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Abstract

In a seminal paper, Erdős and Rényi identified a sharp threshold for connectivity of the random graph G(n, p). In particular,
they showed that if p � log n/n then G(n, p) is almost always connected, and if p � log n/n then G(n, p) is almost always
disconnected, as n→∞.

The clique complex X (H) of a graph H is the simplicial complex with all complete subgraphs of H as its faces. In contrast
to the zeroth homology group of X (H), which measures the number of connected components of H , the higher dimensional
homology groups of X (H) do not correspond to monotone graph properties. There are nevertheless higher dimensional analogues
of the Erdős–Rényi Theorem.

We study here the higher homology groups of X (G(n, p)). For k > 0 we show the following. If p = nα , with α < −1/k or
α > −1/(2k + 1), then the kth homology group of X (G(n, p)) is almost always vanishing, and if −1/k < α < −1/(k + 1), then
it is almost always nonvanishing.

We also give estimates for the expected rank of homology, and exhibit explicit nontrivial classes in the nonvanishing regime.
These estimates suggest that almost all d-dimensional clique complexes have only one nonvanishing dimension of homology, and
we cannot rule out the possibility that they are homotopy equivalent to wedges of a spheres.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

A pioneering result in the theory of random graphs is the Erdős–Rényi theorem on the threshold for connectivity [4].
This is a primary inspiration for the line of research pursued here, and some of our results may be viewed as
generalizations of the Erdős–Rényi theorem to higher dimensions, so we begin by defining random graphs and stating
their result.

The random graph G(n, p) is defined to be the probability space of all graphs on vertex set [n] = {1, 2, . . . , n}
with each edge inserted independently with probability p. Frequently, p is a function of n, and one asks whether a
typical graph in G(n, p) is likely to have a particular property as n → ∞. We say that G(n, p) almost always (a.a.)
has property P if Pr[G(n, p) ∈ P] → 1 as n→∞.
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Theorem 1.1 (Erdős and Rényi). If p = (log n+ω(n))/n and ω(n)→∞ as n→∞ then G(n, p) is almost always
connected. If ω(n)→−∞ then G(n, p) is almost always disconnected.

The number of connected components in a graph is a monotone graph property. In other words, adding edges to
a graph can only decrease the number of components. (As with functions f : R → R, we could talk about graph
properties either being monotone increasing or decreasing.) Much random graph theory is concerned with monotone
graph properties: chromatic number, clique number, subgraph containment, diameter, and so on [3].

The clique complex X (G) of a graph G is the simplicial complex with all complete subgraphs of G as its faces.
The 1-skeleton of X (G) is G itself, so Erdős and Rényi’s result may be interpreted as a statement about homology
H̃0(X (G(n, p))) or homotopy π0(X (G(n, p))). (For a brief introduction to the topological notions discussed in this
article, please see Section 2.)

Note: To streamline notation, we will abbreviate X (G(n, p)) by X (n, p) for the rest of the article.
Our main objects of study are H̃k(X (n, p)) and πk(X (n, p)) for each fixed k > 0. We find that vanishing of higher

homology is not monotone, as homology vanishes for large and small functions p, but is nonvanishing for some
regime in between. Still, it is possible to make statements which generalize Theorem 1.1.

Another way to state our results is to fix the dimension d of the clique complex (by appropriately choosing p), rather
than looking at a fixed homology group. In this case, we find that the homology of X (n, p) is highly concentrated
in its middle dimensions. Asymptotically, a d-dimensional random clique complex a.a. has trivial homology above
dimension bd/2c and below dimension bd/4c. On the other hand, homology is almost always nontrivial in dimension
bd/2c.

In fact we cannot rule out the possibility that the only nontrivial homology is in dimension bd/2c. We give some
evidence for this by estimating the expectation of the Betti numbers.

In Section 8 we briefly survey other papers concerning topology of random simplicial complexes.

2. Topological notions

The reader who is familiar with reduced homology and homotopy groups of topological spaces may feel free to
skip this section. For anyone not so familiar, this will only serve as the very briefest of introductions, and will probably
not be sufficient to understand the more technical parts of the proofs, but at the suggestion of an anonymous referee,
we are including this section in order to make the article accessible to a wider audience. For anyone who wants to
know more, a very nice introduction to algebraic topology is Allan Hatcher’s book [6].

The reduced homology groups H̃i (X, k), i = 0, 1, 2, . . ., where k = Z or some field, are topological invariants
associated with a topological space X . Very roughly, H̃i (X, k) measures the number of i-dimensional holes in X .
Suppose X is a finite simplicial complex of dimension d . The most important topological facts for the purposes of this
article are the following.

• H̃i (X, k) is a finitely generated abelian group. In the case the k is a field, it is a vector space over k.
• The i th Betti number is βi = dim H̃i (X,Q). A classical fact is that if fi is the number of i-dimensional faces of X ,

then the following Euler formula holds.

f0 − f1 + · · · + (−1)d fd = β0 − β1 + · · · + (−1)dβd .

Also, it follows directly from the definition of simplicial homology and dimensional considerations that for every
i ,

− fi−1 + fi − fi+1 ≤ βi ≤ fi .

• H̃0(X, k) = 0 if and only if X is connected.
• H̃i (X, k) = 0 for i > d.
• (Universal coefficients for homology) If H̃i (X,Z) = 0 for 0 ≤ i ≤ m then H̃i (X, k) = 0 for any coefficients k.

We also briefly discuss the homotopy groups πi (X). Again, see [6] for a nice introduction, but the following facts
will be more than sufficient to read this article.

• πi (X) is the set of homotopy classes of maps from the sphere Si
7→ X . In particular, we say π0(X) = {0} if and

only if X is path connected.



