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1 Intelligent Agents

Michael Wooldridge

1.1 Introduction

Computersarenot very goodat knowing what to do: every actiona computerperforms
mustbe explicitly anticipated,plannedfor, and codedby a programmer. If a computer
programeverencountersasituationthatits designerdid notanticipate,thentheresultis not
usuallypretty— asystemcrashatbest,multiple lossof life atworst.Thismundanefactis
at theheartof our relationshipwith computers.It is soself-evidentto thecomputerliterate
that it is rarelymentioned.And yet it comesasa completesurpriseto thoseencountering
computersfor thefirst time.

For themostpart,we arehappy to acceptcomputersasobedient,literal, unimaginative
servants.For many applications(suchas payroll processing),it is entirely acceptable.
However, for an increasinglylarge numberof applications,we requiresystemsthat can
decidefor themselveswhat they needto do in order to satisfy their designobjectives.
Suchcomputersystemsareknown asagents. Agentsthatmustoperaterobustly in rapidly
changing,unpredictable,or openenvironments,wherethereis asignificantpossibilitythat
actionscan fail areknown as intelligent agents, or sometimesautonomousagents. Here
areexamplesof recentapplicationareasfor intelligentagents:

Whena spaceprobemakes its long flight from Earth to the outerplanets,a ground
crew is usually requiredto continually track its progress,and decidehow to deal
with unexpectedeventualities.This is costly and, if decisionsare requiredquickly,
it is simply not practicable.For thesereasons,organisationslike NASA areseriously
investigatingthepossibilityof makingprobesmoreautonomous— giving themricher
decisionmakingcapabilityandresponsibilities.

Searchingthe Internetfor the answerto a specificquerycan be a long and tedious
process.So, why not allow a computerprogram— an agent— do searchesfor us?
Theagentwould typically begivena querythatwould requiresynthesisingpiecesof
informationfrom variousdifferentInternetinformationsources.Failure would occur
whena particularresourcewasunavailable,(perhapsdueto network failure),or where
resultscouldnotbeobtained.

This chapteris about intelligent agents.Specifically, it aims to give you a thorough



4 IntelligentAgents

introductionto themainissuesassociatedwith thedesignandimplementationof intelligent
agents.After readingit, I hopethatyou will understand:

why agentsareperceived to be an importantnew way of conceptualisingandimple-
mentingcertaintypesof softwareapplication;

what intelligent agentsare (and are not), and how agentsrelate to other software
paradigms— in particular, expertsystemsandobject-orientedprogramming;

the mainapproachesthat have beenadvocatedfor designingandimplementingintel-
ligent agents,the issuessurroundingtheseapproaches,their relative merits,and the
challengesthatfacetheagentimplementor;

the characteristicsof the main programminglanguagesavailable for building agents
today.

The chapteris structuredas follows. First, in section1.2, I describewhat I meanby
the term agent. In section1.3, I presentsomeabstract architectures for agents.That
is, I discusssomegeneralmodelsand propertiesof agentswithout regard to how such
agentsmight be implemented.In section1.4, I discussconcretearchitecturesfor agents.
The variousmajor designroutesthat one can follow in implementingan agentsystem
areoutlinedin this section.In particular, logic-basedarchitectures,reactivearchitectures,
belief-desire-intentionarchitectures,andfinally, layeredarchitecturesfor intelligentagents
aredescribed.Finally, section1.5 introducessomeprototypicalprogramminglanguages
for agentsystems.

Comments on notation

This chaptermakesuseof simplemathematicalnotationin orderto make ideasprecise.
Theformalismusedthatof discretemaths:a basicgroundingin setsandfirst-orderlogic
shouldbequitesufficient to make senseof thevariousdefinitionspresented.In addition:
if S is an arbitraryset,then℘

�
S� is the powersetof S, andS� is the setof sequencesof

elementsof S; thesymbol � is usedfor logicalnegation(so � p is read“not p”); � is used
for conjunction(so p � q is read“ p andq”); � is usedfor disjunction(so p � q is read“ p
or q”); andfinally, � is usedfor materialimplication(so p � q is read“ p impliesq”).

1.2 What are agents?

An obvious way to openthis chapterwould be by presentinga definition of the term
agent. After all, this is a book aboutmulti-agentsystems— surely we must all agree
on what an agentis? Surprisingly, there is no suchagreement:there is no universally
accepteddefinitionof the term agent,andindeedthereis a gooddealof ongoingdebate
andcontroversyon this very subject.Essentially, while thereis a generalconsensusthat
autonomyis centralto thenotionof agency, thereis little agreementbeyondthis. Part of
thedifficulty is thatvariousattributesassociatedwith agency areof differing importance
for different domains.Thus, for someapplications,the ability of agentsto learn from
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Figure 1.1 An agentin its environment.Theagenttakessensoryinput from theenviron-
ment,andproducesasoutputactionsthataffect it. The interactionis usuallyanongoing,
non-terminatingone.

their experiencesis of paramountimportance;for otherapplications,learningis not only
unimportant,it is undesirable.

Nevertheless,somesortof definitionis important— otherwise,thereis adangerthatthe
term will loseall meaning(cf. “user friendly”). The definitionpresentedhereis adapted
from [71]: An agent is acomputersystemthatis situatedin someenvironment, andthatis
capableof autonomousaction in thisenvironmentin orderto meetits designobjectives.

There are several points to note about this definition. First, the definition refers to
“agents”andnot “intelligent agents”.Thedistinctionis deliberate:it is discussedin more
detailbelow. Second,thedefinitiondoesnotsayanythingaboutwhattypeof environment
an agentoccupies.Again, this is deliberate:agentscanoccupy many different typesof
environment,aswe shall seebelow. Third, we have not definedautonomy. Like agency
itself, autonomyis a somewhat tricky conceptto tie down precisely, but I meanit in the
sensethatagentsareableto actwithout theinterventionof humansor othersystems:they
have controlbothover their own internalstate,andover their behaviour. In section1.2.3,
we will contrastagentswith the objectsof object-orientedprogramming,and we will
elaboratethis point there.In particular, we will seehow agentsembodya muchstronger
senseof autonomythandoobjects.

Figure1.1givesanabstract,top-level view of anagent.In this diagram,we canseethe
actionoutputgeneratedby theagentin orderto affect its environment.In mostdomainsof
reasonablecomplexity, anagentwill nothavecompletecontroloverits environment.It will
haveat bestpartial control,in thatit caninfluenceit. Fromthepointof view of theagent,
this meansthat the sameaction performedtwice in apparentlyidentical circumstances
might appearto have entirely differenteffects,and in particular, it may fail to have the
desiredeffect.Thusagentsin all but themosttrivial of environmentsmustbepreparedfor
thepossibilityof failure. Wecansumthissituationupformallybysayingthatenvironments
arenon-deterministic.

Normally, anagentwill have a repertoireof actionsavailableto it. This setof possible
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actionsrepresentsthe agentseffectoriccapability: its ability to modify its environments.
Note that not all actionscanbe performedin all situations.For example,an action“lift
table” is only applicablein situationswherethe weight of the tableis sufficiently small
that theagentcan lift it. Similarly, theaction“purchasea Ferrari” will fail if insufficient
fundsareaavailableto do so.Actionsthereforehave pre-conditionsassociatedwith them,
whichdefinethepossiblesituationsin which they canbeapplied.

Thekey problemfacinganagentis thatof decidingwhich of its actionsit shouldperform
in order to bestsatisfy its designobjectives.Agent architectures, of which we shall see
severalexampleslater in this article,arereally softwarearchitecturesfor decisionmaking
systemsthat are embeddedin an environment.The complexity of the decision-making
processcanbe affectedby a numberof differentenvironmentalproperties.Russelland
Norvig suggestthefollowing classificationof environmentproperties[59, p46]:

Accessiblevs inaccessible.
An accessibleenvironmentis one in which the agentcanobtaincomplete,accurate,
up-to-dateinformationabouttheenvironment’sstate.Most moderatelycomplex envi-
ronments(including, for example,the everydayphysicalworld and the Internet)are
inaccessible.Themoreaccessibleanenvironmentis, thesimplerit is to build agentsto
operatein it.

Deterministicvs non-deterministic.
As wehavealreadymentioned,adeterministicenvironmentis onein whichany action
hasa singleguaranteedeffect — thereis no uncertaintyaboutthestatethatwill result
from performingan action.The physicalworld canto all intentsandpurposesbe re-
gardedasnon-deterministic.Non-deterministicenvironmentspresentgreaterproblems
for theagentdesigner.

Episodicvs non-episodic.
In an episodicenvironment,the performanceof an agentis dependenton a number
of discreteepisodes,with no link betweenthe performanceof an agentin different
scenarios.An exampleof anepisodicenvironmentwouldbeamail sortingsystem[60].
Episodicenvironmentsaresimplerfrom theagentdeveloper’sperspective becausethe
agentcandecidewhatactionto performbasedonly on thecurrentepisode— it need
not reasonabouttheinteractionsbetweenthisandfutureepisodes.

Staticvsdynamic.
A staticenvironmentis onethat canbe assumedto remainunchangedexceptby the
performanceof actionsby the agent.A dynamicenvironmentis one that hasother
processesoperatingonit, andwhichhencechangesin waysbeyondtheagent’scontrol.
Thephysicalworld is a highly dynamicenvironment.

Discretevscontinuous.
An environmentis discreteif therearea fixed,finite numberof actionsandperceptsin
it. RussellandNorvig givea chessgameasanexampleof a discreteenvironment,and
taxi driving asanexampleof a continuousone.

As RussellandNorvig observe [59, p46], if anenvironmentis sufficiently complex, then
thefactthatit is actuallydeterministicis notmuchhelp:to all intentsandpurposes,it may
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aswell benon-deterministic.The mostcomplex generalclassof environmentsarethose
thatareinaccessible,non-deterministic,non-episodic,dynamic,andcontinuous.

1.2.1 Examples of Agents

At this point, it is worth pausingto considersomeexamplesof agents(thoughnot,asyet,
intelligentagents):

Any control systemcanbe viewed asan agent.A simple(andoverused)exampleof
sucha systemis a thermostat.Thermostatshave a sensorfor detectingroomtempera-
ture.This sensoris directly embeddedwithin the environment(i.e., the room),andit
producesasoutputoneof two signals:onethatindicatesthatthetemperatureis toolow,
anotherwhichindicatesthatthetemperatureis OK. Theactionsavailableto thethermo-
statare“heatingon” or “heatingoff ”. Theaction“heatingon” will generallyhave the
effect of raisingtheroomtemperature,but this cannotbea guaranteedeffect — if the
doorto theroomis open,for example,switchingon theheatermayhavenoeffect.The
(extremelysimple)decisionmakingcomponentof thethermostatimplements(usually
in electro-mechanicalhardware)thefollowing rules:

toocold �	� heatingon

temperatureOK �	� heatingoff

More complex environmentcontrolsystems,of course,have considerablyricherdeci-
sion structures.Examplesincludeautonomousspaceprobes,fly-by-wire aircraft,nu-
clearreactorcontrolsystems,andsoon.

Mostsoftwaredaemons,(suchasbackgroundprocessesin theUNIX operatingsystem),
whichmonitorasoftwareenvironmentandperformactionsto modify it, canbeviewed
as agents.An example is the X Windows programxbiff. This utility continually
monitorsauser’sincomingemail,andindicatesvia a GUI iconwhetheror notthey have
unreadmessages.Whereasour thermostatagentin the previous exampleinhabiteda
physicalenvironment— thephysicalworld — thexbiff programinhabitsa software
environment.It obtainsinformationaboutthis environmentby carryingout software
functions(by executingsystemprogramssuchasls, for example),andtheactionsit
performsaresoftwareactions(changinganicononthescreen,or executingaprogram).
Thedecisionmakingcomponentis justassimpleasour thermostatexample.

To summarise,agentsaresimplycomputersystemsthatarecapableof autonomousaction
in someenvironmentin orderto meettheirdesignobjectives.An agentwill typically sense
its environment(by physicalsensorsin thecaseof agentssituatedin partof therealworld,
or by softwaresensorsin thecaseof softwareagents),andwill have availablea repertoire
of actionsthatcanbeexecutedto modify theenvironment,which mayappearto respond
non-deterministicallyto theexecutionof theseactions.
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1.2.2 Intelligent Agents

We arenot usedto thinking of thermostatsor UNIX daemonsasagents,andcertainlynot
as intelligent agents.So,whendo we consideran agentto be intelligent?The question,
like thequestionwhat is intelligence?itself, is not aneasyoneto answer. But for me,an
intelligentagentis onethat is capableof flexible autonomousactionin orderto meetits
designobjectives,whereby flexible, I meanthreethings[71]:

reactivity: intelligent agentsareable to perceive their environment,andrespondin a
timely fashionto changesthatoccurin it in orderto satisfytheirdesignobjectives;

pro-activeness: intelligentagentsareableto exhibit goal-directedbehaviour by taking
theinitiative in orderto satisfytheirdesignobjectives;

socialability: intelligentagentsarecapableof interactingwith otheragents(andpossi-
bly humans)in orderto satisfytheirdesignobjectives.

Thesepropertiesaremoredemandingthanthey might at first appear. To seewhy, let us
considerthem in turn. First, considerpro-activeness: goal directedbehaviour. It is not
hard to build a systemthat exhibits goal directedbehaviour — we do it every time we
write a procedurein PASCAL, a function in C, or a methodin JAVA. Whenwe write such
a procedure,we describeit in termsof the assumptionson which it relies(formally, its
pre-condition) andthe effect it hasif the assumptionsarevalid (its post-condition). The
effectsof theprocedureareits goal: whattheauthorof thesoftwareintendstheprocedure
to achieve. If thepre-conditionholdswhentheprocedureis invoked,thenwe expectthat
theprocedurewill executecorrectly: that it will terminate,andthatupontermination,the
post-conditionwill betrue,i.e., thegoalwill beachieved.This is goaldirectedbehaviour:
theprocedureis simply a planor recipefor achieving thegoal.This programmingmodel
is fine for many environments.For example,its workswell whenwe considerfunctional
systems— thosethatsimply takesomeinputx, andproduceasoutputsomesomefunction
f
�
x� of this input.Compilersarea classicexampleof functionalsystems.
But for non-functionalsystems,this simplemodelof goaldirectedprogrammingis not

acceptable,asit makessomeimportantlimiting assumptions.In particular, it assumesthat
the environmentdoesnot change while the procedureis executing.If the environment
doeschange,andin particular, if theassumptions(pre-condition)underlyingtheprocedure
becomefalsewhile theprocedureis executing,thenthe behaviour of theproceduremay
not bedefined— often,it will simply crash.Also, it is assumedthat thegoal,that is, the
reasonfor executingtheprocedure,remainsvalid at leastuntil theprocedureterminates.
If thegoaldoesnot remainvalid, thenthereis simply no reasonto continueexecutingthe
procedure.

