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Abstract  Drought occurrence in the upper Tana River basin in Kenya has impacted negatively on water resources, 
hydro-power generation and agricultural production within the basin. Although this is an important river basin in 
Kenya, there is limited research work that has been done to assess and characterize drought to provide feasible 
mitigation measures and /or coping mechanics for water resources management. The Standardized Precipitation 
Index (SPI) was used to assess the spatio-temporal drought characteristics within the upper Tana River basin based 
on precipitation data for 41 years for eight gauging stations within the basin. The Kriging interpolation technique 
was applied to estimate spatially drought occurrence within the basin while the non-parametric Mann-Kendall (MK) 
trend test was used for trend detection. Results show that the south-eastern parts of the basin exhibit the highest 
drought severities while the north-western parts have the lowest drought values with averages of 2.140 and 4.065, 
and 2.542 and 4.812 in 1970 and 2010 respectively. The areal-extend of drought severities in both the south-eastern 
and north-western areas increased from 4868.7 km2 to 6880 km2, and 6163.9 km2 to 6985.5 km2 from 1970 to 2010 
respectively. The drought trend increased in the south-eastern parts of the basin at 90% and 95% significant levels 
while no significant trend was detected in the north-western areas. The results presented in this paper are useful in 
formulating a drought early warning system that can be used to assist water resources managers in developing timely 
mitigation measures in planning and managing water resources within the basin. 
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1. Introduction 
Although significant research has been done in 

hydrology and water resources management, research on 
the effect of drought characteristics on water resources is 
still limited for numerous river basins in the world. For 
instance, the upper Tana River basin which is the largest 
water tower in Kenya has continued to experience 
frequent drought occurrence due to climate change. This 
has impacted negatively on the available water for hydro-
power generation and yet most of the Kenya’s hydro-
electric power generation which contributes to 80% of the 
total power requirement in the country is generated from 
this basin. The main hydro-electric power stations in the 
basin include; Gitaru, Kiambere, Kamburu, Kindaruma 
and Masinga each with installed power capacity of 225, 
156, 94.2, 44 and 40 Mega Watts (MW) of electrical 
power [22]. Due to the importance of this river basin in 
Kenya, some research work has been done on drought 
occurrence within the basin. Although from limited 
research work, some of the authors have indicated that the 
basin continues to experience frequent droughts. For 

instance, Agwata et al. [1] used the principal component 
approach to analyse drought severity within the upper 
Tana River basin with results showing that the severity 
ranges from 0.63 to 3.89. However, application of 
Standardized Precipitation index (SPI) has not been 
applied in the basin for spatial and temporal drought 
estimation. In addition, the trend of drought occurrence in 
this basin has not yet been documented. Therefore, this 
paper addresses the aspects of spatio-temporal and trend 
of drought in the upper Tana River basin. 

Drought may be defined as natural event resulting from 
significantly low amount of precipitation or water resources 
quantity for an extended period of time compared with the 
normal average levels. According to Wang et al. [31], the 
key driver of drought occurrence is the climate change, 
whose effects on river basins take different dimensions. 
Drought occurrence in any river basin leads to significant 
adverse effects such as decrease in surface water and 
ground water resources, erratic water supply, low 
agricultural production [5] and decline in socio-economic 
development. The main characteristics of droughts include; 
severity, duration, frequency and spatial distribution. 
These are critical variables in water resources planning 
and management, and for effective mitigation of drought 
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impacts. The common tools used for drought characterization 
are the drought indices. These indices are numeric values 
that are used to define the severity of drought. The indices 
are classified into two broad categories; satellite based and 
the data driven drought indices [6]. 

The Satellite based drought indices are based on 
satellite remote sensing (RS) data. The RS refers to the 
science and art of obtaining information of points, objects, 
areas or phenomena via data analysis from a sensor, which 
is not in direct physical contact with the target of 
investigation [26]. The RS gives an aerial view of land, 
water resources and vegetation cover. This method yields 
spatial and temporal aspects of measuring drought. In 
addition, monitoring of vegetation dynamics over large 
surface areas is conducted. Currently, remotely sensed 
data at multiple time steps is being collected especially in 
conducting research for large river basins requiring huge 
amounts of data sets. Such data are used for conducting a 
near real time information management [20]. Examples of 
satellite drought indices are the Vegetation Condition 
Index (VCI), Normalized Difference Vegetation Index 
(NDVI), Normalized Difference Water Index (NDWI), 
Water Supply Vegetative Index (WSVI) and Normalized 
Difference Drought Index (NDDI). 