1660 M. Kahle / Discrete Mathematics 309 (2009) 1658–1671

• (Hurewicz Theorem) If πi (X) = {0} for i ≤ n, (in which case we say that X is n-connected) then H̃i (X,Z) = 0,
i = 0, 1, . . . , n.
• H̃1(X,Z) is the abelianization of the fundamental group π1(X).

Reduced homology groups and homotopy groups are topological invariants, meaning that if two spaces are
homeomorphic then their associated homology and homotopy groups are isomorphic. A stronger statement, also true,
is that they are homotopy invariants, meaning that the same holds even if the spaces are only homotopy equivalent.

3. Statement of results

We discuss which groups H̃i (X (n, p),Z) are nontrivial, then estimate Betti numbers. For comparison with the
results, note that

dim(X (n, p)) ≈ −2 log n/ log p.

For example, since dim(X (H)) ≥ k if and only if H contains (k + 1)-cliques, standard random graph techniques for
subgraph containment [3] give that if p = nα with α < −2/k then a.a. dim(X (n, p)) < k, and if α > −2/k then a.a.
dim(X (n, p)) ≥ k.

We first show that if p is large enough then homology vanishes. A topological space X is said to be k-connected
if every map from a sphere Si

→ X extends to a map from the ball Bi+1
→ X for i = 0, 1, . . . , k. Equivalently, X

is k-connected if πi (X) = 0 for i ≤ k, and in particular 0-connected is equivalent to path connected. This implies, by
the Hurewicz Theorem [6], that H̃i (X,Z) = 0 for i ≤ k.

The following is implicit in [10], although Meshulam’s result was more general and stated for homology instead
of homotopy groups. We prove the homotopy statement here for the sake of completeness, although the argument is
similar to Meshulam’s.

Theorem 3.1 (Meshulam). If every 2k+2 vertices of a graph H have a common neighbor then X (H) is k-connected.

In the case that H is a random graph, this can be improved. For example, in the case k = 0, Erdős and Rényi’s
theorem gives that the threshold for connectivity is the same as the threshold for every vertex having at least one
neighbor. The threshold for every set of l vertices having a neighbor is given by the following.

Theorem 3.2. If p =
(

l log n+ω(n)
n

)1/ l
and ω(n) → ∞ then a.a., every l vertices of G(n, p) have a common

neighbor.

Together with Meshulam’s result, we immediately have the following:

Corollary 3.3. If p =
(
(2k+2) log n+ω(n)

n

)1/(2k+2)
and ω(n)→∞ then a.a. X (n, p) is k-connected.

Corollary 3.3 can be improved and we do so with Theorem 3.4. Note that when k = 0, this specializes to one
direction of the Erdős–Renyi theorem.

Theorem 3.4. If p =
(
(2k+1) log n+ω(n)

n

)1/(2k+1)
and ω(n)→∞ then a.a. X (n, p) is k-connected.

As a consequence, we have a statement about vanishing of homology. In a different regime, we can make statements
about nonvanishing homology by exhibiting nontrivial classes explicitly.

Theorem 3.5. If pk+1n → 0 and pkn → ∞ as n → ∞ then X (n, p) a.a. retracts onto a sphere Sk . Hence
H̃k(X (n, p),Z) a.a. has a Z summand.

Theorem 3.4 gives a statement that if p is large enough, then homology vanishes. The same must be true when p is
small enough, simply by dimensional considerations. But this kind of coarse argument will only give that α < −2/k
then H̃k(X (n, p),Z) = 0. By Theorem 3.5, the following is best possible.

Theorem 3.6. If p = nα with α < −1/k then H̃k(X (n, p),Z) = 0 almost always.

By Theorems 3.4–3.6, we have the following:



M. Kahle / Discrete Mathematics 309 (2009) 1658–1671 1661

Corollary 3.7 (Vanishing and Nonvanishing of Homology). If p = nα then

(1) if α < −1/k or α > −1/(2k + 1) then a.a. H̃k(X (G(n, p),Z)) = 0,
(2) and if −1/k < α < −1/(k + 1) then a.a. H̃k(X (n, p),Z) 6= 0.

So rather than monotonicity, we have a kind of unimodality (in terms of p) for each fixed homology group as
n→∞.

Corollary 3.7 does not address the case when −1/(k + 1) < α < −1/(2k + 1). We believe that Theorem 3.4 can
probably be improved to say that if p = nα with α > −1/(k + 1) then a.a. H̃k(X (n, p),Z) = 0.

To give evidence for this conjecture, we estimate the expected rank of homology, and show that it passes through
phase transitions at α = −1/k and −1/(k + 1). Let fk denote the number of k-dimensional faces of X (n, p) and βk
its kth Betti number. That is, let

βk = dim H̃k(X (n, p),Q),

although our result holds for coefficients in any field. By the definition of simplicial homology and dimensional
considerations, βk ≤ fk .

We show that, given the hypothesis of Theorem 3.5, fk is actually a good approximation for βk , but for p outside
of this range, βk is much smaller. We write X ∼ Y almost always if for every ε > 0, as n→∞,

P((1− ε) ≤ Y/X ≤ (1+ ε))→ 1.

Theorem 3.8. If pk+1n → 0 and pkn → ∞ then E(βk)/E( fk)→ 1. Moreover βk ∼ E[βk] and fk ∼ E[ fk] a.a.,
so βk ∼ fk a.a.

Finally, we apply discrete Morse theory to show that E[βk]/E[ fk] passes through phase transitions at p =
n−1/(k+1) and p = n−1/k .

Theorem 3.9. If pk+1n→∞ or pkn→ 0 then E(βk)/E( fk)→ 0.

(Note that even the second case of Theorem 3.9 is not necessarily implied by Theorem 3.6, since the statement that
a random variable is a.a. zero implies nothing about its expectation. Also, pkn → 0 is a slightly weaker hypothesis
than p = nα with α < −1/k.)