In many environments,neitherof theseassumptionsarevalid. In particular, in domains
that are too complex for an agentto observe completely, that aremulti-agent (i.e., they
are populatedwith more than one agentthat can changethe environment),or where
there is uncertaintyin the environment,theseassumptionsare not reasonable.In such
environments,blindly executinga procedurewithout regardto whetherthe assumptions
underpinningthe procedurearevalid is a poor strategy. In suchdynamicenvironments,
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an agentmustbe reactive, in just the way that we describedabove. That is, it mustbe
responsive to eventsthat occur in its environment,wheretheseeventsaffect either the
agent’sgoalsor theassumptionswhichunderpintheproceduresthattheagentis executing
in orderto achieve its goals.

As we have seen,building purely goal directedsystemsis not hard.As we shall see
later in this chapter, building purely reactivesystems— onesthatcontinuallyrespondto
their environment— is alsonot difficult. However, what turnsout to be hardis building
a systemthatachievesaneffective balancebetweengoal-directedandreactive behaviour.
We wantagentsthatwill attemptto achieve their goalssystematically, perhapsby making
useof complex procedure-likepatternsof action.But wedon’t wantouragentsto continue
blindly executingtheseproceduresin anattemptto achieve a goaleitherwhenit is clear
that theprocedurewill not work, or whenthegoal is for somereasonno longervalid. In
suchcircumstances,we want our agentto be able to reactto the new situation,in time
for the reactionto beof someuse.However, we do not wantour agentto becontinually
reacting,andhencenever focussingona goallongenoughto actuallyachieve it.

On reflection,it shouldcomeaslittle surprisethat achieving a goodbalancebetween
goal directedand reactive behaviour is hard. After all, it is comparatively rare to find
humanswho do this very well. How many of ushave hada managerwho stayedblindly
focussedon someproject long after the relevanceof the project was passed,or it was
clearthat theprojectplanwasdoomedto failure?Similarly, how many have encountered
managerswho seemunableto stayfocussedat all, who flit from oneproject to another
withoutevermanagingto pursueagoallongenoughto achieveanything?Thisproblem—
of effectively integratinggoal-directedandreactivebehaviour— isoneof thekey problems
facingtheagentdesigner. As weshallsee,agreatmany proposalshavebeenmadefor how
to build agentsthatcando this— but theproblemis essentiallystill open.

Finally, let us saysomethingaboutsocial ability, the final componentof flexible au-
tonomousactionasdefinedhere.In onesense,socialability is trivial: every day, millions
of computersacrosstheworld routinelyexchangeinformationwith bothhumansandother
computers.But theability to exchangebit streamsis not reallysocialability. Considerthat
in thehumanworld, comparatively few of our meaningfulgoalscanbeachievedwithout
the cooperation of otherpeople,who cannotbe assumedto share our goals— in other
words,they arethemselvesautonomous,with their own agendato pursue.To achieve our
goalsin suchsituations,wemustnegotiateandcooperatewith others.Wemayberequired
to understandandreasonaboutthegoalsof others,andto performactions(suchaspaying
themmoney) thatwewouldnototherwisechooseto perform,in orderto getthemto coop-
eratewith us,andachieveourgoals.This typeof socialability is muchmorecomplex, and
muchlesswell understood,thansimply theability to exchangebinaryinformation.Social
ability in general(andtopicssuchasnegotiationandcooperationin particular)aredealt
with elsewherein this book,andwill not thereforebeconsideredhere.In this chapter, we
will beconcernedwith thedecisionmakingof individualintelligentagentsin environments
whichmaybedynamic,unpredictable,anduncertain,but donotcontainotheragents.
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1.2.3 Agents and Objects

Object-orientedprogrammersoftenfail to seeanythingnovel or new in theideaof agents.
Whenonestopsto considertherelativepropertiesof agentsandobjects,this is perhapsnot
surprising.Objectsaredefinedascomputationalentitiesthatencapsulatesomestate,are
ableto performactions,or methodson thisstate,andcommunicateby messagepassing.

While there are obvious similarities, there are also significant differencesbetween
agentsandobjects.Thefirst is in thedegreeto which agentsandobjectsareautonomous.
Recallthat the definingcharacteristicof object-orientedprogrammingis the principleof
encapsulation— the idea that objectscanhave control over their own internalstate.In
programminglanguageslike JAVA, we candeclareinstancevariables(andmethods)to be
private, meaningthey areonly accessiblefrom within theobject.(We canof coursealso
declarethempublic, meaningthat they canbeaccessedfrom anywhere,andindeedwe
mustdo this for methodssothatthey canbeusedby otherobjects.But theuseof public
instancevariablesis usuallyconsideredpoor programmingstyle.) In this way, an object
canbethoughtof asexhibiting autonomyover its state:it hascontrolover it. But anobject
doesnot exhibit control over it’s behaviour. That is, if a methodm is madeavailablefor
otherobjectsto invoke,thenthey candosowheneverthey wish— onceanobjecthasmade
a methodpublic, thenit subsequentlyhasno controlover whetheror not thatmethodis
executed.Of course,an objectmustmake methodsavailableto otherobjects,or elsewe
would beunableto build a systemout of them.This is not normallyan issue,becauseif
we build a system,thenwe designtheobjectsthatgo in it, andthey canthusbeassumed
to sharea “commongoal”. But in many typesof multi-agentsystem,(in particular, those
thatcontainagentsbuilt by differentorganisationsor individuals),no suchcommongoal
canbe assumed.It cannotbe for grantedthat an agenti will executean action(method)
a just becauseanotheragent j wantsit to — a may not be in the bestinterestsof i. We
thusdonot think of agentsasinvokingmethodsuponone-another, but ratherasrequesting
actionstobeperformed.If j requestsi to performa, theni mayperformtheactionor it may
not. The locusof controlwith respectto thedecisionaboutwhetherto executeanaction
is thusdifferentin agentandobjectsystems.In theobject-orientedcase,thedecisionlies
with theobjectthatinvokesthemethod.In theagentcase,thedecisionlies with theagent
that receivesthe request.I have heardthis distinctionbetweenobjectsandagentsnicely
summarisedin thefollowing slogan:Objectsdo it for free;agentsdo it for money.

Note that thereis nothingto stopus implementingagentsusingobject-orientedtech-
niques.For example,wecanbuild somekind of decisionmakingaboutwhetherto execute
a methodinto themethoditself, andin this way achieve a strongerkind of autonomyfor
ourobjects.Thepoint is thatautonomyof thiskind is notacomponentof thebasicobject-
orientedmodel.

The secondimportantdistinctionbetweenobjectandagentsystemsis with respectto
the notion of flexible (reactive, pro-active, social) autonomousbehaviour. The standard
objectmodelhasnothingwhatsoeverto sayabouthow to build systemsthatintegratethese
typesof behaviour. Again, onecould object that we canbuild object-orientedprograms
that do integratethesetypesof behaviour. But this argumentmissesthe point, which is
thatthestandardobject-orientedprogrammingmodelhasnothingto dowith thesetypesof
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behaviour.
Thethird importantdistinctionbetweenthestandardobjectmodelandourview of agent

systemsis that agentsareeachconsideredto have their own threadof control — in the
standardobjectmodel,thereis a singlethreadof control in the system.Of course,a lot
of work hasrecentlybeendevotedto concurrencyin object-orientedprogramming.For
example,theJAVA languageprovidesbuilt-in constructsfor multi-threadedprogramming.
Therearealsomany programminglanguagesavailable(mostof themadmittedlyproto-
types)thatwerespecificallydesignedto allow concurrentobject-basedprogramming.But
suchlanguagesdonot capturetheideawehaveof agentsasautonomousentities.Perhaps
theclosestthattheobject-orientedcommunitycomesis in theideaof activeobjects:

An activeobject is onethat encompassesits own threadof control [. . . ]. Activeobjects
are generally autonomous,meaningthat they can exhibit somebehaviourwithout being
operateduponby anotherobject.Passiveobjects,on theotherhand,canonly undergo a
statechangewhenexplicitly actedupon.[5, p91]

Thusactiveobjectsareessentiallyagentsthatdonotnecessarilyhavetheability to exhibit
flexible autonomousbehaviour.

To summarise,the traditionalview of anobjectandour view of anagenthave at least
threedistinctions:

agentsembodystrongernotionof autonomythanobjects,andin particular, they decide
for themselveswhetheror not to performanactionon requestfrom anotheragent;

agentsarecapableof flexible (reactive,pro-active,social)behaviour, andthestandard
objectmodelhasnothingto sayaboutsuchtypesof behaviour;

amulti-agentsystemis inherentlymulti-threaded,in thateachagentis assumedto have
at leastonethreadof control.

1.2.4 Agents and Expert Systems

Expert systemswere the most important AI technologyof the 1980s[31]. An expert
systemis onethat is capableof solving problemsor giving advicein someknowledge-
rich domain[32]. A classicexampleof an expert systemis MYCIN, which wasintended
to assistphysiciansin the treatmentof blood infectionsin humans.MYCIN worked by
a processof interactingwith a user in order to presentthe systemwith a numberof
(symbolicallyrepresented)facts,which the systemthenusedto derive someconclusion.
MYCIN actedvery muchasa consultant: it did not operatedirectly on humans,or indeed
any otherenvironment.Thusperhapsthe mostimportantdistinctionbetweenagentsand
expertsystemsis thatexpertsystemslike MYCIN areinherentlydisembodied. By this,we
meanthatthey donot interactdirectlywith any environment:they gettheir informationnot
via sensors,but througha useractingasmiddleman.In thesameway, they do not act on
any environment,but rathergivefeedbackor adviceto a third party. In addition,wedonot
generallyrequireexpertsystemsto becapableof co-operatingwith otheragents.Despite
thesedifferences,someexpertsystems,(particularlythosethatperformreal-timecontrol
tasks),look verymuchlikeagents.A goodexampleis theARCHON system[33].
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Sources and Further Reading

A view of artificial intelligenceas the processof agentdesign is presentedin [59],
and in particular, Chapter2 of [59] presentsmuch useful material. The definition of
agentspresentedhereis basedon [71], which alsocontainsanextensive review of agent
architecturesandprogramminglanguages.In addition,[71] containsa detailedsurvey of
agent theories— formalismsfor reasoningabout intelligent, rational agents,which is
outsidethescopeof this chapter. Thisquestionof “what is anagent”is onethatcontinues
to generatesomedebate;a collectionof answersmaybe found in [48]. The relationship
betweenagentsandobjectshasnot beenwidely discussedin the literature,but see[24].
Otherreadableintroductionsto theideaof intelligentagentsinclude[34] and[13].

1.3 Abstract Architectures for Intelligent Agents

We caneasilyformalisetheabstractview of agentspresentedsofar. First,wewill assume
that the stateof the agent’s environmentcan be characterisedas a set S 
�� s1 
 s2 
��������
of environmentstates. At any given instant,the environmentis assumedto be in oneof
thesestates.The effectoric capabilityof an agentis assumedto be representedby a set
A 
�� a1 
 a2 
�������� of actions. Thenabstractly, anagentcanbeviewedasa function

action : S� � A

whichmapssequencesof environmentstatesto actions.Wewill referto anagentmodelled
by a functionof this form asa standard agent. Theintuition is thatanagentdecideswhat
actionto performon thebasisof its history— its experiencesto date.Theseexperiences
arerepresentedasa sequenceof environmentstates— thosethat the agenthasthusfar
encountered.

The(non-deterministic)behaviour of ananenvironmentcanbemodelledasa function

env : S � A � ℘
�
S�

which takesthecurrentstateof theenvironments � Sandanactiona � A (performedby
theagent),andmapsthemto asetof environmentstatesenv

�
s
 a� — thosethatcouldresult

from performingactiona in states. If all thesetsin therangeof env areall singletons,(i.e.,
if theresultof performingany actionin any stateis asetcontainingasinglemember),then
theenvironmentis deterministic, andits behaviour canbeaccuratelypredicted.

We canrepresenttheinteractionof agentandenvironmentasa history. A historyh is a
sequence:

h : s0
a0��� s1

a1��� s2
a2��� s3

a3��������� au � 1�	� su
au���������

wheres0 is the initial stateof the environment(i.e., its statewhenthe agentstartsexe-
cuting),au is the u’ th actionthat the agentchoseto perform,andsu is the u’ th environ-
mentstate(which is oneof thepossibleresultsof executingactionau � 1 in statesu � 1). If
action : S� � A is anagent,env : S � A � ℘

�
S� is anenvironment,ands0 is theinitial state
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of theenvironment,thenthesequence

h : s0
a0�	� s1

a1��� s2
a2�	� s3

a3��������� au � 1��� su
au���������

will representa possiblehistory of the agentin the environmentif f the following two
conditionshold:�

u � IN 
 au 
 action
���

s0 
 s1 
�������
 su ���
and�

u � IN suchthatu  0 
 su � env
�
su � 1 
 au � 1 � �

Thecharacteristicbehaviourof anagentaction : S��� A in anenvironmentenv : S � A �
℘
�
S� is the setof all the historiesthat satisfytheseproperties.If somepropertyφ holds

of all thesehistories,this this propertycan be regardedas an invariantpropertyof the
agentin the environment.For example,if our agentis a nuclearreactorcontroller, (i.e.,
theenvironmentis a nuclearreactor),andin all possiblehistoriesof thecontroller/reactor,
thereactordoesnot blow up, thenthis canberegardedasa (desirable)invariantproperty.
Wewill denoteby hist

�
agent 
 environment � thesetof all historiesof agent in environment.

