
Logical Structure Recovery in Scholarly
Articles with Rich Document Features

Minh-Thang Luong, Thuy Dung Nguyen and Min-Yen Kan*

National University of Singapore, Singapore

ABSTRACT
Scholarly digital libraries increasingly provide analytics to information within documents
themselves. This includes information about the logical document structure of use to
downstream components, such as search, navigation and summarization. We describe SectLabel,
a module that further develops existing software to detect the logical structure of a document
from existing PDF files, using the formalism of conditional random fields. While previous work
has assumed access only to the raw text representation of the document, a key aspect of our work
is to integrate the use of a richer representation of the document that includes features from
optical character recognition (OCR), such as font size and text position. Our experiments reveal
that using such rich features improves logical structure detection by a significant 9 F1 points,
over a suitable baseline, motivating the use of richer document representations in other digital
library applications.

Keywords: ParsCit, Metadata Extraction, Logical Structure Discovery, Conditional Random
Fields, Rich Document Features

INTRODUCTION
The pace of scholarly exploration, publication and dissemination grows faster every year,
reaching unprecedented levels. To support this level of innovation, scholars increasingly rely on
open-access mechanisms and digital libraries, portals and aggregators to disseminate their
findings (Brown, 2009). While there is controversy over which of the trends of search engines,
open access, preprint and self-archiving have most influenced the growth of scientific discovery,
the consensus is that these batteries of methods have bettered the dissemination of scholarly
materials. Now, an arguable bottleneck in the scientific process is in the processing,
sensemaking and utilization of scholarly discoveries for the next iteration. Scholars are still
largely confined to printing, reading and annotating the papers of their interest offline, without
the help or guidance of a digital library to organize and collect their thoughts.

 We believe a key component of a strategy to address this gap is in building applications that
take advantage of the logical structure and semantic information within the documents
themselves. Even within the limited domain of computer science, searching for competing
methodologies to solve a problem, analyzing empirical results in tables, finding example figures
to use in a presentation, or determining which datasets have been used to evaluate an approach,

* Corresponding author

are all comparative tasks that researchers do on a regular basis. Unfortunately, currently these
can only be done manually, without aid from any computing infrastructure.

 To support such analytics is not trivial and requires groundwork. One important subtask that
is common to all of the above problems is to obtain the logical structure of the scholarly
document. We paraphrase Mao, Rosenfeld, & Kanungo’s (2003) earlier definition and define a
document's logical structure as “a hierarchy of logical components, such as (for example) titles,
authors, affiliations, abstracts, sections, etc.” Note that the logical structure we seek is more
comprehensive than what most other published systems identify. Namely, we identify not only
metadata such as title, authors, abstract and parsing references, but also the logical structure of
the internals of the document – sections, subsections, figures, tables, equations, footnotes and
captions.

 In this paper, we present SectLabel, an open source system to solve two related subtasks in
logical structure discovery: 1) logical structure classification, and 2) generic section
classification. In the first task, we consider a scholarly document as an ordered collection of text
lines, and need to label each text line in a document with a semantic category, representing its
logical role. In the second task, we take the headers of each section of text in a paper as evidence
to deduce a generic logical purpose of the section.

 We accomplish our implementation by extending an existing, freely available platform for
reference string parsing, ParsCiti. ParsCit uses the machine learning methodology of conditional
random fields (CRF), a model that blends sequential labeling techniques with pointwise entropy-
based classification. We extend the use of CRFs in ParsCit to also provide logical structure
discovery through the addition of the SectLabel module.

 A further reality of document processing is that inputs come in many forms of markup: from
richly annotated XML representations of OCR output to noisy, raw text dumps provided by copy
and paste operations. Robustness is thus highly desirable, where the tool does not fail but where
output quality may gracefully degrade as the input quality becomes poorer.

 We summarize our contributions as follows:

1. We present the first logical structure discovery tool that expressly caters for scientific
documents. Unlike previous scholarly document processing systems, it attempts logical
structure discovery over the span of the entire paper at a fine-grained (per line) level.

2. We infer the generic logical purpose of each major section of text, mapping specific
sections names to generic ones (i.e. “5. Text Features” → Methodology). This promotes
comparative viewing of sections with identical purpose across articles.

3. Our implemented system handles both rich formatted input from an optical character
recognition system, as well as from plain text dumps of scholarly articles. We evaluate
both modes of input and conclusively show that rich input enhances classification
performance, especially for certain logical structure classes.

4. We have created gold-standard training data for these tasks and made this dataset public
at the original ParsCit site to encourage others to perform comparative evaluation.

 We first discuss related work with an emphasis on work originating in the document analysis
and digital library communities. Then, we formalize the two tasks and discuss the learning
methodology of conditional random fields in more details. The section on System Architecture
gives an overview of our system architecture; the subsequent discussion on Classification
Categories explains different classification categories used. We discuss plain text features first,
followed by a discussion of the rich input features that we distill in the case of OCR input. We
quantify our system's performance in experiments, discuss our system's relative merit and discuss
current and future work in final portions of the paper.

RELATED WORK
Logical structure analysis has a long research history that has been surveyed in multiple prior
works (see Mao et al., (2003) as an example). To keep the discussion relevant to our work, we
limit our discussion briefly to two specific aspects: 1) the use of the conditional random field
(CRF) specifically in digital library area, and 2) logical structure analysis where the main focus
has been the use of OCR information.

The Use of Conditional Random Fields in Digital Libraries
We draw attention to a class of problems, called the sequence labeling task, which attempts to
assign labels to a sequence of observations. Our tasks of logical structure analysis and generic
section labeling can be viewed as instances of such problems. Such labeling problems are
common and arise in many fields, including bio-informatics, computational linguistics, and
speech recognition (Durbin et al., 1998; Manning & Schütze, 1999; Rabiner & Juang, 1993).
There have been many learning models designed to tackle the sequence labeling task, of which
the Conditional Random Field (Lafferty, McCallum, & Pereira, 2001) is a recent and effective
formalism.

In the context of digital libraries, CRFs have already been widely used in numerous
applications, most notably metadata extraction tasks, being described as “the most difficult task
performed by an automated digital library system for research papers” (Councill et al., 2006).
The choice of such a learning framework is justified in Peng and McCallum’s (2004) work,
which demonstrated the performance gains when substituting CRF for Hidden Markov Models
(Seymore, McCallum and Rosenfeld, 1999; Takasu, 2003), or Support Vector Machines (Han et
al., 2003). Examples of systems using CRFs include CiteSeerX (Councill et al., 2006) – a search
engine for scientific literature, ArnetMiner (Tang et al., 2008) – an academic social network
search system, and ParsCit (Councill, Giles and Kan, 2008) – a reference string parsing software
package, which is also incorporated in CiteSeerX.

Logical Structure Analysis
Of all the surveyed works on logical structural analysis, Kim, Le and Thomas’ (2001) work is
most related to ours in utilizing OCR information for analysis. They first categorize a paper into
a layout template, and then apply OCR features such as the bounding box, font size/attributes
together with word list tables to perform classification on biomedical journals. Similarly, Klink,

Dengel and Kieninger (2000) use geometric information, text patterns and font information given
by OCR output to classify business letters and journal papers. These works, however, rely on
hand-crafted rules and heuristic matching.