As a corollary to Theorems 3.8 and 3.9 we have the following:

Corollary 3.10 (Betti Numbers). If p = nα then for any ε > 0,

(1) if α < −1/k or α > −1/(k + 1) then a.a. 0 ≤ βk/ fk < ε,
(2) if −1/k < α < −1/(k + 1) then a.a. 1− ε < βk/ fk ≤ 1.

If Theorem 3.4 can be improved to say that if α > −1/(k + 1) then X (n, p) is a.a. k-connected, then the upshot
is that a.a. d-dimensional clique complexes have only one nonvanishing dimension of homology. This might be a bit
surprising, since it does not depend on d . In a sense. We discuss this more in Section 9.

In the next several sections we prove the results. Theorems 3.1, 3.2 and 3.4 are proved in Section 4, Theorem 3.6
in Section 5, Theorem 3.5 in Section 6, Theorems 3.8 and 3.9 in Section 7.

4. Connectivity

We use the following Nerve Theorem of Björner [2] throughout this section. The nerve of a family of nonempty
sets (∆i )i∈I is the simplicial complex N ((∆i )i∈I ), defined on the vertex set I by the rule that σ ∈ N (∆i ) if and only
if ∩i∈σ ∆i 6= ∅. Note that the nerve depends on the whole family, but we denote it by N (∆i ) rather than N ((∆i )i∈I )

for brevity.

Theorem 4.1 (Björner). Let ∆ be a simplicial complex, and (∆i )i∈I a family of subcomplexes such that ∆ = ∪i∈I ∆i .
Suppose that every nonempty finite intersection ∆i1 ∩ ∆i2 ∩ · · · ∩ ∆it is (k − t + 1)-connected, t ≥ 1. Then ∆ is
k-connected if and only if N (∆i ) is k-connected.
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Proof of Theorem 3.1. We show that if every 2k + 2 vertices of a graph H have a neighbor then X (H) is a.a. k-
connected. Proceed by induction on k. The claim holds when k = 0, i.e. if every pair of vertices of a graph have
a common neighbor, then the graph is certainly connected. So suppose the claim holds for k = 0, . . . , i − 1 where
i ≥ 1. Further suppose that H is a graph such that every set of 2i + 2 vertices has some neighbor. We wish to show
that X (H) is i-connected.

Define the star of a vertex v in a simplicial complex ∆ to be the subcomplex st∆(v) of all faces in ∆ containing v.
Clearly we have ∆ = ∪v∈∆ st∆(v). So to apply Theorem 4.1 we must check that each vertex star is itself i-connected,
and that every t-wise intersection is (i − t + 1)-connected for t = 2, . . . , i + 1.

Each star is a cone, hence contractible and in particular i-connected. Each t-wise intersection of vertex stars is
a clique complex in which every 2i + 2 − t vertices share a neighbor, hence by induction is i − bt/2c-connected.
Since t ≥ 2, i − bt/2c ≥ i − t + 1, so the claim follows provided that N (stX (H)(v)) is also i-connected. It is clear
that since every 2i + 2 neighbors have a neighbor, the intersection of every 2i + 2 vertex stars is nonempty. So the
(2i + 1)-dimensional skeleton of N (st∆(v)) is complete, and then N (st∆(v)) is 2i-connected. �

Proof of Theorem 3.2. We claim that if p =
(

l log n+ω(n)
n

)1/ l
and ω(n) → ∞ then a.a. every l vertices of G(n, p)

have a neighbor. The expected number of l-tuples of vertices in G(n, p) with no neighbor is(n

l

)
(1− pl)n−l

≤

(n

l

)
e−pl (n−l)

=

(n

l

)
e−

l log n+ω(n)
n (n−l)

=

(n

l

)
n−le−ω(n)(n−l)/n

≤ e−ω(n)(1−l/n)

= o(1),

since ω(n)→∞. This proves Theorem 3.2. �

For a graph H and any subset of vertices U ⊆ V (H), define

S(U ) :=
⋂
v∈U

stX (H)(v).

Lemma 4.2. Let k ≥ 1 and suppose H be any graph such that every 2k + 1 vertices share a neighbor, and for every
set of 2k vertices U ⊆ H, S(U ) is connected. Then X (H) is k-connected.

Proof of Lemma 4.2. As in the proof of Theorem 3.2, cover X (H) by its vertex stars st(v) and apply Theorem 4.1.
The nerve N (st(v)) is k-connected since every 2k + 1 vertices sharing a neighbor implies that its 2k-skeleton is
complete, so it is in fact (2k − 1)-connected. Then to check that X (H) is k-connected, it suffices to check that every
t-wise intersection of vertex stars is (k − t + 1)-connected, 2 ≤ t ≤ k + 1. We show something slightly stronger, that
if 0 ≤ j < k and i ≤ 2k − 2 j , then every i-wise intersection of vertex stars is j-connected.

The case j = 0 is clear: if |U | = 2k then S(U ) is connected by assumption, and if |U | < 2k then S(U ) is still
connected, since every pair of vertices in S(U ) shares a neighbor. Let j = 1. The claim is that if i ≤ 2k − 2 and
|U | = i then S(U ) is 1-connected. Cover S(U ) by vertex stars stS(U )(v), v ∈ S(U ) and again apply Theorem 4.1. We
only need to check that every intersection stS(U )(v) ∩ stS(U )(v) is connected, but this is clear since

stS(U )(u) ∩ stS(U )(v) = S(U ∪ {u, v})

is the intersection of i + 2 ≤ 2k vertex stars, connected by assumption.
Similarly, let j = 2, i ≤ 2k − 4, and |U | = i . Then to show that S(U ) is 2-connected, cover by vertex stars

stS(U )(v). Each 3-wise intersection of vertex stars

stS(U )(u) ∩ stS(U )(v) ∩ stS(U )(w) = S(U ∪ {u, v, w})

is the intersection of at most i + 3 ≤ 2k− 1 vertex stars, connected by assumption. Each 2-wise intersection of vertex
stars in S(U ) is the intersection of at most i + 2 ≤ 2k − 2 vertex stars in X (H), 1-connected by the above. Again
applying Theorem 4.1, we have that S(U ) is 2-connected as desired.
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Proceeding in this way, the lemma follows by induction on j . �

Proof of Theorem 3.4. The remainder of this section is a proof that if

p =

(
(2k + 1) log n + ω(n)

n

)1/(2k+1)

and ω(n) → ∞ then a.a. X (n, p) is k-connected. Our argument is inspired by a proof of Theorem 1.1 in [3]. Since
k = 0 is Theorem 1.1 we assume that k ≥ 1, Observe that for any graph H and vertex subset U ⊆ V (H), S(U ) is the
clique complex of a subgraph of H . Moreover, for any vertex v ∈ S(U ), stS(U )(v) = S(U ∪ {v}). We use these facts
repeatedly.

By Lemma 4.2 and Theorem 3.2, we need only check that a.a. the intersection of every 2k vertex stars in X (n, p)
is connected. It is convenient to instead check that the intersection of every 2k vertex links is connected. For a vertex
v in a simplicial complex ∆ define the link of v in ∆ by

lk∆(v) := {σ |v 6∈ σ and {v} ∪ σ ∈ ∆},

and for any vertex set U denote

L(U ) :=
⋂
v∈U

lk(v).

Suppose H is as in the hypothesis of Lemma 4.2 and |U | = 2k. If L(U ) is connected, then S(U ) is connected also,
as follows. If S(U ) − L(U ) = ∅ we are done, so suppose x ∈ S(U ) − L(U ). Clearly x ∈ U . L(U ) is connected by
assumption, and in particular nonempty, so let v ∈ L(U ). For u ∈ U − {x}, v ∼ u and x ∼ u. So {u, v}, {u, x}, and
{v, x} are all edges in H , and {u, v, x} is a face in X (H), and {v, x} ∈ stX (H)(u). So {v, x} ∈ S(U ) and x is connected
to L(U ). This holds for every x ∈ S(U )− L(U ), so S(U ) is connected.

Now we check that if

p =

(
(2k + 1) log n + ω(n)

n

)1/(2k+1)

,

then a.a., for every subset U ⊆ [n] with |U | = 2k, L(U ) is connected. It suffices to consider the 1-dimensional
skeleton L(U )(1), which is a random graph with independent edges. However the number of vertices in the graph is
not constant but a distribution, and there are

( n
2k

)
such graphs, where edges in one are not necessarily independent

of edges in another. However, the edges within each graph are still independent, and we may still apply linearity of
expectation to show that the probability that at least one of these graphs is not connected goes to 0.

Let U ⊆ [n] be any vertex set of cardinality 2k. The number of vertices X in L(U ) is not constant, but it is tightly
concentrated. X is the sum of n − 2k independent indicator random variables, each with probability p2k . So we have
an the following estimate for the mean of X .

µ = E[X ] ∼ p2kn

since k is constant. It is convenient to assume that p = o(1). A similar argument works for dense random graphs.
Standard large deviation bounds [1] give that

P(|X − µ| > εµ) < e−cεµ

for some constant cε > 0 depending only on ε. We set ε = 1/100 and write c = cε . Then

e−cµ
≤ e−cp2k n

= e−cp−1 p2k+1n

≤ e−cp−1(2k+1) log n

≤ n−c(2k+1)p−1

≤ n−c(2k+1)ω(n),

where ω(n)→ ∞. So, applying a union bound, the total probability that for any set U , |X − p2kn| > (1/100)p2kn
is no more than( n

2k

)
n−c(2k+1)ω(n)

= o(1).
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We have shown that a.a., 0.99p2kn < X < 1.01p2kn holds for every U , so we assume this for the remainder of the
proof. Note that X →∞ by our assumption on p.

Let Pi denote the probability that there are components of order i in L(U ) for at least one 2k-subset U . P1 = o(1)
by Theorem 3.2. Next we bound P2. There are

( n
2k

)
choices for U , then conditioned on that choice of U , let X denote

the number of vertices in L(U ), as above. Given that u, v ∈ L(U ), the probability that {u, v} spans a component of

order 2 in L(U ) is p(1− p)2(X−2). There are
(

X
2

)
choices for {u, v} so by our assumptions on X ,

P2 ≤

( n

2k

)( X

2

)
p(1− p)2(X−2)

≤ n2k
(
d1.01p2kne

2

)
pe−2p(X−2)

≤ n2k p4kn2 pe−2p(X−2)

≤ n2k+2 p4k+1e−2pX (1−o(1))

≤ n2k+2 p4k+1e−1.98p2k+1n(1−o(1))

≤ n2k+2 p4k+1e−1.98(2k+1) log n(1−o(1))

≤ n2k+2 p4k+1n−1.98(2k+1)(1−o(1))

= o(n−1),

since k ≥ 1.
For any U and subset of i vertices S ⊆ L(U ), for S to span a connected component of order i , it must at least

contain a spanning tree. It is well known that the number of spanning trees on i vertices is i i−2 [13]. The probability
that all i − 1 edges in any particular tree appear is pi−1, by independence. We first bound Pi from above, assuming
3 ≤ i ≤ 100. Since X →∞,

Pi ≤

( n

2k

)( X

i

)
i i−2 pi−1(1− p)i(X−i)

≤ n2k X i

i !
i i−2 pi−1e−i pX (1−o(1))

≤ ci n
2k X i pi−1e−i(0.99p2k+1n(1−o(1)))

≤ ci n
2k(1.01p2kn)i pi−1e−0.99i(2k+1) log n(1−o(1))

