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I ntroduction

Computersare not very good at knowing what to do: every actiona computerperforms
mustbe explicitly anticipated plannedfor, and codedby a programmerlf a computer
programeverencounterasituationthatits designedid notanticipatethentheresultis not
usuallypretty— a systencrashatbest,multiple lossof life atworst. This mundandactis
attheheartof ourrelationshipwith computersilt is soself-evidentto thecomputetiterate
thatit is rarelymentioned And yet it comesasa completesurpriseto thoseencountering
computerdor thefirsttime.

For the mostpart,we arehapyy to accepttcomputersasobedientliteral, unimaginatve
senants. For mary applications(such as payroll processing)jt is entirely acceptable.
However, for anincreasinglylarge numberof applicationswe requiresystemshat can
decidefor themselvesvhat they needto do in orderto satisfy their designobjecties.
Suchcomputersystemsareknown asagents Agentsthatmustoperaterobustly in rapidly
changingunpredictablegr openenvironmentswherethereis asignificantpossibilitythat
actionscanfail areknown asintelligent agents or sometimesautonomousgents Here
areexamplesof recentapplicationareador intelligentagents:

= Whena spaceprobemalesits long flight from Earthto the outer planets,a ground
crew is usually requiredto continually track its progress,and decide how to deal
with unexpectedeventualities.This is costly and, if decisionsare requiredquickly,
it is simply not practicable For thesereasonsprganisationdike NASA are seriously
investigatinghe possibility of makingprobesmoreautonomous— giving themricher
decisionmakingcapabilityandresponsibilities.

= Searchinghe Internetfor the answerto a specificquery can be a long and tedious
processSo, why not allow a computerprogram— an agent— do searchesor us?
The agentwould typically be given a querythatwould requiresynthesisingiecesof
informationfrom variousdifferentinternetinformation sourcesFailure would occur
whena particularresourcavasunavailable,(perhapgiueto network failure),or where
resultscouldnot be obtained.

This chapteris aboutintelligent agents.Specifically it aims to give you a thorough
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introductionto themainissuesassociateith thedesignandimplementatiorof intelligent
agentsAfter readingit, | hopethatyouwill understand:

= why agentsare percevedto be animportantnen way of conceptualisingindimple-
mentingcertaintypesof softwareapplication;

= what intelligent agentsare (and are not), and how agentsrelate to other software
paradigms— in particular expertsystemsandobject-orienteghrogramming;

= the mainapproacheshat have beenadwocatedfor designingandimplementingintel-
ligent agents the issuessurroundingtheseapproachestheir relatve merits, and the
challengeshatfacethe agentimplementor;

= the characteristic®f the main programminglanguagesvailable for building agents
today

The chapteris structuredas follows. First, in section1.2, | describewhat | meanby

the term agent In section1.3, | presentsomeabstiact architectues for agents.That

is, | discusssomegeneralmodelsand propertiesof agentswithout regardto how such

agentamight beimplementedin sectionl.4,| discussconcetearchitecturesor agents.
The variousmajor designroutesthat one canfollow in implementingan agentsystem
areoutlinedin this section.In particular logic-basedarchitecturesieactivearchitectures,
belief-desie-intentionarchitecturesandfinally, layeredarchitectureor intelligentagents
aredescribedFinally, sectionl.5 introducessomeprototypicalprogramminganguages
for agentsystems.

Comments on notation

This chaptemakes useof simple mathematicahotationin orderto make ideasprecise.
The formalismusedthat of discretemaths:a basicgroundingin setsandfirst-orderlogic

shouldbe quite sufficient to make senseof the variousdefinitionspresentedin addition:
if Sis anarbitraryset,then(S) is the powersetof S, andS* is the setof sequencesf

elementf S, thesymbol- is usedfor logical negation(so—p is read“not p”); A is used
for conjunction(so pAqis read”p andq”); V is usedfor disjunction(sopV q s read”p

or q"); andfinally, = is usedfor materialimplication(sop = qis read" p impliesq”).

1.2 What are agents?

An obvious way to openthis chapterwould be by presentinga definition of the term
agent After all, this is a book about multi-agentsystems— surely we mustall agree
on what an agentis? Surprisingly thereis no suchagreementthereis no universally
acceptediefinition of the term agent,andindeedthereis a gooddeal of ongoingdebate
and controsersyon this very subject.Essentiallywhile thereis a generalconsensughat
autonomyis centralto the notion of ageng, thereis little agreemenbeyond this. Part of
the difficulty is thatvariousattributesassociatedvith ageng areof differing importance
for differentdomains.Thus, for someapplicationsthe ability of agentsto learn from
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Figure1.1 An agentin its environment.The agenttakessensoryinput from the environ-
ment,andproducesasoutputactionsthataffectit. The interactionis usuallyan ongoing,
non-terminatingone.

their experiencess of paramounimportancefor otherapplications)earningis not only
unimportantjt is undesirable.

Neverthelesssomesortof definitionis important— otherwisethereis adangethatthe
termwill loseall meaning(cf. “user friendly”). The definition presentedhereis adapted
from [71]: An agentis acomputersystenthatis situatedin someervironmentandthatis
capableof autonomousctionin this ervironmentin orderto meetits designobjectves.

There are several points to note aboutthis definition. First, the definition refersto
“agents”andnot “intelligent agents”.Thedistinctionis deliberateit is discussedn more
detailbelon. Secondthedefinitiondoesnot sayanything aboutwhattypeof environment
an agentoccupies.Again, this is deliberate:agentscan occugy mary differenttypesof
ervironment,aswe shall seebelow. Third, we have not definedautonomy Like ageng
itself, autonomyis a someavhattricky conceptto tie down precisely but I meanit in the
sensahatagentsareableto actwithouttheinterventionof humansor othersystemsthey
have controlboth over their own internalstate,andover their behaiour. In sectionl.2.3,
we will contrastagentswith the objectsof object-orientedorogramming,and we will
elaboratethis point there.In particular we will seehow agentsembodya muchstronger
sensef autonomythando objects.

Figurel.1 givesanabstracttop-level view of anagent.n this diagramwe canseethe
actionoutputgeneratedby theagentin orderto affectits environment.In mostdomainsof
reasonableompleity, anagentwill nothave completecontroloverits ervironment.t will
have at bestpartial control,in thatit caninfluencet. Fromthe point of view of theagent,
this meansthat the sameaction performedtwice in apparentlyidentical circumstances
might appearto have entirely differenteffects,andin particular it may fail to have the
desiredeffect. Thusagentsn all but the mosttrivial of ervironmentsmustbe preparedor
thepossibilityof failure. We cansumthis situationupformally by sayingthatervironments
arenon-deterministic

Normally, anagentwill have arepertoireof actionsavailableto it. This setof possible
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actionsrepresentshe agentseffectoric capability: its ability to modify its environments.
Note that not all actionscanbe performedin all situations.For example,an action“lift
table” is only applicablein situationswherethe weight of the tableis sufficiently small
thatthe agentcanllift it. Similarly, the action“purchasea Ferrari’ will fail if insufficient
fundsareaavailableto do so.Actionsthereforehave pre-conditionsassociateavith them,
which definethe possiblesituationsn whichthey canbeapplied.

Thekey problemfacinganagenis thatof decidingwhich of its actionsit shouldperform
in orderto bestsatisfyits designobjectives. Agent architectues of which we shall see
severalexampledaterin this article,arereally softwarearchitecturegor decisionmaking
systemsthat are embeddedn an ervironment. The compleity of the decision-making
processcan be affectedby a numberof differentenvironmentalproperties.Russelland
Norvig suggesthefollowing classificatiorof ervironmentpropertied59, p46]:

= Accessiblessinaccessible
An accessibleervironmentis onein which the agentcan obtain complete,accurate,
up-to-datanformationaboutthe ervironments state.Most moderatelycomplec envi-
ronments(including, for example,the everydayphysicalworld andthe Internet)are
inaccessibleThemoreaccessibl@anernvironmentis, the simplerit is to build agentgo
operatdn it.

= Deterministicvs non-deterministic
As we have alreadymentioneda deterministicervironmentis onein which ary action
hasa singleguarantee@ffect — thereis no uncertaintyaboutthe statethatwill result
from performingan action. The physicalworld canto all intentsand purposese re-
gardedasnon-deterministicNon-deterministiernvironmentspresengreatemproblems
for theagentdesigner

= Episodicvs non-episodic
In an episodicenvironment,the performanceof an agentis dependentn a number
of discreteepisodeswith no link betweenthe performanceof an agentin different
scenariosAn exampleof anepisodicervironmentwould beamail sortingsysterm60].
Episodicervironmentsaresimplerfrom the agentdevelopers perspectie becausghe
agentcandecidewhatactionto performbasedonly on the currentepisode— it need
notreasorabouttheinteractionsbetweerthis andfutureepisodes.

= Staticvs dynamic
A staticervironmentis onethat canbe assumedo remainunchangedxceptby the
performanceof actionsby the agent.A dynamicervironmentis one that has other
processesperatingonit, andwhich hencechangesn waysbeyondtheagentscontrol.
Thephysicalworld is a highly dynamicenvironment.

= Discretevscontinuous
An ervironmentis discretef thereareafixed,finite numberof actionsandperceptsn
it. RussellandNorvig give a chesggameasanexampleof a discreteervironment,and
taxi driving asanexampleof a continuousone.

As RussellandNorvig obsene [59, p46], if anenvironmentis sufficiently comple, then
thefactthatit is actuallydeterministids notmuchhelp:to all intentsandpurposesit may
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aswell be non-deterministicThe mostcomplex generalclassof environmentsarethose
thatareinaccessiblenon-deterministicnon-episodicgynamic,andcontinuous.

1.2.1 Examplesof Agents

At this point, it is worth pausingto considersomeexamplesof agentqthoughnot, asyet,
intelligentagents):

= Any control systemcanbe viewed asan agent.A simple (and overused)exampleof
sucha systemis a thermostatThermostatfiave a sensoifor detectingroomtempera-
ture. This sensoitis directly embeddedvithin the ervironment(i.e., the room), andit
producessoutputoneof two signals:onethatindicateshatthetemperaturés toolow,
anothewhichindicateghatthetemperaturés OK. Theactionsavailableto thethermo-
statare“heatingon” or “heatingoff”. Theaction“heatingon” will generallyhave the
effect of raisingtheroomtemperaturebut this cannotbe a guaranteedeffect— if the
doorto theroomis open.for example,switchingonthe heatermay have no effect. The
(extremelysimple)decisionmakingcomponenbf the thermostatmplementgusually
in electro-mechanicdlardware)thefollowing rules:

toocold — heatingon
temperatur®©K —  heatingoff

More complex ernvironmentcontrol systemspf course have considerablyicherdeci-
sion structuresExamplesinclude autonomouspaceprobes fly-by-wire aircraft, nu-
clearreactorcontrolsystemsandsoon.

= Mostsoftwaredaemons(suchasbackgroungrocessem theUNIx operatingsystem),
which monitora softwareervironmentandperformactionsto modify it, canbeviewed
as agents.An exampleis the X Windows programxbi f f. This utility continually
monitorsausersincomingemail,andindicatesvia a Gul iconwhetheror notthey have
unreadmessagesVhereasour thermostatagentin the previous exampleinhabiteda
physicalervironment— the physicalworld — thexbi f f programinhabitsa softwae
ervironment.It obtainsinformationaboutthis environmentby carrying out software
functions(by executingsystemprogramssuchasl s, for example),andthe actionsit
performsaresoftwareactions(changinganicon onthescreenpr executinga program).
Thedecisionmakingcomponents justassimpleasour thermostaexample.

To summariseagentsaresimply computersystemghatarecapableof autonomousiction
in someervironmentin orderto meettheir designobjectives.An agentwill typically sense
its environment(by physicalsensorsn the caseof agentssituatedn partof therealworld,
or by softwaresensorsn the caseof softwareagents)andwill have availablearepertoire
of actionsthat canbe executedto modify the environment,which may appeato respond
non-deterministicallyo the executionof theseactions.
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1.2.2 Intdligent Agents

We arenot usedto thinking of thermostat®r uNix daemonsasagentsandcertainlynot

asintelligentagents.So, whendo we consideran agentto be intelligent? The question,
like the questionwhatis intelligence?itself, is not an easyoneto answerBut for me,an

intelligentagentis onethatis capableof flexible autonomousctionin orderto meetits

designobjectives,whereby flexible, | meanthreethings[71]:

= reactivity intelligentagentsare ableto perceve their ervironment,andrespondn a
timely fashionto changeghatoccurin it in orderto satisfytheir designobjecties;

= pro-activenessntelligentagentsareableto exhibit goal-directecbehaiour by taking
theinitiative in orderto satisfytheir designobjectves;

= gocialability: intelligentagentsarecapableof interactingwith otheragentgandpossi-
bly humansj)n orderto satisfytheir designobjecties.

Thesepropertiesare moredemandinghanthey might at first appearTo seewhy, let us

considerthemin turn. First, considerpro-activenessgoal directedbehaiour. It is not

hardto build a systemthat exhibits goal directedbehaiour — we do it every time we

write a procedurdn PASCAL, afunctionin c, or amethodin Java. Whenwe write such
a procedurewe describeit in termsof the assumption®n which it relies (formally, its

pre-conditior) andthe effectit hasif the assumptionsrevalid (its post-conditiof). The

effectsof the procedurareits goal: whatthe authorof the softwareintendsthe procedure
to achieve. If the pre-conditionholdswhenthe procedurds invoked,thenwe expectthat

the procedurewill executecorrectly. thatit will terminate andthatuponterminationthe

post-conditiorwill betrue,i.e.,thegoalwill beachieved.Thisis goaldirectedbehaiour:

the proceduras simply a planor recipefor achieving the goal. This programmingnodel

is fine for mary ervironments For example,its works well whenwe considerfunctional
systems— thosethatsimply take someinput x, andproduceasoutputsomesomefunction

f(x) of thisinput. Compilersarea classicexampleof functionalsystems.

