of the
straight line y = mx + b to the graph of itsstraight lineinverse y = (x - b)/ m asthefigure
below shows



y=(x-b)/m

One can show also that f maps any vertical straight line to a horizontal straight line, and
conversely. Hence f maps the family of al linesin Euclidean plane geometry onto itself -
hencef is ageometric transformation of Euclidean plane geometry.

(b) More generally than in (a), given any fixed line m, let f be the mapping defined by
reflectionin the line m. In other words, f maps any point in the plane to its ‘ mirror image
with respect to the mirror linem. For instance, when mis the x-axis, then f takes the

pointP =(X,Y) in the plane to itsmirror image P¢= (X, - y) with respect to the x-axis. In
generd it is not so easy to express an arbitrary reflection in agebraic terms (see Exercise
Set 4.3), but it is easy to do so in geometric terms. Given apoint P, let m¢be the straight line
through P that is perpendicular to m. Then P¢ isthe point on m¢ on the opposite side of m
to P that is equidistant from m. Again afigure makes this much clearer
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What isimportant to note here isthat all these geometric notions make sensein hyperbolic
geometry, so it makes good sense to define reflections in a hyperbolic line. Thiswill be



donein Chapter 5 where we will see that this hyperbolic reflection can beinterpreted in
terms of theidea of inversion as hinted at in the last section of Chapter 3.

(c) Let f be arotation through 90° counter-clockwise about the some fixed point in the
plane. In algebraic terms, when the fixed point isthe origin, f is given agebraically by
f:(X,¥Y)® (-y,x).Sofis1-1and maps the plane onto itself. What does f do to the
straight line y = mx + b? (see Exer cise Set 4.3)

(d) Letf be atrandation of the plane in some direction. Then fisgiven algebraicaly by
f:(x,y)® (x+a,y+b) for somerea numbersaandb. Again,itisclear that fis1-1 and
maps the plane onto itself.

Sketchpad is particularly useful for working with transformations because the basic
transformations are al built into the program. We can use Sketchpad to look at the
properties of reflections, rotations, and trandations.

4.1.2a Demonstr ation.

Open anew sketch on Sketchpad and draw aline. Thiswill be the mirror line.

Construct a polygon in the general shape of an “ [F~. Coloritsinterior.

To reflect the polygon across the mirror line, select the line and use the Transform
menu to select “Mark Mirror”. Under the Edit menu, select “Select All”. Then under
the Transform menu, select “ Reflect”.

Try dragging some of the vertices of the polygon to investigate the properties of
reflection in the mirror line. What happens when the mirror line is dragged?

Y our figure should ook like the following:



The orientation of the reflected“[F ” is said to be oppositeto that of the origina «[F

because the clockwise order of the vertices of the image isthe reverse of the clockwise order
of the vertices of the pre-image. In other words, a reflection rever ses orientation.

Measure the area of each image polygon and its pre-image. Measure corresponding side
lengths. M easure corresponding angles. Check what happens to your measurements as
the vertices of the pre-image are dragged. What happens to the measurements when the
mirror lineis dragged? Now, complete Conjecture4.1.3.

End of Demonstration 4.1.2a.

4.1.3 Conjecture. Reflections distance, angle measure and area.

4.1.4 Definition. A geometric transformation f of the Euclidean planeis said to be an
isometry when it preserves the distance between any pair of pointsin the plane. In other

words, fisan isometry of the Euclidean plane, when the equality d(f (a), f (b)) = d(a,b)
holds for every pair of points a, b in the plane.

By using triangle congruences one can prove the following.

4.1.5 Lemma. Any isometry preserves angle measure.



The earlier Sketchpad activity supports the conjecture that every reflection of the
Euclidean planeisan isometry. A proof of this can be given using congruence properties.

4.1.6 Theorem. Every reflection of the Euclidean planeis an isometry.

Proof. In the figure below P and Q are arbitrary points, while P¢ and Qdare their respective
images with respect to reflection in the mirror linem. D and E are the intersection points

between the mirror line and the segmentsPP¢andQQ¢. For convenience we have assumed
that P, Q lie on the same side of the mirror line. Use the definition of areflection to show

first that DEDQ is congruent to DEDQC, and hencethat DQ is congruent to DQ¢. Now use

thisto show that DPDQ is congruent to DPMQCQ. HencePQ is congruent to Pd.
QED

How would this proof have to be modified if P, Q lie on opposite sides of the mirror line?
Notice by combining Lemma4.1.5 with Theorem 4.1.6 we now have a proof of Conjecture
4.1.3.

Two other very familiar transformations of the Euclidean plane are rotations through a
given angle about a given fixed point, and trandation in agiven direction by afixed amount.



The most precise definition of these are terms of compositions of reflections (aswe'll seein
the next section), but direct geometric definitions can be given.
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Formaly, arotation p,, about the point Athrough adirected angle 6 isthe

transformation that fixes A and otherwise sends a point P to the point P¢such that AP is
congruent to APdand 0 isthe directed angle measure of DPAPC. A trandation T, isthe

transformation that sends every point P the same distance direction, as determined by a
givenvector v. Again, Sketchpad makestheideaclear.

4.1.6a Demonstr ation.

Open anew sketch and draw an o[F

First we'll look at rotations. Construct apoint and label it A. Thiswill be the ‘ center’
of therotation, i.e., the fixed point. Select the point A and then use the Transform menu
to select “Mark Center A".

Under the Edit menu, select “ Select All”. Then under the Transform menu select
“Rotate”. The rotate screen will pop up with the angle of rotation 6 selected. You can
change the degrees in a positive or negative direction.

Investigate if rotation preserves distance, angle measure and area. Does rotation preserve
or reverse orientation?

Now for translations. Open anew sketch and draw an “[F~. construct aline segment
in acorner of your sketch and label the endpoints A and B. First select the endpointsin
that order and the use the Transform menu to “Mark Vector A->B”.



Using the Marquee (Arrow Tool) select the «[F'»_ Under the Transform menu sdlect
“Trandate’. The trandate screen will pop up with “By Marked Vector” selected.
Click on “OK”.