= ci exp[(2k + i) log n + i log 1.01+ (2ki + i − 1) log p − 0.99(1− o(1))i(2k + 1) log n]

≤ ci exp[(2k + i − 0.99i(2k + 1)+ o(1)) log n]

≤ ci exp[(2k + 0.01i − 1.98ik + o(1)) log n]

≤ ci exp[(2k + 0.01i − ik − 0.98ik + o(1)) log n]

≤ ci exp[(−k − 0.97i + o(1)) log n],

where ci = i i−2/ i ! is a constant that only depends on i . (The last line holds because i ≥ 3 and k ≥ 1.) So for large
enough n,

Pi ≤ ci exp[(−k − 0.97i + o(1)) log n]

≤ ci n
−k/2−.97i

and

100∑
i=3

Pi ≤

100∑
i=3

ci n
−k/2−.97i

= o(n−3).

Now suppose 100 < i ≤ b0.6p2knc. Here we need to be a bit more careful in our treatment of the i i−2/ i ! factor.
Stirling’s formula gives that i i−2/ i ! ≤ ei though, and this will be good enough. We have
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Pi ≤

( n

2k

)( X

i

)
i i−2 pi−1(1− p)i(X−i)

≤ n2k X i

i !
i i−2 pi−1e−p(0.4i X)

≤ n2k X i ei pi−1e−0.4i pX

≤ n2k(1.01p2kn)i ei pi−1e−0.4i(0.99p2k+1n)

= exp[(2k + i) log n + i(1+ log 1.01)+ (2ki + i − 1) log p − 0.396i(2k + 1) log n]

≤ exp[(2k + (0.604+ o(1))i − 0.792ik) log n].

Then by assumption that k ≥ 1, i > 100, and for large enough n,

Pi ≤ exp[(2k + 0.605i − 0.792ik) log n]

= exp[(2k + 0.605i − 0.092ik − 0.7ik) log n]

≤ exp[(2k + 0.605i − 9.2k − 0.7i) log n]

= exp[(−7.2k − .095i) log n]

= n−7.2k−.095i ,

and

b0.6p2k nc∑
i=101

Pi ≤

∞∑
i=101

n−7.2k−.095i
= o(n−15).

Putting it all together, a.a. each L(U ) is of order X , 0.99p2kn < X < 1.01p2kn, and there are no components of
order i , 1 ≤ i ≤ b0.6p2knc in any of the L(U ). We conclude that each L(U ) is connected, as desired. �

5. Vanishing homology

We show if p = nα with α < −1/k then H̃k(X (G(n, p),Z)) = 0 almost always. In this section, we assume the
reader is familiar with simplicial homology [6]. For a k-chain C , the support, supp(C), is the union of k-faces in C
with nonzero coefficients. Similarly, the vertex support, vsupp(C), is the underlying vertex set of the support.

A pure k-dimensional subcomplex ∆ is said to be strongly connected if every pair of k-faces σ, τ ∈ ∆d can be
connected by a sequence of facets σ = σo, σ1, σ2, . . . , σ j = τ such that dim(σi ∩ σi+1) = d − 1 for 0 ≤ i ≤ n − 1.
Every k-cycle is a Z-linear combination of k-cycles with strongly connected support. We show first that all strongly
connected subcomplexes are supported on a bounded number of vertices, and then that all small cycles are boundaries.

Lemma 5.1. Let α < −1/k and 0 < 1/N < −1/k−α. Then, there are a.a. no strongly connected pure k-dimensional
subcomplexes of X (n, p) with vertex support of more than N + k + 1 vertices.

Proof of Lemma 5.1. The vertices in the support of a strongly connected subcomplex can be ordered v1, v2, . . . , vn
such that {v1, . . . , vk+1} spans a k-face and vi is connected to at least k vertices v j with j < i . One way to see this is to
order the k-faces f1, f2, f3, . . . , so that each has (k−1)-dimensional intersection with the union of the previous faces.
This is possible because we have assumed that the subcomplex is strongly connected. Then let this ordering induce an
ordering on vertices, since at most one new vertex gets added at a time in the sequence f1, f1 ∪ f2, f1 ∪ f2 ∪ f3 . . .

Suppose ∆ has N + k+1 vertices. There are at least
(

k+1
2

)
+ Nk edges in ∆ by the above. If the underlying graph

of ∆ is not a subgraph of G(n, p) then ∆ is not a subcomplex. Choose ε and N such that 1/N < ε < −α − 1/k. We
apply a union bound on the total probability that there are any subcomplexes isomorphic to ∆ in X (n, p). We have
p = nα < n−(1/k+ε) and k < εNk by assumption, so

P(∃ subcomplex) ≤ (N + k + 1)!
(

n

N + k + 1

)
p

(
k+1

2

)
+Nk

≤ (N + k + 1)!
(

n

N + k + 1

)
n
−(1/k+ε)

((
k+1

2

)
+Nk

)
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≤ nN+k+1n
−(1/k)

((
k+1

2

)
+Nk

)
n
−ε
((

k+1
2

)
+Nk

)
≤ n

1−(k+1)/2−ε
(

k+1
2

)
= O(n−ε).

This last line holds since k ≥ 1. There are only finitely many isomorphism types of strongly connected k-dimensional
complexes ∆ on N + k + 1 vertices, and a.a. none of them are subcomplexes of X (n, p) by repeating this argument
for each of them. There are also no such subcomplexes on more than N + k + 1 vertices, since each of these contains
a strongly connected subcomplex on exactly N + k + 1 vertices (e.g., by the ordering described above). �

Then homology is generated by cycles supported on small vertex sets. Let γ be a nontrivial k-cycle in a simplicial
complex ∆, with minimal vertex support, and write it is a linear combination of faces

γ =
∑

f ∈supp(γ )

λ f f,

with λ f ∈ Z. For the remainder of this section we restrict our attention to the full induced subcomplex of ∆ on
vsupp(γ ). Clearly γ is still a nontrivial cycle in this subcomplex. For v ∈ vsupp(γ ) define the k-chain

γ ∩ st(v) :=
∑

f ∈st(v)

λ f f,

and the (k − 1)-chain

γ ∩ lk(v) :=
∑

f ∈st(v)

λ f ( f − {v}).