But for non-functionalkystemsthis simplemodelof goal directedprogrammings not
acceptableasit makessomeimportantlimiting assumptiondn particular it assumeshat
the ervironmentdoesnot change while the procedureis executing.If the ernvironment
doeschangeandin particular if theassumptiongpre-conditionunderlyingthe procedure
becomefalsewhile the procedurds executing,thenthe behaiour of the proceduramay
not be defined— often, it will simply crash.Also, it is assumedhatthe goal,thatis, the
reasorfor executingthe procedureremainsvalid at leastuntil the procedureierminates.
If thegoaldoesnot remainvalid, thenthereis simply no reasorto continueexecutingthe
procedure.

In mary environmentsneitherof theseassumptionarevalid. In particularin domains
thataretoo comple for an agentto obsene completely that are multi-agent (i.e., they
are populatedwith more than one agentthat can changethe ervironment), or where
thereis uncertaintyin the ervironment,theseassumptionsare not reasonableln such
ervironments blindly executinga procedurewithout regardto whetherthe assumptions
underpinningthe procedureare valid is a poor stratgy. In suchdynamicernvironments,
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an agentmustbe reactive in just the way that we describedabove. Thatis, it mustbe
responsie to eventsthat occurin its ervironment,wheretheseeventsaffect eitherthe
agents goalsor theassumptionsvhich underpinthe procedureshattheagentis executing
in orderto achieseits goals.

As we have seen,building purely goal directedsystemss not hard. As we shall see
laterin this chaptey building purely reactivesystems— onesthat continuallyrespondo
their ervironment— is alsonot difficult. However, whatturnsout to be hardis building
a systenthatachievesan effective balancebetweergoal-directecandreactize behaiour.
We wantagentghatwill attemptto achieve their goalssystematicallyperhapsy making
useof comple procedure-lile patternsof action.But we don’t wantour agentgo continue
blindly executingtheseproceduresn an attemptto achiere a goal eitherwhenit is clear
thatthe procedurewill notwork, or whenthe goalis for somereasomo longervalid. In
suchcircumstancesye want our agentto be ableto reactto the new situation,in time
for the reactionto be of someuse.However, we do not wantour agentto be continually
reacting,andhenceneverfocussingon agoallong enoughto actuallyachieseit.

On reflection,it shouldcomeaslittle surprisethat achiezing a good balancebetween
goal directedand reactve behaiour is hard. After all, it is comparatiely rare to find
humanswho do this very well. How mary of us have hada managemho stayedblindly
focussedon someprojectlong after the relevanceof the projectwas passedopr it was
clearthatthe projectplanwasdoomedto failure?Similarly, how mary have encountered
managersvho seemunableto stayfocussedat all, who flit from one projectto another
withoutevermanagingo pursueagoallongenougho achieze anythindg? This problem—
of effectively integratinggoal-directe@ndreactvebehaiour— is oneof thekey problems
facingtheagentdesignerAs we shallsee agreatmary proposaliave beenmadefor how
to build agentghatcando this— but the problemis essentiallystill open.

Finally, let us say somethingaboutsocial ability, the final componenbf flexible au-
tonomousactionasdefinedhere.ln onesensesocialability is trivial: every day, millions
of computersacrosgheworld routinelyexchangeanformationwith bothhumansandother
computersBut theability to exchangebit streamss notreally socialability. Considethat
in the humanworld, comparatiely few of our meaningfulgoalscanbe achieved without
the coopeation of otherpeople,who cannotbe assumedo shae our goals— in other
words,they arethemselesautonomousyith their own agendao pursue.To achiese our
goalsin suchsituationswe mustnegotiateandcoopeatewith others We mayberequired
to understandndreasoraboutthe goalsof others andto performactions(suchaspaying
themmoney) thatwe would not otherwisechooseo perform,in orderto getthemto coop-
eratewith us,andachieve our goals.Thistypeof socialability is muchmorecomple, and
muchlesswell understoodthansimply the ability to exchangebinaryinformation.Social
ability in general(andtopicssuchas negotiationand cooperatiorin particular)are dealt
with elsavherein this book,andwill notthereforebe consideredere.In this chapterwe
will beconcerneavith thedecisionmakingof individualintelligentagentsn ervironments
which maybedynamic,unpredictableanduncertainput do not containotheragents.
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1.2.3 Agentsand Objects

Object-orientegprogrammersftenfail to seeanything novel or new in theideaof agents.
Whenonestopsto considettherelative propertieof agentsandobjectsthisis perhapsot
surprising.Objectsare definedas computationakntitiesthat encapsulatesomestate are
ableto performactions,or methodn this state,andcommunicatdy messag@assing.

While there are obvious similarities, there are also significant differencesbetween
agentsandobjects.Thefirstis in the degreeto which agentsandobjectsareautonomous.
Recallthatthe defining characteristiof object-orientegorogrammings the principle of
encapsulation— the ideathat objectscan have control over their own internal state.In
programmindanguagesik e JavA, we candeclareinstancevariables(andmethods)o be
privat e, meaningthey areonly accessiblérom within the object.(We canof coursealso
declarethempubl i ¢, meaningthatthey canbe accesseffom arywhere,andindeedwe
mustdo this for methodssothatthey canbe usedby otherobjects.But the useof publ i ¢
instancevariablesis usually considerecoor programmingstyle.) In this way, an object
canbethoughtof asexhibiting autonomyoverits state:it hascontroloverit. But anobject
doesnot exhibit control over it’s behaviour Thatis, if a methodmis madeavailablefor
otherobjectsto invoke,thenthey cando sowhene&erthey wish— onceanobjecthasmade
amethodpubl i c, thenit subsequentifyrasno control over whetheror not that methodis
executed.Of course,an objectmustmalke methodsavailableto otherobjects,or elsewe
would be unableto build a systemout of them.This is not normally anissue,becauséf
we build a systemthenwe designthe objectsthatgoin it, andthey canthusbe assumed
to sharea “commongoal”. But in mary typesof multi-agentsystem (in particular those
that containagentsbuilt by differentorganisation®r individuals),no suchcommongoal
canbe assumedit cannotbe for grantedthatan agenti will executean action(method)
a just becausenotheragentj wantsit to — a may not be in the bestinterestsof i. We
thusdonotthink of agentsasinvokingmethodsuponone-anothetbut ratherasrequesting
actiongto beperformedIf j requeststo performa, theni mayperformtheactionorit may
not. The locusof controlwith respecto the decisionaboutwhetherto executean action
is thusdifferentin agentandobjectsystemsin the object-orientectase the decisionlies
with the objectthatinvokesthe method.In the agentcase the decisionlies with theagent
thatrecevestherequestl have heardthis distinctionbetweenobjectsandagentsnicely
summarisedh thefollowing slogan:Objectsdoit for free;agentsdo it for mongy.

Note that thereis nothingto stop usimplementingagentsusing object-orientedech-
nigues.For example we canbuild somekind of decisionrmakingaboutwhetherto execute
a methodinto the methoditself, andin this way achiere a strongerkind of autonomyfor
ourobjects.Thepointis thatautonomyof thiskind is nota componenbf thebasicobject-
orientedmodel.

The secondimportantdistinction betweenobjectand agentsystemss with respecto
the notion of flexible (reactve, pro-actie, social) autonomousehaiour. The standard
objectmodelhasnothingwhatsogerto sayabouthow to build systemghatintegratethese
typesof behaiour. Again, one could objectthat we canbuild object-orientecprograms
that do integratethesetypesof behaiour. But this amgumentmissesthe point, which is
thatthestandardbject-orientegorogrammingnodelhasnothingto do with thesetypesof
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behaiour.

Thethird importantdistinctionbetweerthe standarabjectmodelandourview of agent
systemsds that agentsare eachconsideredo have their own threadof control — in the
standardbbjectmodel,thereis a singlethreadof controlin the system.Of course,a lot
of work hasrecentlybeendevotedto concurencyin object-orientedprogramming.For
example the JavA languageprovidesbuilt-in constructdor multi-threadedgprogramming.
Therearealsomary programminglanguageswvailable (mostof them admittedly proto-
types)thatwerespecificallydesignedo allow concurrenbbject-basegrogrammingBut
suchlanguageslo not capturetheideawe have of agentsasautonomougntities.Perhaps
theclosesthatthe object-orientedommunitycomess in theideaof activeobjects

An active objectis one that encompasseiss own thread of control [. ..]. Active objects
are geneally autonomousmeaningthat they can exhibit somebehaviourwithout being
operateduponby anotherobject. Passiveobjects,on the otherhand,canonly undego a
statechange whenexplicitly actedupon.[5, p91]

Thusactive objectsareessentiallyagentghatdo not necessariljave the ability to exhibit
flexible autonomousehaiour.

To summarisethe traditionalview of anobjectandour view of an agenthave at least
threedistinctions:

= agentembodystrongemotionof autonomythanobjects andin particular they decide
for themseleswhetheror notto performanactionon requesfrom anotheragent;

= agentsarecapableof flexible (reactie, pro-active, social)behaiour, andthe standard
objectmodelhasnothingto sayaboutsuchtypesof behaiour;

= amulti-agentsystemis inherentlymulti-threadedin thateachagentis assumedo have
atleastonethreadof control.

1.2.4 Agentsand Expert Systems

Expert systemswere the mostimportant Al technologyof the 1980s[31]. An expert
systemis onethatis capableof solving problemsor giving advicein someknowledge-
rich domain[32]. A classicexampleof an expertsystemis MYy CIN, which wasintended
to assistphysiciansin the treatmentof blood infectionsin humans.myciN worked by
a processof interactingwith a userin orderto presentthe systemwith a numberof
(symbolicallyrepresentedacts,which the systemthenusedto derive someconclusion.
MY CIN actedvery muchasa consultantit did not operatedirectly on humanspr indeed
ary otherervironment. Thus perhapshe mostimportantdistinction betweenagentsand
expertsystemsds thatexpertsystemdike My cCIN areinherentlydisembodiedBy this, we
meanthatthey do notinteractdirectlywith any ernvironment:ithey gettheirinformationnot
via sensorsbut througha useractingasmiddle man.In the sameway, they do notact on
ary ervironment,but rathergive feedbackor adviceto athird party. In addition,we do not
generallyrequireexpertsystemdo be capableof co-operatingvith otheragentsDespite
thesedifferencessomeexpert systems(particularlythosethat performreal-timecontrol
tasks) ook very muchlike agentsA goodexampleis the ARCHON system[33].
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Sources and Further Reading

A view of artificial intelligence as the processof agentdesignis presentedn [59],
and in particular Chapter2 of [59] presentsmuch useful material. The definition of
agentgresentedhereis basedon [71], which alsocontainsan extensve review of agent
architecturesandprogramminganguagesin addition,[71] containsa detailedsurey of
agent theories— formalismsfor reasoningaboutintelligent, rational agents,which is
outsidethe scopeof this chapter This questionof “what is anagent”is onethatcontinues
to generatesomedebate;a collectionof answeranay be foundin [48]. Therelationship
betweenagentsand objectshasnot beenwidely discussedn the literature,but see[24].
Otherreadablentroductiongo theideaof intelligentagentsnclude[34] and[13].

1.3 Abstract Architecturesfor Intelligent Agents

We caneasilyformalisetheabstractiiew of agentgpresentedofar. First,we will assume
that the stateof the agents ervironmentcan be characterisedsa setS= {s1,%,...}
of ernvironmentstates At ary giveninstant,the ervironmentis assumedo be in one of
thesestates.The effectoric capability of an agentis assumedo be representedtby a set
A= {ay,ap,...} of actions Thenabstractlyanagentcanbe viewedasa function

acion: S = A

whichmapssequencesf ervironmentstatego actions We will referto anagentmodelled
by a functionof this form asa standad agent Theintuition is thatanagentdecidesvhat
actionto performon the basisof its history— its experienceso date.Theseexperiences
arerepresenteésa sequenc®f ervironmentstates— thosethat the agenthasthusfar
encountered.

The (non-deterministichbehaiour of ananernvironmentcanbe modelledasa function

env:SxA—= (9

which takesthe currentstateof the ervironments € Sandanactiona € A (performedby
theagent) andmapsthemto asetof environmentstatesenv(s,a) — thosethatcouldresult
from performingactiona in states. If all thesetsin therangeof erv areall singletons(i.e.,
if theresultof performingary actionin ary stateis asetcontainingasinglemember)then
theernvironmentis deterministicandits behaiour canbe accuratelypredicted.

We canrepresentheinteractionof agentandervironmentasa history. A historyhis a
sequence:

wheres is theinitial stateof the ervironment(i.e., its statewhenthe agentstartsexe-
cuting), a, is the u'th actionthatthe agentchoseto perform,ands, is the u'th erviron-
mentstate(which is oneof the possibleresultsof executingactiona,_; in states,_1). If
adion: S* — Aisanagentenv: Sx A— [0(S) is anervironment,ands is theinitial state
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of theervironment thenthe sequence

will representa possiblehistory of the agentin the ervironmentiff the following two
conditionshold:

Yu € IN,a, = adion((So,St, - - - ,Su))
and
Yu € IN suchthatu > 0,s, € env(s,—1,ay—1)-

Thecharacteristicbehaviourof anagentadion: S* — Ain anervironmenternv: Sx A—
00(9) is the setof all the historiesthat satisfythesepropertieslf someproperty® holds
of all thesehistories,this this property can be regardedas an invariant property of the
agentin the ervironment.For example,if our agentis a nuclearreactorcontrolle, (i.e.,
theervironmentis a nucleamreactor) andin all possiblehistoriesof the controller/reactar
thereactordoesnot blow up, thenthis canbe regardedasa (desirablejnvariantproperty
We will denoteby hist(agert, ervironmen) thesetof all historiesof agert in ervironmen.
Two agentsag; andag; aresaidto bebehavioually equivalentith respecto ervironment
erv iff hist(ags,env) = hist(agy, env), and simply behaiourally equvalentiff they are
behaiourally equivalentwith respecto all ervironments.