 At a more fined-grained level, works on mathematical expression recognition have been a
research focus of the document processing community for many years (Suzuki et al., 2003;
Fujiyoshi, Suzuki and Uchida, 2009) using OCR primitive features. These works also utilize
heuristically tuned systems whose rulesets need to be reconstructed for its application to a new
problem area.

 Statistical approaches for inferring logical document structure address the shortcomings of
rule based approaches and have been a more recent focus of research. Belaïd and Rangoni (2008)
have used neural networks to classify a similar set of categories. The LATISI projectii has made
inroads towards building per journal / venue classifiers for logical blocks of text using a memory
based classifier.

 These works come the closest to our goal of a system for segmenting a document, but stop
short of completing the classification into a set of fine-grained categories that cater for
document metadata, logical structure and construct (i.e., definitions, formulas and theorems)
categories. Furthermore, many works up to now have focused on using only textual features or
spatial and font (i.e., OCR-based) based evidence, but have not adequately demonstrated systems
that use both in a synergistic way. A necessary development is a robust logical document
structure inference system that can handle both rich input (page image information), but still be
able to perform inference on impoverished input (plain text) with degraded performance. In the
remainder of this paper, we detail the construction and evaluation of our SectLabel system,
which aims to fill this important gap.

METHODOLOGY

Problem Formulation and Learning Model

Scholarly articles can be viewed as consisting of multiple lines, generally organized in several
logical flow patterns such as a header with title, author and affiliation lines; followed by abstract,
introduction lines; then body text; ending with a conclusion and lines making up its references.
As such, our problem is naturally modeled as a formal sequence labeling task with the input text
as a sequence of multiple lines L = {l1, l2, … ln}. Each element li needs to be assigned a correct
label from a set of classes C = {c1, c2, … cm}. Evidence used to classify a line li not only comes
from the features of that line itself, but also from the previous classifications of l1 … li-1. We
make an assumption that each document line contains homogenous text belonging to only one
category, i.e. a unique class, hence, making our problem an instance of the hard categorization
task.

 We employ the CRF learning model which is often expressed using the following simplified
form:

1

(| ,) exp((,))
() j j

j

p y x f y x
Z x

   (1)

 Equation 1 represents the probability of a particular sequence y given an observation
sequence x. In this simplified form, fj(y, x) is used to represent either a state function s(yi, x, i) or
a transition function t(yi-1, yi, x, i). λj are the feature weights to be set by training and Z(x) is the
partition function, used to guarantee that the resulting p(y|x,λ)s are proper probabilities. State
and transition functions are defined in terms of binary features as illustrated below using our
problem context:

 st
i1 if 1 word of line x " "

0 otherwiseb(x,i) = University

 Given b(x, i), the state and transition functions will then be of the form:

    i
i

b x,i if label y affiliation
0 otherwises y , x, i




   i 1 i

i 1 ib x,i if y author& y affiliation
0 otherwiset y , y , x, i



  


 In our implementation, we use the open-source CRF++ packageiii to handle CRF specifics of
inducing and applying the learned models. With this formalism, the focus of our problem
becomes in feature engineering; that is, the design and selection of binary features b(x, i). Our
input into CRF++ will be of the form “value1 … valuem categoryi” for each line li (i = 1,n),

where categoryi is the true class at training time and which is to be inferred at test time. value1 …
valuem are feature values corresponding to a fixed set of m feature types. CRF++ automatically
converts feature values into binary features b(x, i) by means of a feature template file, providing
a clean and neat way to later incorporate our text and OCR features (see later section on “Raw
Text Features and Rich Document Representation”).

System Architecture
Our system consists of two parts: a primary component, Logical Structure (LS), and a
subordinating part, namely Generic Section (GS). The LS component takes in full-text papers as
input, while the GS component only deals with header lines. We detail the system pipeline
through two stages – training and testing – and illustrate these processes in Figure 1.

At training time, we run our OCR software (discussed later) through all input papers to obtain
raw text data as well as XML layout information. If only a stream of plain text is provided, only
the raw text is used as input. The LS feature extractor utilizes both raw text and layout
information, when available, while the GS feature extractor takes in only text headers from the
raw text. Both the LS and GS extracted features, together with the manually labeled data, go
through the CRF trainer to produce the corresponding learned models.

Unseen data during testing is represented as set of lines {l1, l2, … ln} with additional XML
layout information. The LS feature extraction processes these data, and then passes them to the
LS classifier to label each line li with one of 23 structure categories ci such as title, author, or
header. Most labels {c1, c2, … cn} at this step are final; only ones classified as headers need
further processing. The counterpart GS modules further consider lines li where ci=header to
perform additional classification, relabeling li into one of 13 generic section headers c'i such as
introduction, abstract, or methodology. Those newly-labeled logical headers are then
incorporated into the original output to form the final output.

Figure 1: System architecture, showing training and testing phases. For clarity, LS classifier represents
both the LS feature extractor and classifier; similarly for the GS classifier.

Classification Categories
In the logical structure LS subtask, we propose to assign each line of text to one of a set of 23
categories: address, affiliation, author, bodyText, categories, construct, copyright, email,
equation, figure, figureCaption, footnote, keywords, listItem, note, page, reference,
sectionHeader, subsectionHeader, subsubsectionHeader, table, tableCaption, and title. The
names of most categories are largely self-descriptive, so we only discuss the exceptions. Note
refers to additional text at the top or bottom of a page that is not a footnote or endnote. In the
corpora that we have used to create SectLabel, such notes generally capture conference details.
Categories and keywords denote paper metadata that describe the content. In the case of
scholarly documents that follow the Association for Computing Machinery (ACM) style, we
consider “general terms” as keywords. Lastly, we use construct broadly to define a block of texts
that are separated from the main text visually. These include mathematical expressions such as
definitions, lemmas, proofs, propositions, or corollaries; or as illustrated by our example in
Figure 2, a quotation or saying which is distinct from the main text.