Investigate if trandation preserves distance, angle measure and area. Does rotation
preserve or reverse orientation?  Now, complete Conjecture 4.1.7.
End of Demonstration 4.1.6a.

4.1.7 Conjecture. Therotation p,, is and also

orientation. Thetrandation T, ; is and aso

orientation.

4.2 COMPOSITIONS. The usua composition of functions plays avery important rolein
the theory of transformations. Recall the general idea of composition of functions. Given
functionsf: A® Bandg: B® C, mappingaset Aintoaset BandBintoaset C

respectively, then the composition

(g- f)(@)=9g(f(a)), @l A)
mapsAinto C. Pictorialy, composition can be represented by the figure below
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Noticethat if f: A® Bandg: B® C arebijective, then the composition will also be
bijective.

4.2.1 Exercise. Show thatif f: g, ® g, and g: g, ® G, are hijective, then the composition
ge f ishijectivefrom g, onto G,. In other words, the composition of geometric
transformationsis again geometric.

The concept of geometric transformation is very general. What we do isimpose
restrictions on atransformation f: g, ® g, by imposing extra structure on g, and g, and



then requiring that f preserve this extra structure. For instance, when a distance functionis
defined on g, and g,, we can focus on geometric transformationsf: g, ® g, that preserve
the distance between points - what we called isometries in the case of Euclidean geometry.
If anotion of angle measure is defined on g, and g,, then we could focus on geometric
transformations that preserve the angle between lines; such transformations are called
conformal transformations. A complex-valued functionf: W® W whichis1-1 and
invertible on aset Win the complex planeis conformal whenever fisanalytic. Thisisone
reason why analytic function theory is closely connected with geometry. (There are many
interesting ideas for semester projects hereif one knows something about complex
numbers and analytic function theory.)

4.2.2 Theorem. Let f and g be isometric transformations of the Euclidean plane. Then the
composition go f of fand g also isan isometric transformation of the Euclidean plane.

Proof. Let P and Q be arbitrary pointsin the plane. Sincef isan isometry,
dist(P,Q) =dist(f(P), f (Q)).
But g also isan isometry, so
dist(f(P), f(Q) =dist(g(f(P),9(f(Q))).
Combining these two results we see that
dist(P,Q) =dist((g- f)(P).(g° f)(Q)).

Hence the composition go f preserves lengths and so is an isometry. QED

This theorem shows why there are close connections between geometry and group
theory. For if f: ¢ ® gisageometric transformation, then f will have aninverse

f 1 6® gaand f ' will be ageometric transformation; in addition, if f isan isometry, then

f* will be an isometry. Thus the set of all geometric transformationsf: ¢ ® g isagroup
under composition, while the set of al isometriesisasubgroup of this group. Now let's
look more closely at the set of all isometries of the Euclidean plane - in more elaborate
language, we are going to study the Isometry Group of the Euclidean plane. In the previous
section we saw that any reflection is an isometry. Theorem 4.2.2 ensures that the
composition of two reflections will be an isometry, and hence the composition of three, four
or more reflections will be isometries aswell. But how can we describe the composition of
reflectionsin geometric terms? Let’ s first use Sketchpad to see what happens for the
composition of two reflections.

4.2.2a Demonstration. The Composition of Two Reflections.



Open anew sketch and draw two mirror linesl and|’. Draw an “ [F" somewherein the
plane.

Now reflect this“[F " first in the mirror linel and then in the mirror line I”, producing a
new image of «[Fn

Describe carefully the position of the fina image“F” in relation to the first “[F .
What happensif thelines| and I’ are paralel. What if they are not paralel?

Y ou should now be able to complete Conjecture 4.2.3.
End of Demonstration 4.2.2a.

4.2.3 Conjecture. The composition of reflectionsin two mirror linesisa
when the mirror lines are parallel. The composition of reflections
intwo mirror linesisa when the mirror lines intersect.

To investigate this more carefully, let’s go once more to Sketchpad.

4.2.3a Demonstration.

Open a new sketch and draw intersecting lines by first choosing three points A, B, and C
then drawing two line segments AB and AC. The reason for constructing the mirror lines
in thisway isthat dragging on B or C changes the angle between the mirror lines by
rotating one of them about the vertex A.

Now draw an “[F” on one side of amirror line and then reflect it successively in the
two mirror lines, producing a new image “[F which should appear to be arotation of
the first “IF . Measurefirst the angle between the mirror lines and then measure the

angle by line segments joining the vertex A to corresponding points on the first “ [F
and itsimage. Compare the two values. This suggeststhat Theorem 4.2.4 istrue.

End of Demonstration 4.2.3a.

4.2.4 Theorem. Successive reflection in two intersecting mirror lines produces a rotation
about the point of intersection through twice the angle between the mirror lines.
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Proof. Consider the following figure, where P isfirst reflected in the mirror line AB with
image P'. Then P' isreflected in the mirror line AC withimage P". There are two pairs of

congruent triangles. By construction PD = DP", so DPAD is congruent to DP®D by the
SAS criterion. Thus DPAD = DPCAD . By asimilar argumentD PCAE = DP®AE.
Combining these two equdities we see that DPAP@=2DDAE. QED

P

Now lets go back to Sketchpad and look at the case of paralel mirror lines.
Open a new sketch and draw two paralel lines. On one side of these lines draw an

“[F~ and then reflect this successively in the two mirror lines. Drag one of the mirror
lines so that it remains parallel to the other mirror line - you can do this by grabbing the

line and then dragging. Theimage “ [ should then appear to be atrandate of the first
one.
M easure the distance between the paralel mirror lines and then measure the distance

between corresponding points on the first “[F and the image «[F Compare the two
vaues.

4.2.5 Theorem. Successive reflection in parallel mirror lines produces atrandation in a
direction perpendicular to the mirrors through a distance equal to twice the distance between
the mirrors.

11



Proof. See Exercise Set 4.3.

Next it makes senseto look at the composition of three reflections and see if we can
describe the result in terms of rotations and trandations aswell. First we need to introduce
one more Euclidean motion of the plane.