In generalwe areinterestedn agentswhoseinteractionwith their environmentdoes
notend i.e.,they arenon-terminatingIn suchcasesthehistoriesthatwe considewill be
infinite.

1.3.1 Purey Reactive Agents

Certaintypesof agentsdecidewhat to do without referenceto their history. They base
their decisionmakingentirely on the presentwith no referenceat all to the past.We will
call suchagentspurely reactive sincethey simply responddirectly to their ervironment.
Formally, the behaiour of a purelyreactve agentcanberepresentely afunction

adion:S— A

It shouldbe easyto seethatfor every purelyreactive agentthereis anequivalentstandard
agentthereverse however, is notgenerallythecase.

Ourthermostatgentis anexampleof a purelyreactive agent Assume withoutlossof
generalitythatthethermostas ervironmentcanbein oneof two states— eithertoo cold,
or temperatur®K. Thenthethermostas actionfunctionis simply

heateroff if s=temperatur®©K
heateron otherwise.

adion(s) = {
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Figure1l.2 Perceptiorandactionsubsystems.

1.3.2 Perception

Viewing agentsat this abstractevel makesfor a pleasantlysimply analysis.However, it
doesnot help us to constructthem, sinceit givesus no cluesabouthow to designthe
decisionfunctionadion. For thisreasonwe will now begin to refineour abstracmodelof
agentspy breakingit down into sub-system exactly the way thatonedoesin standard
softwareengineeringAs we refineour view of agentswe find oursehesmakingdesign
choicesthatmostlyrelateto the subsystemghatgo to make up anagent— whatdataand
controlstructuresvill bepresentAn agentarchitectueis essentiallyamapof theinternals
of an agent— its datastructuresthe operationsgthat may be performedon thesedata
structuresandthecontrolflow betweerthesedatastructuresLaterin this chapteywe will
discussa numberof differenttypesof agentarchitecturewith very differentviews on the
datastructuresandalgorithmsthatwill be presentvithin anagentin theremaindenof this
sectionhowever, we will suney somefairly high-level designdecisionsThefirst of these
is theseparatiorf anagents decisionfunctioninto perceptionandactionsubsystemsee
Figure 1.2.

Theideais thatthe function seecaptureghe agents ability to obsere its environment,
whereasthe action function representghe agents decision making process.The see
functionmightbeimplementedn hardwarein the caseof anagentsituatedn the physical
world: for example,it might be a video cameraor an infra-redsensomn a mobile robot.
For asoftwareagentthesensorsnightbesystemcommandshatobtaininformationabout
the softwareervironment,suchasl s, fi nger, or suchlike. The outputof the seefunction
is a percept— a perceptualnput. Let P be a (hon-empty)setof perceptsThenseeis a
function

see S—» P
which mapservironmentstatego perceptsandacion is now afunction

acion: P* = A
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whichmapssequencesf perceptgo actions.

Thesesimpledefinitionsallow usto explore someinterestingpropertiesof agentsand
perception.Supposehat we have two ervironmentstates,s; € Sands, € S, suchthat
S| # %, but seds;) = seds). Thentwo different environmentstatesare mappedto the
samepercept,and hencethe agentwould receive the sameperceptuainformationfrom
differentenvironmentstates.As far asthe agentis concernedtherefore,s; ands, are
indistinguishableTo make this exampleconcrete)et usreturnto the thermostatxample.
Let x representhe statement

“the roomtemperaturés OK”
andlet y representhe statement
“JohnMajor is PrimeMinister”.

If thesearethe only two factsaboutour ervironmentthatwe areconcernedvith, then
thesetS of ervironmentstatescontainsexactly four elements:

S={{% v} {-xy},{xy},{xy}}
——— N N — N~
st S 3 S

Thusin states;, theroomtemperaturés not OK, andJohnMajor is not PrimeMinister;
in states,, theroomtemperaturés not OK, andJohnMajor is PrimeMinister. Now, our
thermostatis sensitve only to temperaturesn the room. This room temperaturas not
causallyrelatedto whetheror not JohnMajor is Prime Minister. Thusthe stateswhere
JohnMajor is andis not Prime Minister areliterally indistinguishableo the thermostat.
Formally, the seefunctionfor thethermostatvould have two perceptsn its range,p; and
p2, indicatingthatthetemperaturés too cold or OK respectiely. The seefunctionfor the
thermostatvould behae asfollows:

seds) = ppr ifs=siors=%
B p2 if s=s3ors=.

Giventwo ervironmentstatess € Sands' € S letuswrite s= s if seds) = seds). Itis
not hardto seethat= is anequivalenceelationover ervironmentstateswhich partitions
Sinto mutually indistinguishablesetsof statesIntuitively, the coarsertheseequivalence
classesare, the lesseffective is the agents perceptionlf | = | = |9, (i.e., the numberof
distinct perceptds equalto the numberof differentenvironmentstates) thenthe agent
candistinguishevery state— the agenthasperfectperceptionin the ervironment;it is
omniscientAt the otherextreme,if | = | = 1, thenthe agents perceptuahbility is non-
existent— it cannotdistinguishbetweenany differentstates.n this case,asfar asthe
agentis concernedall ervironmentstatesareidentical.

1.3.3 Agentswith state
We have sofar beenmodellingan agents decisionfunctionaction asfrom sequencesf

ernvironmentstatesor perceptso actions Thisallows usto represenagentsvhosedecision
makingis influencedby history However, this is a somevhat unintuitive representation,



16

IntelligentAgents

AGENT

action

ENVIRONMEN

Figure1.3 Agentsthatmaintainstate.

andwe shallnow replacet by anequialent,but somavhatmorenaturalschemeTheidea
is thatwe now consideragentghatmaintainstate— seeFigurel.3.

Theseagentshave someinternal datastructure which is typically usedto recordin-
formationaboutthe ervironmentstateand history Let | be the setof all internal states
of the agent.An agents decisionmaking processs thenbasedat leastin part, on this
information. The perceptionfunction seefor a state-basedgentis unchangedmapping
ervironmentstatego perceptsasbefore:

see S— P
Theaction-selectioffiunctionaction is now defineda mapping
adion: 1 - A

from internalstatesto actions.An additionalfunction ned is introduced which mapsan
internalstateandpercepto aninternalstate:

net: I xP—l

The behaiour of a state-basedgentcanbe summariseasfollows. The agentstartsin
someinitial internalstateio. It thenobseresits ervironmentstates, andgenerateapercept
se€s). Theinternalstateof the agentis thenupdatedvia the next function,becomingset
to next(ip,seds)). The actionselectedby the agentis thenaction(next(ip, se€s))). This
actionis thenperformedandthe agententersanothercycle, perceving theworld via see
updatingits statevia next, andchoosinganactionto performvia action.

It is worth observinghatstate-basedgentsasdefinedherearein factno morepowerful
thanthe standardagentswe introducedearlier In fact, they areidenticalin their expres-
sive power — every state-baseeégentcan be transformednto a standardagentthat is
behaiourally equialent.



1.4 ConceteArchitectuesfor IntelligentAgents 17

Sources and Further Reading

Theabstracmodelof agentpresentedhereis basednthatgivenin [25, Chapterl 3], and
alsomakesuseof someideasfrom [61, 60]. The propertiesof perceptiorasdiscussedn
this sectionleadto knowledg theory, a formal analysisof theinformationimplicit within
the stateof computerprocessesyhich hashada profoundeffectin theoreticalcomputer
scienceThedefinitive referenceas [14], andanintroductorysuney is [29].

1.4 Concrete Architecturesfor Intelligent Agents

Thusfar, we have consideredagentsonly in the abstractSowhile we have examinedthe

propertiesof agentsthatdo and do not maintainstate,we have not stoppedto consider
whatthis statemightlook like. Similarly, we have modelledanagents decisionmakingas
anabstracfunctionacion, which someha manageso indicatewhich actionto perform
— but we have not discussedhow this functionmightbeimplementedin this sectionwe

will rectify thisomissionWe will considerfour classe®f agents:

= |ogic basedagents— in which decisionmakingis realisedthroughlogical deduction;

= reactiveagents— in which decisionmakingis implementedn someform of direct
mappingfrom situationto action;

= belief-desie-intentionagents— in which decisionmaking dependsiponthe manip-
ulation of datastructuregepresentinghe beliefs,desiresandintentionsof the agent;
andfinally,

= |ayered architectues — in which decisionmakingis realisedvia various software
layers,eachof which is more-orlessexplicitly reasoningaboutthe ervironmentat
differentlevelsof abstraction.

In eachof thesecaseswe aremoving awvay from theabstracview of agentsandbeginning
to make quitespecificcommitmentsabouttheinternalstructureandoperatiorof agentsin
eachsection,| will try to explain the natureof thesecommitmentsthe assumptionsipon
whichthearchitecturesiependandtherelative advantagesnddisadwantage®f each.

1.4.1 Logic-based Architectures

The*“traditional” approactto building artificially intelligentsystems(known assymbolic
Al) suggestshatintelligentbehaiour canbegeneratedh asystemby giving thatsystema
symbolicrepresentatioof its ervironmentandits desiredoehaiour, andsyntacticallyma-
nipulatingthisrepresentationin thissectionwefocusontheapotheosisf thistradition,in
whichthesesymbolicrepresentationarelogical formulae andthe syntacticmanipulation
correspond#o logical deduction or theolemproving.

The idea of agentsas theoremproversis seductve. Supposewe have sometheory
of ageny — sometheory that explains how an intelligent agentshould behae. This
theorymightexplain, for example how anagentgenerategoalssoasto satisfyits design
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objective, how it interlearesgoal-directecandreactive behaiour in orderto achieve these
goals,andsoon. Thenthis theory@ canbe consideredsa specificatiorfor how anagent
shouldbehae. The traditional approachto implementinga systemthat will satisfythis
specificationwould involve refining the specificationthrough a seriesof progressiely
more concretestagesuntil finally animplementatiorwasreachedIn the view of agents
astheoremprovers,however, no suchrefinementakesplace.Ilnsteadp is viewed asan
executablespecificationit is directlyexecutedn orderto producetheagents behaviour.

To seehow suchan ideamight work, we shall develop a simple model of logic-based
agentswhichwe shall call deliberate agentsin suchagentstheinternalstateis assumed
to beadatabasef formulaeof classicafirst-ordempredicatdogic. For example theagents
databasenight containformulaesuchas:

Open(valve221)
Temperature(reador4726321)
Pressue(tank776, 28)

It is not difficult to seehow formulaesuchasthesecanbe usedto representhe properties
of someernvironment.Thedatabasés theinformationthatthe agenthasaboutits erviron-
ment.An agents databaslaysa somavhatanalogousole to that of belief in humans.
Thusa persormighthave abeliefthatvalve 221is open— theagentmight have the pred-
icate Open(valve?221) in its databaseOf coursejust like humansagentscanbe wrong.
Thusl might believe thatvalve 221is openwhenit is in factclosed;thefactthatanagent
hasOpenvalve22]) in its databaseloesnot meanthatvalve 221 (or indeedary valve)is
open.Theagents sensorsnay be faulty, its reasoningnay be faulty, theinformationmay
beoutof date,or theinterpretatiorof theformulaOpen(valve221) intendecby theagents
designemaybe somethingentirely different.

Let L bethe setof sentencesf classicalfirst-orderlogic, andlet D = (L) bethe set
of L databasesi.e., the setof setsof L-formulae.Theinternalstateof anagentis thenan
elementof D. We write A,A1,... for memberf D. Theinternalstateof anagentis then
simply amemberof the setD. An agents decisionmakingprocesss modelledthrougha
setof deductiorrules, p. Thesearesimply rulesof inferencefor thelogic. We write A+, @
if the formula ¢ canbe provedfrom the databasé usingonly the deductionrulesp. An
agentperceptiorfunctionseeremainsunchanged:

see S— P
Similarly, our next functionhastheform
net:DxP—D

It thus mapsa databaseand a perceptto a nev databaseHowever, an agents action
selectiorfunction,which hasthe signature

adion: D — A

is definedin termsof its deductiorrules. The pseudo-codéefinitionof this functionis as
follows.
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1.  function adion(A: D) : A

2. begin

3. for each a € Ado

4. if A Fp Do(a) then
5. return a

6. end-if

7. end-for

8. for each a € Ado

9. if A /o ~Do(a) then
10. return a

11. end-if

12. end-for

13. return null

14. end function action

Theideais thatthe agentprogrammemvill encodethe deductionrulesp anddatabase
A in suchaway thatif aformulaDo(a) canbe derived, wherea is a term that denotes
anaction,thena is the bestactionto perform.Thus,in thefirst partof the function (lines
(3)—(7)),the agenttakes eachof its possibleactionsa in turn, andattemptsto prove the
form theformulaDo(a) from its databasé¢passedsa parameteto thefunction)usingits
deductiorrulesp. If theagentsucceedn proving Do(a), thena is returnedasthe action
to beperformed.

What happensf the agentfails to prove Do(a), for all actionsa € A? In this case,it
attemptdo find anactionthatis consistentvith therulesanddatabase,e., onethatis not
explicitly forbidden.In lines(8)—(12),thereforetheagentattemptgo find anactiona € A
suchthat —Do(a) cannotbe derived from its databaseisingits deductionrules.If it can
find suchan action, thenthis is returnedasthe actionto be performed.lf, however, the
agentfails to find an actionthatis at leastconsistentthenit returnsa specialactionnull
(or noop), indicatingthatno actionhasbeenselected.