In the generic section subtask, we use a set of 13 categories to characterize a scholarly
document’s sections: abstract, categories, general terms, keywords, introduction, background,
related work, methodology, evaluation, discussion, conclusions, acknowledgments, and
references. These categories are frequently used in many papers, and should be self-explanatory.

note ||| CHI 2008 Proceedings ∙ Shared Authoring April 5‐10, 2008 ∙

title ||| Don’t Look Now, But We’™ve Created a Bureaucracy:
title ||| The Nature and Roles of Policies and Rules
title ||| in Wikipedia
author ||| Brian Butler
affiliation ||| Katz Graduate School of
…
author ||| Jacqueline Pike
affiliation ||| Katz Graduate School of
affiliation ||| Business, University of
affiliation ||| Pittsburgh
email ||| jpike@katz.pitt.edu

sectionHeader ||| ABSTRACT
bodyText ||| Wikis are sites that support the development of emergent, …
sectionHeader ||| Author Keywords

keyword ||| Wikis, Wikipedia, community, collaboration, policy,
keyword ||| policies, rules, dynamics.

sectionHeader ||| ACM Classification Keywords

category ||| K.4.3. [Computers and Society]: Organizational Impact â “
…
category ||| Storage and Retrieval]: Online Information Systems.

sectionHeader ||| INTRODUCTION

construct ||| “The Wikipedia online encyclopedia â ” written by
construct ||| thousands of individuals working without a boss ‐ shows
construct ||| the way... “ [28]

copyright ||| Permission to make digital or hard copies of all or part of this work for
…
copyright ||| specific permission and/or a fee.

note ||| CHI 2008, April 5â “10, 2008, Florence, Italy.
copyright ||| Copyright 2008 ACM 978‐1‐60558‐011‐1/08/04...$5.00
bodyText ||| messy, informal, popularly uncontrolled, non‐

footnote ||| 1 All references to Wikipedia content are based on data
…
footnote ||| data presented here represents a snap‐shot.

page ||| 1101

Figure 2: Examples of different LS categories. Each labeled line is in the format "label ||| line content".

RAW TEXT FEATURES
We now detail the features used in our model that are based solely on the raw text. These
features form the minimal set of features used to classify lines of a document when no rich OCR
features are provided, as in the case where the input is limited to plain text. Note that we use a
different set of features for the logical structure and generic section classifiers.

Logical Structure Classifier
The text features of our LS classifier are best described by two distinct categories: token-level
features that pertain to a single token, and line-level features that capture some aspect of a text
line as a whole. For token-level features, we only extract features for the first n tokens in each
line (set experimentally to n=4 in internal tests). As the original ParsCit uses a subset of the
features used in our SectLabel module, we use the original ParsCit feature set as a baseline
feature set for comparison.

A key difference that distinguishes the two tasks is that SectLabel classifies entire lines rather
than individual tokens, as ParsCit does. As such, we add per-line features to capture information
related to the text line as a wholeiv. We describe the feature groups that we used in this
component.

1. Location – Encodes the relative position of each line within a document (discretized into

n=8 bins experimentally). This feature helps to separate different groups of labels:
headers (e.g., title, author, affiliation), body (e.g., bodyText, figure, table, equation), and
ending parts such as references.

2. Number – Detects the occurrence of patterns specific to hierarchies. These include
subsectionHeaders (“1.1”), subsubSectionHeaders (“1.1.1”), ontologies (such as ACM
categories, e.g., “H.1.1”), footnotes (for both ordinary notes (1This work …” as well as
URLs “1http…”).

3. Punctuation – Checks if the line consists of email addresses or web links (potentially
corresponding to references, footnotes or notes). This class of features includes values
that classify lines that end with some type of bracket numbering, such as “(1)”. Such
values are good indicators of equations and other constructs.

4. Length – Measures the length of each text line in terms of tokens. Values for this feature
are limited to 1token, 2token, 3token, 4token, 5+token. This feature is helpful to identify
the majority of lines that should be considered as bodyText.

Generic Section Classifier
Academic publications tend to follow a consistent structure, i.e., the majority in this group of
publications contains the following generic sections: abstract, introduction, related work,
methodology, evaluation, conclusions, acknowledgments and references. However, their actual
section headers may not be the same; methodology is rarely labeled as such and may span
multiple sections of a document. Hence, the section header classifier is built to automatically
associate each section header with its corresponding generic header. We can thus deduce the
logical purpose of each section in a scholarly document.

In implementing the section header classifier, we derive a small set of features from the
header itself, such as its position as well as its content. Note that our implementation eschews
features that could be derived outside of the headers themselves, such as the content of the
corresponding sections – such a model would have larger memory requirements and is more
computationally expensive to train and may not lead to increased accuracy. Thus, we have stuck
to a simple model.

1. Position – Encodes the absolute and relative positions of headers within documents.
Absolute position uses ordinal position of the header in a document, where as relative
position normalizes ordinal position by the total number of sections in the whole
document (discretized into n=10 bins, experimentally). Since scholarly documents share a
consistent structure, abstracts or introductions usually come as the first two sections of
the document, while methodology sections tend to appear in the middle, we believe both
types of positions boost performance.

2. First and Second Words – Models the individual tokens of the header. We use the first
and second words of each header as explicit features for our classifier, to better
differentiate those that usually are expressed in a standard form. For example, abstract
sections most likely have the header “Abstract”, while related work usually manifests as
“Related Work”, “Previous Work” or “Literature Review”.

3. Whole Header – Models the header as a whole, using concatenated header as a single
feature. This acts as a memoization of all headers in the training data. As many headers
are formulaic, this can be helpful.

RICH DOCUMENT REPRESENTATION
Raw text features alone produce acceptable performance for many of the document structure
categories. But for others, it fails dramatically. For example, when section headers are not
marked by initial numbering, such as in ACM Conference on Human Factors in Computing
Systems (CHI) conference proceedings, there is little evidence in the raw text that indicates that a
header is present. This is also true of other header-like categories – including title, author, and
affiliation – which are often confused by the CRF models utilizing only raw text features. This is
probably because they often occur at the beginning of a document with similar capitalization
patterns and lengths.

 However, to the human reader, these semantic categories are visually different, due to their
positioning, font and size. We hypothesize that if we can provide the learner with such
information, performance for these critical semantic categories would improve. In fact with PDF
and other richly formatted text documents, we do have a much richer form of representation to
text. Spatial layout, page breaks, and text font variations provide an orthogonal channel of
information that can be used to derive logical structure.

While digital formats such as Microsoft Word, HTML and PDF all convey this information,

inferring structure directly on such document formats is difficult. If one takes this route, there are
a multitude of different formats to interpret and separate modules must be created for each.
Instead, we choose to go to the lowest common denominator and deal with documents as
consecutive page images. This alternative route allows us to handle any document type that can
be scanned or printed. We then run an optical character recognition (OCR) engine on the results
to obtain rich format information.

In this section, we justify our choice of OCR software together with the extraction process of

rich document features from the OCR output. We then categorize such rich information into
stationary features (conditioned on a single label) and differential ones (conditioned on a pair of
consecutive labels) with respect to the CRF framework.

OCR Processing
Today's OCR engines retrieve the raw text of documents quite reliably, if restricted to well-

known languages and font families. OCR engines can also provide rich representations that
recover the font, spacing and spatial layout of elements on the page and reconstruct the natural
reading order of the elements. Nuance OmniPage (version 16) outputs such information in an
accessible XML format, as seen in Figure 3. The information includes the coordinates of

paragraphs (para), lines (ln) and words (wd) within a page (l=left, t=top, r=right, b=bottom),
alignment, font size, font face, or format (bold, italic, underlined). While several commercial
OCR packages are able to produce similar output, we chose OmniPage based on previous
positive experience reported by other research groups.