4.2.6 Definition. A glidereflection is the composition of areflection with atrandation
parald to theline of reflection.

We should note that sketchpad does not have the glide reflection transformation built
into the program. But we could easily build our own using scripts or custom
transformations. We'll see how to use custom transformations in the next section.

A transformation in the plane has dir ect orientation if it preserves the orientation of
any triangle. If the transformation does not preserve the orientation but reversesit then it has
opposite orientation. Thusif amotion isthe product of an even number of reflections
then it will have direct orientation. If amotion isthe product of an odd number of
reflections then it will have opposite orientation. Rotations and trand ations are exampl es of
orientation while reflections and glide reflections show
orientation. This observation will help us when trying to describe the results of composing
three reflections.

There are different cases that need to be considered when looking the possible outcomes

of reflecting in three mirror lines.
4.2.6a Demonstration.
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Three Parallel Lines: What do you get when you reflect something in three paralléel
lines? Draw three paralld lines and a ssmple polygona figure. Reflect the figure
successively about the 3 lines. (Hide intermediate figures to avoid confusion)

What sort of transformation is this? What do the connected midpoints create?

Draw at least 3 segments joining corresponding points on the pre-image to the find
image. For each adjoining segment construct a midpoint and connect them together.
Ignoring the three original lines what does this line suggest? How does your answer
depend on the order of the lines? Investigate what happens when you change the order
of reflection. (Drag the lines, say from #1 to #2)

Two Parallel Linesand One Non Parallel: What is this a composition of ?

Draw two parald lines and one that crosses them both. Now draw asimple figure on
the outside of the parallel line and below the transverse line. Reflect it about the parallel
line, then again about the other parald line. What kind of motion isthis? Now reflect it
in the transversal. What isthis motion called and what is the result of the two combined?
Doesit make any difference where the figure ends if you reflect it in another sequence,
say reflecting it in the transversal first? Does it matter if the transversal is perpendicular
to the pardld lines?

No Parallel Lines: What sort of transformation does this case result in?

Draw three linesthat only intersect each other in one place. They should look like a
triangle with its sides extended. Pick a place and draw yourself asmall figure. Begin
reflecting over the lines. What is the end result?

Three Concurrent Lines: What isthe line of reflection for this case? To construct
concurrent lines make sure the lines intersect at one point. Draw such lines. Draw a
small figure between two of thelines. (It will be contained in aV shaped segment)
Begin your reflections here. What sort of transformation isthis? If you reflect a point
all the way around the six lines what do you get? Start with a point where you had
drawn your figure. Reflect it around each of the lines until you get back to the start. Is
the last point is the same place asthe first?

13



What happensif two of the mirror lines are identical? What happensif al three are
identical?
Y ou should be able to complete the following:
Product of Two Reflections If the 2 lines of the reflection are parallée
then themotionisa

Product of Two Reflections If the 2 lines of the reflection are not parallel
then themotionisa

Product of Three Reflections If dl 3 of the lines of the reflection are
parald then the motionisa

Product of Three Reflections If 2 of the lines of the reflection are parallel th
themotionisa

Product of Three Reflections If the 3 lines of the reflection are concurrent
then themotionisa

Product of Three Reflections If the 3 lines of reflection intersect each
other only once then the motionisa

End of Demonstration 4.2.6a.
With these notes in mind we can realize two of the most important theoremsin the
theory of isometric transformations of the Euclidean plane.

4.2.7 Theorem. Any isometry of the Euclidean plane can be written as a composition of no
more than 3 reflections.

As a consequence of our exploration on composition of reflections we get the
following aswell.

4.2.8 Theorem. Any isometry of the Euclidean plane can be written as one of the following
transformations: reflection, rotation, trandation or glide reflection.
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Crucial to the proof of Theorem 4.2.7 will be the following. To show if we are given an
isometry and three points A, B, and C with image points D, E, and F we can take the
composition of (at most) three reflectionsand also map A, B,and Cto D, E, and F
respectively. If the orientation of the pointsis preserved it will take two reflections, and
otherwiseit will take three reflections.

Open anew sketch and draw two congruent triangles, DABC and DDEF . We will find
atransformation which maps DABC to DDEF .

Draw aline segment between A and D and find the midpoint. Consgtruct the linel
perpendicular to the line segment and through the midpoint. Reflect DABC inl and A
will be mapped onto D. So there is one point in the correct position and one reflection.

If B and C also land on E and F then you would be done. If thisis not this case, then
we areto map B¢to E by reflecting through the perpendicular bisector of BEE where

B¢ istheimage of B under thefirst reflection. This maps B¢ to E and keeps D fixed.
Why does D stay fixed?

15



Thisleavesyou with only C" (from the original C) to be mapped. If it falls on F after
the second reflection then you would be done, but if it does not, map C" to map to F by

reflecting about theline DE . Why is DE  the perpendicular bisector of FC@ ?

Now you are done and it has taken 3 reflections to get from the pre-image to the final
image.

Before proving Theorem 4.2.7 we need to establish another property of isometries.

4.2.9 Lemma. Anisometry maps any three non-collinear pointsinto non-collinear points.

Proof. Let A, B, and C be non-collinear points. Then by the triangle inequality the non-
collinearity means that

dist(A B) +dist(B,C) > dist(A,C).

16



Now let AGB¢and C¢betheimagesof A, B, and C. Since the isometry preserves distances,
dist(A¢BQ + dist(BECd > dist( AGCH.

But thisensuresthat A¢ B¢and C¢ cannot be callinear, proving thelemma.  QED

Proof of Theorem 4.2.7. Given an isometry F, choose a set of non-collinear points A, B,
and C. Let A¢=F(A),B¢=F(B), and C¢=F(C) betheir images. Supposethat F has
preserved orientation of DABC. Then the Sketchpad activity on * Composition of reflections
shows that there exist reflections § and S, so that their composition § oS has the
properties

(§ °S)(A) = AL, (§ - S)(B) =B, (§ - S)(C) = Cu.
Wewill prove that
(§ °S)(P) =F(P).
holds for every point P. So set
(S *S)(P) = P¢, F(P) = Pg.
We have to show that P¢= Pdi. Because § o S and F are isometries,
dist(A¢PQ = dist( AG Pa), dist(B¢PQ) =dist(B¢PE, dist(CGPY = dist(Ch P .