In this way, the agents behaiour is determinedby the agents deductionrules (its
“program”) andits currentdatabasérepresentinghe informationthe agenthasaboutits
ervironment).

Toillustratetheseideas let us considera smallexample(basedn the vacuumcleaning
world exampleof [59, p51]). Theideais thatwe have a smallroboticagentthatwill clean
up ahouse Therobotis equippedwith a sensotthatwill tell it whetherit is overary dirt,
andavacuumcleanerthatcanbe usedto suckup dirt. In addition,the robotalwayshasa
definite orientation(one of north, south, eag, or weg). In additionto beingableto suck
up dirt, theagentcanmove forwardone“step” or turnright 90°. Theagentmovesaround
aroom, which is divided grid-like into a numberof equally sizedsquaregcornveniently
correspondingo the unit of movementof the agent) We will assumehatour agentdoes
nothingbut clean— it neverleavesthe room,andfurther, we will assumen theinterests
of simplicity thattheroomis a 3 x 3 grid, andtheagentalwaysstartsin grid square(0,0)
facingnorth.
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Figurel1.4 Vacuumworld

To summarisepur agentcanreceve aperceptdirt (signifyingthatthereis dirt beneath
it), or null (indicatingno specialinformation).It canperformary one of threepossible
actions:forward, sud, or turn. Thegoalis to traversethe roomcontinuallysearchingor
andremoving dirt. SeeFigurel.4for anillustrationof the vacuumworld.

First, notethatwe make useof threesimpledomainpredicatesn this exercise:

In(x,y) agentis at (X, y)
Dirt(x,y)  thereisdirt at(x,y)
Facing(d) theagentis facingdirectiond

Now we specifyour next function. This functionmustlook at the perceptualnformation
obtainedfrom the ervironment(eitherdirt or null), and generatea new databasevhich
includesthis information. But in addition,it mustremorve old or irrelevant information,
andalso,it musttry to figure out the new locationand orientationof the agent.We will

thereforespecifythenedt functionin several parts.First, let uswrite old(A) to denotethe
setof “old” informationin a databaseyhichwe wantthe updatefunctionnext to remove:

old(A) = {P(t1,...,ta) | P € {In,Dirt,Facing} andP(ty,...,t,) € A}

Next, we requirea function new, which givesthe setof new predicateso addto the
databaseThis functionhasthesignature

new.DxP—D

Thedefinitionof this functionis not difficult, but it is ratherlengthy andsowe will leave
it asan exercise.(It mustgeneratehe predicated n(...), describingthe new positionof
theagentFacing(...) describingheorientationof theagentandDirt (...) if dirt hasbeen
detectedhtthenew position.)Giventhenew andold functions thenext functionis defined
asfollows:

next(A, p) = (A\ old(A)) Unew(A, p)

Now we canmove on to the rulesthatgovernour agents behaiour. The deductionrules
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havetheform

o) — w(...)

where@ andy arepredicatesver somearbitrarylist of constantandvariablesTheidea
beingthatif ¢ matchesagainstthe agents databasetheny canbe concludedwith ary
variablesn y instantiated.

Thefirst rule dealswith thebasiccleaningactionof theagentthisrule will take priority
overall otherpossiblebehaioursof theagent(suchasnavigation).

In(x,y) A Dirt (x,y) — Do(sud) (1.2)

Henceif the agentis at location (x,y) andit percevesdirt, then the prescribedaction
will be to suck up dirt. Otherwise,the basicaction of the agentwill be to traversethe
world. Taking advantageof the simplicity of our ervironment,we will hardwirethe basic
navigationalgorithm,sothattherobotwill alwaysmave from (0,0) to (0,1) to (0,2) and
thento (1,2), (1,1) andsoon. Oncethe agentreacheg?2,2), it mustheadbackto (0, 0).
Therulesdealingwith thetraversalupto (0,2) arevery simple.

In(0,0) A Facing(north) A =Dirt (0,0) — Do( forward) (1.2)
In(0,1) A Facing(north) A =Dirt (0,1) — Do( forward) (1.3)
In(0,2) A Facing(north) A —Dirt (0,2) — Do(turn) (1.4)

In(0,2) A Facing(eas) — Do( forward) (1.5)

Noticethatin eachrule,we mustexplicitly checkwhethertheantecedemf rule (1.1)fires.
Thisis to ensurethatwe only ever prescribeoneactionvia the Do(...) predicate Similar
rulescaneasilybe generatedhat will getthe agentto (2,2), andonceat (2,2) backto
(0,0). It is notdifficult to seethattheserules,togethemwith thened function,will generate
therequiredbehaiour of ouragent.

At this point, it is worth steppingoackandexaminingthe pragmaticof thelogic-based
approacho building agents Probablythe mostimportantpoint to make is that a literal,
naive attemptto build agentsin this way would be more or lessentirely impractical. To
seewhy, supposave have designedut agents rule setp suchthatfor any databasd\, if
we canprove Do(a) thena is anoptimal action— thatis, a is the bestactionthat could
be performedwhenthe ervironmentis asdescribedn A. Thenimaginewe startrunning
our agent.At time t1, the agenthasgeneratedomedatabasé\;, andbeginsto applyits
rulesp in orderto find which actionto perform.Sometime later, at time tp, it manages
to establishA; -, Do(a) for somea € A, andso a is the optimal actionthat the agent
couldperformattimet;. Butif theervironmenthaschangedbetweert; andty, thenthere
is no guaranteghat a will still be optimal. It could be far from optimal, particularly if
muchtime haselapsedetweert; andt,. If t, —t; is infinitesimal— thatis, if decision
makingis effectively instantaneous— thenwe could safely disregardthis problem.But
in fact, we know that reasoningof the kind our logic-basedagentsusewill be anything
but instantaneoudIf our agentusesclassicalfirst-orderpredicatelogic to representhe
ernvironment,and its rules are soundand complete,thenthereis no guaranteahat the
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decisionmakingprocedurewill eventerminate) An agentis saidto enjoy the propertyof
calculativerationality if andonly if its decisionmakingapparatusvill suggestn action
thatwasoptimalwhenthedecisionmakingprocessegan Calculatie rationalityis clearly
notacceptablén ervironmentgshatchangeasterthantheagentcanmake decisions— we
shallreturnto this point later.

One might argue that this problemis an artifact of the pure logic-basedapproach
adoptechere.Thereis an elementof truth in this. By moving away from strictly logical
representatiotanguagesnd completesetsof deductionrules,onecanbuild agentsthat
enjoy respectabl@erformanceBut onealsoloseswhatis arguablythe greatesadvantage
thatthelogical approactbrings:a simple,elegantlogical semantics.

Therearesereral otherproblemsassociatedvith the logical approacho ageng. First,
theseefunctionof anagent(its perceptiorcomponent)iapsits ervironmentto apercept.
In the caseof alogic-basedagent.this percepts likely to be symbolic— typically, a set
of formulaein the agents representatiotanguageBut for mary ervironmentsiit is not
obvious how the mappingfrom ernvironmentto symbolic perceptmight be realised.For
example,the problemof transforminganimageto a setof declaratve statementsepre-
sentingthatimagehasbeenthe objectof studyin Al for decadesandis still essentially
open.Anotherproblemis thatactuallyrepresentingoropertieof dynamic,real-world en-
vironmentss extremelyhard.As an example,representingandreasoningabouttempoal
information— how a situationchangesver time — turnsout to be extraordinarily dif-
ficult. Finally, asthe simple vacuumworld exampleillustrates,representingven rather
simpleprocedurl knowledge(i.e., knawledgeabout‘what to do”) in traditionallogic can
beratherunintuitive andcumbersome.

To summarisein logic-basedapproachewd building agentsdecisionmakingis viewed
asdeduction An agents “program” — thatis, its decisionmakingstratgly — is encoded
asa logical theory andthe processof selectingan actionreducego a problemof proof.
Logic-basedapproacheareelegant,andhave a clean(logical) semantics— whereinlies
muchof theirlong-livedappeal But logic-basedapproachebave mary disadwantagesln
particular the inherentcomputationatompleity of theoremproving makesit question-
ablewhetheragentsastheoremproverscanoperateeffectively in time-constraine@nvi-
ronmentsDecisionmakingin suchagentss predicatedn the assumptiorof calculatve
rationality — the assumptionthatthe world will not changein ary significantway while
theagents decidingwhatto do,andthatanactionwhichis rationalwhendecisionmaking
beginswill berationalwhenit concludesThe problemsassociatedvith representingnd
reasoningaboutcomple, dynamic,possibly physicalervironmentsare also essentially
unsolhed.

Sources and Further Reading

My presentatiorof logic basedagentsis basedlargely on the discussionof deliberate
agentspresentedn [25, Chapterl13], which representshe logic-centricview of Al and
agentsvery well. The discussionis also partly basedon [38]. A numberof more-or
less“pure” logical approacheso agentprogramminghave beendeveloped.Well-known
examplesinclude the cONGOLOG systemof Lesperanceand colleagueg39] (which is
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basedon the situation calculus [45]) and the METATEM and ConcurrentMETATEM
programminganguageslevelopedby Fisherandcolleagueg3, 21] (in which agentsare
programmedy giving themtempoal logic specificationsof the behaiour they should
exhibit). ConcurrenM ETATEM is discusse@dsa casestudyin sectionl.5. Notethatthese
architecturegandthe discussiorabove) assumehatif oneadoptsa logical approachto
agent-lilding, thenthis meansagentsareessentiallytheoremprovers,employing explicit
symbolic reasoning(theoremproving) in orderto make decisionsBut just becausave
find logic a usefultool for conceptualisingr specifyingagentsthis doesnot meanthat
we mustview decision-makingaslogical manipulation.An alternatve is to compilethe
logical specificationof anagentinto a form moreamenablédo efficient decisionmaking.
Thedifferencas ratheiik ethedistinctionbetweerinterpretecandcompiledprogramming
languagesThe best-knavn exampleof this work is the situatedautomataparadigmof
LeslieKaelblingandStanley Rosenscheifb8]. A review of therole of logic in intelligent
agentsnaybefoundin [70]. Finally, for adetaileddiscussiorof calculatve rationalityand
theway thatit hasaffectedthinkingin Al, see[60].

1.4.2 Reactive Architectures

The seeminglyintractableproblemswith symbolic/logicalapproacheso building agents
led someresearcher® questionandultimately reject,the assumptionsiponwhich such
approachearebasedTheseresearcherbave aguedthatminor changegso the symbolic
approachsuchaswealeningthelogical representatiotanguagewill notbe sufficientto
build agentghatcanoperaten time-constraine@nvironmentsnothinglessthana whole
new approactis required.In the mid-to-late1980s theseresearcherbeganto investigate
alternatvesto thesymbolicAl paradigmlt is difficult to neatlycharacteriséhesedifferent
approachessincetheir advocatesareunitedmainly by a rejectionof symbolicAl, rather
thanby a commonmanifesto However, certainthemesdo recur:

= therejectionof symbolicrepresentationgnd of decisionmakingbasedon syntactic
manipulationof suchrepresentations;

= theideathatintelligent,rationalbehaiour is seerasinnatelylinkedto theervironment
anagentoccupies— intelligentbehaiour is not disembodiedbut is a productof the
interactionthe agentmaintainswith its ervironment;

= the ideathat intelligent behaiour emeges from the interactionof various simpler
behaiours.

Alternative approacheso ageng are sometimereferredto asbehavioual (sincea com-
monthemeis that of developingandcombiningindividual behaiours), situated(sincea
commonthemeis that of agentsactuallysituatedin someervironment,ratherthanbeing
disembodiedrom it), andfinally — the term | will use— reactive(becausesuchsys-
temsare often perceved as simply reactingto an ervironment,without reasoningabout
it). This sectionpresents suney of the subsumptiorarchitectuie, which is arguablythe
best-knaevn reactive agentarchitecturelt wasdevelopedby Rodneg Brooks— oneof the
mostvocal andinfluential critics of the symbolicapproacho ageng to have emepgedin
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recentyears.

Therearetwo definingcharacteristicef the subsumptiorarchitectureThefirst is that
an agents decision-makings realisedthrougha set of task accomplishingoehavious,
eachbehaiour may be thoughof asan individual action function, aswe definedabove,
which continuallytakesperceptuainputandmapsit to anactionto perform.Eachof these
behaiour moduless intendedo achieve someparticulartask.ln Brooks'implementation,
the behaviour modulesarefinite statemachinesAn importantpoint to noteis thatthese
taskaccomplishingnodulesareassumedo includeno complex symbolicrepresentations,
and are assumedo do no symbolic reasoningat all. In mary implementationsthese
behaioursareimplementedasrulesof theform

situation— action

which simplemapperceptualnputdirectly to actions.

The seconddefining characteristicof the subsumptionarchitectureis that mary be-
haviours can“fire” simultaneouslyTheremustobviously be a mechanisnto choosebe-
tweenthe differentactionsselectedy thesemultiple actions.Brooksproposedarranging
themodulegnto asubsumptiomierarchy, with thebehaioursarrangednto layers. Lower
layersin the hierarchyareableto inhibit higherlayers:the lower a layeris, the higheris
its priority. The ideais that higherlayersrepresenmoreabstractbehaiours. For exam-
ple,onemight desirea behaiour in amobilerobotfor the behaiour “avoid obstacles”It
makessenseo give obstacleavoidancea high priority — hencethis behaiour will typi-
cally beencodedn alow-levellayer, which hashigh priority. To illustratethe subsumption
architecturen moredetail,we will now presenta simpleformal modelof it, andillustrate
how it works by meansof a shortexample.We thendiscussits relatve advantagesand
shortcomingsandpoint at othersimilar reactve architectures.