The XML representation, while rich, needs to be linearized to become features for the CRF

framework. We first extract the individual text lines from the XML output, and augment the line
with its pertinent rich spatial and font features. During the feature extraction process, we note
that text lines do not necessarily follow homogeneous formatting, e.g. when there are
occurrences of special words highlighted. In such case, OmniPage often subdivides words in the
same line (ln) into chunks (run). As in Figure 3b, the first run contains italic information for the
phrase “Chi 2008,” whereas the second run does not. When only a single word is different, per-
word formatting attributes are directly embedded within the word (wd) tag. We handle these
different levels of representations in OmniPage output to correctly identify dominant formatting
features of each text line, e.g. whether the whole line is considered italic.

 (a) (b)

Figure 3: Example of the OCR XML output from OmniPage which forms the input to SectLabel. This
XML excerpt encodes the OCR information for: (a) the first title line of the example paper’s title page
shown in Figure 2, and (b) the conference detail line within the copyright block of that same paper.

As a result of the linearization process, sample training vectors to the CRF model look like the

following: (Figure 3a) “Don't-Look-Now,-But-We've-Created-a-Bureaucracy. Loc_0 Align_left
FontSize_largest Bold_yes Italic_no Picture_no Table_no Bullet_no”, and (Figure 3b) “CHI-
2008,-April-5–10,-2008,-Florence,-Italy. Loc_7 Align_left FontSize_small Bold_no Italic_no
Picture_no Table_no Bullet_no”. The two feature vectors reflect the key differences between the
title and the conference detail lines: the former is at the top of the page (Loc_0), employing the
largest font size, and is bolded; whereas the latter is at the bottom of the page (Loc_7) in small
font. These differences will assist the machine learner in inferring the correct labels, and such
linear representation of rich document features provides a flexible way to either concatenate
them to the raw text feature vector, or use them alone.

Stationary Features
We describe a set of rich OCR-derived features extracted directly from the OmniPage output.
We term these features “stationary” as they are meant to reflect the state of the current line of
interest, e.g. whether it is bolded or italicized, as opposed to differential features that capture
state changes between two consecutive lines, discussed in the next section. These features are
conditioned on a single output label, and realized under the CRF++ package by means of
“unigram” features. We group these features as follows:

1. Location – Reflects the position of a text line within a page. We discretize the vertical
coordinates reported by OmniPage into n bins (n=8 experimentally). We stress that this
feature is the relative location within each page, and is distinct from the raw-text
Location feature, which measures position with respect to the entire document. We
expect to further differentiate labels such as note and footnote, which occur at the top
and bottom of a page.

2. Format – Encodes salient font information, in the form of FontSize, Bold, and Italic.
Knowing whether a text line is bolded and italicized distinguishes them from ordinary
bodyText. Furthermore, they help identifying different levels of headers, especially for
those paper styles using formatting instead of numerical hierarchies to denote headers.

We pay special attention in transforming the literal FontSize information output in the
XML. The actual font sizes are not as important compared with how frequent they occur,
since font sizes vary among papers. It is the relative font size that we wish to model, thus
requiring us to normalize font sizes. We achieve this first by finding the most frequent
size in the document, and tagging this as the base. Larger font sizes than normal often
imply certain categories such as title or header. We assign values starting from the
largest as 0, then decreasing by 1 for each smaller size (e.g., -1), until the base size is
reached. Since smaller font sizes than the base are not indicative enough, and often due to
OCR mistakes, we label them all as “smaller”. This also helps avoid the problem of data
sparseness. An example of our font labels are smaller, smaller, base, -2, -1, 0, which
might be generated in the case the font sizes 6, 8, 10 (base font size), 12, 20 and 32 points
all occur in a document. We later demonstrate and validate the effectiveness of our
relative model.

3. Object – Captures special line attributes. We extract Bullet, Picture and Table attributes
directly from the XML output. These features help to indicate if a text line is part of a
paragraph or text block that has been specially identified in the XML output with one of
these formatting attributes. While it may seem easy to categorize lines with the presence
of these attributes, it is not always the case. Authors may employ such attributes for both
logical and stylistic reasons. Tabular text can mix with figure or bullet points, or a figure
(such as a flowchart) can contain bullet points that are recognized. Our experimental
results demonstrate that using these features alone does not yield much improvement, but
that they work better in conjunction with other features.

Differential Features
Though useful in contrasting lines of different labels, stationary features are not explicitly
designed to capture text blocks that span multiple lines that use the same format. It is, however,
crucial that these lines under the same text block, such as figure or captions, are labeled
consistently. With current stationary features, there is no direct information for the machine
learner to infer if two consecutive lines are of the same format. To explicitly model this, we also
encode differential features that capture state changes between consecutive lines. These features
are not extracted directly from OmniPage output, but rather synthesized from the values of
stationary features in consecutive lines. In the CRF formalism, our differential features are
conditioned on a pair of consecutive output labels and described in CRF++ as “bigram” features.

1. Format – We base formatting features on five distinct sources of information – FontSize,
Bold, Italic, FontFace and Alignment – to explicitly mark if the current line has the same
format as the previous. The feature will take the value “format_same” if all the five
properties match and “format_new” for all other cases.

Font face and alignment properties are extracted from OmniPage output similar to font
size, bold, and italic ones discussed before. Font face values vary across documents,
while alignment values take on one of five different values – none, left, center, right and
justified. We experimented font face (normalized) and alignment as stationary features,
but did not obtain any performance gains. However, as differential features, they yield a
positive improvement, as detailed later in our experiments.

2. Paragraph – We process OmniPage output to identify blocks of text lines spanned under
its XML output paragraph tag para (See Figure 3). The first line in each text block is
assigned the feature value “para_new”, whereas the remainder take the value
“para_same”. OmniPage sometimes groups multiple lines in the header section into a
single paragraph, such as author, affiliation, and email. This is undesirable as we want to
label the same for text lines within a paragraph, or a text block. Thus, we heuristically
detect abstract or introduction header lines, and consider each line before this threshold
of the document as a single paragraph receiving a value of “para_header”.

EVALUATION
The purpose of our evaluation is to answer the following questions:

1. How well does the logical structure classifier perform when using the baseline features
from ParsCit?

2. How does performance change when adding the new raw text and rich document
features?

3. How do the categories compare in classification difficulty and how does their
classification accuracy vary with different feature sets?

4. With respect to the generic section classifier, does a shift from using a maximum entropy
model as used in the previous work (Nguyen and Kan, 2007; discussed below) to a CRF
model improve performance?

5. How do the individual features contribute to the overall performance of its feature group?

Let us first describe the datasets used to evaluate both the logical structure and generic section
modules. We then detail on our evaluation metrics, and report overall performance for the LS
and GS classifiers.

Logical structure

(40 documents)

Generic section

(211 documents)

Category # Category # Category #

address 64 note 148 abstract 210

affiliation 108 page 347 categories 165

author 66 reference 3,970 general terms 142

bodyText 25,062 sHeader 463 keywords 209

category 73 ssHeader 323 introduction 210

construct 234 sssHeader 78 background 28

copyright 186 table 1,098 related work 105

email 64 tableCap 228 methodology 608

equation 835 title 68 evaluation 151

figure 2,175 discussions 36

figureCap 472 conclusions 189

footnote 364 acknowledgements 102

keyword 68 references 211

listItem 1,308 Total 37,802 Total 2,366

Table 1: Logical structure and Generic section category instance counts. Note that sectionHeader,
subsectionHeader and subsubsectionHeader are abbreviated.