Thus Ad, B¢, and C¢will all lie on the perpendicular bisector of the segment P@Pd if

P¢t Pd. But this can happen only if Ad, B¢, and Cdare collinear. But A, B, and C are not
collinear, so A¢, B¢, and C( are not collinear. Hence P¢= P& showingthat S-S =F.If F
does not preserve the orientation of DABC then the same proof will show that F can be
written as the composition of either one reflection or three reflections. This completes the
proof. QED

17



4.3 Exercises. The problemsin this assignment are a combination of algebraic and
geometric ones.

Exercise 4.3.1. Show that the function f :(x,y)® (- y,X) mapsthe straight line
y=mx + b tothestraight line y = - (x+ b)/ m. Explain the relationship between the dopes
of these two linesin terms of the transformation in 4.1.2 (c).

Exercise 4.3.2. Show that reflection in theline y = mx isgiven by

e 2m 4 Eﬂ‘nz-l('j a®?2m g Emf-lob
fi(xy ® € -5 X, ~ X+ S <.
%y éem2+1ij ént +19 'ent +19 em2+1ﬂy;a

Hint: Let thereflection of the point P = (x,y) be P' = (X, y). You need to find two equations
and then solvefor X, y. Let Q be the midpoint of PP'; so what are its coordinates? The point
Q adso lieson themirror liney = mx; so what does this say about the coordinates of Q'?
Usethisto get the first equation for X, y. Theline PP is perpendicular to the mirror line =
mx. How can we use thisto get a second equation for X, y? Now solve the two equations
you have obtained.

Exercise 4.3.3. Prove synthetically that every rotation p,, isanisometry.

Exercise 4.3.4. Provethat successive reflectionsin parallel mirror lines produce a
trandation in adirection perpendicular to the mirrors through a distance equal to twice the
distance between the mirrors.

Exer cise 4.3.5. Suppose you wish to join the two towns A(1,5) and B(8,2) viaapipeline. A
pumping station isto be placed along a straight river bank (the x-axis). Determine the
location of a pumping station, P(x,0), that minimizes the amount of pipe used? Solvethis
by transformations.
by calculus.
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A(1,5)

B(8,2)

P(x,0)

Exercise 4.3.6 Buried Treasure. Among his great-grandfather’ s papers, José found a
parchment describing the location of a hidden treasure. The treasure was buried by a band
of pirates on a deserted idand which contained an oak tree, apine tree, and agalows where
the pirates hanged traitors. The map looked like the accompanying figure and gave the
following directions.

“Count the steps from the gallows to the oak tree. At the oak, turn 90° to the right. Take
the same number of steps and then put a spike in the ground. Next, return to the gallows
and walk to the pine tree, counting the number of steps. At the pinetree, turn 90° to the | eft,
take the same number of steps, and then put another spike in the ground. The treasureis
buried halfway between the spikes.”

José found the idland and the trees but could not find the gallows or the spikes, which
had long since rotted. José dug al over theidland, but because the idand was large, he gave
up. Devise aplan to help José find the treasure.
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44 TILINGSREVISITED. Toillustrate further the idea of reflections, rotations,
trandations, and glide reflections we want to begin the geometric analysis of ‘wallpaper’
designs. A wallpaper design isatiling of the plane that admits trandational symmetry in
two directions. That isthe design can be “moved” in two different directions and coincide
with itself. The checkerboard below would produce awallpaper design if continued
indefinitely.
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First we notice that certain rotations are admissible. For the checkerboard we can rotate
by 90° (quarter-turn) about the center of any green or white square and repeat the same
figure. Also we can rotate by 180° (half-turn) about the vertex of any square and repeat the
samefigure. There are wallpaper designs that admit 60° (sixth-turn) rotations and
120° (third-turn) rotations. What is more remarkable is that these are the only rotations
allowed in any wallpaper design! A simple argument shows why. (See Crowe) To get you
started on the fifth-turn case, try the following. Choose one center of rotation P and then
choose another center of rotation that is closest to Q. Next argue why this cannot happen.
The n-th turn caseis even easier.
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This restriction on rotations provides a convenient way to analyze wallpaper patterns.
In fact, it can be shown that there are only 17 different types of wallpaper designs!

Four which have no rotations at all;
Five whose smallest rotation is 180°;
Three whose smallest rotation is 120°;
Three whose smallest rotation is 90°;
Two whose smallest rotation is 60°;

Thereisasmple flowchart one can use to classify any wallpaper design. The symbols

for the patterns have special meaning: m means mirror, g means glide, and anumber like 2
or 4 means half-turn or quarter-turn.
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Let’s go back to our checkerboard design - we shall think of it as extending over the whole
plane to form atiling by congruent copies of asingle square. An aternating coloring has
been added for extraeffect. Thistiling will be left unchanged by various reflections and
rotations about various points.
Go back to the checkerboard figure and mark in the mirror lines with respect to which a
reflection leaves the design unchanged. Mark the mirror linesin bold. Mark in red the
centers of rotation through 90° that leave the design unchanged. Mark also in blue the
centers of rotation through 180" that |eave the design unchanged.

Y our pattern should look like the one below.

C\ a4 A

@

Thistilingisclassified as“p4m”. The smallest rotations allowed are quarter -turns and
there are reflectionsin four directions.
Successive use of the reflections and rotations fixing the design would replicate the

& L

whole tiling from just one white square and one colored tile. Can the whole tiling be
generated from any part smaller than theses two squares? Find the smallest piece from
which the whole tiling could be generated by successive reflections and rotations. This
smallest pieceis called a Fundamental Domain.
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How would the pattern of reflections and rotations differ if the tiling consisted of all
white squares? What is a Fundamental domain of the new monochromatic tiling?

Y ou can continue to examine wallpaper designsin the next set of exercises. Now we
will assemble al the results and ideas devel oped about transformations and tilings to show
how to use Sketchpad to construct figures with a prescribed symmetry. First let’s see how
to use Custom Tools to define our own transformations.