Order the vertices with v last and let this induce an orientation on every face. We observe that

γ ∩ lk(v) = ∂(γ ∩ st(v)),

and since ∂ ◦ ∂ = 0 this gives that γ ∩ lk(v) is a (k − 1)-cycle.

Lemma 5.2. With notation as above, γ ∩ lk(v) is a nontrivial (k − 1)-cycle in lk(v).

Proof of Lemma 5.2. We need only check that γ ∩ lk(v) is not a boundary. Suppose by way of contradiction that
∂(β) = γ ∩ lk(v) for some k-chain β with supp(β) ⊆ lk(v). In particular v 6∈ vsupp(β). Write

β =
∑

f ∈supp(B)

µ f f

with µ f ∈ Z and define the (k + 1)-chain

β ∗ {v} :=
∑

f ∈supp(β)

µ f ( f ∪ {v}).

Then

∂(β ∗ {v}) = γ ∩ st(v)+ (−1)k+2β.

So

γ ′ := (γ − γ ∩ st(v))+ (−1)k+3β

is a k-cycle homologous to γ , but with vsupp(γ ′) ⊆ vsupp(γ ) − {v}, contradicting that γ has minimal vertex
support. �

Lemma 5.3. Let H be a graph and X (H) its clique complex. Suppose γ is a nontrivial k-cycle in X (H). Then
|vsupp(γ )| ≥ 2k + 2.

Proof of Lemma 5.3. Proceed by induction on k. The claim is clear when k = 0. Suppose then that |vsupp(γ )| ≤
2k + 1, and v ∈ vsupp(γ ). By Lemma 5.2, γ ∩ lk(v) is a nontrivial cycle. By the induction hypothesis,
|vsupp(γ ∩ lk(v))| ≥ 2k, so we must have equalities |vsupp(γ )| = 2k + 1 and |vsupp(γ ∩ lk(v))| = 2k. Repeating
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this argument gives that every vertex in vsupp(γ ) has degree 2k, so vsupp(γ ) spans a clique in H . But then vsupp(γ )
spans a 2k-dimensional face in X (H), a contradiction to γ nontrivial. �

Proof of Theorem 3.6. Any nontrivial k-cycle with minimal vertex support must have minimum vertex degree at least
2k in its supporting subgraph, since each vertex link is a nontrivial (k − 1)-cycle by Lemma 5.2, hence contains at
least 2(k − 1) + 2 = 2k vertices by Lemma 5.3. (We discuss nontrivial k-cycles Sk with |vsupp(Sk)| = 2k + 2 in
Section 6.)

Let H be any fixed graph with minimal vertex degree 2k. Let m = |V (H)|, and then |E(H)| ≥ m(2k)/2 = mk.
Then if α < −1/k and p = nα , H is a.a. not a subgraph of G(n, p). We check this with a union bound. The
probability that H is a subgraph is at most

m!
( n

m

)
pmk
≤ nmnαmk

= o(1),

since αk < −1. There are only finitely many isomorphism types of graphs of minimal degree 2k on m = N + k
vertices. Each has at least km edges. Applying this argument to each of them, we conclude X (n, p) a.a. has no vertex
minimal nontrivial k-cycles, so a.a. H̃k(X (G(n, p),Z)) = 0. �

6. Spherical retracts

We prove Theorem 3.5, that if pk+1n→ 0 and pkn→∞ as n→∞ then X (n, p) a.a. retracts onto a sphere Sk .
Let Sd denote the d-dimensional octahedral sphere (i.e. the d-fold repeated join of two isolated points), and (Sd)(1)

its 1-skeleton. An alternate description of (Sd)(1) as a graph is

V ((Sd)(1)) = {u1, u2, . . . , ud+1} ∪ {v1, v2, . . . , vd+1}

and

E((Sd)(1)) = −{{ui , v j } | i = j},

where the – denotes complement in the set of all possible edges. Hence (Sk)(1) has 2(k + 1) vertices and(
2(k+1)

2

)
− (k + 1) edges.

(Sk)(1) is a strictly balanced graph, meaning that the ratio of edges to vertices is strictly smaller for every proper

subgraph. A standard result in random graph theory [3] gives that n
−2(k+1)/

((
2(k+1)

2

)
−(k+1)

)
= n−1/k is a sharp

threshold function for G(n, p) containing a (Sk)(1) subgraph. In particular, if pkn → ∞, G(n, p) a.a. contains such
a subgraph.

With notation as above, let S = {u1, u2, . . . , uk+1} ∪ {v1, v2, . . . , vk+1} be the vertices of such a subgraph. The
conditional probability that vertices {u1, u2, . . . , uk+1} have a common neighbor is no more than

(k + 1)p + (n − 2k − 2)pk+1
= o(1),

since pkn → 0 (so p → 0) and pk+1n → 0. So a.a. G(n, p) contains a (Sk)(1) subgraph S such that
{u1, u2, . . . , uk+1} has no common neighbor. Note that in this case ui is never adjacent to vi for any choice of i . Then
define a retraction of X (n, p) onto X (S) by defining a map r : G(n, p)→ S on vertices and extending simplicially.
(In particular, the (Sk)1 subgraph is induced.)