The seefunction,which representshe agents perceptuahbility, is assumedo remain
unchangedHowever, in implementedsubsumptiorarchitecturesystemsthereis assumed
to be quite tight coupling betweenperceptionand action — raw sensorinput is not
processear transformednuch,andthereis certainlyno attemptto transformimagesto
symbolicrepresentations.

The decisionfunction action is realisedthrougha setof behaiours, togetherwith an
inhibition relationholding betweerthesebehaiours. A behaiour is a pair (c,a), where
c C Pisasetof perceptgalledthecondition anda € Ais anaction.A behaiour (c,a) will
firewhentheervironmentisin states € Siff se€s) € c. LetBeh={(c,a) | cC P andac A}
bethesetof all suchrules.

Associatedvith anagents setof behaiour rulesR C Behis abinaryinhibition relation
onthesetof behaiours: < C Rx R. Thisrelationis assumedo be a total orderingon R
(i.e.,it is transitive, irreflexive, andantisymmetric) We write by < by if (b1,bp) €<, and
readthisas“b; inhibitsb,”, thatis, b; is lowerin the hierarchythanby, andwill henceget
priority over by. Theactionfunctionis thendefinedasfollows:

1. function adion(p: P): A
2. var fired:O(R)
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3 var seleded: A

4 begin

5. fired:={(c,a) | (c,a) € Rand p e c}

6. for each (c,a) € fireddo

7 if =(3(c,a) € firedsuch that (¢',a) < (c,a)) then
8 return a

9. end-if

10. end-for

11. return null

12.  end function action

Thusactionselectionbegins by first computingthe set fired of all behaioursthatfire
(5). Then,eachbehaiour (c,a) thatfiresis checled, to determinewhetherthereis some
otherhigherpriority behaiour thatfires.If not, thenthe actionpartof the behaiour, a, is
returnedasthe selectedaction(8). If no behaiour fires,thenthedistinguishedactionnull
will bereturnedjndicatingthatno actionhasbeenchosen.

Giventhatoneof ourmainconcernsvith logic-basedlecisiormakingwasits theoretical
compleity, it is worth pausingto examinehow well our simple behaiour-basedsystem
performs.Theoveralltime compleity of thesubsumptiormctionfunctionis noworsethan
O(n?), wheren is the larger of the numberof behaiours or numberof perceptsThus,
evenwith the naive algorithmabove, decisionmakingis tractable In practice, we cando
consideably betterthan this: the decisionmakinglogic canbe encodednto hardware,
giving constantdecisiontime. For modernhardware, this meansthat an agentcan be
guaranteedb selectanactionwithin nano-second®erhapsnorethananything else,this
computationasimplicity is the strengthof the subsumptiorarchitecture.

To illustrate how the subsumptiorarchitectureén more detail, we will shav how sub-
sumptionarchitectureagentsverebuilt for thefollowing scenariqthis exampleis adapted
from [66]):

The objectiveis to explore a distant planet, more concetely to collect samplesof a
particular typeof preciousrock. Thelocationof therock sampless notknownin advance
but they are typically clusteed in certain spots.A numberof autonomousrehiclesare
available that can drive around the planet collecting samplesand later reenterthe a
motheshipspacecaft to gobad to earth.Theris nodetailedmapoftheplanetavailable
althoughit is knownthat the terrain is full of obstacles— hills, valleys, etc. — which
preventthe vehiclesfromexchangingany communication.

The problemwe arefacedwith is that of building an agentcontrol architecturefor each
vehicle, so that they will cooperateto collect rock samplesfrom the planetsurfaceas
efficiently aspossibleLuc Steelsaguesthatlogic-basedigentspf thetypewe described
above,are“entirely unrealisticfor this problem[66]. Insteadheproposes solutionusing
thesubsumptiorarchitecture.

The solutionmakesuseof two mechanismitroducedby SteelsThefirst is agradient
field. In orderthatagentscanknow in which directionthe mothershidies, the mothership
generates radio signal.Now this signalwill obviously wealen asdistanceto the source
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increases— to find thedirectionof the mothershipanagenmneedthereforeonly travel “up
thegradient”of signalstrength.The signalneednot carryary information— it needonly
exist.

The secondmechanisnenablesagentsto communicatevith oneanother The charac-
teristicsof theterrainpreventdirectcommunicatior(suchasmessag@assing) so Steels
adoptedanindirectcommunicatiormethod.Theideais thatagentswill carry“radioactive
crumbs”,which can be dropped,picked up, and detectedby passingrobots. Thusif an
agentdropssomeof thesecrumbsin a particularlocation,thenlater, anotheragenthap-
peninguponthis locationwill be ableto detectthem. This simple mechanisnenablesa
quitesophisticatedorm of cooperation.

The behaiour of an individual agentis then built up from a numberof behaiours,
aswe indicatedabove. First, we will seehow agentscanbe programmedo individually
collectsamplesWe will thenseehow agentanbeprogrammedo generat@ coopeative
solution.

For individual (non-cooperatie) agents,the lowest-level behaiour, (and hencethe
behaiour with the highest“priority”) is obstacleavoidance.This behaiour cancanbe
representech therule:

if detectanobstaclehenchangedirection. (1.6)

The secondehaiour ensureghatany samplesarriedby agentsaredroppedbackat the
mothership.

if carryingsamplesandatthebasethendropsamples (1.7
if carryingsamplesandnotatthebasethentravel up gradient. (1.8)

Behaviour (1.8) ensureghat agentscarrying sampleswill returnto the mothership (by
headingtowardsthe origin of the gradientfield). The next behaiour ensureghatagents
will collectsampleghey find.

if detectasamplethenpick sampleup. (1.9)
Thefinal behaiour ensureshatanagentwith “nothingbetterto do” will explorerandomly
if truethenmove randomly (1.10)

Thepre-conditiorof thisruleis thusassumedo alwaysfire. Thesebehaioursarearranged
into thefollowing hierarchy:

(1.6) < (1.7) < (1.8) < (1.9) < (1.10

Thesubsumptioierarchyfor thisexampleensureshat,for example anagentwill always
turnif any obstaclesredetectedif theagents atthemothershipandis carryingsamples,
thenit will alwaysdropthemif it is notin ary immediatedangerof crashingandsoon.

The*“top level” behaiour — arandomwalk — will only every be carriedoutif the agent
hasnothingmoreurgentto do. It is not difficult to seehow this simplesetof behaiours

will solvetheproblem:agentswill searctfor samplegultimatelyby searchingandomly),
andwhenthey find them,will returnthemto the mothership.
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If the samplesare distributed acrossthe terrain entirely at random,then equippinga
large numberof robotswith thesevery simplebehaiourswill work extremelywell. But
we know from the problem specification,above, that this is not the case:the samples
tendto be locatedin clusters.n this case,it makessenseo have agentscoopeate with
one-anothein orderto find the samples.Thus when one agentfinds a large sample,
it would be helpful for it to communicatethis to the other agents,so they canhelpit
collecttherocks.Unfortunately we alsoknow from the problemspecificatiorthatdirect
communicatioris impossible.Steelsdevelopeda simple solutionto this problem,partly
inspiredby the foragingbehaiour of ants.The idearevolvesaroundan agentcreatinga
“trail” of radioactve crumbswheneer it finds a rock sample.The trail will be created
whentheagentreturnstherock samplego the mothership.If atsomelaterpoint, another
agentcomesacrosghis trail, thenit needonly follow it down the gradientfield to locate
the sourceof the rock samples.Somesmall refinementdmprove the efficiency of this
ingeniousschemestill further. First, asanagentfollows a trail to therock samplesource,
it picks up someof the crumbsit finds, hencemakingthetrail fainter Secondlythetrail
is only laid by agentseturningto the mothershipHenceif anagentfollows the trail out
to the sourceof the nominalrock sampleonly to find thatit containsno samplesit will
reducehetrail ontheway out,andwill notreturnwith samplego reinforceit. After afew
agentshave followedthetrail to find no sampleat the endof it, the trail will in facthave
beenremoved.

The modified behaiours for this example are as follows. Obstacleavoidance,(1.6),
remainsunchangedHowever, the two rulesdeterminingwhatto do if carryinga sample
aremodifiedasfollows.

if carryingsamplesandatthebasethendropsamples (1.12)

if carryingsamplesaandnotatthebase
(1.12)

thendrop2 crumbsandtravel up gradient.
The behaiour (1.12) requiresan agentto drop crumbswhen returningto basewith a
sample thuseitherreinforcingor creatinga trail. The “pick up sample”behaiour, (1.9),
remainsunchanged-However, anadditionalbehaiour is requiredfor dealingwith crumbs.

if sensecrumbsthenpick up 1 crumbandtravel down gradient (1.13)

Finally, therandommovementbehaiour, (1.10),remainsunchangedThesebehaiour are
thenarrangednto thefollowing subsumptiorierarchy

(1.6) < (1.11) < (1.12) < (1.9) < (1.13) < (1.10)

Steelsshavs how this simple adjustmentachieves nearoptimal performancein mary
situations.Moreover, the solutionis cheap(the computingpower requiredby eachagent
is minimal) and robust (the loss of a single agentwill not affect the overall system
significantly).

In summarythereareobvious advantagedo reactive approachesuchasthat Brooks'’
subsumptionarchitecture:simplicity, economy computationaltractability, robustness
againstfailure, and eleganceall make sucharchitecturesappealing But thereare some
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fundamental,unsolhed problems,not just with the subsumptionarchitecture but with
otherpurelyreactve architectures:

= |f agentsdo not emplgy modelsof their environment,thenthey musthave sufficient
informationavailablein their local ervironmentfor themto determinean acceptable
action.

= Sincepurelyreactve agentsnake decisiondasedn local information,(i.e., informa-
tion abouttheagentsurrentstate)jt is difficult to seehow suchdecisionmakingcould
take into accounmnon-localinformation— it mustinherentlytake a “shortterm” view.

= |t is difficult to seehow purelyreactive agentscanbe designedhatlearn from experi-
enceandimprovetheir performancevertime.

= A major selling point of purely reactve systemsis that overall behaiour emeges
from the interactionof the componentbehaiours when the agentis placedin its
ervironment. But the very term “emerges” suggestshat the relationshipbetween
individual behaiours, ervironment,andoverall behaiour is not understandabléhis
necessarilynakesit very hardto engineeragentsto fulfill specifictasks.Ultimately;
thereis no principledmethodolgy for building suchagentsonemustusea laborious
procesof experimentationtrial, anderrorto engineemanagent.

= While effective agentscanbe generatedvith small numbersof behaviours (typically
lessthat ten layers),it is muc harderto build agentsthat containmary layers.The
dynamicsof theinteractiondbetweenthe differentbehaiioursbecometoo complex to
understand.

Varioussolutionsto theseproblemshave beenproposedOneof the mostpopularof these
is theideaof evolvingagentgo performcertaintasks.This areaof work haslargely broken

away from themainstreanAl traditionin whichwork on,for example logic-basedgents
is carriedout, andis documentegbrimarily in theartificial life (alife) literature.

Sources and Further Reading

Brooks’ original paperon the subsumptiorarchitecture— the one that startedall the
fuss— waspublishedas[8]. The descriptionanddiscussiorhereis partly basedon [15].

This original paperseemdgo be someavhatlessradicalthanmary of his laterones,which
include[9, 11, 10]. The versionof the subsumptiorarchitectureusedin this chapteris

actually a simplification of that presentecby Brooks. The subsumptiorarchitectureis

probablythe best-knevn reactie architecturearound— but thereare mary others.The
collectionof papersditedby PattieMaes[41] containgaperghatdescribenary of these,
asdoesthecollectionby Agre andRosenscheifR]. Otherapproacheclude:

= theagentnetworkarchitectue developedby Pattie Maes[40, 42, 43;

= Nilssonsteleoreactiveprograms[49];

= RosencheiandKaelbling’s situatedautomataapproachwhichis particularlyinterest-
ing in thatit shavs how agentscanbe specifiedn anabstractjogical frameawork, and
compiledinto equivalent,but computationallyery simplemachineg57, 36, 35, 58];
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= AgreandChapmars PENGI system[1];

= Schoppersuniveisal plans— which areessentiallydecisiontreesthat canbe usedto
efficiently determineanappropriateactionin ary situation[62];

= Firby'sreactiveaction padkages[19].

Kaelbling[34] givesa gooddiscussiorof theissuesassociatedvith developingresource-
boundedrational agents,and proposesan agentarchitecturesomevhat similar to that
developedby Brooks.

1.4.3 Bedlief-Desire-Intention Architectures

In this sectionwe shalldiscusdelief-desie-intention(BD1) architecturesThesearchitec-
tureshave their rootsin the philosophicaltradition of understandingractical reasoning
— theproces®f decidingmomently momentwhichactionto performin thefurtherance
of ourgoals.

Practicalreasoningnvolvestwo importantprocessesdecidingwhat goalswe wantto
achieve, and how we are going to achieve thesegoals.The former processs known as
delibemation, the latter as means-endseasoning.To gain an understandingf the BDI
model, it is worth consideringa simple exampleof practicalreasoningWhenyou leave
university with a first degree,you are facedwith a decisionto make — aboutwhat to
do with your life. The decisionprocesstypically begins by trying to understandvhat
the optionsavailableto you are. For example,if you gain a goodfirst degree,thenone
optionis that of becomingan academic(If you fail to obtaina good degree,this option
is not availableto you.) Anotheroptionis enteringindustry After generatinghis setof
alternatves,you mustchoosebetweerthem andcommitto some.Thesechosenoptions
becomententions whichthendetermingheagentsactionsintentionsthenfeedbackinto
the agents future practicalreasoningFor example,if | decidel wantto be anacademic,
thenl shouldcommitto this objective,anddevotetime andeffort to bringingit about.