The Data Driven Drought Indices (DDDI) uses hydro-
meteorological variables as measured from weather and 
stream flow gauging stations. These variables are used as 
input parameters in the selected models or tools to assess 
drought intensity, duration, severity and magnitude. Some 
of the data driven indices include; Standardized 
Precipitation Index (SPI), Palmer Drought Severity Index 
(PDSI), Surface Water Supply Index (SWSI), Aggregated 
Drought Index (ADI), Effective Drought Index (EDI), 
Reclamation Drought Index (RDI), Crop Moisture Index 
(CMI) and Murger Index (MuI) [6,33]. However, the 
application of these indices and their testing for Kenyan 
conditions has not been done adequately.  

Some of the most critical elements of drought which are 
used for the design of water storage systems to cope with 
drought impacts include; longest duration, largest severity, 
highest intensity and spatial and temporal variation of 
droughts [16]. Drought duration refers to any continuous 
period of the sequence with deficit, while intensity is the 
magnitude below a truncation level. The truncation level 
may be taken as the long-term mean of the drought 
variable [7,11]. Severity is the cumulative deficit below a 
truncation level during a drought episode and is defined as 
the product of the drought intensity and duration.  

The Standard Precipitation Index (SPI) was developed 
by Mckee et al. [19] for quantification of the rainfall 
deficit and monitoring of drought conditions in Colorado, 
USA. In order to compute SPI values for a given river basin, 
a long-term historical precipitation record of at least 30 
years is integrated into a probability distribution function 
which is then transformed into a normal distribution. 
Aggregated monthly precipitation series of 1, 3, 6, 9, 12, 
24 and 48 months are normally used. The SPI requires less 
input data than most other drought indices. This makes it 
flexible for wide applications in drought forecasting [4,18].  

The SPI has numerous advantages which qualify for its 
application in many river basins in the world. First, it 
requires precipitation as the only input data and thus 
makes it ideal for those river basins that do not have 
widespread hydro-meteorological data records. The use of 

precipitation is considered a key since in drought studies 
since it is taken as a critical factor that drives some of the 
natural hazards such as drought, floods and soil erosion 
[27]. Secondly, the evaluation of SPI is relatively easy as 
it uses precipitation data without integrating it with other 
weather factors. Thirdly, it is a standardized index which 
is independent of geographical location because average 
precipitation values derived from the area of interest are 
determined. The SPI displays a statistical consistency. It 
can also analyze both short-term and long-term droughts 
over time scales of precipitation variation [5]. However, 
the SPI has some demerits. For instance cannot be applied 
on those river basins that do not have reliable precipitation 
data to generate the best estimate of the distribution 
parameters.  

To overcome the challenge of simulating and modelling 
the data for SPI, different probability distribution 
functions are employed. These include; the Gamma, 
Pearson type III, Lognormal, Extreme value and 
Exponential distribution functions [10]. However, the 
Gamma probability distribution function is preferred in 
hydrological studies. This distribution function has the 
advantage of fitting only positive and zero values and 
therefore becomes more applicable since hydrological 
variables such as rainfall, runoff and are always positive 
or equal to zero as lower limit value [2,17]. The Gumbel 
and Weibull distributions are used in studying extreme 
hydrological variables. The Gumbel distribution is used 
for frequency analysis of floods, while Weibull 
distribution is used for the analysis of low flow values 
observed in rivers [9]. According to Awass [3], the SPI 
values are influenced by time scales greater than 6 months 
and thus should be used to investigate droughts beyond 
this period. The objective of this research was to assess 
spatio-temporal drought characteristics using standardized 
precipitation index (SPI) based on precipitation data from 
1970 to 2010 for the upper Tana River basin in Kenya. 