For x ∈ S, set r(x) = x and for x 6∈ S, let i be chosen so that x is not adjacent to ui and set r(x) = ui . Such
a choice exists for every x 6∈ S almost always, by the above. There’s no obstruction to extending r simplicially to a
retraction r̃ : X (n, p)→ X (S), and X (S) is homeomorphic to Sk .

7. Betti numbers

First assume that pk+1n → 0 and pkn → ∞. We wish to prove Theorem 3.8 and in particular to show that a.a.
βk ∼ fk . For every simplicial complex δ, we have the Morse inequality [6]:

− fk−1 + fk − fk+1 ≤ βk ≤ fk .

The point is that when p is in this interval, fk is much larger than fk−1 + fk+1.
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By linearity of expectation, we have

− E[ fk−1] + E[ fk] − E[ fk+1] ≤ E[βk] ≤ E[ fk], (1)

and then expanding each term gives

−

(n

k

)
p

(
k
2

)
+

(
n

k + 1

)
p

(
k+1

2

)
−

(
n

k + 2

)
p

(
k+2

2

)
≤ E[βk] ≤

(
n

k + 1

)
p

(
k+1

2

)
.

Since pk+1n → 0 and pkn → ∞, we also have that
( n

k

)
p

(
k
2

)
→ 0 and

(
n

k+2

)
p

(
k+2

2

)
→ 0. Let Yk =

− fk−1 + fk − fk+1. Then, we have shown so far that

E[Yk] ∼ E[βk] ∼ E[ fk]. (2)

We strengthen this by applying the Second Moment Method. A standard application of Chebyshev’s inequality [1]
gives that if E[X ] → ∞ and Var[X ] = o(E[X ]2) then a.a. X ∼ E[X ]. To prove Theorem 3.5 it suffices to check that
Var[ fk] = o(E[ fk]

2) and Var[Yk] = o(E[Yk]
2).

Let µ = E[ fk] and we have

µ2
=

(
n

k + 1

)2

p
2
(

k+1
2

)

and

Var[ fk] = E[ f 2
k ] − µ

2.

Label the (k + 1)-subsets of [n], 1, 2, . . . ,
(

n
k+1

)
. Let Ai be the event that subset i spans a k-face in X (n, p), and

Ai ∧ A j the event that both Ai and A j occur. Then

E[ f 2
k ] =

(
n

k+1

)∑
i=1

(
n

k+1

)∑
j=1

Pr[Ai ∧ A j ]

=

(
n

k + 1

) (
n

k+1

)∑
j=1

Pr[A1 ∧ A j ],

by symmetry. By grouping together A j by the size of their intersections with A1 we have

E[ f 2
k ] =

(
n

k + 1

) k+1∑
m=0

(
k + 1

m

)(
n − k − 1
k + 1− m

)
p

2
(

k+1
2

)
−(m

2 )

=

(
n

k + 1

)
p

2
(

k+1
2

) k+1∑
m=0

(
k + 1

m

)(
n − k − 1
k + 1− m

)
p−(

m
2 )

≤ µ2
+

(
n

k + 1

)
p

2
(

k+1
2

) k+1∑
m=1

(
k + 1

m

)(
n − k − 1
k + 1− m

)
p−(

m
2 ),

since
(

n−k−1
k+1

)
≤

(
n

k+1

)
. Then we have that

E[ f 2
k ] − µ

2

µ2 ≤

k+1∑
m=1

(
k+1

m

) (
n−k−1
k+1−m

)
p−(

m
2 )(

n
k+1

)
=

k+1∑
m=1

O(n−m p−(
m
2 ))
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=

k+1∑
m=1

O((n−1 p−(m−1)/2)m)

= o(1),

since n−1 p−k−1
= o(1) by assumption. We conclude that a.a. fk ∼ E[ fk]. This did not depend on any assumption

about k, so we also have that a.a.− fk−1 ∼ E(− fk−1) and− fk+1 ∼ E(− fk+1), and adding these three gives that a.a.
Yk ∼ E(Yk).

By Eqs. (1) and (2), a.a. βk ∼ E(βk). The conclusion is that a.a. βk ∼ fk , so this completes the proof of
Theorem 3.8.

Now we use discrete Morse Theory to prove Theorem 3.9, that if pk+1n → ∞ or pkn → 0 as n → ∞ then
E[βk]/E[ fk] = o(1). For this, a few definitions are in order. We will write σ < τ if σ is a face of τ of codimension 1.

Definition 7.1. A discrete vector field V of a simplicial complex ∆ is a collection of pairs of faces of ∆{α < β} such
that each face is in at most one pair.

Given a discrete vector field V , a closed V -path is a sequence of faces

α0 < β0 > α1 < β1 > . . . < βn > αn+1,

such that {αi < βi } ∈ V for i = 0, . . . , n and αn+1 = αo. (Note that {βi > αi+1} 6∈ V since each face is in at most
one pair.) We say that V is a discrete gradient vector field if there are no closed V -paths.

Call any simplex not in any pair in V critical. The main theorem of discrete Morse Theory is the following [5].

Theorem 7.2 (Forman). Suppose ∆ is a simplicial complex with a discrete gradient vector field V . Then ∆ is
homotopy equivalent to a CW complex with one cell of dimension k for each critical k-dimensional simplex.

First assume that pk+1n → ∞. Since we are assuming the vertex set of G(n, p) is labeled by [n], we can let this
induce a total ordering of the vertices. This induces a lexicographic ordering on the faces of X (n, p). For two faces
σ and τ of a simplicial complex, we write σ <lex τ if σ comes before τ in the lexicographic ordering. For any set of
faces S let lexmin(S) denote the lexicograhically first element of S.

Define a discrete gradient vector field on X (n, p) as follows.

V := {{α < β}| dim(α) = k and β = lexmin({b|α < b and α <lex b})}.