Two agentsag1 andag2 aresaidtobebehaviourally equivalentwith respecttoenvironment
env if f hist

�
ag1 
 env�!
 hist

�
ag2 
 env� , and simply behaviourally equivalent if f they are

behaviourally equivalentwith respectto all environments.
In general,we are interestedin agentswhoseinteractionwith their environmentdoes

notend, i.e., they arenon-terminating. In suchcases,thehistoriesthatweconsiderwill be
infinite.

1.3.1 Purely Reactive Agents

Certaintypesof agentsdecidewhat to do without referenceto their history. They base
their decisionmakingentirelyon thepresent,with no referenceat all to thepast.We will
call suchagentspurely reactive, sincethey simply responddirectly to their environment.
Formally, thebehaviour of a purelyreactiveagentcanberepresentedby a function

action : S � A �
It shouldbeeasyto seethatfor everypurelyreactiveagent,thereis anequivalentstandard
agent;thereverse,however, is notgenerallythecase.

Our thermostatagentis anexampleof a purelyreactive agent.Assume,without lossof
generality, thatthethermostat’senvironmentcanbein oneof two states— eithertoocold,
or temperatureOK. Thenthethermostat’sactionfunctionis simply

action
�
s�"


#
heateroff if s= temperatureOK

heateron otherwise.
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ENVIRONMENT

action

AGENT

see

Figure 1.2 Perceptionandactionsubsystems.

1.3.2 Perception

Viewing agentsat this abstractlevel makesfor a pleasantlysimply analysis.However, it
doesnot help us to constructthem,sinceit givesus no cluesabouthow to designthe
decisionfunctionaction. For thisreason,wewill now begin to refineourabstractmodelof
agents,by breakingit down into sub-systemsin exactly theway thatonedoesin standard
softwareengineering.As we refineour view of agents,we find ourselvesmakingdesign
choicesthatmostlyrelateto thesubsystemsthatgo to makeup anagent— whatdataand
controlstructureswill bepresent.An agentarchitecture is essentiallyamapof theinternals
of an agent— its datastructures,the operationsthat may be performedon thesedata
structures,andthecontrolflow betweenthesedatastructures.Laterin thischapter, wewill
discussa numberof differenttypesof agentarchitecture,with very differentviews on the
datastructuresandalgorithmsthatwill bepresentwithin anagent.In theremainderof this
section,however, wewill survey somefairly high-level designdecisions.Thefirst of these
is theseparationof anagent’sdecisionfunctioninto perceptionandactionsubsystems:see
Figure 1.2.

Theideais thatthefunctionseecapturestheagent’sability to observe its environment,
whereasthe action function representsthe agent’s decisionmaking process.The see
functionmightbeimplementedin hardwarein thecaseof anagentsituatedin thephysical
world: for example,it might bea videocameraor an infra-redsensoron a mobilerobot.
For asoftwareagent,thesensorsmightbesystemcommandsthatobtaininformationabout
thesoftwareenvironment,suchasls, finger, or suchlike.Theoutputof theseefunction
is a percept— a perceptualinput. Let P be a (non-empty)setof percepts.Thenseeis a
function

see: S � P

whichmapsenvironmentstatesto percepts,andaction is now a function

action : P� � A
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whichmapssequencesof perceptsto actions.
Thesesimpledefinitionsallow us to exploresomeinterestingpropertiesof agentsand

perception.Supposethat we have two environmentstates,s1 � S and s2 � S, suchthat
s1 $
 s2, but see

�
s1 �%
 see

�
s2 � . Thentwo different environmentstatesaremappedto the

samepercept,andhencethe agentwould receive the sameperceptualinformationfrom
different environmentstates.As far as the agentis concerned,therefore,s1 and s2 are
indistinguishable. To make this exampleconcrete,let usreturnto thethermostatexample.
Let x representthestatement

“the roomtemperatureis OK”

andlet y representthestatement

“JohnMajor is PrimeMinister”.

If thesearetheonly two factsaboutour environmentthatwe areconcernedwith, then
thesetSof environmentstatescontainsexactly four elements:

S 
&�'�(� x 
 � y �) *,+ -
s1


 �.� x 
 y �) */+ -
s2


 � x 
 � y �) *,+ -
s3


 � x 
 y �) */+ -
s4

�
Thusin states1, theroomtemperatureis notOK, andJohnMajor is notPrimeMinister;

in states2, theroomtemperatureis not OK, andJohnMajor is PrimeMinister. Now, our
thermostatis sensitive only to temperaturesin the room. This room temperatureis not
causallyrelatedto whetheror not JohnMajor is PrimeMinister. Thus the stateswhere
JohnMajor is andis not PrimeMinister areliterally indistinguishableto the thermostat.
Formally, theseefunctionfor thethermostatwould have two perceptsin its range,p1 and
p2, indicatingthatthetemperatureis toocoldor OK respectively. Theseefunctionfor the
thermostatwouldbehaveasfollows:

see
�
s�0


#
p1 if s 
 s1 or s 
 s2

p2 if s 
 s3 or s 
 s4.

Giventwo environmentstatess � Sands12� S, let uswrite s 3 s1 if see
�
s�4
 see

�
s1�� . It is

nothardto seethat 3 is anequivalencerelationoverenvironmentstates,which partitions
S into mutually indistinguishablesetsof states.Intuitively, the coarsertheseequivalence
classesare,the lesseffective is the agent’s perception.If 56375.
75S5 , (i.e., the numberof
distinct perceptsis equalto the numberof differentenvironmentstates),then the agent
candistinguishevery state— the agenthasperfectperceptionin the environment;it is
omniscient. At the otherextreme,if 56375.
 1, thenthe agent’s perceptualability is non-
existent— it cannotdistinguishbetweenany differentstates.In this case,as far as the
agentis concerned,all environmentstatesareidentical.

1.3.3 Agents with state

We have so far beenmodellinganagent’s decisionfunctionaction asfrom sequencesof
environmentstatesor perceptstoactions.Thisallowsusto representagentswhosedecision
makingis influencedby history. However, this is a somewhat unintuitive representation,



16 IntelligentAgents

actionsee

next state

AGENT

ENVIRONMENT

Figure 1.3 Agentsthatmaintainstate.

andweshallnow replaceit by anequivalent,but somewhatmorenaturalscheme.Theidea
is thatwenow consideragentsthatmaintainstate— seeFigure1.3.

Theseagentshave someinternaldatastructure,which is typically usedto recordin-
formationaboutthe environmentstateandhistory. Let I be the setof all internalstates
of the agent.An agent’s decisionmakingprocessis thenbased,at leastin part, on this
information.The perceptionfunction seefor a state-basedagentis unchanged,mapping
environmentstatesto perceptsasbefore:

see: S � P

Theaction-selectionfunctionaction is now defineda mapping

action : I � A

from internalstatesto actions.An additionalfunctionnext is introduced,which mapsan
internalstateandperceptto aninternalstate:

next : I � P � I

The behaviour of a state-basedagentcanbe summarisedasfollows. The agentstartsin
someinitial internalstatei0. It thenobservesitsenvironmentstates, andgeneratesapercept
see

�
s� . The internalstateof theagentis thenupdatedvia thenext function,becomingset

to next
�
i0 
 see

�
s��� . The actionselectedby the agentis thenaction

�
next

�
i0 
 see

�
s����� . This

actionis thenperformed,andtheagententersanothercycle,perceiving theworld via see,
updatingits statevia next, andchoosinganactionto performvia action.

It is worthobservingthatstate-basedagentsasdefinedherearein factnomorepowerful
thanthestandardagentswe introducedearlier. In fact, they are identical in their expres-
sive power — every state-basedagentcan be transformedinto a standardagentthat is
behaviourally equivalent.
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Sources and Further Reading

Theabstractmodelof agentspresentedhereis basedonthatgivenin [25, Chapter13], and
alsomakesuseof someideasfrom [61, 60]. Thepropertiesof perceptionasdiscussedin
this sectionleadto knowledge theory, a formalanalysisof theinformationimplicit within
thestateof computerprocesses,which hashada profoundeffect in theoreticalcomputer
science.Thedefinitive referenceis [14], andanintroductorysurvey is [29].

1.4 Concrete Architectures for Intelligent Agents

Thusfar, we have consideredagentsonly in theabstract.Sowhile we have examinedthe
propertiesof agentsthat do anddo not maintainstate,we have not stoppedto consider
whatthisstatemight look like.Similarly, wehavemodelledanagent’sdecisionmakingas
anabstractfunctionaction, which somehow managesto indicatewhich actionto perform
— but wehavenot discussedhow this functionmightbeimplemented.In thissection,we
will rectify thisomission.We will considerfour classesof agents:

logic basedagents— in whichdecisionmakingis realisedthroughlogicaldeduction;

reactiveagents— in which decisionmakingis implementedin someform of direct
mappingfrom situationto action;

belief-desire-intentionagents— in which decisionmakingdependsuponthe manip-
ulationof datastructuresrepresentingthebeliefs,desires,andintentionsof theagent;
andfinally,

layered architectures — in which decisionmaking is realisedvia varioussoftware
layers,eachof which is more-or-lessexplicitly reasoningabout the environmentat
differentlevelsof abstraction.

In eachof thesecases,wearemovingawayfrom theabstractview of agents,andbeginning
to makequitespecificcommitmentsabouttheinternalstructureandoperationof agents.In
eachsection,I will try to explain thenatureof thesecommitments,theassumptionsupon
which thearchitecturesdepend,andtherelativeadvantagesanddisadvantagesof each.

1.4.1 Logic-based Architectures

The“traditional” approachto building artificially intelligentsystems,(known assymbolic
AI) suggeststhatintelligentbehaviour canbegeneratedin asystemby giving thatsystema
symbolicrepresentationof its environmentandits desiredbehaviour, andsyntacticallyma-
nipulatingthisrepresentation.In thissection,wefocusontheapotheosisof thistradition,in
which thesesymbolicrepresentationsarelogical formulae, andthesyntacticmanipulation
correspondsto logical deduction, or theoremproving.

The idea of agentsas theoremprovers is seductive. Supposewe have sometheory
of agency — sometheory that explains how an intelligent agentshouldbehave. This
theorymightexplain,for example,how anagentgeneratesgoalssoasto satisfyits design
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objective,how it interleavesgoal-directedandreactivebehaviour in orderto achievethese
goals,andsoon.Thenthis theoryφ canbeconsideredasa specificationfor how anagent
shouldbehave. The traditionalapproachto implementinga systemthat will satisfy this
specificationwould involve refining the specificationthrougha seriesof progressively
moreconcretestages,until finally an implementationwasreached.In theview of agents
astheoremprovers,however, no suchrefinementtakesplace.Instead,φ is viewed asan
executablespecification: it is directlyexecutedin orderto producetheagent’sbehaviour.

To seehow suchan ideamight work, we shalldevelopa simplemodelof logic-based
agents,whichwe shallcall deliberateagents.In suchagents,theinternalstateis assumed
tobeadatabaseof formulaeof classicalfirst-orderpredicatelogic.Forexample,theagent’s
databasemightcontainformulaesuchas:

Open
�
valve221�

Temperature
�
reactor4726
 321�

Pressure
�
tank776
 28�

It is notdifficult to seehow formulaesuchasthesecanbeusedto representtheproperties
of someenvironment.Thedatabaseis the informationthattheagenthasaboutits environ-
ment.An agent’s databaseplaysa somewhatanalogousrole to that of belief in humans.
Thusapersonmighthaveabelief thatvalve221is open— theagentmighthavethepred-
icateOpen

�
valve221� in its database.Of course,just like humans,agentscanbe wrong.

ThusI might believe thatvalve221is openwhenit is in factclosed;thefactthatanagent
hasOpen

�
valve221� in its databasedoesnot meanthatvalve 221(or indeedany valve) is

open.Theagent’ssensorsmaybefaulty, its reasoningmaybefaulty, theinformationmay
beoutof date,or theinterpretationof theformulaOpen

�
valve221� intendedby theagent’s

designermaybesomethingentirelydifferent.
Let L bethesetof sentencesof classicalfirst-orderlogic, andlet D 
 ℘

�
L � betheset

of L databases, i.e., thesetof setsof L-formulae.Theinternalstateof anagentis thenan
elementof D. We write ∆ 
 ∆1 
������ for membersof D. The internalstateof anagentis then
simply a memberof thesetD. An agent’sdecisionmakingprocessis modelledthrougha
setof deductionrules, ρ. Thesearesimplyrulesof inferencefor thelogic.Wewrite ∆ 8 ρ φ
if the formulaφ canbeprovedfrom thedatabase∆ usingonly thedeductionrulesρ. An
agentsperceptionfunctionseeremainsunchanged:

see: S � P�
Similarly, ournext functionhastheform

next : D � P � D

It thus mapsa databaseand a perceptto a new database.However, an agent’s action
selectionfunction,whichhasthesignature

action : D � A

is definedin termsof its deductionrules.Thepseudo-codedefinitionof this functionis as
follows.
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1. function action
�
∆ : D � : A

2. begin
3. for each a � A do
4. if ∆ 8 ρ Do

�
a� then

5. return a
6. end-if
7. end-for
8. for each a � A do
9. if ∆ $8 ρ � Do

�
a� then

10. return a
11. end-if
12. end-for
13. return null
14. end function action

The ideais that theagentprogrammerwill encodethedeductionrulesρ anddatabase
∆ in sucha way that if a formula Do

�
a� canbe derived,wherea is a term that denotes

anaction,thena is thebestactionto perform.Thus,in thefirst partof thefunction(lines
(3)–(7)), the agenttakeseachof its possibleactionsa in turn, andattemptsto prove the
form theformulaDo

�
a� from its database(passedasa parameterto thefunction)usingits

deductionrulesρ. If theagentsucceedsin proving Do
�
a� , thena is returnedastheaction

to beperformed.
What happensif the agentfails to prove Do

�
a� , for all actionsa � A? In this case,it

attemptsto find anactionthatis consistentwith therulesanddatabase,i.e.,onethatis not
explicitly forbidden.In lines(8)–(12),therefore,theagentattemptsto find anactiona � A
suchthat � Do

�
a� cannotbe derived from its databaseusingits deductionrules.If it can

find suchan action,thenthis is returnedasthe actionto be performed.If, however, the
agentfails to find anactionthat is at leastconsistent,thenit returnsa specialactionnull
(or noop), indicatingthatnoactionhasbeenselected.