4.4.1 Demonstration. Custom transfor mations.

A custom transformation is a sequence of one or more transformations. The basic steps
are given below.

Transform an object one or more times.

Hide any intermediate objects or format them as you wish them to appear when you
apply your transformation.

Select the pre-image and image, and select and show the labels of al marked
transformation parameters.

Create anew tool. The pre-image and transformation parameters will become given
objectsin the custom tool.

In the custom tool's Script View, set each of the given transformation
parameters—mirrors, centers, and so forth—to automatically match objects with the
samelabdl..

For example, let’s define arotation p,, throughagivenangle 6 about agiven point A.

Open a new sketch and construct apoint A and any point P. Mark A as a center of
rotation. Then construct the point P¢ which isthe rotation of P about A through an
angled (chooseany6 ).

Next select P and P¢ and A. Choose “ Create New Tool from theTools menu. Typea
name that describes the transformational sequence. In the Script View window, double
click on Paoint A in the “Given” section and check the box “ Automatically Match
Sketch Object”.

Y ou can now apply your custom transformation to any figurein your sketch. Draw any
polygonal figurein your sketch and construct itsinterior. Select the polygon interior
and apply the tool.
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Repest this process to define areflection S, about a given mirror linem and atrandation T,
inagiven direction.
End of Demonstration 4.4.1.

When you define a multi-step transformation, Sketchpad remembers the formatting
you' ve applied to each step’simage—whether you' ve colored it, or hidden it, and so forth.
When you apply the transformation to new objects, Sketchpad creates intermediate images
with exactly the same formatting. If you are interested only in the final image of the
sequence of transformational steps, and not in the intermediate images, hide each
intermediate image between your two selected objects before defining the transformation. 1f
you want your transformed images to have a certain color, then be sure your image has the
appropriate color when you define the transformation.

4.4.2 Demonstration. Producing a picture with p4g symmetry.

To utilize these ideas and generate the symmetries necessary for producing a picture having

p4g symmetry:
Create atool which performs a4-fold rotation about A; cal it 4-foldrot. Construct a 2-
fold rotation about B; call it 2-foldrot. Finally construct a reflection about the side BC of
DABC .

Construct aright-angled isosceles triangle DABC  having aright angle at A; thiswill be
the fundamental domain of the figure.

Now you are free to draw any figure having p4g symmetry. Below is one example.
The origina D has been left in. The picture was constructed from one triangle inside the
fundamental domain and one circle. The most interesting designs usually occur when the
initial figure ‘pokes outside the fundamental domain. The vertices of the original triangle
can be dragged to change the appearance of the design; the original design can be dragged
too. This often resultsin aradical change in the design.



End of Demonstration 4.4.2

Earlier, as a consequence of the Euclidean pardllel postulate, we saw that the sum of the
angles of atriangle is aways 180° no matter the shape of the triangle; similarly the sum of
the angles of aquadrilateral is aways 360° no matter the shape of the quadrilateral.
Somewhat later we gave amore careful proof of thisfact by determining the sum of the
angles of any polygon - in fact we saw that the value depends only on the number sides of
the polygon. Thisvalue was then used to show that equilatera triangles, squares and
regular hexagons are the only regular polygons that tile the Euclidean plane. But nothing
was said about the possibility of non-regular polygonstiling the plane. In fact, any triangle
or quadrilatera can tilethe plane. The figure below illustrates the case of a convex
quadrilateral. ABCD was the origina quadrilateral and E, F, G, H are the respective
midpoints. One can obtain the figure below by rotating by 180" about the midpoint of each
side of the quadrilateral. (Y ou can tile the plane with any triangle by the same method —try
it
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To do thisfor yourself, you can use custom transformations. Define atransformation
for each midpoint. I’ ve drawn a different figure in each of the corners of the chosen
quadrilateral to help me distinguish among the corners. Use your four rotations to produce
atiling of the plane by congruent copies of the original quadrilatera with one copy of each
of the four corners occurring at every vertex. Join neighboring images of the midpoints by
line segments. What resulting repeating diagram emerges? Y ou should see an overlay of
parallelograms. Can you find a parallelogram and points so that successive rotations of the
parallelogram through 180" about the points would produce the same tiling?

45 DILATIONS. Inthissection we would like ook at another type of mapping, dilation,
that isfrequently used in geometry. Dilation will not be an isometry but it will have another
useful property, namely that it preserves angle measure.

4.5.1 Definition. A geometric transformation of the Euclidean Planeis said to be
conformal when it preserves angle measure. That is, if A', B', and C' arethe images of A,
B, and C then mBA®GIC¢= mDABC.

4.5.2 Definition. A dilation with center O and dilation constant k * 0 is atransformation
that leaves O fixed and maps any other point P to the point P¢ on the ray OP such that
OP¢= k>OP.
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4.5.2a Demonstration. Dilation with Sketchpad.

Sketchpad has the dilation transformation built into the program.
Open a new sketch and construct a point O and DABC.
Sdlect O and then “Mark Center O.” under the Transform menu.
Select DABC and then select “dilate” from the Transform menu.

Enter the desired scale factor (dilation constant). (In the figure above the dilation
constant isequal to 2. Notice that in the dialogue box, the scale factor isgiven asa

, : . 2 1
fraction. In thiscase, wewould either enter 1 or 0—5.)

What istheimage of a segment under dilation? Isthe dilation transformation is
conformal?

Next construct a circle and dilate about the center O by the same constant. What isthe
image of acircle?

End of Demonstration 4.5.2a.

4.5.3 Theorem. Theimage of PQ under dilation isaparallel segment, P&Q¢ such that
PRC=[k [PQ
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Proof. From SAS similarity it follows that DPOQ ~ DP®Q¢ and thus P&Q¢=| k | PQ. The
proof needs to be modified when O,P, and Q are collinear.

4.5.4 Theorem. The dilation transformation is conformal.
Proof. See Exercise Set 4.6.

One can easily see that the following theorem is also true. The ideafor the proof isto
show that al points are afixed distance from the center.