Intentionsplayacrucialrolein thepracticalreasoningprocessPerhapshemostobvious
propertyof intentionsis that they tendto leadto action.If | truly have anintentionto
becomean academicthen you would expect me to act on that intention — to try to
achieve it. For example,you might expectme to apply to various PhD programs.You
would expectto to make areasonablattemptto achieze theintention.By this, | meanthat
youwould expectmeto carry our somecourseof actionthat! believedwould bestsatisfy
theintention.Moreover, if a courseof actionfailsto achiere theintention,thenyouwould
expectmeto try again— you would notexpectmeto simply give up. For example,if my
first applicationfor a PhD programmeas rejected thenyou might expectme to apply to
alternatve universities.

In addition,oncel have adoptedanintention,thenthe very factof having thisintention
will constrainmy future practicalreasoning For example,while | hold someparticular
intention,l will notentertainoptionsthatareinconsistentvith thatintention.Intendingto
becomeanacademicfor example,would precludethe option of partyingevery night: the
two aremutuallyexclusive.

Next, intentionspersist If | adoptanintentionto becomean academicthen! should
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persistwith thisintentionandattempto achieveit. Forif | immediatelydropmy intentions
withoutdevotingresourceso achiezing them thenl will neverachieve arything.However,

| shouldnot persistwith my intention for too long — if it becomesclearto me that |

will never becomean academicthenit is only rationalto drop my intentionto do so.
Similarly, if thereasorfor having anintentiongoesaway, thenit is rationalof meto drop
the intention. For example,if | adoptedthe intentionto becomean academidecausd

believedit would be an easylife, but thendiscover that| would be expectedto actually
tead, thenthe justificationfor the intentionis no longerpresentand| shoulddrop the
intention.

Finally, intentionsarecloselyrelatedto beliefsaboutthefuture.For example,if | intend
to becomeanacademicthenl shouldbelieve thatl will indeedbecomeanacademicFor
if I truly believethatl will neverbeanacademicit would benon-sensicabf meto havean
intentionto becomeone.Thusif | intendto becomeanacademic| shouldat leastbelieve
thatthereis agoodchancd will indeedbecomeone.

From this discussionwe can seethat intentionsplay a numberof importantrolesin
practicalreasoning:

= Intentionsdrive means-endseasoning
If I have formedan intentionto becomean academicthenl| will attemptto achieve
the intention, which involves, amongstother things, decidinghow to achieve it, for
example, by applying for a PhD programme Moreover, if one particular courseof
actionfails to achieve anintention,thenl| will typically attemptothers.Thusif | fail
to gaina PhDplaceat oneuniversity, | mighttry anothemuniversity.

= |ntentionsconstain future delibemtion.
If 1 intendto becomeanacademicthenl will notentertainoptionsthatareinconsistent
with this intention. For example,a rational agentwould not considerbeingrich as
an option while simultaneouslyintendingto be an academic.(While the two are
not actually mutually exclusive, the probability of simultaneouslyachieving both is
infinitesimal.)

= Intentionspersist
I will not usuallygive up on my intentionswithout goodreason— they will persist,
typically until either| believe | have successfullyachierzed them, | believe | cannot
achievethem,or elsebecausehe purposefor theintentionis nolongerpresent.

= Intentionsinfluencebeliefsuponwhich future practical reasonings based
If 1 adoptthe intentionto becomean academicthen| can plan for the future on
the assumptiorthat | will be an academicFor if | intendto be an academiowhile
simultaneouslyelieving thatl will neverbe one,thenl ambeingirrational.

A key problemin the designof practicalreasoningagentss that of of achiezing a good
balancebetweerthesedifferentconcernsSpecifically it seemglearthatanagentshould
at timesdrop someintentions(becausét comesto believe that eitherthey will never be
achieved,they areachieved,or elsebecaus¢hereasorfor having theintentionis nolonger
present) It follows that, from time to time, it is worth an agentstoppingto reconsider
its intentions.But reconsideratiomasa cost— in termsof bothtime andcomputational
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resourcesBut this presentaiswith adilemma:

= anagentthatdoesnot stopto reconsidesufficiently oftenwill continueattemptingto
achieveits intentionsevenafterit is clearthatthey cannotbeachiered,or thatthereis
nolongerary reasorfor achieving them;

= anagentthatconstantlyreconsiderdts attentionamay spendinsufiicient time actually
working to achieve them,andhencerunstherisk of neveractuallyachieving them.

Thisdilemmais essentiallytheproblemof balancingoro-actve (goaldirected)andreactve
(eventdriven)behaiour, thatwe introducedn sectionl.2.2.

Thereis clearly a tradeof to be struckbetweenthe degreeof commitmentandrecon-
siderationat work here.The natureof this tradeof was examinedby David Kinny and
Michael Geogeff, in a numberof experimentscarriedout with a BDI agentframework
calleddMARS[37]. They investigatédhow bold agentgthosethatnever stopto reconsider)
andcautiousagentqthosethatareconstantlystoppingto reconsiderperformin avariety
of differentervironments Themostimportantparametein thesesxperimentsvastherate
of world changg, y. Thekey resultsof Kinny andGeogeff wereasfollows.

= |f yis low, (i.e., the ervironmentdoes not changequickly), then bold agentsdo
well comparedo cautiousones,becauseautiousoneswastetime reconsideringheir
commitmentswhile bold agentsare busy working towards— and achiezing — their
goals.

= If yis high, (i.e., the environmentchangedrequently),then cautiousagentstend to
outperformboldagentsbecauséhey areableto recognisavhenintentionsaredoomed,
andalsoto take advantageof serendipitousituationsandnew opportunities.

Thelessonis thatdifferenttypesof ervironmentrequiredifferenttypesof decisionstrate-
gies.In static,unchangingervironment,purely pro-active, goal directedbehaiour is ad-
equateBut in moredynamicervironmentsthe ability to reactto changesy modififying
intentionsbecomesgnoreimportant.

The processf practicalreasoningn a BDI agentis summarisedn Figurel1.5. As this
Figureillustrates therearesevenmaincomponents$o a BDI agent:

®  asetof currentbeliefs representingnformationthe agenthasaboutits currentervi-
ronment;

= abeliefrevisionfunction (brf), which takesa perceptualnput andthe agents current
beliefs,andon the basisof these determines new setof beliefs;

= anoptiongenertion function (options), which determineshe optionsavailableto the
agenf(its desires)pnthebasisof its currentbeliefsaboutits environmentandits current
intentions

= asetof currentoptions representingpossiblecoursef actionsavailableto theagent;

= afilter function(filter), which representshe agents delibemtion processandwhich
determineghe agents intentionson the basisof its currentbeliefs,desiresandinten-
tions;

= a setof currentintentions representinghe agents currentfocus — thosestatesof
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Figurel5 Schematidiagramof agenerichelief-desire-intentioarchitecture.

affairsthatit hascommittedto trying to bring about;

= anaction selectionfunction (execue), which determinesan actionto performon the
basisof currentintentions.

It is straightforvard to formally definethesecomponentsFirst, let Bel be the setof all
possiblebeliefs, Desbe the setof all possibledesiresandInt be the setof all possible
intentions.For the purposesof this chaptey the contentof thesesetsis not important.
(Often,beliefs,desiresandintentionsarerepresentedslogical formulae perhapf first-
orderlogic.) Whatever the contentof thesesets,its is worth noting thatthey shouldhave
somenotion of consistencydefineduponthem, so that one can answerthe questionof,
for example,whetherhaving anintentionto achiese x is consistentvith the belief thaty.
Representingpeliefs, desiresandintentionsas logical formulae permitsus to castsuch
guestionasquestionasquestionof determiningvhetherdogical formulaeareconsistent
— a well known and well-understoodproblem. The stateof a BDI agentat ary given
momentis, unsurprisinglyatriple (B,D, 1), whereB C Bel, D C Des and| C Int.
An agents beliefrevision functionis a mapping

brf :0(Bel) x P— O (Bel)



1.4 ConceteArchitectuesfor IntelligentAgents 33

whichonthebasisof thecurrentperceptandcurrentbeliefsdeterminesnew setof beliefs.
Belief revision is out of the scopeof this chapter(andindeedthis book),andsowe shall
sayno moreaboutit here.

Theoptiongeneratiorfunction,options, mapsa setof beliefsanda setof intentionsto
asetof desires.

options: O (Bel) x O(Int) — O (Dey

This functionplayssereralroles.First, it mustbe responsibldor the agents means-ends
reasoning— the procesof decidinghow to achieve intentions.Thus,oncean agenthas
formedanintentionto x, it mustsubsequentigonsideroptionsto achievex. Theseoptions
will be moreconcrete— lessabstract— thanx. As someof theseoptionsthenbecome
intentionsthemseles,they will alsofeedbacknto optiongenerationresultingin yetmore
concreteoptionsbeing generatedWe canthusthink of a BDI agents option generation
processas one of recursvely elaboratinga hierarchicalplan structure,consideringand
committingto progressiely morespecificintentions,until finally it reachesheintentions
thatcorrespondo immediatelyexecutableactions.

While themainpurposeof theoptionsfunctionis thusmeans-endseasoningit mustin
additionsatisfyseveralotherconstraintsFirst, it mustbeconsistentarny optionsgenerated
mustbe consisteniith both the agents currentbeliefsand currentintentions.Secondly
it mustbe opportunisti¢ in that it shouldrecognisewhen ervironmentalcircumstances
changeadwantageouslyto offer the agentnew waysof achieving intentions,or the possi-
bility of achieving intentionsthatwereotherwiseunachieable.

A BDI agents deliberationprocesgdecidingwhat to do) is representedh the filter
function,

filter: O (Bel) xO(De9 xO(Int) — O(Int)

which updatesthe agents intentionson the basisof its previously-heldintentionsand
currentbeliefs and desires.This function mustfulfill two roles. First, it mustdrop ary
intentionsthatareno longerachiesable,or for which the expectedcostof achiezing them
exceedghe expectedgainassociateavith successfullyachieving them.Secondijt should
retainintentionsthatarenot achievzed,andthatarestill expectedo have a positive overall
benefit.Finally, it shouldadoptnew intentions eitherto achieve existing intentions,or to
exploit new opportunities.

Notice thatwe do not expectthis functionto introduceintentionsfrom nowhere.Thus
filter shouldsatisfythefollowing constraint:

VB e O (Bel),VD € O(Des, VI € O(Int), filter(B,D,1) C 1 UD.

In otherwords, currentintentionsare either previously held intentionsor newly adopted
options.

Theexecue functionis assumedo simply returnary executabléntentions— by which
we meanintentionsthatcorrespondo directly executableactions:

execue:O0(Int) —» A
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Theagentdecisionfunction,action of aBDI agentis thena function
adion: P — A

andis definedby the following pseudo-code.

function action(p: P) : A
begin

B:=brf(B,p)

D := optiongD, 1)

| := filter(B,D,1)
return execue(l)
end function action

No gk~ wdhpR

Notethatrepresentingnagentsintentionsasaset(i.e.,asanunstructureaollection)is
generallytoo simplisticin practice A simplealternatveis to associate priority with each
intention,indicatingits relative importance Anothernaturalideais to represenintentions
asa stak. An intentionis pushedon to the stackwhenit is adoptedand poppedwhen
it is eitherachiezed or elsenot achiezable.More abstracintentionswill tendto be atthe
bottomof the stack,with moreconcretantentionstowardsthetop.

To summariseBDI architecturesare practical reasoningarchitecturesjn which the
proces®f decidingwhatto do resembleshekind of practicalreasoninghatwe appeato
usein our everydaylives.The basiccomponent®f a BDI architecturearedatastructures
representinghe beliefs,desiresandintentionsof the agent,andfunctionsthatrepresent
its deliberation(decidingwhatintentionsto have — i.e., decidingwhatto do) andmeans-
endsreasoning(decidinghow to do it). Intentionsplay a centralrole in the BDI model:
they provide stability for decisionmaking,andactto focusthe agents practicalreasoning.
A majorissuein BDI architecturess the problemof striking a balancebetweenbeing
committedto and overcommittedto one’s intentions:the deliberationprocessmust be
finely tunedto its ernvironment, ensuringthat in more dynamic, highly unpredictable
domainsjt reconsiderds intentionsrelatively frequently— in morestaticenvironments,
lessfrequentreconsideratiofis necessary

The BDI modelis attractive for severalreasonsFirst, it is intuitive — we all recognise
the processesf decidingwhatto do andthenhow to do it, andwe all have aninformal
understandingf the notionsof belief, desire,and intention. Second;t givesus a clear
functionaldecompositionwhich indicateswhat sortsof subsystemsnight be requiredto
build an agent.But the main difficulty, asever, is knowing how to efficiently implement
thesefunctions.

Sources and Further Reading
Belief-desire-intentiomrchitecturesriginatedin thework of the RationalAgengy project

at Stanford Researchnstitute in the mid 1980s. The origins of the model lie in the
theoryof humanpracticalreasoninglevelopedby the philosopheMichael Bratman([6],
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whichfocussegarticularlyontherole of intentionsin practicalreasoningTheconceptual
framework of theBDI modelis describedn [7], whichalsodescribes specificBDI agent
architecturecallediRMA. The descriptionof the BDI modelgivenhere(andin particular
Figurel.5)is adaptedrom [7]. Oneof theinterestingaspect®of the BDI modelis thatit
hasbeenusedin one of the mostsuccessfuhgentarchitecturedo date.The Procedural
ResoningSystem(PRS), originally developedby Michael Geogeff andAmy Lansky [26],
hasbeenusedto build someof themostexactingagentapplicationgo date includingfault
diagnosidor thereactioncontrolsystenof thespaceshuttle,andanair traffic management
systemat Sydne airportin Australia— overviews of thesesystemsaredescribedn [27].
In the PRS, anagentis equippedwith alibrary of planswhich areusedto performmeans-
endsreasoningDeliberationis achievedby the useof meta-level plans which areableto
modify anagent§intentionstructureatrun-time,in orderto changeahefocusof theagents
practicalreasoningBeliefsin the PRS arerepresentedspPrROL OG-lik e facts— essentially
asatomsof first-orderlogic.