In this way, the agent’s behaviour is determinedby the agent’s deductionrules (its
“program”) andits currentdatabase(representingthe informationtheagenthasaboutits
environment).

To illustratetheseideas,let usconsiderasmallexample(basedon thevacuumcleaning
world exampleof [59, p51]).Theideais thatwehavea smallroboticagentthatwill clean
up a house.Therobot is equippedwith a sensorthatwill tell it whetherit is overany dirt,
anda vacuumcleanerthatcanbeusedto suckup dirt. In addition,therobotalwayshasa
definiteorientation(oneof north, south, east, or west). In additionto beingableto suck
up dirt, theagentcanmove forwardone“step” or turn right 909 . Theagentmovesaround
a room,which is divided grid-like into a numberof equallysizedsquares(conveniently
correspondingto theunit of movementof theagent).We will assumethatour agentdoes
nothingbut clean— it never leavestheroom,andfurther, we will assumein theinterests
of simplicity thattheroomis a 3 � 3 grid, andtheagentalwaysstartsin grid square

�
0 
 0�

facingnorth.
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dirt dirt

(0,0) (1,0) (2,0)

(0,1)

(0,2)

(1,1) (2,1)

(2,2)(1,2)

Figure 1.4 Vacuumworld

To summarise,ouragentcanreceivea perceptdirt (signifying thatthereis dirt beneath
it), or null (indicatingno specialinformation).It canperformany oneof threepossible
actions:f orward, suck, or turn. Thegoalis to traversetheroomcontinuallysearchingfor
andremoving dirt. SeeFigure1.4for anillustrationof thevacuumworld.

First,notethatwemakeuseof threesimpledomainpredicatesin thisexercise:

In
�
x 
 y� agentis at

�
x 
 y�

Dirt
�
x 
 y� thereis dirt at

�
x 
 y�

Facing
�
d � theagentis facingdirectiond

Now we specifyour next function.This functionmustlook at theperceptualinformation
obtainedfrom the environment(eitherdirt or null ), andgeneratea new databasewhich
includesthis information.But in addition,it must remove old or irrelevant information,
andalso,it musttry to figureout the new locationandorientationof the agent.We will
thereforespecifythenext functionin severalparts.First, let uswrite old

�
∆ � to denotethe

setof “old” informationin a database,whichwewanttheupdatefunctionnext to remove:

old
�
∆ �4
&� P � t1 
�������
 tn �:5 P �;� In 
 Dirt 
 Facing� andP

�
t1 
�������
 tn �<� ∆ �

Next, we requirea function new, which gives the set of new predicatesto add to the
database.This functionhasthesignature

new : D � P � D

Thedefinitionof this functionis not difficult, but it is ratherlengthy, andsowe will leave
it asan exercise.(It mustgeneratethe predicatesIn

� ����� � , describingthe new positionof
theagent,Facing

� ����� � describingtheorientationof theagent,andDirt
� ����� � if dirt hasbeen

detectedat thenew position.)Giventhenew andold functions,thenext functionis defined
asfollows:

next
�
∆ 
 p�4
 �

∆ = old
�
∆ ���2> new

�
∆ 
 p�

Now we canmove on to therulesthatgovernour agent’s behaviour. Thedeductionrules
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havetheform

φ
� ����� �?��� ψ

� ����� �
whereφ andψ arepredicatesover somearbitrarylist of constantsandvariables.Theidea
beingthat if φ matchesagainstthe agent’s database,thenψ canbe concluded,with any
variablesin ψ instantiated.

Thefirst ruledealswith thebasiccleaningactionof theagent:thisrulewill takepriority
overall otherpossiblebehavioursof theagent(suchasnavigation).

In
�
x 
 y�2� Dirt

�
x 
 y�?��� Do

�
suck � (1.1)

Henceif the agentis at location
�
x 
 y� and it perceives dirt, then the prescribedaction

will be to suck up dirt. Otherwise,the basicaction of the agentwill be to traversethe
world. Takingadvantageof thesimplicity of our environment,we will hardwirethebasic
navigationalgorithm,sothattherobotwill alwaysmove from

�
0 
 0� to

�
0 
 1� to

�
0 
 2� and

thento
�
1 
 2� , � 1 
 1� andsoon. Oncetheagentreaches

�
2 
 2� , it mustheadbackto

�
0 
 0� .

Therulesdealingwith thetraversalup to
�
0 
 2� areverysimple.

In
�
0 
 0�2� Facing

�
north�2�@� Dirt

�
0 
 0����� Do

�
f orward � (1.2)

In
�
0 
 1�2� Facing

�
north�2�@� Dirt

�
0 
 1����� Do

�
f orward � (1.3)

In
�
0 
 2�2� Facing

�
north�2�@� Dirt

�
0 
 2����� Do

�
turn� (1.4)

In
�
0 
 2�2� Facing

�
east �4��� Do

�
f orward � (1.5)

Noticethatin eachrule,wemustexplicitly checkwhethertheantecedentof rule(1.1)fires.
This is to ensurethatwe only ever prescribeoneactionvia theDo

� ����� � predicate.Similar
rulescaneasilybe generatedthat will get the agentto

�
2 
 2� , andonceat

�
2 
 2� backto�

0 
 0� . It is notdifficult to seethattheserules,togetherwith thenext function,will generate
therequiredbehaviour of ouragent.

At thispoint, it is worthsteppingbackandexaminingthepragmaticsof thelogic-based
approachto building agents.Probablythe most importantpoint to make is that a literal,
naive attemptto build agentsin this way would be moreor lessentirely impractical.To
seewhy, supposewe have designedout agent’s rule setρ suchthat for any database∆, if
we canprove Do

�
a� thena is anoptimalaction— that is, a is thebestactionthatcould

beperformedwhentheenvironmentis asdescribedin ∆. Thenimaginewe startrunning
our agent.At time t1, the agenthasgeneratedsomedatabase∆1, andbegins to apply its
rulesρ in orderto find which actionto perform.Sometime later, at time t2, it manages
to establish∆1 8 ρ Do

�
a� for somea � A, and so a is the optimal action that the agent

couldperformat time t1. But if theenvironmenthaschangedbetweent1 andt2, thenthere
is no guaranteethat a will still be optimal. It could be far from optimal, particularly if
muchtime haselapsedbetweent1 andt2. If t2 � t1 is infinitesimal— that is, if decision
makingis effectively instantaneous— thenwe could safelydisregardthis problem.But
in fact, we know that reasoningof the kind our logic-basedagentsusewill be anything
but instantaneous.(If our agentusesclassicalfirst-orderpredicatelogic to representthe
environment,and its rules are soundand complete,then there is no guaranteethat the
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decisionmakingprocedurewill even terminate.) An agentis saidto enjoy thepropertyof
calculativerationality if andonly if its decisionmakingapparatuswill suggestanaction
thatwasoptimalwhenthedecisionmakingprocessbegan. Calculativerationalityis clearly
notacceptablein environmentsthatchangefasterthantheagentcanmakedecisions— we
shallreturnto thispoint later.

One might argue that this problem is an artifact of the pure logic-basedapproach
adoptedhere.Thereis an elementof truth in this. By moving away from strictly logical
representationlanguagesandcompletesetsof deductionrules,onecanbuild agentsthat
enjoy respectableperformance.But onealsoloseswhatis arguablythegreatestadvantage
thatthelogicalapproachbrings:a simple,elegantlogicalsemantics.

Thereareseveralotherproblemsassociatedwith the logical approachto agency. First,
theseefunctionof anagent,(its perceptioncomponent),mapsits environmentto apercept.
In thecaseof a logic-basedagent,this perceptis likely to besymbolic— typically, a set
of formulaein the agent’s representationlanguage.But for many environments,it is not
obvioushow the mappingfrom environmentto symbolicperceptmight be realised.For
example,the problemof transformingan imageto a setof declarative statementsrepre-
sentingthat imagehasbeentheobjectof studyin AI for decades,andis still essentially
open.Anotherproblemis thatactuallyrepresentingpropertiesof dynamic,real-world en-
vironmentsis extremelyhard.As anexample,representingandreasoningabouttemporal
information— how a situationchangesover time — turnsout to be extraordinarilydif-
ficult. Finally, as the simplevacuumworld exampleillustrates,representingeven rather
simpleprocedural knowledge(i.e.,knowledgeabout“what to do”) in traditionallogic can
beratherunintuitiveandcumbersome.

To summarise,in logic-basedapproachesto building agents,decisionmakingis viewed
asdeduction.An agent’s “program”— that is, its decisionmakingstrategy — is encoded
asa logical theory, andtheprocessof selectingan actionreducesto a problemof proof.
Logic-basedapproachesareelegant,andhave a clean(logical) semantics— whereinlies
muchof their long-livedappeal.But logic-basedapproacheshave many disadvantages.In
particular, the inherentcomputationalcomplexity of theoremproving makesit question-
ablewhetheragentsastheoremproverscanoperateeffectively in time-constrainedenvi-
ronments.Decisionmakingin suchagentsis predicatedon theassumptionof calculative
rationality— theassumptionthat theworld will not changein any significantway while
theagentis decidingwhatto do,andthatanactionwhichis rationalwhendecisionmaking
beginswill berationalwhenit concludes.Theproblemsassociatedwith representingand
reasoningaboutcomplex, dynamic,possiblyphysicalenvironmentsare also essentially
unsolved.

Sources and Further Reading

My presentationof logic basedagentsis basedlargely on the discussionof deliberate
agentspresentedin [25, Chapter13], which representsthe logic-centricview of AI and
agentsvery well. The discussionis also partly basedon [38]. A numberof more-or-
less“pure” logical approachesto agentprogramminghave beendeveloped.Well-known
examplesinclude the CONGOLOG systemof Lesṕeranceand colleagues[39] (which is
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basedon the situation calculus [45]) and the METATEM and ConcurrentMETATEM
programminglanguagesdevelopedby Fisherandcolleagues[3, 21] (in which agentsare
programmedby giving them temporal logic specificationsof the behaviour they should
exhibit). ConcurrentMETATEM is discussedasacasestudyin section1.5.Notethatthese
architectures(andthe discussionabove) assumethat if oneadoptsa logical approachto
agent-building, thenthismeansagentsareessentiallytheoremprovers,employing explicit
symbolic reasoning(theoremproving) in order to make decisions.But just becausewe
find logic a usefultool for conceptualisingor specifyingagents,this doesnot meanthat
we mustview decision-makingaslogical manipulation.An alternative is to compilethe
logical specificationof anagentinto a form moreamenableto efficient decisionmaking.
Thedifferenceis ratherlikethedistinctionbetweeninterpretedandcompiledprogramming
languages.The best-known exampleof this work is the situatedautomataparadigmof
LeslieKaelblingandStanley Rosenschein[58]. A review of theroleof logic in intelligent
agentsmaybefoundin [70]. Finally, for adetaileddiscussionof calculativerationalityand
theway thatit hasaffectedthinking in AI, see[60].

1.4.2 Reactive Architectures

Theseeminglyintractableproblemswith symbolic/logicalapproachesto building agents
led someresearchersto question,andultimatelyreject,theassumptionsuponwhich such
approachesarebased.Theseresearchershave arguedthatminor changesto thesymbolic
approach,suchasweakeningthelogical representationlanguage,will not besufficient to
build agentsthatcanoperatein time-constrainedenvironments:nothinglessthana whole
new approachis required.In themid-to-late1980s,theseresearchersbeganto investigate
alternativesto thesymbolicAI paradigm.It is difficult to neatlycharacterisethesedifferent
approaches,sincetheir advocatesareunitedmainly by a rejectionof symbolicAI, rather
thanby a commonmanifesto.However, certainthemesdo recur:

the rejectionof symbolicrepresentations,andof decisionmakingbasedon syntactic
manipulationof suchrepresentations;

theideathatintelligent,rationalbehaviour is seenasinnatelylinkedto theenvironment
anagentoccupies— intelligentbehaviour is not disembodied,but is a productof the
interactiontheagentmaintainswith its environment;

the idea that intelligent behaviour emerges from the interactionof various simpler
behaviours.

Alternative approachesto agency aresometimereferredto asbehavioural (sincea com-
mon themeis thatof developingandcombiningindividual behaviours),situated(sincea
commonthemeis thatof agentsactuallysituatedin someenvironment,ratherthanbeing
disembodiedfrom it), andfinally — the term I will use— reactive(becausesuchsys-
temsareoften perceivedassimply reactingto an environment,without reasoningabout
it). This sectionpresentsa survey of thesubsumptionarchitecture, which is arguablythe
best-known reactiveagentarchitecture.It wasdevelopedby Rodney Brooks— oneof the
mostvocalandinfluentialcritics of thesymbolicapproachto agency to have emergedin
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recentyears.
Therearetwo definingcharacteristicsof thesubsumptionarchitecture.Thefirst is that

an agent’s decision-makingis realisedthrougha set of task accomplishingbehaviours;
eachbehaviour maybe thoughof asan individual action function,aswe definedabove,
whichcontinuallytakesperceptualinputandmapsit to anactionto perform.Eachof these
behaviourmodulesis intendedto achievesomeparticulartask.In Brooks’implementation,
thebehaviour modulesarefinite statemachines.An importantpoint to noteis that these
taskaccomplishingmodulesareassumedto includenocomplex symbolicrepresentations,
and are assumedto do no symbolic reasoningat all. In many implementations,these
behavioursareimplementedasrulesof theform

situation ��� action

whichsimplemapperceptualinputdirectly to actions.
The seconddefining characteristicof the subsumptionarchitectureis that many be-

haviourscan“fire” simultaneously. Theremustobviously be a mechanismto choosebe-
tweenthedifferentactionsselectedby thesemultiple actions.Brooksproposedarranging
themodulesinto asubsumptionhierarchy, with thebehavioursarrangedinto layers. Lower
layersin thehierarchyareableto inhibit higherlayers:the lower a layer is, thehigheris
its priority. The ideais that higherlayersrepresentmoreabstractbehaviours.For exam-
ple,onemightdesirea behaviour in a mobilerobotfor thebehaviour “avoid obstacles”.It
makessenseto give obstacleavoidancea high priority — hencethis behaviour will typi-
cally beencodedin a low-level layer, whichhashighpriority. To illustratethesubsumption
architecturein moredetail,wewill now presenta simpleformalmodelof it, andillustrate
how it works by meansof a shortexample.We thendiscussits relative advantagesand
shortcomings,andpointatothersimilar reactivearchitectures.