Our logical structure dataset comprises of 40 scientific papers in the field of computer science.
We try to cover a diverse collection of layouts and formats by including papers that originate
from conferences that use different style guidelines for both the document body and references.
The corpus includes 20 ACM papers spanning various years and venues, 10 papers from the
2009 Proceedings of the Association for Computational Linguistics Annual Meeting, and 10
papers from the 2008 proceedings of the ACM Conference on Human Factors in Computing
Systems. The first author of this paper manually assigned categories to each line of these papers
using the 23 logical section categories.

For the generic section dataset, we reuse the dataset of 211 ACM papers used in Nguyen and
Kan (2007), which also worked on the same task of generic section detection. They used a
different feature set and experimented with a maximum entropy learning framework, which is a
pointwise learning model, different from the sequence labeling model embodied by CRF. We
used this set so that we can compare results directly with this previous work. We have manually
extracted headers of these papers, and assigned the same 13 generic section categories.

Both datasets have been made available on the original ParsCit website to spur future research
on automatic logical structure analysis. Demographics on the corpus and counts of different
categories are presented in Table 1.

Evaluation Metrics
Let TP denote the number of correctly classified text lines (true positive); similarly, FN for false
negatives, FP for false positives, and TN for true negatives. We report both overall and
category-specific results.

For category-specific performance, we use F1 measure as our metric of interest, defined as
2xPxR

P R
 where P is Precision =

TP

TP FP
, and R is Recall =

TP

TP FN
. Due to the skewness of

the dataset (as bodyText lines are the majority of lines), we do not report line accuracyv, as it
would misleadingly imply very good performance; a simple baseline that does no work and
reports all lines as bodyText would trivially get 66% accuracy.

For assessing overall performance, we measure both macro and micro F1 to provide a

comprehensive evaluation. Macro F1 weighs each category equally, computed as an average of
all category-specific F1. Micro F1 weighs each instance (line) equallyvi.

Results
We perform 10-fold stratified cross validations for both the logical structure (LS) and generic
section (GS) classifiers. We first report the final performance of different systems using full set
of features, and leave the analysis as well as evaluation of different feature types to the next
section.

LS Evaluation
To answer the first two questions, we trained and tested a CRF for logical structure classification
using different feature sets. Let us define three feature combinations: LSPC – the baseline using
only features found in the original ParsCit distribution, LSPC+RT – which adds the raw text
features, and LSPC+RT+RD – that further adds rich document features derived from the OCR
output. Table 2 compares performance among these three systems for each category, and also
reports overall micro- and macro-averaged performance.

Table 2 shows that the baseline LSPC reproducing the original ParsCit (PC) feature set

performs fairly well, garnering 68 F1. However, it is clear that by considering additional raw text
(RT) features tailored for logical structure classification and further incorporating rich document
(RD) features has a significant impact: LSPC+RT and LSPC+RT+RD monotonically increase macro F1
to 76 and 85 points, respectively. Micro averaged results show smaller improvements, indicating
that improvements were largely to minority classes.

This is confirmed when reviewing the category-specific performance to answer our third

question. LSPC+RT+RD and LSPC+RT demonstrate improvement over LSPC with differences of
greater than 10 F1 points for many categories. With minor performance degradation in copyright
category, LSPC+RT+RD greatly improves the majority of categories, out of which 13 categories
have improvements greater than 5 F1 points. Furthermore, LSPC+RT+RD shows especially

improved performance with rich document features for the categories footnote and
subsubsectionHeader, yielding a substantial improvement of 28.09 and 40.37 F1 points,
respectively, over the LSPC+RT model.

 LSPC LSPC+RT LSPC+RT+RD
Macro F1 68.37 75.64 84.72

Micro F1 90.01 91.03 93.38

address 66.67 80.00 85.48+5.48

affiliation 76.76 90.57 92.82

author 71.93 90.91 97.74+6.83

bodyText 95.37 95.82 96.97

category 66.67 82.96 85.71

construct 7.86 13.82 33.11+19.29

copyright 94.79 95.37 95.11

email 80.34 96.12 97.64

equation 56.76 58.76 72.0113.25

figure 72.71 76.87 79.93

figureCaption 63.05 62.21 76.91+14.7

footnote 31.58 41.49 69.58+28.09

keyword 58.82 62.61 74.02+11.41

listItem 57.47 62.33 71.21+8.88

note 95.10 95.53 96.22

page 91.41 95.39 97.84

reference 99.26 99.50 99.50

sectionHeader 88.27 90.22 93.51

subsectionHeader 70.31 75.97 91.39+15.42

subsubsectionHeader 19.64 41.32 81.69+40.37

table 73.21 72.26 79.59+7,33

tableCaption 63.89 65.56 80.6915.13

title 70.69 94.03 100+5.97

Table 2: Comparative performances among LSPC, LSPC+RT and LSPC+RT+RD CRF models for logical
structure classification. Category-specific performance given in F1. Results in bold mark the best system
for each category. Superscripts indicate large improvements in F1 (> 5 points) between first and second
ranked systems.

GS Evaluation
For the generic section classifier, Table 3 compares the performance between GSmaxent, a
maximum entropy based system reported in (Nguyen and Kan, 2007), and our CRF-based
system, GScrf.

These results answer Question 4. Overall, our generic section classifier using CRF model
achieves macro F1 of 90.87 and micro F1 of 95.82. This outperforms those of the maximum
entropy classifier from previous work with scores of 87.71 and 93.28, respectively. At the per-
category level, with the exception of background, GScrf betters GSmaxent in all categories, some of

which contain large improvements such as introduction, methodology, evaluation, discussions,
conclusions, and acknowledgements.

 GSmaxent GScrf

Macro F1 87.71 90.87

Micro F1 93.28 95.82

Abstract 99.53 100

categories 100 100

general terms 99.65 100

Keywords 99.52 99.76

introduction 97.87 99.29+1.42

background 60.00+3.59 56.41

methodology 90.74 93.76+3.02

evaluation 78.00 83.21+5.21

relate work 93.33 93.40

discussions 38.46 59.65+21.19

conclusions 87.96 96.34+8.38

acknowledgements 96.23 99.51+3.28

references 99.53 100

Table 3: Comparative performance between a maximum entropy based system (figures reproduced from
(Nguyen and Kan, 2007)) and our CRF-based system for the task of generic section classification. Results
in bold mark the better system for each category; superscripts indicate large improvement in F1 (> 1
point).

FURTHER ANALYSIS
To answer our final question, we return to logical structure classification. We provide further
detailed assessment of LSPC+RT+RD by evaluating the effectiveness of individual raw text and rich
document features. We then we categorize several types of errors made by LSPC+RT+RD in our
discussion and error analysis before concluding with a brief discussion of GScrf.