The BDI modelis alsointerestingbecause greatdeal of effort hasbeendevotedto
formalisingit. In particular Anand Rao and Michael Geogeff have developeda range
of BDI logics, which they useto axiomatisepropertiesof BDI-basedpracticalreasoning
agentg52, 56, 53, 54, 55, 51]. Thesemodelshare beenextendedby othersto dealwith,
for example,communicatiorbetweeragentq28].

1.4.4 Layered Architectures

Giventhe requirementhat an agentbe capableof reactve and pro-active behaiour, an
obvious decompositionnvolvescreatingseparatesubsystemso dealwith thesedifferent
typesof behaiours.Thisidealeadsnaturallyto a classof architecture whichthevarious
subsystemsare arrangednto a hierarchyof interactinglayers. In this section,we will
considersomegeneralaspectof layeredarchitecturesandthen go on to considertwo
examplesof sucharchitecturesiNTERRAP and TOURINGMACHINES.

Typically, therewill beatleasttwo layersto dealwith reactveandpro-actvebehaiours
respectiely. In principle,thereis no reasonwhy thereshouldnot be mary morelayers.
However mary layersthereare,a usefultypologyfor sucharchitecturess by theinforma-
tion andcontrolflows within them.Broadly speakingye canidentify two typesof control
flow within layeredarchitecturegseeFigurel.6):

= Horizontallayering
In horizontally layeredarchitecturegFigure 1.6(a)),the software layersare eachdi-
rectly connectedo the sensonjinputandactionoutput.In effect, eachlayeritself acts
like anagent producingsuggestionasto whatactionto perform.

= \ertical layering
In vertically layeredarchitecturegFigure 1.6(b)and1.6(c)), sensoryinput andaction
outputareeachdealtwith by at mostonelayereach.

The greatadvantageof horizontallylayeredarchitecturess their conceptuasimplicity: if
we needan agentto exhibit n differenttypesof behaiour, thenwe implementn different
layers. However, becausehe layersare eachin effect competingwith one-anotheto
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Figure 1.6 Information and control flows in threetypesof layeredagentarchitecture
(Source{47, p263]).

generatactionsuggestionghereis a dangerthatthe overall behaiour of the agentwill
not be coherentln orderto ensurethat horizontallylayeredarchitecturesare consistent,
they generallyincludea mediatorfunction,which makesdecisionsaboutwhich layerhas
“control” of theagentatary giventime. Theneedfor suchcentralcontrolis problematicit
meanghatthe designemustpotentiallyconsiderall possibleinteractiondetweerayers.
If therearen layersin thearchitectureandeachlayeris capableof suggestingn possible
actions,thenthis meanstherearem” suchinteractionsto be consideredThis is clearly
difficult from a designpoint of view in ary but the mostsimplesystem.The introduction
of acentralcontrol systemalsointroducesa bottlene& into theagents decisionmaking.

Theseproblemsarepartly alleviatedin a vertically layeredarchitectureWe cansubdi-
vide vertically layeredarchitecturesnto one passarchitecturegFigure 1.6(b)) and two
passarchitecturegFigure 1.6(c)). In one-passarchitecturescontrol flows sequentially
througheachlayer, until thefinal layergeneratesctionoutput.In two-passarchitectures,
information flows up the architecturg(the first pass)and control then flows back down.
Therearesomeinterestingsimilaritiesbetweerthe ideaof two-passvertically layeredar
chitectureandtheway thatorganisationsvork, with informationflowing up to thehighest
levelsof theorganisationandcommandshenflowing down. In bothonepassandtwo pass
vertically layeredarchitecturesthe compleity of interactionsbetweerlayersis reduced:
sincetherearen — 1l interfacesbetweem layers thenif eachlayeris capableof suggesting
mactions thereareatmostn?(n— 1) interactiongo beconsideredetweerayers.Thisis
clearlymuchsimplerthanthe horizontallylayeredcase However, this simplicity comesat
thecostof someflexibility: in orderfor averticallylayeredarchitectur¢o make adecision,
controlmustpassbetweeread differentlayer. Thisis notfaulttolerant:failuresin ary one
layerarelikely to have seriousconsequencesr agentperformance.

In theremaindepf this sectionwe will considertwo examplesof layeredarchitectures:
InnesFelgusons TOURINGMACHINES, and Jorg Miller's INTERRAP. The formeris an
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Figurel.7 TouURINGMACHINES: a horizontallylayeredagentarchitecture

exampleof a horizontallylayeredarchitecturethe latteris a (two pass)vertically layered
architecture.

TouringMachines

The TOURINGMACHINES architectures illustratedin Figure 1.7. As this Figure shawvs,

TOURINGMACHINES consistsf threeactivity producinglayers. Thatis, eachlayercon-

tinually produces‘suggestions’for what actionsthe agentshouldperform. The reactive
layerprovidesamore-orlessmmediataesponseo changeshatoccurin theervironment.
It isimplementedisa setof situation-actionules lik e thebehaioursin Brooks’subsump-
tion architecturgsectionl.4.2). Theserulesmapsensotinput directly to effector output.

Theoriginal demonstratioscenaridor TOURINGMACHINES wasthatof autonomouye-

hiclesdriving betweenocationsthroughstreetgpopulatedoy othersimilar agentsin this

scenarioreactvve rulestypically dealwith functionslik e obstacleavoidance For example,
hereis anexampleof areactve rule for avoiding the kerb (from [16, p59]):

rul e-1: kerb-avoi dance
if
is-in-front(Kerb, Cbserver) and
speed( Qbserver) > 0 and
separation(Kerb, Qoserver) < KerbThreshHol d
t hen
change- ori ent ati on( Ker bAvoi danceAngl e)

Herechange-orientation(...) istheactionsuggestedf therule fires. Therulescan
only make referenceso the agents currentstate— they cannotdo ary explicit reasoning
abouttheworld, andontheright handsideof rulesareactions not predicatesThusif this
rule fired, it would not resultin ary centralervironmentmodelbeingupdated put would
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justresultin anactionbeingsuggestedy thereactve layer.

The TOURINGMACHINES planning layer achieves the agents pro-active behaiour.
Specifically the planninglayer is responsibldor the “day-to-day” running of the agent
— undernormalcircumstanceghe planninglayerwill beresponsibldor decidingwhat
the agentdoes.However, the planninglayer doesnot do “first-principles” planning.That
is, it doesnot attemptto generatglansfrom scratch Rather the planninglayer emplays
alibrary of plan“skeletons’calledschemasTheseskeletonsarein essencéierarchically
structuredplans,which the TOURINGMACHINES planninglayer elaboratest runtime in
orderto decidewhatto do. So,in orderto achieve a goal, the planninglayer attemptsto
find a scheman its library which matcheghatgoal. This schemawill containsub-goals,
whichtheplanninglayerelaboratedy attemptingo find otherschemasn its planlibrary
thatmatchthesesub-goals.

Themodelingayerrepresentthevariousentitiesin theworld (includingtheagenttself,
aswell asotheragents).The modelinglayer thus predictsconflicts betweenagentsand
generatesiew goalsto be achievedin orderto resohe theseconflicts. Thesenew goals
arethenposteddown to the planninglayer, which makesuseof its planlibrary in orderto
determinehow to satisfythem.

Thethreecontrollayersareembeddedvithin a contol subsystermwhich is effectively
responsiblefor decidingwhich of the layers should have control over the agent. This
controlsubsystens implementedsasetof contmol rules Controlrulescaneithersuppess
sensolinformationbetweerthe controlrulesandthe control layers,or elsecensoraction
outputsfrom the controllayers.Hereis anexamplecensorule [18, p207]:

censor-rul e-1:
if
entity(obstacle-6) in perception-buffer
t hen
remove- sensory-record(layer-R entity(obstacle-6))

This rule preventsthe reactve layer from ever knowing aboutwhetherobst acl e- 6 has
beenperceved.Theintuition is thatalthoughthereactve layerwill in generabethe most
appropriatdayerfor dealingwith obstacleavoidancetherearecertainobstaclegor which
otherlayersaremoreappropriateThis rule ensureghatthereactve layer never comesto
know abouttheseobstacles.

InteRRaP

INTERRAP is an exampleof a vertically layeredtwo-passagentarchitecture— seeFig-
urel.8.

As Figure 1.8 shavs, INTERRAP containsthree control layers,as in TOURINGMA-
CHINES. Moreover, the purposeof eachINTERRAP layer appeargo be rathersimilar to
thepurposeof eachcorrespondingOURINGMACHINES layer. Thusthelowest(behaviour
based layer dealswith reactve behaiour; the middle (local planning) layer dealswith
everydayplanningto achieve the agents goals,andthe uppermos{coopeative planning
layerdealswith socialinteractionsEachlayerhasassociatewith it aknowledgbasei.e.,
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Figurel1.8 INTERRAP—aVverticallylayeredtwo-passagentarchitecture.

a representationf the world appropriatefor thatlayer Thesedifferentknovledgebases
representhe agentandits ervironmentat differentlevels of abstractionThusthe highest
level knowledgebaserepresentshe plansandactionsof otheragentsin the ervironment;
the middle-level knowledgebaserepresentshe plansandactionsof the agentitself; and

thelowestlevel knowledgebaserepresentsraw” informationaboutthe ervironment.The

explicit introductionof theseknowledgebasesdistinguisheSTOURINGMACHINES from

INTERRAP.

The way the differentlayersin INTERRAP conspireto producebehaiour is alsoquite
differentfrom TOURINGMACHINES. Themaindifferences in theway thelayersinterract
with theervironment.In TOURINGMACHINES, eachlayerwasdirectly coupledto percep-
tual input and action output. This necessitatethe introductionof a supervisorycontrol
framework, to dealwith conflictsor problemsbetweenayers.In INTERRAP, layersinter
actwith ead other to achieve the sameend. The two maintypesof interactionbetween
layersarebottom-upactivationandtop-downexecution Bottom-upactivationoccurswhen
alower layerpassesontrolto a higherlayerbecausét is not competento dealwith the
currentsituation. Top-dowvn executionoccurswhen a higherlayer makes use of the fa-
cilities provided by alower layerto achieve oneof its goals.The basicflow of controlin
INTERRAP beginswhenperceptuainputarrivesatthelowestlayerin theachitecturelf the
reactve layer candealwith this input, thenit will do so; otherwise bottom-upactivation
will occur andcontrolwill bepassedo thelocal planninglayer. If thelocal planninglayer
canhandlethesituation,thenit will do so,typically by makinguseof top-dovn execution.
Otherwisejt will usebottom-upactivationto passcontrolto thehighestlayer. In thisway,
controlin INTERRAP will flow from the lowestlayerto higherlayersof the architecture,
andthenbackdown again.

The internalsof eachlayerarenotimportantfor the purposeof this article. However,
it is worth notingthateachlayerimplementgwo generafunctions.Thefirst of theseis a
situationrecgnitionandgoalactivationfunction.Thisfunctionactsratherik etheoptions
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functionin a BDI architecturgseesectionl.4.3).It mapsa knowledgebase(one of the
threelayers)andcurrentgoalsto anew setof goals.Thesecondunctionis responsibldor
planningandscheduling— it is responsibldor selectingwhich plansto execute basedn
thecurrentplans,goals,andknowledgebaseof thatlayer.

Layeredarchitecturegrecurrentlythe mostpopulargeneraklassof agentarchitecture
available.Layeringrepresents naturaldecompositiorof functionality: it is easyto see
how reactie, pro-actve, social behaiour can be generateddy the reactve, pro-actie,
andsociallayersin an architectureThe main problemwith layeredarchitecturess that
while they arearguablya pragmaticsolution,they lacktheconceptuahndsemanticlarity
of unlayeredapproachesdn particulay while logic-basedapproachesave a clearlogical
semanticsijt is difficult to seehow sucha semanticscould be devised for a layered
architecture.Another issueis that of interactionsbetweenlayers. If eachlayer is an
independenactvity producingprocesgasin TOURINGMACHINES), thenit is necessary
to considerall possiblewaysthatthelayerscaninteractwith oneanotherThis problemis
partly alleviatedin two-passvertically layeredarchitecturesuchasINTERRAP.

Sources and Further Reading

The introductorydiscussiorof layeredarchitecturegjiven heredraws heavily upon[47,
pp262—-264]Thebestreferencéo TOURINGMACHINES is[16]; moreaccessibleeferences
include[17, 18]. Thedefinitivereferenceo INTERRAP iS[46], although20] is alsoauseful
referenceOtherexamplesf layeredarchitecturemcludethesubsumptiorarchitecturg8]
(seealsosectionl.4.2),andthe 3T architecturd4].

1.5 Agent Programming L anguages

As agenttechnologybecomesmore establishedwe might expectto seea variety of
softwaretools becomeavailablefor the designand constructionof agent-basedystems;
the needfor software supporttools in this areawas identified aslong ago as the mid-
1980s[23]. In this section,we will discusstwo of the betterknown agentprogramming
languagesiocussingn particularon Yoar Shohanms AGENTO system.