Theseefunction,which representstheagent’s perceptualability, is assumedto remain
unchanged.However, in implementedsubsumptionarchitecturesystems,thereis assumed
to be quite tight coupling betweenperceptionand action — raw sensorinput is not
processedor transformedmuch,andthereis certainlyno attemptto transformimagesto
symbolicrepresentations.

The decisionfunction action is realisedthrougha setof behaviours, togetherwith an
inhibition relationholdingbetweenthesebehaviours.A behaviour is a pair

�
c 
 a� , where

c A P is asetof perceptscalledthecondition, anda � A is anaction.A behaviour
�
c 
 a� will

firewhentheenvironmentis in states � Sif f see
�
s�	� c. LetBeh
B� � c 
 a�45 c A P anda � A �

bethesetof all suchrules.
Associatedwith anagent’ssetof behaviour rulesR A Behis abinary inhibition relation

on thesetof behaviours: C&A R � R. This relationis assumedto bea total orderingon R
(i.e., it is transitive, irreflexive,andantisymmetric).We write b1 C b2 if

�
b1 
 b2 �:�DC , and

readthisas“b1 inhibitsb2”, thatis, b1 is lower in thehierarchythanb2, andwill henceget
priority overb2. Theactionfunctionis thendefinedasfollows:

1. function action
�
p : P� : A

2. var f ired :℘
�
R�
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3. var selected : A
4. begin
5. f ired : 
�� � c 
 a�D5 � c 
 a�?� Rand p � c �
6. for each

�
c 
 a�<� f ired do

7. if � �FE4� c1 
 a1��<� f ired such that
�
c1 
 a1��?C �

c 
 a��� then
8. return a
9. end-if
10. end-for
11. return null
12. end function action

Thusactionselectionbeginsby first computingtheset f ired of all behavioursthatfire
(5). Then,eachbehaviour

�
c 
 a� thatfires is checked,to determinewhetherthereis some

otherhigherpriority behaviour thatfires.If not, thentheactionpartof thebehaviour, a, is
returnedastheselectedaction(8). If nobehaviour fires,thenthedistinguishedactionnull
will bereturned,indicatingthatnoactionhasbeenchosen.

Giventhatoneof ourmainconcernswith logic-baseddecisionmakingwasits theoretical
complexity, it is worth pausingto examinehow well our simplebehaviour-basedsystem
performs.Theoveralltimecomplexity of thesubsumptionactionfunctionis noworsethan
O
�
n2 � , wheren is the larger of the numberof behaviours or numberof percepts.Thus,

evenwith thenaive algorithmabove,decisionmakingis tractable.In practice,we cando
considerably betterthan this: the decisionmaking logic canbe encodedinto hardware,
giving constantdecisiontime. For modernhardware, this meansthat an agentcan be
guaranteedto selectanactionwithin nano-seconds.Perhapsmorethananythingelse,this
computationalsimplicity is thestrengthof thesubsumptionarchitecture.

To illustratehow the subsumptionarchitecturein moredetail,we will show how sub-
sumptionarchitectureagentswerebuilt for thefollowing scenario(thisexampleis adapted
from [66]):

The objectiveis to explore a distant planet, more concretely, to collect samplesof a
particular typeof preciousrock. Thelocationof therock samplesis notknownin advance,
but they are typically clustered in certain spots.A numberof autonomousvehiclesare
available that can drive around the planet collecting samplesand later reenterthe a
mothershipspacecraft to goback to earth.Thereis nodetailedmapof theplanetavailable,
althoughit is knownthat the terrain is full of obstacles— hills, valleys, etc. — which
preventthevehiclesfromexchanginganycommunication.

The problemwe arefacedwith is that of building an agentcontrolarchitecturefor each
vehicle,so that they will cooperateto collect rock samplesfrom the planetsurfaceas
efficiently aspossible.Luc Steelsarguesthatlogic-basedagents,of thetypewedescribed
above,are“entirelyunrealistic”for thisproblem[66]. Instead,heproposesasolutionusing
thesubsumptionarchitecture.

Thesolutionmakesuseof two mechanismsintroducedby Steels:Thefirst is agradient
field. In orderthatagentscanknow in whichdirectionthemothershiplies, themothership
generatesa radiosignal.Now this signalwill obviously weakenasdistanceto thesource
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increases— to find thedirectionof themothership,anagentneedthereforeonly travel “up
thegradient”of signalstrength.Thesignalneednot carryany information— it needonly
exist.

Thesecondmechanismenablesagentsto communicatewith oneanother. Thecharac-
teristicsof the terrainpreventdirectcommunication(suchasmessagepassing),soSteels
adoptedanindirectcommunicationmethod.Theideais thatagentswill carry“radioactive
crumbs”,which canbe dropped,picked up, anddetectedby passingrobots.Thus if an
agentdropssomeof thesecrumbsin a particularlocation,thenlater, anotheragenthap-
peninguponthis locationwill be ableto detectthem.This simplemechanismenablesa
quitesophisticatedform of cooperation.

The behaviour of an individual agentis then built up from a numberof behaviours,
aswe indicatedabove. First, we will seehow agentscanbe programmedto individually
collectsamples.Wewill thenseehow agentscanbeprogrammedto generateacooperative
solution.

For individual (non-cooperative) agents,the lowest-level behaviour, (and hencethe
behaviour with the highest“priority”) is obstacleavoidance.This behaviour cancanbe
representedin therule:

if detectanobstaclethenchangedirection. (1.6)

Thesecondbehaviour ensuresthatany samplescarriedby agentsaredroppedbackat the
mother-ship.

if carryingsamplesandat thebasethendropsamples (1.7)

if carryingsamplesandnot at thebasethentravel upgradient. (1.8)

Behaviour (1.8) ensuresthat agentscarryingsampleswill returnto the mother-ship (by
headingtowardsthe origin of the gradientfield). Thenext behaviour ensuresthatagents
will collectsamplesthey find.

if detecta samplethenpick sampleup. (1.9)

Thefinalbehaviourensuresthatanagentwith “nothingbettertodo” will explorerandomly.

if truethenmoverandomly. (1.10)

Thepre-conditionof thisruleis thusassumedto alwaysfire.Thesebehavioursarearranged
into thefollowing hierarchy:�
1 � 6�?C � 1 � 7�?C �

1 � 8�?C �
1 � 9�?C �

1 � 10�
Thesubsumptionhierarchyfor thisexampleensuresthat,for example,anagentwill always
turnif any obstaclesaredetected;if theagentis at themother-shipandis carryingsamples,
thenit will alwaysdrop themif it is not in any immediatedangerof crashing,andsoon.
The“top level” behaviour — a randomwalk — will only everybecarriedout if theagent
hasnothingmoreurgentto do. It is not difficult to seehow this simplesetof behaviours
will solve theproblem:agentswill searchfor samples(ultimatelyby searchingrandomly),
andwhenthey find them,will returnthemto themother-ship.
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If the samplesaredistributedacrossthe terrainentirely at random,then equippinga
largenumberof robotswith thesevery simplebehaviourswill work extremelywell. But
we know from the problemspecification,above, that this is not the case:the samples
tendto be locatedin clusters.In this case,it makessenseto have agentscooperatewith
one-anotherin order to find the samples.Thus when one agentfinds a large sample,
it would be helpful for it to communicatethis to the other agents,so they can help it
collect therocks.Unfortunately, we alsoknow from theproblemspecificationthatdirect
communicationis impossible.Steelsdevelopeda simplesolutionto this problem,partly
inspiredby the foragingbehaviour of ants.The idearevolvesaroundanagentcreatinga
“trail” of radioactive crumbswhenever it finds a rock sample.The trail will be created
whentheagentreturnstherocksamplesto themothership.If at somelaterpoint,another
agentcomesacrossthis trail, thenit needonly follow it down thegradientfield to locate
the sourceof the rock samples.Somesmall refinementsimprove the efficiency of this
ingeniousschemestill further. First,asanagentfollows a trail to therock samplesource,
it picksup someof thecrumbsit finds,hencemakingthe trail fainter. Secondly, the trail
is only laid by agentsreturningto themothership.Henceif anagentfollows the trail out
to thesourceof the nominalrock sampleonly to find that it containsno samples,it will
reducethetrail on thewayout,andwill not returnwith samplesto reinforceit. After a few
agentshave followedthe trail to find no sampleat theendof it, the trail will in facthave
beenremoved.

The modified behaviours for this exampleare as follows. Obstacleavoidance,(1.6),
remainsunchanged.However, the two rulesdeterminingwhat to do if carryinga sample
aremodifiedasfollows.

if carryingsamplesandat thebasethendropsamples (1.11)

if carryingsamplesandnot at thebase

thendrop2 crumbsand travel upgradient.
(1.12)

The behaviour (1.12) requiresan agentto drop crumbswhen returningto basewith a
sample,thuseitherreinforcingor creatinga trail. The“pick up sample”behaviour, (1.9),
remainsunchanged.However, anadditionalbehaviour is requiredfor dealingwith crumbs.

if sensecrumbsthenpick up1 crumband travel down gradient (1.13)

Finally, therandommovementbehaviour, (1.10),remainsunchanged.Thesebehaviour are
thenarrangedinto thefollowing subsumptionhierarchy.�
1 � 6�?C �

1 � 11�0C �
1 � 12�GC �

1 � 9�?C �
1 � 13�?C �

1 � 10�
Steelsshows how this simple adjustmentachieves near-optimal performancein many
situations.Moreover, thesolutionis cheap(thecomputingpower requiredby eachagent
is minimal) and robust (the loss of a single agentwill not affect the overall system
significantly).

In summary, thereareobviousadvantagesto reactive approachessuchasthatBrooks’
subsumptionarchitecture:simplicity, economy, computationaltractability, robustness
againstfailure, andeleganceall make sucharchitecturesappealing.But therearesome
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fundamental,unsolved problems,not just with the subsumptionarchitecture,but with
otherpurelyreactivearchitectures:

If agentsdo not employ modelsof their environment,thenthey musthave sufficient
informationavailablein their local environmentfor themto determinean acceptable
action.

Sincepurelyreactiveagentsmakedecisionsbasedon local information,(i.e., informa-
tion abouttheagentscurrentstate),it is difficult to seehow suchdecisionmakingcould
take into accountnon-localinformation— it mustinherentlytakea “short term” view.

It is difficult to seehow purelyreactiveagentscanbedesignedthat learn from experi-
ence,andimprovetheirperformanceover time.

A major selling point of purely reactive systemsis that overall behaviour emerges
from the interactionof the componentbehaviours when the agentis placedin its
environment.But the very term “emerges” suggeststhat the relationshipbetween
individual behaviours,environment,andoverall behaviour is not understandable.This
necessarilymakesit very hardto engineeragentsto fulfill specifictasks.Ultimately,
thereis no principledmethodology for building suchagents:onemustusea laborious
processof experimentation,trial, anderrorto engineeranagent.

While effective agentscanbe generatedwith small numbersof behaviours (typically
lessthat ten layers),it is much harderto build agentsthat containmany layers.The
dynamicsof the interactionsbetweenthedifferentbehavioursbecometoo complex to
understand.

Varioussolutionsto theseproblemshavebeenproposed.Oneof themostpopularof these
is theideaof evolvingagentsto performcertaintasks.Thisareaof work haslargelybroken
awayfrom themainstreamAI traditionin whichwork on,for example,logic-basedagents
is carriedout,andis documentedprimarily in theartificial life (alife) literature.

Sources and Further Reading

Brooks’ original paperon the subsumptionarchitecture— the one that startedall the
fuss— waspublishedas[8]. Thedescriptionanddiscussionhereis partly basedon [15].
This original paperseemsto besomewhatlessradicalthanmany of his laterones,which
include[9, 11, 10]. The versionof the subsumptionarchitectureusedin this chapteris
actually a simplification of that presentedby Brooks. The subsumptionarchitectureis
probablythe best-known reactive architecturearound— but therearemany others.The
collectionof paperseditedby PattieMaes[41] containspapersthatdescribemany of these,
asdoesthecollectionby AgreandRosenschein[2]. Otherapproachesinclude:

theagentnetworkarchitecturedevelopedby PattieMaes[40, 42, 43];

Nilsson’s teleoreactiveprograms[49];

RosencheinandKaelbling’ssituatedautomataapproach,whichis particularlyinterest-
ing in that it shows how agentscanbespecifiedin anabstract,logical framework, and
compiledinto equivalent,but computationallyverysimplemachines[57, 36, 35, 58];
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AgreandChapman’s PENGI system[1];

Schoppers’universal plans— which areessentiallydecisiontreesthatcanbeusedto
efficiently determineanappropriateactionin any situation[62];

Firby’s reactiveactionpackages[19].

Kaelbling[34] givesa gooddiscussionof theissuesassociatedwith developingresource-
boundedrational agents,and proposesan agentarchitecturesomewhat similar to that
developedby Brooks.

1.4.3 Belief-Desire-Intention Architectures

In thissection,weshalldiscussbelief-desire-intention(BDI) architectures.Thesearchitec-
tureshave their rootsin the philosophicaltraditionof understandingpractical reasoning
— theprocessof deciding,momentby moment,whichactionto performin thefurtherance
of ourgoals.