It is clear that no face is in more than one pair, and there are no closed V -paths. Let σ := {v1, v2, . . . , vk+1} ⊂ [n],
with the vertices listed in increasing order, and set m := vk+1. Then σ is a critical k-dimensional face of X (n, p) if
and only if σ ∈ X (n, p) and σ ∪ {x} 6∈ X (n, p) for every x >lex m. These events are independent by independence of
edges in G(n, p). So

P(σ is a critical k − face) = p

(
k+1

2

)
(1− pk+1)n−m .

There are
(

i−1
k

)
possible choices for σ with vk+1 = i . Let the number of critical k-faces be denoted by f̃k . We have

E( f̃k) =

n∑
i=m+1

(
i − 1

k

)
p

(
k+1

2

)
(1− pk+1)n−i

≤

(n

k

)
p

(
k+1

2

) n∑
i=m+1

(1− pk+1)n−i

≤

(n

k

)
p

(
k+1

2

) n∑
i=−∞

(1− pk+1)n−i

=

(n

k

)
p

(
k+1

2

)
1

pk+1 ,
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so

E( f̃k)

E( fk)
≤

( n
k

)
p

(
k+1

2

)
1

pk+1(
n

k+1

)
p

(
k+1

2

)

= O

(
1

npk+1

)
= o(1),

since npk+1
→∞. By Theorem 7.2, X (n, p) is homotopy equivalent to a CW complex with at most f̃k faces, and by

cellular homology, βk ≤ f̃k [6]. So E(βk)/E( fk)→ 0 and this proves the first part of Theorem 3.9.
Now assume npk

→ 0. For each k-face τ = {v1, v2, . . . , vk+1} choose i(τ ) ∈ {1, 2, . . . , k+1} randomly, uniformly
and independently. We’d like to set

V = {{τ − vi(τ ), τ }|τ ∈ X (n, p) and dim(τ ) = k},

but this might not be a discrete gradient vector field. There are two things that might go wrong. Some (k − 1)-faces
might be in more than one pair, and there might be closed V -paths. If we remove one pair from V for each such bad
event though, we are left with a proper discrete gradient vector field, with at most one critical cell for each bad event.
So we compute the expected number of bad events.

Each bad event contains at least one pair of k-faces of X (n, p) meeting in a (k − 1)-face, either resulting in a
(k − 1)-face being in more than one pair, or a closed V -path. Let d denote the number of such pairs, which is also the
number of pairs of Kk+1 subgraphs in G(n, p) which intersect in exactly k vertices. In such a situation there are k+ 2

vertices and at least
(

k+2
2

)
− 1 edges total, and given a set of k + 2 vertices there are

(
k+2

2

)
possible choices for a

pair of Kk+1 intersecting in k vertices, so

E(d) =

(
k + 2

2

)(
n

k + 2

)
p

(
k+2

2

)
−1

=

(
k + 2

2

)(
n

k + 2

)
p

k(k+3)
2 .

Then

E(d)

E( fk)
=

(
k+2

2

) (
n

k+2

)
p

k(k+3)
2(

n
k+1

)
p

k(k+1)
2

= O(npk)

= o(1),

since npk
→ 0 by assumption. Again, by Theorem 7.2 and cellular homology, βk ≤ d, so this completes the proof of

Theorem 3.9.

8. Random simplicial complexes

X (n, p) seems to us a natural probability space of simplicial complexes to study topologically, in part because
every simplicial complex is homeomorphic to a clique complex, e.g. by barycentric subdivision [2]. But of course
there are many other possible definitions of random simplicial complexes.

Linial and Meshulam give a definition for random 2-complexes Y (n, p) which “locally” look like G(n, p), and
exhibited a sharp Z2-homological analogue of Theorem 1.1 [9]. This was subsequently generalized to d-dimensional
complexes and arbitrary fixed finite coefficients by Meshulam and Wallach [11]. In [7], it is shown that the threshold
for vanishing of π1(Y (n, p)) is much larger than the Linial-Meshulam-Wallach threshold for H1(Y (n, p),Z2).

Pippenger and Schleich study a different sort of random 2-complexes, made by gluing edges of triangles together
randomly [12]. Their 2-complexes are pseudomanifolds, and the main motivation is giving quantitative results about
fluctuations in the topology of spacetime in theories of quantum gravity.
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In another article [8], we study the neighborhood complex of a random graph N [G(n, p)]. The results are
comparable to what we find here: each fixed homology group is roughly unimodal in p, and the nontrivial homology
of a random d-complex is concentrated in a small number of dimensions. Applications are discussed to topological
bounds on chromatic number.

9. Future directions

Although Theorem 3.4 is technically a generalization of one direction of Theorem 1.1, it is not clear if it is best
possible and we are of the opinion that it probably is not. We conjecture that Theorem 3.5 is tight instead, and that if
p = nα with α > −1/(k + 1) then X (n, p) is k-connected, almost always. (The work in [7] suggests that this may
not be true when k = 1, but we believe that it probably holds for k > 1.)

In a sense, this would be close to determining the homotopy type of X (n, p) when −1/k < α < −1/(k + 1).
In particular, if one could establish this conjecture, and also show that H̃k(X (n, p),Z) is torsion free, then standard
results in combinatorial homotopy theory [2] (Theorem 9.18) would imply that if p = nα with −1/k < α <

−1/(k + 1) then X (n, p) is a.a. homotopy equivalent to a wedge of k-dimensional spheres. However, note that even
showing that H̃k(X (n, p),Z) is free of m-torsion for every fixed m would not be good enough, since it is still possible
that there is m-torsion, with m tending to infinity along with n.

Many simplicial complexes arising in combinatorics are homotopy equivalent to wedges of spheres, and Robin
Forman, among others, has asked if there is any good reason why [5]. Such complexes frequently arise as order
complexes of posets, hence naturally arise as clique complexes, and we believe that the results in this article are a step
toward answering this question.
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