Impact of Raw Text Features
We carried out an ablation test to understand the contribution of each of the 4 line-level text
features used in LSPC+RT. Results in Table 4 indicate that removing any of the features degrades
performance, implying that all of the individual features contribute to the final composite
performance. The most influential text feature is position; without it, overall performance
drastically worsens.

Feature Macro F1 Micro F1
Full 75.64 91.03

‐ length 74.73 90.57

‐ punct 75.85 90.72

‐ num 75.53 90.97

‐ pos 71.28 90.64

Table 4: Ablation test results for LSPC+RT.

Impact of Rich Document Features
We are interested in finding out how each of the rich document feature groups influences
performance. We add each of the stationary feature groups – position, format and object – into
LSPC+RT separately to assess their performance impact. We then incrementally add format,
object, and lastly, the differential feature groups to obtain the final LSPC+RT+RD model.

System Macro F1 Micro F1

LStext 75.64 91.03

+ position 77.80 91.48

+ format 78.20 90.73

+ object 77.02 91.88

+ position, format 78.59 91.19

+ position, format, object 81.71 92.44

+ position, format, object, differential (RD) 84.72 93.38

Table 5: Performance with rich document (RD) features. The bottom model corresponds to LSPC+RT+RD.

Individually, all stationary feature groups contribute positively to performance. Specifically,

format (font) features contribute the most to macro average, while object features influence
micro average most. Closer inspection of category-specific performance reveals that format
features contribute to performance gains for a wider spectrum of categories, many of which are
related to paper metadata and section headers; whereas object features contribute to just a few.
However, those categories improved by object features already contain a large number of
training data, which explains why format yields a larger macro F1 improvement compared to
micro F1. Combining position and format features show consistent improvements in both
metrics. Using all the three group of stationary features yields an absolute performance of 81.71
macro F1 and 92.44 micro F1.

Further adding differential features achieves a significant improvement of 3.01 macro F1 and

0.94 micro F1. Detailed inspection shows that 21 out of 23 are enhanced, 7 of which have
performance gains greater than 3 F1 points. As expected, major improvements are accounted by
categories which often occur in text blocks: construct (+13.52 F1), figureCaption (+13.49 F1),
and tableCaption (+12.64 F1).

Stationary feature analysis
We also performed a subtractive analysis by dropping one feature at a time from the full
stationary feature set, in order to evaluate their roles individually. Table 6 indicates that all
stationary features, except Picture, contribute towards the final performance in both macro and
micro averages. Removing picture feature degrades macro F1, but slightly increases micro
accuracy. Our close inspection reveals that while discarding picture feature affects many
categories; it does, in contrast with other features, enhance the bodyText classification by 0.02 F1
point. Since bodyText possesses a large number of samples, such a small increase in bodyText
macro F1 accounts primarily for the slight increase in the overall micro F1 accuracy.

According to the ablation results, location, bold and table are the most effective features in
each feature group. In particular, the location feature demonstrates their special usefulness for

footnote as removing it severely degrades classification performance of footnote by 22.01 F1.
The bold feature, when being left out, affects mainly tableCaption (-3.16 F1), subsectionHeader
(-6.28 F1), and subsubsectionHeader (-6.5 F1). Lastly, discarding table feature reduces
performance of table category by 6.01 F1, while removing bullet feature mostly influences
listItem (-9.74 F1).

Feature Macro F1 Micro F1

LStext + location, format, object 81.71 92.44

‐ Location 79.52 91.63

‐ Bold 80.04 91.70

‐ Italic 81.08 92.12

‐ Font 80.65 92.13

‐ Bullet 80.77 91.91

‐ Picture 81.28 92.51
‐Table 80.73 91.81

Table 6: Ablation test for stationary features.

Differential feature analysis
We evaluate the effectiveness of differential features, format and paragraph, by means of the
same incremental method. From the model that includes text and OmniPage stationary features
(LStext + location, format, object), we add differential features, format and paragraph, separately.
This setting allows us to experiment with different subsets of information sources used to
construct the format differential features. These sources include: font size (S), font face (F), bold
(B), italic (I), and alignment (A). Once the best setting for format differential feature is known,
we test the final model consisting of both format and paragraph differential features.

Feature Macro F1 Micro F1

LStext + location, format, object 81.71 92.44

+ format_S 82.30 92.30

+ format_SF 82.89 92.80

+ format_SFBI 82.56 92.80

+ format_SFBIA 83.29 92.95

+ paragraph 83.87 93.06

+ format_SFBIA, paragraph (RD) 84.72 93.38

Table 7: Performance with differential features. The bottom model corresponds to LSPC+RT+RD.

Results in Table 7 suggest that the format differential feature performs best when utilizing all

information sources. Incrementally, adding sources S, F, and A enhances the performance;
whereas adding B and I over S and F does not demonstrate any gain. However, our experiment
with SFA alone results in inferior performance as compared to the full composite SFBIA,
suggesting that B, and I are essential sources to obtain the best combination with performance of
83.29 macro F1 and 92.95 micro F1.

The paragraph differential feature alone demonstrates even better performance at 83.87 macro
F1, and 93.06 micro F1. When considering both types of differential features, we consistently
improve performance in both macro and micro averages, obtaining our best system at 84.72 F1
and 93.38 micro F1.

Rich Document Feature Distribution
We have utilized so far a large pool of rich document features to greatly improve the
performance. While differential features are from our own synthesis, stationary features are
extracted directly from the OCR output. A natural set of questions to ask is: To what extent are
we taking advantage of the OCR results? How noisy are the OCR results? Does the use of bullet,
picture and table features make it trivial to recognize categories like listItem, figure, and table?
We answer these by providing the statistics in Table 8, which compares OmniPage output with
the manual annotations to tally the number of lines having a particular feature value and being
annotated with a specific category.

 Alignment Bold Italic Bullet Picture Table
 none justified left right center

address 18 0 1 0 45 0 0 0 0 0

affiliation 18 0 7 0 83 0 0 0 0 0

author 11 0 11 0 44 18 0 0 0 0

bodyText 18853 5464 575 83 96 30 78 227 99 4

category 34 11 28 0 0 1 2 0 0 0

construct 116 62 42 1 6 11 59 0 0 0

copyright 40 125 22 0 1 0 1 0 0 0

email 8 0 10 0 46 1 1 0 0 0

equation 45 81 485 113 111 1 53 4 349 34

figure 557 361 1095 57 105 2 41 16 1588 177

figureCap 132 133 94 4 109 118 0 0 31 0

footnote 190 47 112 13 2 0 0 3 2 0

keyword 38 0 30 0 0 0 0 0 0 0

listItem 455 522 321 2 8 11 17 929 11 0

note 10 4 116 0 18 0 10 0 93 0

page 5 0 332 0 10 0 0 0 336 0

reference 2978 481 474 5 28 0 368 2354 5 0

sHeader 65 214 170 1 13 347 1 21 3 1

ssHeader 86 178 56 0 3 255 3 0 1 0

sssHeader 20 47 9 0 2 7 59 0 0 0

table 62 9 1015 2 10 15 5 0 96 912

tableCap 105 44 44 8 27 72 0 0 0 1

title 2 0 18 3 45 62 0 0 0 0

Total 23848 7783 5067 292 812 951 698 3554 2614 1129

Table 8: Distribution of rich document features over LS classes. Column headers list the rich document
feature values extracted from OmniPage: alignment has five feature values; whereas bold, italic, bullet,
picture, table columns represent for “yes” feature values as these are binary features. Each count in the

table is the number of lines in the LS training data having a particular feature value. Highlights in the
last five columns show non-trivial values (as there are many cells having 0 counts).