2. Materials and Methods 

2.1. Description of the upper Tana River 
Basin 

The upper Tana River basin, which is part of Tana 
River basin; the largest river basin in Kenya [13,32], lies 
between latitudes 000 05' and 010 30' south and longitudes 
360 20' and 370 58 east. The upper Tana River basin has an 
area of 17,420 km2 (Figure 1). It has fundamental forest and 
land resources located along the eastern slopes of Mount 
Kenya and the Aberdares range. The basin plays a critical 
role in regulating the hydrology of the entire basin [12] 
and in the process, it controls the hydro-electric power 
generation within the Seven-Folk dams downstream of the 
Tana River. The basin is very critical in Kenya as it drives 
the socio-economic development through hydro-electric 
power generation, water supply and agricultural production. 

The elevation of the upper Tana River basin ranges 
from approximately 730 m to 4,700 m above mean sea 
level (a.m.s.l.). These elevations are adjacent to Kindaruma 
hydropower dam and Mount Kenya respectively. The river 
basin exhibits heterogeneous soil types, with Andosols, 
Nitosols, Ferrasols and Vertisols dominating at the higher, 
middle and lower elevations respectively [13]. 



 World Journal of Environmental Engineering 113 

 

 

 

 

 
 

 

 
Figure 1. The location of the upper Tana River basin in Kenya 

Precipitation and temperature vary across the entire 
river basin. The annual precipitation at Mount Kenya and 
the Aberdares ranges is approximately 1800 mm [23]. 
Within the middle elevations of 1200 to 1800 m a.m.s.l., 
the annual rainfall ranges from 1000 to 1800 mm or 
slightly more, while the lower elevations of 1000 m, 
receive annual rainfall of 700 mm as shown in the spatial 
distribution map of precipitation (Figure 2). 

 
Figure 2. Spatial distribution of precipitation in upper Tana River basin 

Although the basin receives significantly high rainfall 
amounts, it is characterized by seasonal rainfall 
fluctuations, poor spatial distribution and is highly 
influenced by orographic forces [25]. Subsequently, this 
leads to seasonal variation of stream flow in Tana River. 
Generally the basin experiences bimodal rainfall pattern 
caused by inter-tropical convergence zone [30]. The rain 
seasons are distributed in the months of March to June, 
and September to December. 

The maximum and minimum mean annual temperatures 
in the basin range from 25.5 to 31.0°C and 21.0 to 24.0°C 
respectively [21]. The average annual river basin evapo-
transpiration is approximately 500 mm in the summit area. 
The major land use types within the upper Tana River 
basin include; forests, crop land, agriculture and range 
land. The forests and tea plantations dominate the land use 
activities at the higher elevations of the basin while range 
lands dominate the lower elevations. 

2.2. Meteorological Data 
Monthly rainfall data from 1970-2010 within the upper 

Tana River basin used used to compute the time series of 
the SPI values. The selected meteorological stations used 
in this study are given in Table 1. The data was obtained 
from the Ministry of Water and Irrigation and also from 
Water Resources Management Authority (WRMA). 

Table 1. The meteorological stations used in the study 

S.No Station name Station ID 
Coordinates 

Elevation (m) 
Longitude Latitude 

1 MIAD 9037112 37.35 -0.7 1246 
2 Embu 9037202 37.45 -0.50 1494 
3 Kerugoya DWO 9037031 37.327 -0.3824 1598 
4 Sagana FCF 9037096 37.054 -0.448 1234 
5 Nyeri 9036288 36.97 -0.50 1780 
6 Muragua 9036212 36.85 -0.75 2296 
7 Naro moru 9037064 37.117 -0.183 2296 
8 Mangu 9137123 37.033 -1.10 1630 