Practicalreasoninginvolvestwo importantprocesses:decidingwhat goalswe want to
achieve, andhow we aregoing to achieve thesegoals.The former processis known as
deliberation, the latter as means-endsreasoning.To gain an understandingof the BDI

model,it is worth consideringa simpleexampleof practicalreasoning.Whenyou leave
university with a first degree,you are facedwith a decisionto make — aboutwhat to
do with your life. The decisionprocesstypically begins by trying to understandwhat
the optionsavailableto you are.For example,if you gain a goodfirst degree,thenone
option is that of becomingan academic.(If you fail to obtaina gooddegree,this option
is not availableto you.) Anotheroption is enteringindustry. After generatingthis setof
alternatives,you mustchoosebetweenthem, andcommitto some.Thesechosenoptions
becomeintentions, whichthendeterminetheagent’sactions.Intentionsthenfeedbackinto
theagent’s futurepracticalreasoning.For example,if I decideI want to beanacademic,
thenI shouldcommitto thisobjective,anddevotetimeandeffort to bringingit about.

Intentionsplayacrucialrolein thepracticalreasoningprocess.Perhapsthemostobvious
propertyof intentionsis that they tend to lead to action. If I truly have an intention to
becomean academic,then you would expect me to act on that intention — to try to
achieve it. For example,you might expect me to apply to variousPhD programs.You
wouldexpectto to makea reasonableattemptto achievetheintention.By this,I meanthat
you wouldexpectmeto carryoursomecourseof actionthatI believedwould bestsatisfy
theintention.Moreover, if acourseof actionfails to achievetheintention,thenyouwould
expectmeto try again— you wouldnotexpectmeto simply giveup.For example,if my
first applicationfor a PhD programmeis rejected,thenyou might expectme to apply to
alternativeuniversities.

In addition,onceI have adoptedanintention,thenthevery factof having this intention
will constrainmy future practicalreasoning.For example,while I hold someparticular
intention,I will notentertainoptionsthatareinconsistentwith thatintention.Intendingto
becomeanacademic,for example,would precludetheoptionof partyingevery night: the
two aremutuallyexclusive.

Next, intentionspersist. If I adoptan intentionto becomean academic,thenI should
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persistwith thisintentionandattemptto achieveit. For if I immediatelydropmy intentions
withoutdevotingresourcesto achieving them,thenI will neverachieveanything.However,
I shouldnot persistwith my intention for too long — if it becomesclear to me that I
will never becomean academic,then it is only rational to drop my intention to do so.
Similarly, if thereasonfor having anintentiongoesaway, thenit is rationalof meto drop
the intention.For example,if I adoptedthe intention to becomean academicbecauseI
believed it would be an easylife, but thendiscover that I would be expectedto actually
teach, thenthe justificationfor the intentionis no longerpresent,andI shoulddrop the
intention.

Finally, intentionsarecloselyrelatedto beliefsaboutthefuture.For example,if I intend
to becomeanacademic,thenI shouldbelieve thatI will indeedbecomeanacademic.For
if I truly believethatI will neverbeanacademic,it wouldbenon-sensicalof meto havean
intentionto becomeone.Thusif I intendto becomeanacademic,I shouldat leastbelieve
thatthereis agoodchanceI will indeedbecomeone.

From this discussion,we canseethat intentionsplay a numberof importantroles in
practicalreasoning:

Intentionsdrivemeans-endsreasoning.
If I have formedan intentionto becomean academic,thenI will attemptto achieve
the intention,which involves,amongstother things,decidinghow to achieve it, for
example,by applying for a PhD programme.Moreover, if one particularcourseof
actionfails to achieve an intention,thenI will typically attemptothers.Thusif I fail
to gaina PhDplaceatoneuniversity, I might try anotheruniversity.

Intentionsconstrain futuredeliberation.
If I intendto becomeanacademic,thenI will notentertainoptionsthatareinconsistent
with this intention.For example,a rational agentwould not considerbeing rich as
an option while simultaneouslyintending to be an academic.(While the two are
not actually mutually exclusive, the probability of simultaneouslyachieving both is
infinitesimal.)

Intentionspersist.
I will not usuallygive up on my intentionswithout goodreason— they will persist,
typically until either I believe I have successfullyachieved them, I believe I cannot
achievethem,or elsebecausethepurposefor theintentionis no longerpresent.

Intentionsinfluencebeliefsuponwhich futurepractical reasoningis based.
If I adopt the intention to becomean academic,then I can plan for the future on
the assumptionthat I will be an academic.For if I intend to be an academicwhile
simultaneouslybelieving thatI will neverbeone,thenI ambeingirrational.

A key problemin thedesignof practicalreasoningagentsis that of of achieving a good
balancebetweenthesedifferentconcerns.Specifically, it seemsclearthatanagentshould
at timesdrop someintentions(becauseit comesto believe that eitherthey will never be
achieved,they areachieved,or elsebecausethereasonfor having theintentionis nolonger
present).It follows that, from time to time, it is worth an agentstoppingto reconsider
its intentions.But reconsiderationhasa cost— in termsof both time andcomputational
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resources.But thispresentsuswith a dilemma:

anagentthatdoesnot stopto reconsidersufficiently oftenwill continueattemptingto
achieve its intentionsevenafter it is clearthatthey cannotbeachieved,or thatthereis
no longerany reasonfor achieving them;

anagentthatconstantlyreconsidersits attentionsmayspendinsufficient time actually
working to achievethem,andhencerunstherisk of neveractuallyachieving them.

Thisdilemmaisessentiallytheproblemof balancingpro-active(goaldirected)andreactive
(eventdriven)behaviour, thatwe introducedin section1.2.2.

Thereis clearly a tradeoff to bestruckbetweenthedegreeof commitmentandrecon-
siderationat work here.The natureof this tradeoff wasexaminedby David Kinny and
Michael Georgeff, in a numberof experimentscarriedout with a BDI agentframework
calleddMARS[37]. They investigatehow boldagents(thosethatneverstopto reconsider)
andcautiousagents(thosethatareconstantlystoppingto reconsider)performin a variety
of differentenvironments.Themostimportantparameterin theseexperimentswastherate
of world change, γ. Thekey resultsof Kinny andGeorgeff wereasfollows.

If γ is low, (i.e., the environment doesnot changequickly), then bold agentsdo
well comparedto cautiousones,becausecautiousoneswastetime reconsideringtheir
commitmentswhile bold agentsarebusy working towards— andachieving — their
goals.

If γ is high, (i.e., the environmentchangesfrequently),then cautiousagentstend to
outperformboldagents,becausethey areableto recognisewhenintentionsaredoomed,
andalsoto take advantageof serendipitoussituationsandnew opportunities.

Thelessonis thatdifferenttypesof environmentrequiredifferenttypesof decisionstrate-
gies.In static,unchangingenvironment,purelypro-active,goaldirectedbehaviour is ad-
equate.But in moredynamicenvironments,theability to reactto changesby modififying
intentionsbecomesmoreimportant.

Theprocessof practicalreasoningin a BDI agentis summarisedin Figure1.5.As this
Figureillustrates,therearesevenmaincomponentsto a BDI agent:

a setof currentbeliefs, representinginformationthe agenthasaboutits currentenvi-
ronment;

a beliefrevisionfunction, (br f ), which takesa perceptualinput andtheagent’scurrent
beliefs,andon thebasisof these,determinesa new setof beliefs;

anoptiongeneration function, (options), whichdeterminestheoptionsavailableto the
agent(itsdesires),onthebasisof itscurrentbeliefsaboutits environmentanditscurrent
intentions;

asetof currentoptions, representingpossiblecoursesof actionsavailableto theagent;

a filter function( f il ter), which representstheagent’s deliberation process,andwhich
determinestheagent’s intentionson thebasisof its currentbeliefs,desires,andinten-
tions;

a set of current intentions, representingthe agent’s currentfocus — thosestatesof
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Figure 1.5 Schematicdiagramof a genericbelief-desire-intentionarchitecture.

affairsthatit hascommittedto trying to bringabout;

an action selectionfunction(execute), which determinesan actionto performon the
basisof currentintentions.

It is straightforward to formally definethesecomponents.First, let Bel be the setof all
possiblebeliefs,Desbe the setof all possibledesires,and Int be the setof all possible
intentions.For the purposesof this chapter, the contentof thesesetsis not important.
(Often,beliefs,desires,andintentionsarerepresentedaslogical formulae,perhapsof first-
orderlogic.) Whatever thecontentof thesesets,its is worth noting that they shouldhave
somenotion of consistencydefinedupon them,so that onecananswerthe questionof,
for example,whetherhaving anintentionto achieve x is consistentwith thebelief thaty.
Representingbeliefs,desires,andintentionsas logical formulaepermitsus to castsuch
questionsasquestionsasquestionsof determiningwhetherlogical formulaeareconsistent
— a well known and well-understoodproblem.The stateof a BDI agentat any given
momentis, unsurprisingly, a triple

�
B 
 D 
 I � , whereB A Bel, D A Des, andI A Int.

An agent’sbelief revision functionis a mapping

br f :℘
�
Bel�G� P � ℘

�
Bel�
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whichonthebasisof thecurrentperceptandcurrentbeliefsdeterminesanew setof beliefs.
Belief revision is out of thescopeof this chapter(andindeedthis book),andsowe shall
saynomoreaboutit here.

Theoptiongenerationfunction,options, mapsa setof beliefsanda setof intentionsto
asetof desires.

options:℘
�
Bel�0� ℘

�
Int ��� ℘

�
Des�

This functionplaysseveralroles.First, it mustberesponsiblefor theagent’s means-ends
reasoning— theprocessof decidinghow to achieve intentions.Thus,onceanagenthas
formedanintentionto x, it mustsubsequentlyconsideroptionsto achievex. Theseoptions
will be moreconcrete— lessabstract— thanx. As someof theseoptionsthenbecome
intentionsthemselves,they will alsofeedbackinto optiongeneration,resultingin yetmore
concreteoptionsbeinggenerated.We canthusthink of a BDI agent’s option generation
processas one of recursively elaboratinga hierarchicalplan structure,consideringand
committingto progressively morespecificintentions,until finally it reachestheintentions
thatcorrespondto immediatelyexecutableactions.

While themainpurposeof theoptionsfunctionis thusmeans-endsreasoning,it mustin
additionsatisfyseveralotherconstraints.First,it mustbeconsistent: any optionsgenerated
mustbeconsistentwith both theagent’s currentbeliefsandcurrentintentions.Secondly,
it mustbe opportunistic, in that it shouldrecognisewhenenvironmentalcircumstances
changeadvantageously, to offer theagentnew waysof achieving intentions,or thepossi-
bility of achieving intentionsthatwereotherwiseunachievable.

A BDI agent’s deliberationprocess(decidingwhat to do) is representedin the f il ter
function,

f il ter :℘
�
Bel�0� ℘

�
Des�G� ℘

�
Int �H� ℘

�
Int �

which updatesthe agent’s intentionson the basisof its previously-heldintentionsand
currentbeliefsand desires.This function must fulfill two roles.First, it mustdrop any
intentionsthatareno longerachievable,or for which theexpectedcostof achieving them
exceedstheexpectedgainassociatedwith successfullyachieving them.Second,it should
retain intentionsthatarenotachieved,andthatarestill expectedto havea positiveoverall
benefit.Finally, it shouldadoptnew intentions,eitherto achieve existing intentions,or to
exploit new opportunities.

Notice thatwe do not expectthis functionto introduceintentionsfrom nowhere.Thus
f il ter shouldsatisfythefollowing constraint:�
B � ℘

�
Bel� 
 � D � ℘

�
Des� 
 � I � ℘

�
Int � 
 f il ter

�
B 
 D 
 I �<A I > D �

In otherwords,currentintentionsareeitherpreviously held intentionsor newly adopted
options.

Theexecute functionis assumedto simply returnany executableintentions— by which
wemeanintentionsthatcorrespondto directlyexecutableactions:

execute :℘
�
Int �"� A



34 IntelligentAgents

Theagentdecisionfunction,action of a BDI agentis thena function

action : P � A

andis definedby thefollowing pseudo-code.

1. function action
�
p : P� : A

2. begin
3. B : 
 br f

�
B 
 p�

4. D : 
 options
�
D 
 I �

5. I : 
 f il ter
�
B 
 D 
 I �

6. return execute
�
I �

7. end function action

Notethatrepresentinganagent’sintentionsasaset(i.e.,asanunstructuredcollection)is
generallytoosimplisticin practice.A simplealternativeis to associateapriority with each
intention,indicatingits relative importance.Anothernaturalideais to representintentions
asa stack. An intentionis pushedon to the stackwhenit is adopted,andpoppedwhen
it is eitherachievedor elsenot achievable.More abstractintentionswill tendto beat the
bottomof thestack,with moreconcreteintentionstowardsthetop.

To summarise,BDI architecturesare practical reasoningarchitectures,in which the
processof decidingwhatto do resemblesthekind of practicalreasoningthatweappearto
usein our everydaylives.Thebasiccomponentsof a BDI architecturearedatastructures
representingthebeliefs,desires,andintentionsof theagent,andfunctionsthat represent
its deliberation(decidingwhat intentionsto have— i.e.,decidingwhatto do)andmeans-
endsreasoning(decidinghow to do it). Intentionsplay a centralrole in the BDI model:
they providestability for decisionmaking,andactto focustheagent’spracticalreasoning.
A major issuein BDI architecturesis the problemof striking a balancebetweenbeing
committedto and overcommittedto one’s intentions:the deliberationprocessmust be
finely tuned to its environment,ensuringthat in more dynamic,highly unpredictable
domains,it reconsidersits intentionsrelatively frequently— in morestaticenvironments,
lessfrequentreconsiderationis necessary.

TheBDI modelis attractive for several reasons.First, it is intuitive — we all recognise
theprocessesof decidingwhat to do andthenhow to do it, andwe all have an informal
understandingof the notionsof belief, desire,and intention.Second,it givesus a clear
functionaldecomposition,which indicateswhatsortsof subsystemsmight berequiredto
build an agent.But the main difficulty, asever, is knowing how to efficiently implement
thesefunctions.