4.5.5 Theorem. Theimage of acircle under dilation is another circle.

Proof. Let O be the center of dilation, Q be the center of the circle, and P be a point on the

POQE_0Qe
PQ OQ

circle. Q" will bethe center of theimage circle. By Theorem 4.5.3,

PIQ¢=

PQC;SQQ:' Now each segment in the right-hand expression has a fixed length so

P'Q’ isaconstant. Thusfor any position of P, P’ lieson acircle with center Q'.

Using dilations we can provide an aternate proof for the fact that the centroid of a
triangle trisects the segment joining the circumcenter and the orthocenter (The Euler Line).
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Given DABC with centroid G, orthocenter H, and circumcenter O. Let Ad, B¢, and C( be
the midpoints of the sides. First note that O is the orthocenter of DA(BIC (¢ and that G
divideseach medianinto a2:3ratio. Thusif we dilate DABC about G with adilation

constant of - % , DABC will get mapped to DAMBIC ¢ and H will get mapped to O (their
orthocenters must correspond). Hence O, G, and H must be collinear by the definition of

adilation and OG = % HG. QED.

4.6 Exercises.
Exercise 4.6.1. Recall thetwo regular tilings of order 2 produced with squares and
triangles. Classify each asawallpaper design.
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Exercise 4.6.2. Classify the following wallpaper design. Isthere any relation to the

3

checkerboard tiling?

Exercise 4.6.3. What type of wallpaper design is Escher’ sversion of ‘Devilsand Angels
for Euclidean geometry?
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Exercise 4.6.4. On sketchpad use custom transformations to create awallpaper design
other than a p4g.

Exercise 4.6.5. Let ABCD beaquadrilateral. Inthefigure below E,F,G, and H arethe
midpoints of the sides. Provethat EFGH isaparalelogram. Hint: Similar triangles.
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Exercise 4.6.6. Escher’slizard graphic is shown below. Mark all the pointsin the picture
about which there are rotations by 180°. What do you notice about these points? Exhibit a
parallelogram and three points about which successive rotations through 180° would
produce Escher’ s design. What is the wallpaper classification for the lizard design?

Exercise 4.6.7. Now pretend that you are Escher. Start with a parallelogram PQRS. Draw
some geometric design inside this parallelogram - a combination of circles and polygons,
say. Choose three points and define rotations through 180" about these points so that
successive rotations about these three point tiles the plane with congruent copies of your
design. Try making a second design allowing some of the circles and polygons to fall
outside the initial parallelogram - this usually produces a more interesting picture. Here's
one based on two circlesand an arc of acircle
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Exercise 4.6.8. Prove Theorem 4.5.4. Thedilation transformation is conformal.

4.7 USING TRANSFORMATIONSIN PROOFS

Transformations can aso be useful in proving certain theorems, sometimes providing a
more illuminating proof than those accomplished by synthetic or anaytic methods. We
“discovered” Y aglom’s Theorem in the second assignment and re-visited it while looking
a tilings. Thereisan easy proof that uses transformations.

4.7.1 Theorem. Let ABCD be any parallelogram and suppose we construct squares
externally on each side of the parallelogram. Then centers of these squares also form a
square.



Proof. Consider the rotation about P by 90°. (Try it on sketchpad.) The square centered at

P will rotate onto its original position and AB must rotateto A’ A, so the square centered at
Q will rotate to onto the square centered at S. Thus their centers will coincide. Thistells us

that the segment PQ rotates 90° onto the segment PS, and therefore PQ=PSand

MDD QPS=90. Do the same for the other centers Q, R, and S. Thus PQRSis a square.
QED

Earlier in this chapter we looked at the Buried Treasure problem (Exer cise 4.3.6). After
working with the Treasure sketch one notices that the location of the treasureis likely to be
independent of the position of the gallows. If we use this observation as an assumption, then
perhaps we can gain an understanding as to where the treasure is buried with respect to the
trees.

The map’ singtructions are very symmetrical. Since the only reference points are the two
trees, a symmetry argument will be used with objects reflected across the perpendicular
bisector of the segment joining the trees. Choose a position for the gallows (G) near the
Oak tree, and itsreflection (G’) near the Pine tree (Figure 1).

Figure 1
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Line of Symmetry

The treasure must lie upon the line of symmetry; or elseit isin two different places.
Therefore, the treasure lies upon the perpendicular bisector of the Pine Oak segment.

To calculate where upon the perpendicular bisector the treasure lies, we next choose G
to be apoint on the line of symmetry, specifically the midpoint between the Pine (P) and the

Oak (O) trees (Figure 2). We will need to find GT. Since G is the midpoint of OP, we see
that GO = GP; in addition, by following the treasure map directions, we seethat GP = PS
and GO = OR.
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Figure 2

Oak (O) Spikel (R)
G + Treasure (T)
Pine (P) Spike2 (S)

OR = PS by transitivity. OR || PS since they are both perpendicular to the same line,
therefore ORSP is a parallelogram, specifically arectangle. OP = RS and since G isthe

midpoint of OP and T isthe midpoint of RS it followsthat GP = TS. Therefore GTSP isa
parallelogram, more specifically a square. So one solution to help José is the following: he
needs to find and mark the midpoint between the Pine and the Oak. Then starting at the pine
tree he should walk toward the marker while counting his steps, then make a 90° turn to the
right and pace off the same number of paces. The treasure is at this point.

We can provide a proof of our result by coordinate geometry or by transformations.

1. Solution by coordinate geometry:

José should be happy now with his treasure, but in the preceding argument we made afairly
big assumption, so our conclusion is only as strong as our assumptions. Using coordinate
geometry we can develop a proof of the treasure’ s location without making such
assumptions.

Pick convenient coordinate axes. The pine and oak trees are the only clear references.

L et the pine tree be the origin and the oak tree some point on the y-axis (0, a). The

galows arein an unknown position, say (X, Y).