MIAD: Mwea Irrigation and Agricultural Development Centre, DWO: District Water Office, FCF: Fish Culture Farm, ID: Identification number. 
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2.3. Standardized Precipitation Index (SPI) 
The Standardized Precipitation Index (SPI) was used to 

quantify rainfall deficit within the basin. To compute the 
SPI, long-term data for 41 years (1970-2010) was used. 
The standard procedure first involved fitting the rainfall 
data into a probability distribution function as described 
by McKee et al. [19]. Aggregated monthly precipitation 
data series of 3 months was used in the present study. This 
was then followed by computing the SPI values which 
were used in drought assessment and classification. The 
selection of the Gamma distribution function was 
preferred in this study as it fits well in time series rainfall 
data [8]. The Gamma distribution is expressed in terms of 
its probability density function [10] as: 

 11( ) 0
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αβ α
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−= >

Γ
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Where; α is the shape parameter, β is scale parameter, x is 
the rainfall amount (mm), Γ(α) is the value taken by 
Gamma function and -x is mean rainfall (mm). 

The Γ(α) is the value defined by a standard 
mathematical equation called Gamma function. This was 
determined by applying an integral function adopted from 
Cacciamani et al. [10] which is expressed as: 
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Where; y is the value computed from Equation 1, that is y 
is equal to g(x). The Gamma function given in Equation 2 
was evaluated using the numerical method by using 
tabulated values that depended on the value taken by the 
shape parameter α. A maximum probability was used to 
estimate the optimal values of α and β using Equations 3 
and 4 given as:  
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Where; α, β, x  have the same meaning as given in 
Equation 1, and A is a sample statistic. The sample 
statistic is determined using the relation: 

 ( ) lnln xA x
n
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Where; n is the number of observations. The density 
probability function g(x) in Equation 1 is integrated with 
respect to x to get an expression for cumulative probability 
G(x). This function is defined when a certain amount of 
rain is received for a given month and for a specific time 
duration. Thus, the calculated values of the cumulative 
probability for non-zero rainfall are determined using 
Equations 6 and 7 respectively: 
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Where; G(x) is the cumulative probability for non-zero 
rainfall. The Gamma function applies for values of rainfall 
x > 0 for the rainfall time series of the basin under study. 
In case of non-zero values, cumulative probability of both 
zero and non-zero values are computed. This probability is 
represented by a function H(x) defined as: 

 ( ) ( ) ( )1 ; ,H x q q F x α β= + +  (7) 

Where; H(x) is the Cumulative probability and q is the 
probability of zero rainfall. In this case, when m was taken 
as the number of zero entries in the time series rainfall 
data, then q was estimated by the ratio nm . The 
cumulative probability was then transformed into a 
standard normal distribution in such a way that the mean 
and variance of the SPI values were zero and one 
respectively. To carry out this step, an approximate 
transformation according to Mishra and Desai was 
adopted. This was achieved using Equations 8 and 9 given 
as: 
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The value of k in Equations 8 and 9 were determined 
using Equations 10 and 11 given as: 
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Where; c0=2.515517, c1= 0.802853, c2= 0.010328, 
d1=1.432788, d2= 0.189269 and d3= 0.001308 

In this study, the SPI values were calculated using a 
monthly time step and the threshold criterion as presented 
in Table 2 were used to define drought conditions [19]. 

 
Table 2. Drought classification based on SPI 

State Criterion Drought classification 

1 2.00 or more Extremely wet 

2 1.50 to 1.99 Very wet 

3 1.00 to-1.49 Moderate wet 

4 0.99 to -0.99 Near normal 

5 -1.00 to -1.49 Moderate drought 

6 -1.50 to -1.99 Severe drought 

7 -2.00 or less Extreme drought 

The steps that were followed in computing the monthly 
series of SPI are summarised in Figure 3. 

The absolute severity was calculated as a product of the 
sum of SPI values less than zero and its probability for a 
given year. The probability of drought occurrence is taken 
as the ratio of the number of months with negative SPI 
values for twelve months in a year. The computation was 
based on ten-year intervals from 1970 to 2010. 
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Figure 3. The flow chart of the procedure used in computation of the time series SPI 

2.4. Mann-Kendall Based Drought Trends 
The Mann-Kendall trend test which is a non-parametric 

technique was applied to test for trend in the drought 
severity within the upper Tana River basin. This test has 
the capacity to test for increasing, decreasing or no trend. 
The data was evaluated using ordered time series. In this 
test, the sum of decrements and increments results to a 
Mann-Kendall statistical value S. The data sets were 
organized in form of x1, x2, x3,…, xj n-data points where xi 
represents data point at time j. Then the Mann-Kendall 
statistical trend S was determined using the relation: 
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The right hand side of Equation 12 is simplified using 
Equation13 given as:  
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Figure 3 presents a summary of the procedure that was 
use in computing the time series SPI for the upper Tana 
River basin. 