Sources and Further Reading

Belief-desire-intentionarchitecturesoriginatedin thework of theRationalAgency project
at StanfordResearchInstitute in the mid 1980s.The origins of the model lie in the
theoryof humanpracticalreasoningdevelopedby thephilosopherMichaelBratman[6],
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whichfocussesparticularlyontheroleof intentionsin practicalreasoning.Theconceptual
framework of theBDI modelis describedin [7], whichalsodescribesaspecificBDI agent
architecturecalled IRMA. Thedescriptionof the BDI modelgivenhere(andin particular
Figure1.5) is adaptedfrom [7]. Oneof the interestingaspectsof the BDI modelis that it
hasbeenusedin oneof the mostsuccessfulagentarchitecturesto date.The Procedural
ResoningSystem(PRS), originally developedby MichaelGeorgeff andAmy Lansky [26],
hasbeenusedto build someof themostexactingagentapplicationsto date,includingfault
diagnosisfor thereactioncontrolsystemof thespaceshuttle,andanair traffic management
systematSydney airportin Australia— overviewsof thesesystemsaredescribedin [27].
In thePRS, anagentis equippedwith a library of planswhichareusedto performmeans-
endsreasoning.Deliberationis achievedby theuseof meta-levelplans, which areableto
modifyanagent’sintentionstructureatrun-time,in orderto changethefocusof theagent’s
practicalreasoning.Beliefsin thePRS arerepresentedasPROLOG-like facts— essentially,
asatomsof first-orderlogic.

The BDI model is also interestingbecausea greatdealof effort hasbeendevoted to
formalising it. In particular, Anand Rao and Michael Georgeff have developeda range
of BDI logics, which they useto axiomatisepropertiesof BDI-basedpracticalreasoning
agents[52, 56, 53, 54, 55, 51]. Thesemodelshave beenextendedby othersto dealwith,
for example,communicationbetweenagents[28].

1.4.4 Layered Architectures

Given the requirementthat an agentbe capableof reactive andpro-active behaviour, an
obviousdecompositioninvolvescreatingseparatesubsystemsto dealwith thesedifferent
typesof behaviours.Thisidealeadsnaturallytoaclassof architecturesin whichthevarious
subsystemsare arrangedinto a hierarchyof interactinglayers. In this section,we will
considersomegeneralaspectsof layeredarchitectures,and then go on to considertwo
examplesof sucharchitectures:INTERRAP andTOURINGMACHINES.

Typically, therewill beatleasttwo layers,todealwith reactiveandpro-activebehaviours
respectively. In principle, thereis no reasonwhy thereshouldnot be many morelayers.
Howevermany layersthereare,ausefultypologyfor sucharchitecturesis by theinforma-
tion andcontrolflowswithin them.Broadlyspeaking,wecanidentify two typesof control
flow within layeredarchitectures(seeFigure1.6):

Horizontallayering.
In horizontally layeredarchitectures(Figure1.6(a)),the software layersareeachdi-
rectly connectedto thesensoryinput andactionoutput.In effect,eachlayer itself acts
likeanagent,producingsuggestionsasto whatactionto perform.

Vertical layering.
In vertically layeredarchitectures(Figure1.6(b)and1.6(c)),sensoryinput andaction
outputareeachdealtwith by atmostonelayereach.

Thegreatadvantageof horizontallylayeredarchitecturesis their conceptualsimplicity: if
we needanagentto exhibit n differenttypesof behaviour, thenwe implementn different
layers.However, becausethe layersare eachin effect competingwith one-anotherto
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Figure 1.6 Information and control flows in three typesof layeredagentarchitecture
(Source:[47, p263]).

generateactionsuggestions,thereis a dangerthat theoverall behaviour of theagentwill
not be coherent.In orderto ensurethat horizontallylayeredarchitecturesare consistent,
they generallyincludea mediatorfunction,which makesdecisionsaboutwhich layerhas
“control” of theagentatany giventime.Theneedfor suchcentralcontrolis problematic:it
meansthatthedesignermustpotentiallyconsiderall possibleinteractionsbetweenlayers.
If therearen layersin thearchitecture,andeachlayeris capableof suggestingm possible
actions,thenthis meanstherearemn suchinteractionsto be considered.This is clearly
difficult from a designpoint of view in any but themostsimplesystem.Theintroduction
of acentralcontrolsystemalsointroducesa bottleneck into theagent’sdecisionmaking.

Theseproblemsarepartly alleviatedin a vertically layeredarchitecture.We cansubdi-
vide vertically layeredarchitecturesinto onepassarchitectures(Figure1.6(b)) and two
passarchitectures(Figure 1.6(c)). In one-passarchitectures,control flows sequentially
througheachlayer, until thefinal layergeneratesactionoutput.In two-passarchitectures,
informationflows up the architecture(the first pass)andcontrol thenflows backdown.
Therearesomeinterestingsimilaritiesbetweentheideaof two-passvertically layeredar-
chitecturesandthewaythatorganisationswork,with informationflowing upto thehighest
levelsof theorganisation,andcommandsthenflowing down.In bothonepassandtwo pass
vertically layeredarchitectures,thecomplexity of interactionsbetweenlayersis reduced:
sincetherearen � 1 interfacesbetweenn layers,thenif eachlayeris capableof suggesting
mactions,thereareatmostm2 � n � 1� interactionsto beconsideredbetweenlayers.This is
clearlymuchsimplerthanthehorizontallylayeredcase.However, thissimplicity comesat
thecostof someflexibility: in orderfor averticallylayeredarchitectureto makeadecision,
controlmustpassbetweeneach differentlayer. Thisis notfaulttolerant:failuresin any one
layerarelikely to haveseriousconsequencesfor agentperformance.

In theremainderof thissection,wewill considertwo examplesof layeredarchitectures:
InnesFerguson’s TOURINGMACHINES, and Jörg Müller’s INTERRAP. The former is an
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Figure 1.7 TOURINGMACHINES: a horizontallylayeredagentarchitecture

exampleof a horizontallylayeredarchitecture;the latter is a (two pass)vertically layered
architecture.

TouringMachines

The TOURINGMACHINES architectureis illustratedin Figure1.7. As this Figureshows,
TOURINGMACHINES consistsof threeactivity producinglayers. That is, eachlayercon-
tinually produces“suggestions”for what actionsthe agentshouldperform.The reactive
layerprovidesamore-or-lessimmediateresponsetochangesthatoccurin theenvironment.
It is implementedasasetof situation-actionrules,likethebehavioursin Brooks’subsump-
tion architecture(section1.4.2).Theserulesmapsensorinput directly to effectoroutput.
Theoriginaldemonstrationscenariofor TOURINGMACHINES wasthatof autonomousve-
hiclesdriving betweenlocationsthroughstreetspopulatedby othersimilar agents.In this
scenario,reactiverulestypically dealwith functionslikeobstacleavoidance.For example,
hereis anexampleof a reactiverule for avoiding thekerb(from [16, p59]):

rule-1: kerb-avoidance
if

is-in-front(Kerb, Observer) and
speed(Observer) > 0 and
separation(Kerb, Observer) < KerbThreshHold

then
change-orientation(KerbAvoidanceAngle)

Herechange-orientation(...) is the actionsuggestedif the rule fires.The rulescan
only make referencesto theagent’scurrentstate— they cannotdo any explicit reasoning
abouttheworld, andontheright handsideof rulesareactions, notpredicates.Thusif this
rule fired, it would not resultin any centralenvironmentmodelbeingupdated,but would
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just resultin anactionbeingsuggestedby thereactive layer.
The TOURINGMACHINES planning layer achieves the agent’s pro-active behaviour.

Specifically, the planninglayer is responsiblefor the “day-to-day” runningof the agent
— undernormalcircumstances,theplanninglayerwill be responsiblefor decidingwhat
theagentdoes.However, theplanninglayerdoesnot do “first-principles” planning.That
is, it doesnot attemptto generateplansfrom scratch.Rather, theplanninglayeremploys
a library of plan“skeletons”calledschemas. Theseskeletonsarein essencehierarchically
structuredplans,which the TOURINGMACHINES planninglayerelaboratesat run time in
orderto decidewhat to do. So, in orderto achieve a goal, theplanninglayerattemptsto
find a schemain its library which matchesthatgoal.This schemawill containsub-goals,
which theplanninglayerelaboratesby attemptingto find otherschemasin its planlibrary
thatmatchthesesub-goals.

Themodelinglayerrepresentsthevariousentitiesin theworld (includingtheagentitself,
aswell asotheragents).The modelinglayer thuspredictsconflictsbetweenagents,and
generatesnew goalsto be achieved in order to resolve theseconflicts.Thesenew goals
arethenposteddown to theplanninglayer, whichmakesuseof its planlibrary in orderto
determinehow to satisfythem.

Thethreecontrol layersareembeddedwithin a control subsystem, which is effectively
responsiblefor decidingwhich of the layersshouldhave control over the agent.This
controlsubsystemis implementedasasetof control rules. Controlrulescaneithersuppress
sensorinformationbetweenthecontrol rulesandthecontrol layers,or elsecensoraction
outputsfrom thecontrollayers.Hereis anexamplecensorrule [18, p207]:

censor-rule-1:
if

entity(obstacle-6) in perception-buffer
then

remove-sensory-record(layer-R, entity(obstacle-6))

This rule preventsthe reactive layer from ever knowing aboutwhetherobstacle-6 has
beenperceived.Theintuition is thatalthoughthereactive layerwill in generalbethemost
appropriatelayerfor dealingwith obstacleavoidance,therearecertainobstaclesfor which
otherlayersaremoreappropriate.This rule ensuresthatthereactive layernevercomesto
know abouttheseobstacles.

InteRRaP

INTERRAP is an exampleof a vertically layeredtwo-passagentarchitecture— seeFig-
ure1.8.

As Figure 1.8 shows, INTERRAP containsthree control layers,as in TOURINGMA-
CHINES. Moreover, the purposeof eachINTERRAP layer appearsto be rathersimilar to
thepurposeof eachcorrespondingTOURINGMACHINES layer. Thusthelowest(behaviour
based) layer dealswith reactive behaviour; the middle (local planning) layer dealswith
everydayplanningto achieve theagent’sgoals,andtheuppermost(cooperativeplanning)
layerdealswith socialinteractions.Eachlayerhasassociatedwith it aknowledgebase, i.e.,
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Figure 1.8 INTERRAP – a vertically layeredtwo-passagentarchitecture.

a representationof the world appropriatefor that layer. Thesedifferentknowledgebases
representtheagentandits environmentat differentlevelsof abstraction.Thusthehighest
level knowledgebaserepresentstheplansandactionsof otheragentsin theenvironment;
themiddle-level knowledgebaserepresentstheplansandactionsof theagentitself; and
thelowestlevel knowledgebaserepresents“raw” informationabouttheenvironment.The
explicit introductionof theseknowledgebasesdistinguishesTOURINGMACHINES from
INTERRAP.

Theway thedifferentlayersin INTERRAP conspireto producebehaviour is alsoquite
differentfrom TOURINGMACHINES. Themaindifferenceis in theway thelayersinterract
with theenvironment.In TOURINGMACHINES, eachlayerwasdirectlycoupledto percep-
tual input andactionoutput.This necessitatedthe introductionof a supervisorycontrol
framework, to dealwith conflictsor problemsbetweenlayers.In INTERRAP, layersinter-
act with each other to achieve the sameend.The two main typesof interactionbetween
layersarebottom-upactivationandtop-downexecution. Bottom-upactivationoccurswhen
a lower layerpassescontrol to a higherlayerbecauseit is not competentto dealwith the
currentsituation.Top-down executionoccurswhen a higher layer makesuseof the fa-
cilities providedby a lower layer to achieve oneof its goals.Thebasicflow of control in
INTERRAP beginswhenperceptualinputarrivesatthelowestlayerin theachitecture.If the
reactive layercandealwith this input, thenit will do so;otherwise,bottom-upactivation
will occur, andcontrolwill bepassedto thelocalplanninglayer. If thelocalplanninglayer
canhandlethesituation,thenit will doso,typically by makinguseof top-down execution.
Otherwise,it will usebottom-upactivationto passcontrolto thehighestlayer. In thisway,
control in INTERRAP will flow from the lowestlayer to higherlayersof thearchitecture,
andthenbackdown again.

The internalsof eachlayerarenot importantfor thepurposesof this article.However,
it is worth notingthateachlayerimplementstwo generalfunctions.Thefirst of theseis a
situationrecognitionandgoalactivationfunction.Thisfunctionactsratherliketheoptions
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function in a BDI architecture(seesection1.4.3).It mapsa knowledgebase(oneof the
threelayers)andcurrentgoalsto anew setof goals.Thesecondfunctionis responsiblefor
planningandscheduling— it is responsiblefor selectingwhichplansto execute,basedon
thecurrentplans,goals,andknowledgebaseof thatlayer.

Layeredarchitecturesarecurrentlythemostpopulargeneralclassof agentarchitecture
available.Layeringrepresentsa naturaldecompositionof functionality: it is easyto see
how reactive, pro-active, social behaviour can be generatedby the reactive, pro-active,
andsocial layersin an architecture.The main problemwith layeredarchitecturesis that
while they arearguablyapragmaticsolution,they lacktheconceptualandsemanticclarity
of unlayeredapproaches.In particular, while logic-basedapproacheshave a clearlogical
semantics,it is difficult to seehow such a semanticscould be devised for a layered
architecture.Another issue is that of interactionsbetweenlayers. If each layer is an
independentactivity producingprocess(asin TOURINGMACHINES), thenit is necessary
to considerall possiblewaysthatthelayerscaninteractwith oneanother. Thisproblemis
partlyalleviatedin two-passvertically layeredarchitecturesuchasINTERRAP.

Sources and Further Reading

The introductorydiscussionof layeredarchitecturesgiven heredraws heavily upon[47,
pp262–264].Thebestreferenceto TOURINGMACHINES is [16]; moreaccessiblereferences
include[17, 18]. Thedefinitivereferenceto INTERRAP is [46], although[20] isalsoauseful
reference.Otherexamplesof layeredarchitecturesincludethesubsumptionarchitecture[8]
(seealsosection1.4.2),andthe3T architecture[4].

1.5 Agent Programming Languages

As agenttechnologybecomesmore established,we might expect to seea variety of
softwaretools becomeavailablefor the designandconstructionof agent-basedsystems;
the needfor software supporttools in this areawas identifiedas long ago as the mid-
1980s[23]. In this section,we will discusstwo of the better-known agentprogramming
languages,focussingin particularonYoav Shoham’s AGENT0 system.