Calculate the position of Spike 2 (S). Rotating the gallows position -90° about the pine

tree gives the coordinate of Sas(y, X).
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Cdculate the position of Spikel (R). Rotating the gallows position 90° about the oak
tree will take alittle more effort. If the oak tree were the origin then the rotation of 90°
would be simple. So lets reduce our task to amore simple task. Trand ate the entire
picture, T ,, - Thiswill place the oak tree on the origin. Rotate the translated gallows
(X, y - @) 90° about the originto (-y + a, x). Now trandatethe picture T , , and the
pictureis back where it began. The position of Risnow (-y + a,x + a).

Our last task isto calculate where the treasure is located.

Use the midpoint formulato Figure 3

calculate the position of the Spike 1

treasure hafway between

the spikes. ({cﬁ)
Spikel: R(-y+ a,x + a)

Spike 2: S(y, X)
Treasure: T (a/2, a/2)

Coordinate geometry proves J&H;w
that the position of the Ple
treasure isinvariant with

respect to the gallows. Spike 2

Treazure

2. Explanation by | sometries:

So far the explanations have given a solution, but they haven't given us much insight as
to why the location of the treasure isindependent of the position of the gallows. Sketchpad
can assist in the explanation using transformations.

4.7.2 Demonstration. The Buried Treasure Problem using Sketchpad.

The exact position of the gallowsis unknown, therefore we indicate the position of the
Gallows by the letter G and make no more assumptions about its position. Construct the
segment joining the Oak tree (O) and Pine tree (P). Construct lines| and k perpendicular to

OP passing through O and P respectively. Lines| and k are parallel to each other. Construct

GA asthealtitude of the DPOG. By the instructions given in the map, construct the
positions of the spikes (Rand S), and the treasure (T). Hide all unnecessary lines and
points. (Figure 4)
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Figure 4

Spikel (R)
Oz (O)

Treasure (T)

Spike2 (S)

In the coordinate proof the spike positions were found by rotating the position of the
gallows about the trees. We will use this technique again in this proof. Rotate D OAG 90°

about O, forming D OBR. Rotate D PAG -90° about P, forming DPCS It is simple to show
Bliesonl and C lieson k. Since isometries preserve distance the following congruencies

hold: GA @RB; GA @BC, and by transitivity RB @5C . Since RB||SC,
DBRT @D CST. By SAS DRBT @D SCT. From thiswe can conclude B, T, C are

collinear, T is the midpoint of BC and
therefore equidistant from | and k. (See
Figureb).

Figure5 >

With T established as the midpoint of

BC, wewill change our focusto the
trapezoid OBCP (See Figure 6). Naming

M the midpoint of OP, yields the median
MT . Thelength of the median is the average of the two bases, thusMT = 3 (OB + PC). But

by the original rotation we know that OB + PC = OA + AP = OP; thusMT = 3OP. From
this we can conclude that DPMT is an isosceles right triangle.

j
Spike2 (S)

Figure 6
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End of Demonstration 4.7.2.

40



4.8 STEREOGRAPHIC PROJECTION. In al the previous discussions the geometric
transformation has mapped one model of a geometry onto the same model. But in map-
making, for instance, the problem isto map the sphere model to a different model, in fact to
amodel realized as some geometry redlized in the plane. One very important example of this
is the transformation known as Stereographic Projection. We shall seethis playsalso a
crucia rolein describing the geometric transformation taking the line model of hyperbolic
geometry in terms of lines and planesinside a cone in 3-space to the Poincaré model D.

To construct the stereographic projection of the sphere onto the plane, first draw the
equatoria plane - thiswill serve as the plane onto which the sphere is mapped. Now take
any point P on the sphere other than the South Pole and draw the ray starting at the South
Pole and passing through P. Label by P¢ the point of intersection of thisray with the
equatorial plane. For clarity in the figure below the ray has been drawn as the line segment
joining the South Pole and P.

Equator

Equatorial plane

Q
South Pole

Stereographic projection isthe mapping P ® Pdfrom the sphere to the equatoria plane. It
has a number of important properties:

1. When P lies on the equator, then P = Pdso the image of the equator isitself. More
precisaly, the equator iseft fixed by the transformation P ® Pd. For convenience, let's
agreeto cal thiscircle the equatorial circle.

2. When P liesin the Northern hemisphere then P¢ liesinside the equatoria circle, whileif
P liesin the Southern hemisphere, P¢ lies outside the equatorial circle.

41



. Since the ray passing through the South Pole and P approaches the tangent line to the
sphere at the South Pole, and so becomes parallel to the equatoria plane, as P
approaches the South Pole, the image of the South Pole under stereographic projection
isidentified with infinity in the equatorial plane.

. Thereisa1-1 correspondence between the equatoria plane and the set of all points on
the sphere excluding the South Pole.

. Theimage of any line of longitude, i.e., any great circle passing through the North and
South Poles, isastraight line passing through the center of the equatorial circle.
Conversely, the pre-image of any straight line through the center of the equatorial circle
isaline of longitude on the sphere.

. Theimage of any line of latitude on the sphereisacirclein the equatoria plane
concentric to the equatoria circle.

. Theimage of any great circle on the sphereisacircle in the equatorial plane. Now every
great circle intersects the equator at diametrically opposite points on the equator. On the
other hand, the points on the equator are fixed by stereographic projection, so we see
that the image of any great circle on the sphereisacircle in the equatorial plane passing
through diametrically opposite points on the equatoria circle

. Stereographic projection is conformal in the sensethat it preserves angle measure. In
other words, if the angle between the tangents at the point of intersection of two great
circlesis 6 , then the angle between the tangents at the points of intersection of the
images of these great circlesisagan o .