Statistics in Table 8 show that the performance of OmniPage is reasonable. It detects, for
example, that address, affiliation, author, email, and title have the tendency to take on a “center”
alignment; similarly, figureCaption, sectionHeader, subsectionHeader, tableCaption and title
are the major categories that are bolded. However, there is still confusion in these features as
evidenced by the distribution of the same feature value in multiple categories. This, we believe,
is where there is a need for a machine learner to come, to select good representative values for
each subset of categories.

We note that the performance of OmniPage for object features is satisfactory as labels for
listItem, figure, and table with respective accuracies 39.46, 60.75, and 80.78vii. These accuracies
reflect baseline accuracy if one was to just use OmniPage output to label these classes.
According to the confusion matrix in Table 9, SectLabel’s corresponding accuracies are 77.98,
81.11 and 77.99viii. While comparable for the table category, the performance of listItem and
figure are improved significantly.

Error Analysis
We feel the performance of the full composite LSPC+RT+RD and the GScrf models are substantial,
and significantly better than the state-of-the-art for both tasks in logical structure discovery.
However, there is still room for improvement, and a careful review of the models' errors allows
us to characterize problematic areas for improvement.

Logical structure classification
From the confusion matrix in Table 9, we have aggregated the number of false-positive (FP)
labels for each category. These figures indicate that the groups of labels accounting for most
errors include bodyText, equation, figure, listItem and table. We analyze the causes as:

1. A skew towards the majority class of bodyText, which influences learning. This is a
common problem in text classification, and future models may want to specifically
account for skewed categories. The 1098 misclassified bodyText lines are nearly half of
all errors. The confusion matrix shows that a large amount construct, equation, figure,
figureCaption, footnote, listItem, table and tableCaption are incorrectly categorized as
bodyText.

2. The conflict between textual and spatial features. Tables, in several cases, are considered
figures and vice versa. These mixtures challenge the classifier, as evident by the fact that
213/2175 = 9.79% figures are misclassified as tables, and 126/1098 = 11.48% vice versa.
Figures and tables often contain equations and list items, making an independent, per-
line judgment different than what we might suspect in the context of a page. We observe
a case in which a table compared different formulas and was labeled as a figure.

3. Errors contributed by OCR recognition and our category annotation standard. In several
cases, OCR recognizes texts within figures, many instances of which contain numbers
and notations that resemble equations. Such figures include charts with numbers in axes
or titles, or equations embedded as figures. Due to our convention of labeling these lines
as figure, there is a significant confusion between figure and equation, evidenced by the

fact that 123/835 = 14.73% equations are mislabeled as figures, and 146/2175 = 6.71%
vice versa. Finally, the construct category still poses a great challenge when our current
best performance only achieves a poor F1 of 33.11%. The confusion matrix reveals that a
large portion of these lines were labeled as bodyText. This is partly due to the difficulty
in labeling whole block of lines as construct. Definitions, for example, are hard to
distinguish, with the exception of the initial line which may contain lexical cues such as
"Definition 1”.

 ad af body cat con cop eqn fig fCap fn kw list ref sH ssH sssH tab tCap

address 53 4 0 0 0 0 0 3 0 0 0 0 0 1 0 0 2 0

affiliation 7 97 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0

bodyText 0 0 24636 0 13 1 52 84 50 12 0 197 11 2 5 0 3 5

category 0 0 0 60 0 0 0 0 7 0 4 0 0 2 0 0 0 0

construct 0 0 143 0 50 0 11 17 0 0 0 3 0 0 0 1 0 2

copyright 0 0 3 3 0 175 0 0 0 4 0 0 0 0 0 0 0 0

equation 0 0 53 0 3 0 611 123 0 0 0 13 0 0 1 1 30 0

figure 0 0 57 0 3 0 146 1718 8 3 0 21 0 0 1 0 213 0

figureCap 0 0 126 0 0 0 0 8 338 0 0 0 0 0 0 0 0 0

footnote 0 0 145 0 0 0 0 3 0 207 0 6 3 0 0 0 0 0

keyword 0 0 15 4 0 0 0 0 0 0 47 0 0 2 0 0 0 0

listItem 0 0 409 0 0 0 11 29 1 0 0 857 0 0 0 0 0 0

ref. 0 0 12 0 0 0 0 3 0 4 0 0 3945 0 0 0 0 0

sH 0 0 17 0 1 0 0 1 0 0 8 0 1 425 9 1 0 0

ssH 0 0 17 0 0 0 0 0 0 0 0 2 0 9 292 3 0 0

sssH 0 0 9 0 2 0 0 1 0 1 0 0 0 0 7 58 0 0

table 0 0 32 0 3 0 30 126 3 0 0 0 4 0 1 0 893 6

tableCap 0 0 60 0 0 0 0 1 0 0 0 0 0 0 0 0 4 163

FP 7 4 1098 7 25 1 250 400 69 24 12 242 19 19 24 6 252 13

Table 9: Full composite logical structure classifier LSPC+RT+RD model's confusion matrix. Bold figures
discussed in the text. For compactness and as there is little confusion among author, email, note, page,
and title, these classes are omitted from the table. FP is the per-category false-positive, computed by
summing up all values in a column minus the diagonal cell in that column.

Generic section classification
Table 3 indicates that most errors fall into background and discussions categories. Instances of
these categories were often mislabeled as methodology or conclusions. 61% of background
instances were mistaken as methodology, 25% of discussions headers were labeled as
methodology and 20% of them were labeled as conclusions.

 The feature set for GScrf is currently based only on location and content of the headers, and
underperforms at differentiating consecutive headers with different labels. As such, the errors
are likely caused by three factors: First, the actual headers in these categories may not have any
tokens in common with the memoized training data instances; second, the relative positions of
consecutive headers (background vs. methodology, methodology vs. discussions, and
discussions vs. conclusions) are quite similar to each other; we believe dataset skew also

contributes to the difficulty here. There are a prominent number of methodology instances in
our dataset, especially when we compare with the background and discussions categories. This
also explains why many headers are mislabeled as methodology. We believe changing the CRF
to encode constraints beyond the simple linear chain dependency may be helpful.

DEPLOYING SECTLABEL
Even though SectLabel is intended as groundwork for downstream applications, we believe that
logical structure is useful to a reader in its own right. Logical structure, when exposed to the
reader, can help a reader better understand the structure and argumentation of the document, and
serves as a navigation aid. To demonstrate these capabilities, we have integrated our work in
SectLabel with a document reading environment, ForeCiteReader.

Our integration offers the reader two methods of interacting with the automatically-recovered
logical structure, corresponding to our two tasks. We note that these interfaces are preliminary
and need to undergo more extensive design trials before we believe they will be effective for
readers.