1.5.1 Agent-oriented programming

Yoav Shohamhasproposeda “new programmingparadigm,basedon a societalview of
computation”which he calls agent-orientedprogramming. The key ideawhich informs
AOP is that of directly programmingagentsin terms of mentalisticnotions (such as
belief,desire,andintention)thatagenttheoristshavedevelopedto representtheproperties
of agents.The motivation behindthe proposalis that humansusesuchconceptsas an
abstraction mechanismfor representingthe propertiesof complex systems.In the same
waythatweusethesementalisticnotionsto describeandexplainthebehaviour of humans,
soit mightbeusefulto usethemto programmachines.
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Thefirst implementationof theagent-orientedprogrammingparadigmwastheAGENT0
programminglanguage.In this language,an agentis specifiedin termsof a setof capa-
bilities (thingstheagentcando), a setof initial beliefs(playingtherole of beliefsin BDI

architectures),a setof initial commitments(playinga role similar to that of intentionsin
BDI architectures),anda setof commitmentrules. Thekey component,which determines
how theagentacts,is thecommitmentruleset.Eachcommitmentrulecontainsa message
condition, a mentalcondition, andan action.In order to determinewhethersucha rule
fires, the messageconditionis matchedagainstthe messagesthe agenthasreceived; the
mentalconditionis matchedagainstthebeliefsof theagent.If therulefires,thentheagent
becomescommittedto theaction.Actionsmaybeprivate, correspondingto aninternally
executedsubroutine,or communicative, i.e., sendingmessages.Messagesareconstrained
to be oneof threetypes:“requests”or “unrequests”to performor refrain from actions,
and“inform” messages,which passon information— Shohamindicatesthathe took his
inspirationfor thesemessagetypesfrom speechacttheory[63, 12].Requestandunrequest
messagestypically result in the agent’s commitmentsbeingmodified; inform messages
resultin a changeto theagent’sbeliefs.

Hereis anexampleof anAGENT0 commitmentrule:

COMMIT(
( agent, REQUEST, DO(time, action)
), ;;; msg condition
( B,
[now, Friend agent] AND
CAN(self, action) AND
NOT [time, CMT(self, anyaction)]

), ;;; mental condition
self,
DO(time, action)

)

This rulemaybeparaphrasedasfollows:

if I receivea message from agent which requestsmeto do action at time,and I believe
that:

agent is currentlya friend;

I candotheaction;

at time,I amnotcommittedto doinganyotheraction,

thencommitto doingaction at time.

Theoperationof anagentcanbedescribedby thefollowing loop(seeFigure1.9):

1. Readall currentmessages,updatingbeliefs— andhencecommitments— where
necessary;

2. Executeall commitmentsfor thecurrentcycle wherethecapabilityconditionof the
associatedactionis satisfied;
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Figure 1.9 Theflow of controlin AGENT-0.

3. Goto(1).

It shouldbe clearhow more complex agentbehaviours can be designedandbuilt in
AGENT0. However, it is importantto notethatthis languageis essentiallya prototype, not
intendedfor building anything like large-scaleproductionsystems.However, it doesat
leastgivea feel for how suchsystemsmightbebuilt.

1.5.2 Concurrent METATEM

Arguably, one drawback with AGENT0 is that the relationshipbetweenthe logic and
interpretedprogramminglanguageis only loosely defined.The programminglanguage
cannotbe said to truly executethe associatedlogic, in the way that our logic-based
agentsdid in section1.4.1.TheConcurrentMETATEM languagedevelopedby Fishercan
make a strongerclaim in this respect[21]. A ConcurrentMETATEM systemcontainsa
numberof concurrentlyexecutingagents,eachof which is ableto communicatewith its
peersvia asynchronousbroadcastmessagepassing.Eachagentis programmedby giving
it a temporal logic specificationof the behaviour that it is intendedthe agentshould
exhibit. An agent’s specificationis executeddirectly to generateits behaviour. Execution
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of theagentprogramcorrespondsto iteratively building a logical modelfor the temporal
agentspecification.It is possibleto prove that the procedureusedto executean agent
specificationis correct,in that if it is possibleto satisfythe specification,thenthe agent
will doso[3].

The logical semanticsof ConcurrentMETATEM are closely relatedto the semantics
of temporal logic itself. This meansthat, amongstother things, the specificationand
verificationof ConcurrentMETATEM systemsis a realisticproposition[22].

An agentprogramin ConcurrentMETATEM hasthe form I i Pi � Fi , wherePi is a
temporallogic formula referringonly to the presentor past,and Fi is a temporallogic
formulareferringto thepresentor future.ThePi � Fi formulaeareknown asrules. The
basicideafor executingsuchaprogrammaybesummedup in thefollowing slogan:

on thebasisof thepastdo thefuture.

Thuseachrule is continuallymatchedagainstaninternal,recordedhistory, andif a match
is found, thenthe rule fires. If a rule fires, thenany variablesin the future time part are
instantiated,and the future time part then becomesa commitmentthat the agentwill
subsequentlyattemptto satisfy. Satisfyinga commitmenttypically meansmakingsome
predicatetruewithin theagent.Hereis asimpleexampleof aConcurrentMETATEM agent
definition:

rc
�
ask�/J giveK :

ask
�
x�0� give

�
x�� � ask

�
x�'L � give

�
x�2�@� ask

�
x���0�M� give

�
x�

give
�
x�2� give

�
y�4� �

x 
 y�
The agentin this exampleis a controller for a resourcethat is infinitely renewable,but
whichmayonly bepossessedby oneagentatany giventime.Thecontrollermusttherefore
enforcemutual exclusion over this resource.The first line of the programdefinesthe
interface to the agent: its nameis rc (for resourcecontroller), and it will acceptask
messagesandsendgivemessages.Thefollowing threelinesconstitutetheagentprogram
itself. Thepredicateask

�
x� meansthat agentx hasasked for the resource.Thepredicate

give
�
x� meansthat theresourcecontrollerhasgiventheresourceto agentx. Theresource

controllerisassumedtobetheonlyagentableto ‘give’ theresource.However,many agents
mayaskfor theresourcesimultaneously. Thethreerulesthatdefinethisagent’sbehaviour
maybesummarizedasfollows:

Rule1: if someonehasjustaskedfor theresource,theneventuallygivethemtheresource;

Rule2: don’t giveunlesssomeonehasaskedsinceyou lastgave;and

Rule3: if you give to two people,thenthey mustbe thesameperson(i.e., don’t give to
morethanonepersonata time).

ConcurrentMETATEM is a goodillustrationof how a quitepureapproachto logic-based
agentprogrammingcanwork, evenwith a quiteexpressive logic.
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Sources and Further Reading

The main referencesto AGENT0 are [64, 65]. Michael Fisher’s ConcurrentMETATEM
languageis describedin [21]; theexecutionalgorithmthatunderpinsit is describedin [3].
SinceShoham’s proposal,a numberof languageshave beenproposedwhich claim to
be agent-oriented.ExamplesincludeBecky Thomas’s PlanningCommunicatingAgents
(PLACA) language[67, 68], MAIL [30], andAnandRao’s AGENTSPEAK(L) language[50].
APRIL is a languagethatis intendedto beusedfor building multi-agentsystems,although
it is not “agent-oriented”in the sensethat Shohamdescribes[44]. The TELESCRIPT

programminglanguage,developedby GeneralMagic, Inc., was the first mobile agent
programminglanguage[69]. That is, it explicitly supportsthe ideaof agentsasprocesses
that have the ability to autonomouslymove themselvesacrossa computernetwork and
recommenceexecutingat a remotesite.SinceTELESCRIPT wasannounced,a numberof
mobileagentextensionsto theJAVA programminglanguagehavebeendeveloped.

1.6 Conclusions

I hopethat after readingthis chapter, you understandwhat agentsareandwhy they are
consideredto be an importantareaof researchand development.The requirementfor
systemsthat can operateautonomouslyis very common.The requirementfor systems
capableof flexible autonomousaction,in the sensethat I have describedin this chapter,
is similarly common.This leadsme to concludethat intelligentagentshave thepotential
to playasignificantrole in thefutureof softwareengineering.Intelligentagentresearchis
aboutthe theory, design,construction,andapplicationof suchsystems.This chapterhas
focussedon the designof intelligent agents.It haspresenteda high-level, abstractview
of intelligent agents,anddescribedthe sort of propertiesthat onewould expectsuchan
agentto enjoy. It wenton to show how this view of anagentcouldberefinedinto various
differenttypesof agentarchitecture— purely logical agents,purely reactive/behavioural
agents,BDI agents,andlayeredagentarchitectures.

1.7 Exercises

1. [Level1]
Give other examplesof agents(not necessarilyintelligent) that you know of. For
each,defineaspreciselyaspossible:

theenvironmentthat the agentoccupies(physical,software,. . . ), thestatesthat
this environmentcanbe in, andwhetherthe environmentis: accessibleor inac-
cessible;deterministicor non-deterministic;episodicor non-episodic;staticor
dynamic;discreteor continuous.

theactionrepertoireavailableto theagent,andany pre-conditionsassociatedwith
theseactions;
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thegoal,or designobjectivesof theagent— whatit is intendedto achieve.

2. [Level1]

(a) Prove that for every purely reactive agent,theseis a behaviourally equivalent
standardagent.

(b) Prove that thereexist standardagentsthat have no behaviourally equivalent
purelyreactiveagent.

3. [Level1]
Prove thatstate-basedagentsareequivalentin expressive power to standardagents,
i.e.,thatfor everystate-basedagentthereis abehaviourallyequivalentstandardagent
andviceversa.

4. [Level2]
The following few questionsrefer to the vacuumworld exampledescribedin sec-
tion 1.4.1.
Give the full definition (usingpseudo-codeif desired)of the new function, which
definesthepredicatesto addto theagent’sdatabase.

5. [Level2]
Completethevacuumworld example,by filling in themissingrules.How intuitive
doyou think thesolutionis?How elegantis it? How compactis it?

6. [Level2]
Try usingyourfavourite(imperative)programminglanguagetocodeasolutionto the
basicvacuumworld example.How do you think it comparesto thelogical solution?
Whatdoesthistell youabouttrying to encodeessentiallyprocedural knowledge(i.e.,
knowledgeaboutwhatactionto perform)aspurelylogical rules?

7. [Level2]
If you are familiar with PROLOG, try encodingthe vacuumworld examplein this
languageand running it with randomlyplaceddirt. Make useof the assert and
retract meta-level predicatesprovidedby PROLOG to simplify yoursystem(allow-
ing theprogramitself to achievemuchof theoperationof thenext function).

8. [Level2]
Developasolutionto thevacuumworld exampleusingthebehaviour-basedapproach
describedin section1.4.2.How doesit compareto thelogic-basedexample?

9. [Level2]
Try scalingthe vacuumworld up to a 10 � 10 grid size.Approximatelyhow many
ruleswouldyouneedto encodethisenlargedexample,usingtheapproachpresented
above?Try to generalisetherules,encodingamoregeneraldecisionmakingmecha-
nism.

10. [Level3]
Supposethatthevacuumworldcouldalsocontainobstacles, whichtheagentneedsto
avoid. (Imagineit is equippedwith asensorto detectsuchobstacles.)Try to adaptthe
exampleto dealwith obstacledetectionandavoidance.Again,comparealogic-based
solutionto oneimplementedin a traditional(imperative)programminglanguage.
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11. [Level3]
Supposethe agent’s sphereof perceptionin the vacuumworld is enlarged,so that
it canseethe wholeof its world, andseeexactly wherethe dirt lay. In this case,it
would bepossibleto generateanoptimaldecision-makingalgorithm— onewhich
clearedup the dirt in the smallesttime possible.Try and think of such general
algorithms,and try to codethem both in first-order logic and a more traditional
programminglanguage.Investigatetheeffectivenessof thesealgorithmswhenthere
is the possibilityof noisein theperceptualinput the agentreceives,(i.e., thereis a
non-zeroprobability that the perceptualinformation is wrong), and try to develop
decision-makingalgorithmsthat arerobust in the presenceof suchnoise.How do
suchalgorithmsperformasthelevel of perceptionis reduced?

12. [Level2]
Try developinga solutionto theMarsexplorerexamplefrom section1.4.2usingthe
logic-basedapproach.How doesit compareto thereactivesolution?

13. [Level3]
In theprogramminglanguageof your choice,implementtheMarsexplorerexample
usingthesubsumptionarchitecture.(To do this,you mayfind it usefulto implement
a simple subsumptionarchitecture“shell” for programmingdifferentbehaviours.)
Investigatetheperformanceof the two approachesdescribed,andseeif you cando
better.

14. [Level3]
Using the simulatorimplementedfor the precedingquestion,seewhat happensas
you increasethe numberof agents.Eventually, you shouldseethat overcrowding
leadsto a sub-optimalsolution— agentsspendtoo muchtime gettingout of each
other’sway to getany work done.Try to getaroundthisproblemby allowing agents
to passsamplesto eachother, thusimplementingchains. (Seethedescriptionin [15,
p305].)

15. [Level4]
Readabouttraditionalcontrol theory, andcomparetheproblemsandtechniquesof
control theoryto what aretrying to accomplishin building intelligentagents.How
are the techniquesand problemsof traditional control theory similar to thoseof
intelligentagentwork, andhow do they differ?

16. [Level4]
Oneadvantageof thelogic-basedapproachto building agentsis thatthelogic-based
architectureis generic: first-orderlogic turnsoutto extremelypowerfulandusefulfor
expressinga rangeof differentproperties.Thusit turnsout to bepossibleto usethe
logic-basedarchitectureto encodea rangeof otherarchitectures.For this exercise,
you should attempt to use first-order logic to encodethe different architectures
(reactive, BDI, layered)describedin this chapter. (You will probablyneedto read
the original referencesto be able to do this.) Once completed,you will have a
logical theoryof thearchitecture,thatwill servebothasa formalspecificationof the
architecture,andalsoasaprecisemathematicalmodelof it, amenableto proof.Once
you have your logically-specifiedarchitecture,try to animateit, by mappingyour
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logicaltheoryof it into, saythePROLOG programminglanguage.Whatcompromises
doyouhaveto make?Doesit seemworthwhiletrying to directlyprogramthesystem
in logic, or would it be simpler to implementyour systemin a more pragmatic
programminglanguage(suchasJAVA)?
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