151 Agent-oriented programming

Yoav Shohamhasproposeda “new programmingparadigm basedon a societalview of

computation”which he calls agent-orientedprogramming The key ideawhich informs

AOP is that of directly programmingagentsin terms of mentalisticnotions (such as
belief,desire andintention)thatagenttheoristshave developedto representheproperties
of agents.The motivation behindthe proposalis that humansuse suchconceptsas an

abstiaction mechanisnfor representinghe propertiesof complex systemsin the same
way thatwe usethesementalisticnotionsto describeandexplainthebehaiour of humans,
soit might beusefulto usethemto programmachines.
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Thefirstimplementatiorof theagent-orientegrogrammingparadigmwasthe AGENTO
programminganguageln this languagean agentis specifiedin termsof a setof capa-
bilities (thingsthe agentcando), a setof initial beliefs(playingtherole of beliefsin BDI
architectures)a setof initial commitmentgplayinga role similar to that of intentionsin
BDI architectures)anda setof commitmentules Thekey componentwhich determines
how theagentacts,is thecommitmentule set. Eachcommitmentule containsa messge
condition a mentalcondition andan action.In orderto determinewhethersucha rule
fires,the messageonditionis matchedagainstthe messagethe agenthasreceved;the
mentalconditionis matchedagainsthebeliefsof theagentlf therulefires,thentheagent
becomegsommittedto the action.Actionsmay be private, correspondingo aninternally
executedsubroutinepr communicativgi.e., sendingmessagesviessageareconstrained
to be one of threetypes:“requests”or “unrequeststo performor refrain from actions,
and“inform” messagesyhich passon information— Shohamindicatesthat he took his
inspirationfor thesemessagéypesfrom speectacttheory[63, 12]. Requesaindunrequest
messagesypically resultin the agents commitmentsbeing modified; inform messages
resultin achangeo theagents beliefs.

Hereis anexampleof anAGENTO commitmentule:

COW T(
( agent, REQUEST, DQ(tinme, action)
), ;;; meg condition
(B

[now, Friend agent] AND
CAN(sel f, action) AND
NOT [time, CMI(self, anyaction)]
), ;;; mental condition
sel f,
DO(time, action)
)

Thisrule maybeparaphrasedsfollows:
if | receivea messge from agert which requestaneto do acion at time,and | believe
that:
®  agert is currentlya friend;
= | candotheaction;
= attime,l amnotcommittedo doinganyotheraction,
thencommitto doingaction attime.

Theoperationof anagentcanbedescribedy thefollowing loop (seeFigurel.9):

1. Readall currentmessagesjpdatingbeliefs— and hencecommitments— where
necessary;

2. Executeall commitmentdor the currentcycle wherethe capabilityconditionof the
associatea@ctionis satisfied,;
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3. Goto(1).

It shouldbe clear how more complex agentbehaiours can be designedand built in
AGENTO. However, it is importantto notethatthis languagés essentiallya prototype not
intendedfor building anything like large-scaleproductionsystemsHowever, it doesat
leastgive afeelfor how suchsystemsamightbebuilt.

1.5.2 Concurrent METATEM

Arguably one drawback with AGENTO is that the relationshipbetweenthe logic and
interpretedprogramminglanguageis only loosely defined.The programminglanguage
cannotbe said to truly executethe associatedogic, in the way that our logic-based
agentdid in section1.4.1.The ConcurrentM ETATEM languagedevelopedby Fishercan
malke a strongerclaim in this respecf21]. A ConcurrentMETATEM systemcontainsa
numberof concurrentlyexecutingagentsgachof which is ableto communicatewith its
peersvia asynchronoubroadcastessag@assing Eachagentis programmedy giving
it a temporallogic specificationof the behaiour that it is intendedthe agentshould
exhibit. An agents specificationis executeddirectly to generatats behaiour. Execution
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of the agentprogramcorrespondso iteratively building a logical modelfor the temporal
agentspecification It is possibleto prove that the procedureusedto executean agent
specificationis correct,in thatif it is possibleto satisfythe specificationthenthe agent
will doso[3].

The logical semanticsof ConcurrentMETATEM are closely relatedto the semantics
of temporallogic itself. This meansthat, amongstother things, the specificationand
verificationof ConcurrenfM ETATEM systemss arealisticproposition[22].

An agentprogramin ConcurrentMETATEM hasthe form A; P = F, wherePR is a
temporallogic formulareferring only to the presentor past,andF; is a temporallogic
formulareferringto the presentor future. The B = F formulaeareknown asrules The
basicideafor executingsucha programmaybe summedupin thefollowing slogan:

onthebasisof thepastdo thefuture.

Thuseachruleis continuallymatchedagainstaninternal,recordechistory, andif amatch
is found, thentherule fires If arule fires, thenary variablesin the future time partare
instantiated,and the future time part then becomesa commitmentthat the agentwill
subsequenthattemptto satisfy Satisfyinga commitmenttypically meansmaking some
predicatdruewithin theagentHereis asimpleexampleof aConcurrenMETATEM agent
definition:

rc(ask[give :

Oaskx) = {Ogivex)

(—askx) Z (give(x) A —ask(X)) = —give(x)

give(x) Agive(y) = (x=Y)
The agentin this exampleis a controllerfor a resourcehat is infinitely renavable, but
whichmayonly bepossessebly oneagentatary giventime. Thecontrollermusttherefore
enforcemutual exclusion over this resource.The first line of the programdefinesthe
interface to the agent:its nameis rc (for resourcecontroller),and it will acceptask
messageandsendgive messagesl hefollowing threelines constitutethe agentprogram
itself. The predicateask’x) meansthat agentx hasasled for the resourceThe predicate
give(x) meanghattheresourcecontrollerhasgiventhe resourcdo agentx. Theresource
controllerisassumedb betheonly ageniableto ‘give’ theresourceHowever, mary agents

may askfor theresourcesimultaneouslyThethreerulesthatdefinethis agents behaiour
maybe summarizedsfollows:

Rulel: if someondasjustasledfor theresourcetheneventuallygivethemtheresource;

Rule2: don't give unlesssomeonéiasasledsinceyou lastgave; and

Rule3: if you give to two people thenthey mustbe the sameperson(i.e., don't give to
morethanonepersoratatime).

ConcurrentMETATEM is a goodillustration of how a quite pureapproacho logic-based
agentprogrammingcanwork, evenwith a quite expressve logic.
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Sources and Further Reading

The main referencedo AGENTO are [64, 65]. Michael Fishers ConcurrentM ETATEM
languages describedn [21]; the executionalgorithmthatunderpinst is describedn [3].
Since Shohamsé proposal,a numberof languageshave beenproposedwhich claim to
be agent-orientedExamplesinclude Becky Thomass PlanningCommunicatingAgents
(PLACA) languagd67, 68|, MAIL [30], andAnandRaos AGENTSPEAK (L) languagg50].
APRIL is alanguagehatis intendedo be usedfor building multi-agentsystemsalthough
it is not “agent-oriented”in the sensethat Shohamdescribeg44]. The TELESCRIPT
programminglanguage developedby GeneralMagic, Inc., was the first mobile agent
programmindanguag€g69]. Thatis, it explicitly supportgheideaof agentsasprocesses
that have the ability to autonomouslymove themselesacrossa computernetwork and
recommencexecutingat a remotesite. Since TELESCRIPT wasannounceda numberof
mobileagentextensiondo the Java programmindanguagéhave beendeveloped.

1.6 Conclusions

I hopethat after readingthis chaptey you understandvhat agentsare andwhy they are
consideredo be an importantareaof researchand development.The requirementfor

systemsthat can operateautonomouslyis very common.The requirementor systems
capableof flexible autonomousction,in the sensethat | have describedn this chapter
is similarly common.This leadsme to concludethatintelligentagentshave the potential
to play a significantrole in the future of softwareengineeringintelligentagentresearclis

aboutthe theory design,constructionandapplicationof suchsystemsThis chapterhas
focussedon the designof intelligentagents.It haspresented high-level, abstractview

of intelligentagentsand describedhe sort of propertiesthat one would expectsuchan

agentto enjoy. It wenton to shav how this view of anagentcouldberefinedinto various
differenttypesof agentarchitecture— purelylogical agentspurely reactve/behaioural

agentspDI agentsandlayeredagentarchitectures.

1.7 EXxercises

1. [Levell]
Give other examplesof agents(not necessarilyintelligent) that you know of. For
eachdefineaspreciselyaspossible:

= the ernvironmentthat the agentoccupies(physical,software,...), the statesthat
this environmentcanbe in, andwhetherthe ervironmentis: accessibler inac-
cessible;deterministicor non-deterministicepisodicor non-episodicstatic or
dynamic;discreteor continuous.

= theactionrepertoireavailableto theagentandary pre-conditiongssociatedvith
theseactions;
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= thegoal,or designobjectivesof theagent— whatit is intendedo achieve.
[Level1]

(@) Provethatfor every purely reactve agent,theseis a behaiourally equivalent
standardagent.

(b) Prove that there exist standardagentsthat have no behaiourally equivalent
purelyreactie agent.

[Level1]

Prove that state-basedgentsareequialentin expressie power to standardagents,
i.e.,thatfor every state-basedgenthereis abehaiourally equivalentstandaraggent
andviceversa.

[Level 2]

The following few questionsrefer to the vacuumworld exampledescribedn sec-
tion1.4.1.

Give the full definition (using pseudo-codéf desired)of the new function, which
defineghe predicateso addto the agents database.

[Level 2]
Completethe vacuumworld example,by filling in the missingrules.How intuitive
doyouthink thesolutionis? How elegantis it? How compacts it?

[Level 2]

Try usingyourfavourite (imperatie) programmindanguageo codeasolutionto the
basicvacuumworld example.How do you think it comparego thelogical solution?
Whatdoesgthistell youabouttrying to encodeessentiallyprocedual knowledge(i.e.,
knowledgeaboutwhatactionto perform)aspurelylogical rules?

[Level 2]

If you are familiar with PROLOG, try encodingthe vacuumworld examplein this
languageand running it with randomlyplaceddirt. Make use of the assert and
retract meta-leel predicateprovidedby PROL OG to simplify your system(allow-
ing the programitself to achieve muchof the operationof the next function).

[Level 2]
Developasolutionto thevacuumworld exampleusingthebehaiour-basedpproach
describedn sectionl.4.2.How doesit compareo thelogic-basedxample?

[Level 2]

Try scalingthe vacuumworld up to a 10 x 10 grid size. Approximatelyhow mary
ruleswould you needto encodethis enlagedexample,usingthe approactpresented
abose?Try to generaliseéherules,encodinga moregenerabdecisionmakingmecha-
nism.

[Level 3]

Suppos¢hatthevacuumworld couldalsocontainobstacleswhichtheagenineedgo
avoid. (Imagineit is equippedvith asensoto detectsuchobstacles.Jry to adaptthe
exampleto dealwith obstacledetectiorandavoidance Again,comparelogic-based
solutionto oneimplementedn atraditional(imperative) programmindanguage.
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11.

12.

13.

14.

15.

16.

[Level 3]

Supposehe agents sphereof perceptionin the vacuumworld is enlaged, so that
it canseethe wholeof its world, andseeexactly wherethe dirt lay. In this case,t

would be possibleto generatean optimal decision-makinglgorithm— onewhich

clearedup the dirt in the smallesttime possible.Try and think of such general
algorithms,and try to codethem both in first-orderlogic and a more traditional
programmindanguagelnvestigatehe effectivenesof thesealgorithmswhenthere
is the possibility of noisein the perceptualnput the agentreceves,(i.e., thereis a
non-zeroprobability that the perceptuainformationis wrong), andtry to develop
decision-makingalgorithmsthat are robustin the presenceof suchnoise.How do

suchalgorithmsperformasthelevel of perceptioris reduced?

[Level 2]
Try developinga solutionto the Mars explorerexamplefrom sectionl.4.2usingthe
logic-basedhpproachHow doesit compareo thereactive solution?

[Level 3]

In the programmindanguageof your choice,implementthe Marsexplorerexample
usingthe subsumptiorarchitecture(To do this, you mayfind it usefulto implement
a simple subsumptiorarchitecture'shell” for programmingdifferent behaiours.)
Investigatethe performancedf the two approachesescribedandseeif you cando
better

[Level 3]

Using the simulatorimplementedor the precedingquestion,seewhat happensas
you increasethe numberof agents.Eventually you shouldseethat overcronding
leadsto a sub-optimalsolution— agentsspendtoo muchtime gettingout of each
otherswayto getary work done.Try to getaroundthis problemby allowing agents
to passsamplego eachother, thusimplementingchains (Seethe descriptionin [15,
p305].)

[Level 4]

Readabouttraditionalcontrol theory, andcomparethe problemsandtechniqueof
controltheoryto whataretrying to accomplishin building intelligentagents How
are the techniquesand problemsof traditional control theory similar to those of
intelligentagentwork, andhow do they differ?

[Level 4]

Oneadwantageof thelogic-basedipproactto building agentss thatthelogic-based
architectures generic first-orderogic turnsoutto extremelypowerful andusefulfor
expressinga rangeof differentpropertiesThusit turnsoutto be possibleto usethe
logic-basedarchitectureo encodea rangeof otherarchitectureskor this exercise,
you should attemptto use first-order logic to encodethe different architectures
(reactve, BDI, layered)describedn this chapter (You will probablyneedto read
the original referencedo be able to do this.) Once completed,you will have a
logical theoryof thearchitecturethatwill sene bothasaformal specificatiorof the
architectureandalsoasa precisemathematicamnodelof it, amenabldo proof. Once
you have your logically-specifiedarchitecturetry to animateit, by mappingyour



1.7 Exerises

10.

11.
12.

13.
14.

15.

16.

17.

47

logicaltheoryof it into, saythe PROL OG programmindanguageWhatcompromises
doyouhaveto make?Doesit seemworthwhiletrying to directly programthe system
in logic, or would it be simplerto implementyour systemin a more pragmatic
programmindanguagegsuchasJavAa)?
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