1. Section Navigation (from generic section detection): Figure 4 shows a list of document's
headers, together with their corresponding generic headers. Through this list, users can
navigate to different sections in a document. The generic headers allow readers to jump
to certain key sections of a paper such as methodologies or empirical results. This
interface works like a table of contents sidebar present in other digital reading
environments, such as Adobe Acrobat.

Figure 4: Section navigation in the ForeCiteReader reading environment.

2. Object Navigation (from logical structure detection): Figure 5 shows a screenshot of the

reading interface in production. The right panel presents a collapsible interface with all
objects in the document listed and grouped by types. Readers can thus jump to view
specific objects such as tables, figures or equations.

Figure 5: Logical structure annotation in ForeCiteReader. The view shows object navigation interface,
currently focusing on the list of figure captions.

CONCLUSION
We have described and evaluated SectLabel, an open-source freely available module for logical
document structure classification. Logical structure, consisting of 23 categories, is determined on
a per-line basis and section headers are further classified into one of 13 generic section types.
SectLabel uses the conditional random field (CRF) framework to view both tasks as sequence
labeling problems using binary feature functions.

We have explored and comprehensively evaluated the utility of different classes of features. We
found that acceptable performance (~76 macro F1) results from careful feature engineering on
raw text. A key finding is that modeling additional per-page spatial information, yields a
significant improvement of over 9 macro F1 points, and significantly boosts detection of
important categories such as paper metadata, captions, and hierarchical headers.

Our error analysis suggests areas for future work. For logical structure classification, further
modeling text blocks will allow us to improve detection on construct and explicitly handling

skewed categories like bodyText reduces confusion in the learning model. For generic section

classification, selective analysis of the content of the sections may lead to further classification
performance.

REFERENCES
Belaïd, A., & Rangoni, Y. (2008). Structure Extraction in Printed Documents Using Neural Approaches.

Machine Learning in Document Analysis and Recognition, (pp. 21‐43).

Councill, I. G., Giles, C. L., Iorio, E. D., Gori, M., Maggini, M., & Pucci, A. (2006). Towards Next Generation

CiteSeer: A Flexible Architecture for Digital Library Deployment. ECDL, (pp. 111‐122).

Councill, I., Giles, C. L., & Kan, M.‐Y. (2008). ParsCit: an Open‐source CRF Reference String Parsing

Package. Proceedings of the Sixth International Language Resources and Evaluation (LREC'08).

Marrakech, Morocco: European Language Resources Association (ELRA).

Durbin, R., Eddy, S. R., Krogh, A., & Mitchison, G. J. (1998). Biological Sequence Analysis: Probabilistic

Models of Proteins and Nucleic Acids. Cambridge University Press.

Fujiyoshi, A., Suzuki, M., & Uchida, S. (2009). Syntactic Detection and Correction of Misrecognitions in

Mathematical OCR. ICDAR, (pp. 1360‐1364).

Han, H., Giles, C. L., Manavoglu, E., Zha, H., Zhang, Z., & Fox, E. A. (2003). Automatic document metadata

extraction using support vector machines. JCDL '03: Proceedings of the 3rd ACM/IEEE‐CS joint conference

on Digital libraries (pp. 37 ‐ 48). Washington, DC, USA: IEEE Computer Society.

Kim, J., Le, D. X., & Thomas, G. R. (2001). Automated labeling in document images. Proceedings of SPIE

Conference on Document Recognition and Retrieval VIII, (pp. 111 ‐ 122). San Jose, CA.

Klink, S., Dengel, A., & Kieninger, T. (2000). Document Structure Analysis Based on Layout and Textual

Features. Proceedings of the 4th IAPR International Workshop on Document Analysis Systems (DAS

2000), (pp. 99‐111). Rio de Janeiro, Brazil.

Lafferty, J. D., McCallum, A., & Pereira, F. C. (2001). Conditional Random Fields: Probabilistic Models for

Segmenting and Labeling Sequence Data. ICML '01: Proceedings of the Eighteenth International

Conference on Machine Learning (pp. 282 ‐ 289). San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc.

Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. Cambridge,

MA, USA: MIT Press.

Mao, S., Rosenfeld, A., & Kanungo, T. (2003). Document structure analysis algorithms: a literature

survey. Proc. SPIE Electronic Imaging, (pp. 197‐207).

Nakagawa, K., Nomura, A., & Suzuki, M. (2004). Extraction of Logical Structure from Articles in

Mathematics. International Conference on Mathematical Knowledge Management 2004, (pp. 276‐289).

Nguyen, T. D., & Kan, M.‐Y. (2007). Keyphrase Extraction in Scientific Publications. International

Conference on Asian Digital Libraries 2007, (pp. 317‐326).

Peng, F., & McCallum, A. (2004). Accurate information extraction from research papers using conditional

random fields. Human Language Technology conference / North American chapter of the Association for

Computational Linguistics annual meeting 2004, (pp. 329 ‐ 336).

Rabiner, L., & Juang, B.‐H. (1993). Fundamentals of speech recognition. Upper Saddle River, NJ, USA:

Prentice‐Hall, Inc.

Rangoni, Y., & Belaïd, A. (2006). Document Logical Structure Analysis Based on Perceptive Cycles.

Document Analysis Systems, (pp. 117‐128).

Seymore, K., McCallum, A., & Rosenfeld, R. (1999). Learning Hidden Markov Model Structure for

Information Extraction. In AAAI 99 Workshop on Machine Learning for Information Extraction, (pp. 37 ‐

42).

Suzuki, M., Tamari, F., Fukuda, R., Uchida, S., & Kanahori, T. (2003). INFTY: an integrated OCR system for

mathematical documents. ACM Symposium on Document Engineering, (pp. 95‐104).

Takasu, A. (2003). Bibliographic attribute extraction from erroneous references based on a statistical

model. JCDL '03: Proceedings of the 3rd ACM/IEEE‐CS joint conference on Digital libraries (pp. 49 ‐ 60).

Washington, DC, USA: IEEE Computer Society.

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). ArnetMiner: extraction and mining of

academic social networks. KDD '08: Proceeding of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining (pp. 990 ‐ 998). New York, NY, USA: ACM.

i http://wing.comp.nus.edu.sg/parsCit/

ii https://wiki.birncommunity.org:8443/display/NEWBIRNCC/LATISI+‐

+Literature+Annotation+Tool+from+the+Information+Sciences+Institute

iii http://crfpp.sourceforge.net/

iv We experimented with an orthography feature, which captures the overall capitalization pattern of a line, but it
negatively affected the performance when combined with other features.

v (TP + TN)/(TP + FN + FP + TN)

vi For conciseness, throughout the remaining text, we will prefer to “macro F1 average” as “macro F1”, and “micro

F1 accuracy” as simply “micro F1”.

vii (929/2354, 1588/2614, 912/1129) = (39.46%, 60.75%, and 80.78%)

viii (857/ (857 + 242), 1718/(1718 + 400), 893/(893 + 252)) = (77.98%, 81.11%, and 77.99%)