The probability linked to the Mann-Kendall statistic S 
and the selected n-data were determined to quantify the 
level of significance of the trend. The variance of data set 
VAR(S) was calculated and then the normalized test statistic Z 
was computed using Equations 14 and 15 respectively: 
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Where; VAR(S) is the variance of the data set [14], n is the 
number of data points. Equation 14 was used to qualify 
the drought trend in the basin as, no trend, increasing trend 
and decreasing trend when S=0, S>0 and S<0 respectively. 
In order to determine whether or not the drought trend in 
the upper Tana River basin was significant or insignificant, 
significance levels at 90% and 95% were used. At these 
significance levels, the null hypothesis of no trend was 
rejected when 1.645Z >  and 1.96Z > respectively 
where the values of Z were adopted from Sneyers [28].  

2.5. Spatial Distribution of Drought 
The spatial distribution of drought conditions was 

estimated using the standard Kriging interpolation 
technique using the point data. The Kriging technique is 
described using the various parameters and functions that 
are applied in the interpolation of values according to Kim 
and Valdes [22]. In this study, the application of Kriging 
technique was achieved within the geo-statistical analysis 
tool of ArcGIS 10.1. This method was selected because it 
is a reliable approach for any surface interpolation of point 
data. The Kriging method has also been tested for 
accuracy in previous studies in other river basins, for 
instance by Robinson and Matternicht [24].  

3. Results and Discussions 
The results for monthly time series SPI and the spatial 

characteristics of droughts in the upper Tana River basin 
are presented where different meteorological stations were 
used to represent different elevations bands of the basin; 
lower, lower-middle, middle and higher elevations.  

3.1. Drought based on SPI time Series 
For illustration purposes, Figure 4 shows drought 

conditions on monthly time series for selected rainfall 
gauging stations at Mwea Irrigation and Agricultural 
Development (MIAD) Centre and Naro-Moru located at 
the lower and higher elevations of the basin respectively. 

 
Figure 4. Monthly Time series SPI and precipitation at (a) MIAD (b) Naro-moru meteorological stations 

Both the time series SPI and the precipitation were 
plotted for ease of comparison as given in Figure 4 for the 
selected meteorological stations. The time series plot show 

that the SPI varies with the monthly precipitation within 
the study period. The SPI for meteorological stations 
presented are objectively selected to represent different 
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elevation bands of the basin where; MIAD, Kerugoya 
DWO, Nyeri and Naro-moru stations are located in the 
lower, lower-middle, middle and higher elevation bands of 
the basin respectively. For all the stations, extreme 
droughts based on values given in Table 1 were detected 
using the SPI for the periods 1972-1974, 1983-1984, 
1987-1988, 1999-2000 and 2010 within which the 
monthly SPI values were consistently below -2.00. The 
SPI is normally used to detect the occurrence both the 

drought (negative values of SPI) and the wetness (positive 
values of SPI) in a river basin. The other drought 
conditions characterized using the SPI for the upper Tana 
River basin as defined in Table 1 include severe drought, 
moderate drought, near normal, moderate wet, very wet 
and extremely wet conditions (Figure 4). The SPI time 
series results that show extreme wetness within the basin 
1985-1886, 1992, 1998 are extremely wet with the SPI 
values being constantly above +2.00. 