Many books devel op the properties of stereographic projection listed above by

using the idea of inversion in 3-space. These same properties can, however, be established
algebraically. Thisiswhat we'll do at this juncture because it brings in results learned

earlier in calculus courses. Let S be the sphere in 3-space centered at the origin having

radius 1. The pointson S can described by

EMT), EX+mP+C=1,

sointhefigureabove, let P =P(E,n,C) and let P¢= P&x,y) beitsimagein the equatorial
plane under stereographic transformation where the center of the equatoria circleistaken as
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the origin. In particular, the equation of the equatorial circleis x° + y* =1. To determine the

relation between (§,m,C) and (X,y) we use smilar trianglesto show that

: __§ _.M
(A) P P(E;T],C)® P¢X!y)! X_].TZ;, y—_-

Thisis the algebraic formulation of stereographic projection. Since £ +n” + ¢* = 1, the
coordinates of Px,y) satisfy therelation

2., 1-T% _1-¢
(B) X +f‘(1+@)2‘1+z'

Asillustration, consider the casefirst of the North Pole P =(0,0,1) . Under stereographic
projection P mapsP =(0,0,1) mapsto P¢=(0,0) intheequatoria plane, i.e, totheorigin
in the equatorial plane. By contrast, the South Poleisthe point P =(0,0,- 1) anditisthe
only point of the spherewith T =- 1. Thusthe South Pole isthe only point on S for which
the denominator 1 +C = 0. Thus the south Pole maps to infinity in the equatoria plane, and
itistheonly point on S which does so. That P(§,m,C) ® P¢X,y) isal-1 mapping from
S\ (0,0, - 1) onto the equatorial plane can aso be shown solving the equations

givenapoint (§,m,2) in S\ (0,0, -1) or apoint (X,y) inthe equatoria plane.

Now let’ sturn to the important question of what P doesto circleson S . Every
such circleistheintersection with S of aplane; for instance, agreat circleisthe intersection
of S and aplane through the origin. In calculus you learned that aplaneis given by the
equation

© AE+Bn+CC =D
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where the vector (A, B,C) isthe normal to the plane and is the distance of

D
the plane from the origin. The simplest caseisthat of aline of longitude. Algebraicaly, this
istheintersection of S with avertical plane through the origin, so the normal liesin the
(§,m)-plane meaning that C = D = 0 in the equation above. Thus aline of longitude isthe

set of points (§,m,C) such that
AE+Bn =0, E®+n°+C°=1.

Theimage of any such point under P isthe set of points (X,y) inthe equatorial plane such
that Ax + By = 0, which isthe general equation of a straight line passing through the origin.
Conversdly, given any straight linel in the equatoria plane, it will begivenby Ax+ By =0
for some choice of constants A, B. So | will be the image of the great circle defined by the
plane AE + Bny =0. This showsthat thereisa 1-1 correspondence between lines of
longitude and straight lines through the center of the equatorial circle, proving property 5
above.

Theimage of aline of latitudeis easily determined also since aline of latitude isthe
intersection of S with ahorizontal plane, i.e., aplanet =D with - 1< D < 1. But then, by
the general relation (B) theimage of the line of latitude determined by the planeT =D
consists of al points (x,y) inthe equatoria plane such that

Thisisthe equation of acircle centered at the origin and radius /(1- D)/ (1+D); asD

variesover therange - 1< D < 1, thisdescribes the family of al circles centered at the
origin. So P definesa 1-1 mapping of the lines of latitude onto the family of &l circles
concentric with the equatorial circle.

The proof of property 7 isalittle more tricky. Consider first the case of a plane
passing through the points (0,£1,0) on S; we could think of these as being the East and
West ‘Poles'. Also, the plane need not be vertical because otherwise itsintersection with S



would be aline of longitude dealt with earlier in property 6. Thus we are led to considering
agreat circle determined by the plane

C =gtano,

whered isfixed, - % <0 < EZ ;infact, © isthe angle between the plane and the (€,m)-plane.

By relations (A) and (B), the points (X, y) in theimage of the intersection with S of the
planeC =& tano will satisfy the equations

\ = 15 ’ X2+y2:1-2;:1-§tan6 .
1+ Etanb 1+C 1+E&tanb

After eliminating § from these equations we see that the image point (X, y) satisfiesthe
equation

x°+y* =1- 2xtan0.

In other words, the image of the greet circle determined by the planeC =& tan6 isthecircle

(x +tanB)’ +y° = 1+ (tand)’ = (sech)’

whichisthecircle centered at (- tan6,0) having radius 1/ cost . Asproblem 7in
Assignment 6 shows, thisisacircle passing though diametrically opposite points of the

circle x* + y* =1; infact, it passes through the points y = +1 which are the image of the
points of intersection of the great circles determined by the plane T =& tan6 and the
equator in S.

But how do we deal with amore general great circle that is not aline of longitude
and does not pass through the East and West Poles? The fundamental ideawe' Il useis that

arotation of the sphere about the T -axis through an angle ¢ will fix the T -coordinate of a
point P(§,m,C) on S whilerotating the &,n -coordinates, but it will also rotate the x, y-
coordinates of theimageP&x, y) by the same angle ¢ . So the effect of rotating agreat circle
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isto rotate itsimage under stereographic projection. Since arotation isan isometry, it maps
acircleto acircle. Hence theimage of any great circleisacircle. Let’sdo the details.

4.8.1 Theorem. Under therotation p, , about the origin the point (§,m) is mapped to the
point (E¢n@ = p,,,Em) where
EC=Ecosh - nsing, meE=Esing +mcosp .
More generaly, the point (€,m,C) is mapped to the point (§¢n¢C) .
Under p,, theplaneT =& tand ismapped to the plane T = (& cosp +msing)tano .

The angle between this plane and the (§,m)-planeisagain 6 and the intersection of the
planewith S isagreat circle passing through the equator at the points

(- sing,cos¢,0), (sing,- cosd,0).

Now by (A), the point (§¢n¢C) ismapped to (x¢yd where

Xx¢=xcosp - ysing, y¢=xsing +ycosp.

Consequently, stereographic projection commutes with the rotation p,, in the sense that

(D) Popy,=pPoy°P-

Since the isometry p,, , will map circlesto circles, we obtain the following result,

completing the proof of property 7 listed above.
4.8.2 Theorem. Stereographic projection maps the great circle determined by the rotated

planeC =(& cosp +nsing)tan6 to thecirclein the equatoria plane obtained after rotation
by py,, Of theimage of the great circle determined by the planeT =§ tanf .

The genera result of property 8 can be established using similar transformation
ideas to those in the proof of Theorem 4.8.2.
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