 
Figure 5. Spatial distribution of drought severity for the period 1970-2010 
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3.2. Spatial Distribution of Drought 
Drought severities for the upper Tana River basin were 

computed and mapped using the Kriging approach for the 
selected years, that is; 1970, 1980, 1980, 1990 and 2010. 
Results show that the south-eastern parts of the basin 
exhibit the highest drought severities while the north-
western areas have the lowest with an average of 2.140 
(1.822-2.463) and 4.065(3.745-4.384), and 2.542 (2.044-
2.835) and 4.812) (4.416-5.207) in 1970 and 2010 
respectively as given in Figure 5a and b. Most of south-

eastern parts of the basin are arid and semi-arid areas 
(ASALs) that fall in zones V and IV of Kenya’s agro-
climatic zones. These areas are at lower elevations (700-
2700 m a.s.l.) and are considered to be most prone to 
drought risks. On the other hand, the north-western parts 
which are at higher elevations (2700-4700 m a.s.l.), are 
humid and fall within zones III to I (Table 3). The 
corresponding rainfall to potential evapo-transpiration 
(R/E0) ratio values of the south-eastern and north-western 
areas are 25-50 and 50-80 respectively. 

Table 3. The agro-climatic zones of Kenya 
Zone Clasiification Annual rainfall R (mm) Potentail Evapo-transpiration E0 (mm) R/E0 ratio 

I Humid 1400-2700 1200-2000 >80 
II Sub-Humid 1000-1600 1300-2100 65-80 
III Semi-Humid 800-1400 1450-2200 50-65 
IV Medium to Semi-Arid 600-700 1500-2200 40-50 
V Semi-Arid 500-600 1650-2300 25-40 
VI Arid 300-550 1900-2400 15-25 
VII Very Arid <300 2100-2500 <15 

Source: [29]. 
The average values of drought severities for the ten-

year interval within the study period was also plotted to 
illustrate the trend of the drought severity with time in 
years. Results show that both the south-eastern and north-

western parts of the basin exhibit notable increment in 
drought severity. The former shows the highest increment 
in drought severity while the latter has lowest change 
within the study period (Figure 6). 
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Figure 6. Average drought severity between 1970 and 2010 for both south-eastern (S-E) and north-western (N-W) areas 

 
Figure 7. Spatial distribution of Mann-Kendall drought trend test at (a) 90% and (b) 95% significant levels for the upper Tana River basin 



 World Journal of Environmental Engineering 119 

 

The areal-extend of maximum and minimum drought 
severities increased in both the south-eastern and north-
western areas from 4868.7 km2 to 6880 km2, and 6163.9km2 
to 6985.5 km2 from 1970 to 2010 respectively. Between 
1970 and 1980, the drought areal-extend is almost the 
same but significant increase in areal-extend occurred 
between 1980 and 2010. The drought characteristics were 
also studied in terms of their trend in different parts of the 
river basin. The Mann-Kendall trend test shows that there 
was an increase in drought trend in the south-eastern parts 
of the basin at 90% and 95% significant levels while no 
significant trend was detected in the north-western areas. 
The results show that there is an increase in trend in 
drought which is significant at 95% significant level and 
insignificant at 90% significant level for middle elevations 
as given in Figure 6. 

4. Conclusion and Recommendations 
This study assessed the spatio-temporal drought 

characteristics for the upper Tana River basin using the 
SPI drought index. The results show that the SPI detected 
the monthly drought severities for the study period. It was 
also found out that the south-eastern parts of the river 
basin located in lower elevations and within the Arid and 
Semi-Arid Lands (ASALs) experience the most severe 
droughts. On the other hand, the north-western areas 
located in humid areas of Mt. Kenya and the Aberdares 
ranges have the lowest drought severity. Generally, the 
south-eastern areas exhibit increasing drought trend as 
detected using the Mann-Kendall trend test, while the 
north-western areas show no trend. It can therefore be 
concluded that the south-eastern areas of the basin are 
more vulnerable to droughts than the north-western areas.  

The authors of this work propose adoption of 
sustainable water harvesting and conservation methods for 
drought mitigation especially in the drought prone areas in 
the south-eastern parts of the basin. For drought planning 
and implementation of drought mitigation programmes, 
the south-eastern areas of the basin should be given a 
priority since it is vulnerable to drought. In addition, the 
authors propose future research to focus on drought 
forecasting aspects at different lead times for timely 
planning and management of water resources.  
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