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Abstract  Aimed at the boundary value problem of composite spherical Bessel equations. Through introducing 

similar kernel function in the left (right) region, the similar structure of solution was obtained. By analyzing the 

structure of solution, the solution in the left region was assembled by coefficient of left boundary value condition 

and similar kernel function in the left region, the solution in the right region was assembled by similar kernel 

function in the left (right) region; coefficient of left boundary value condition; left guide functions and coefficient of 

joint conditions. Thus a simple method of solving the boundary value problem of composite spherical Bessel 

equations is put forward, namely similar construction method; This method provides a way for solving boundary 

value problem of composite differential equations. 

Keywords: boundary value problem, composite spherical Bessel equations, similar structure, similar kernel 

function 

Cite This Article: Qiang Wang, Shunchu Li, Ming Hu, and Dongdong Gui, “Similar Construction Method of 

the Boundary Value Problem of Composite Spherical Bessel Equations.” American Journal of Mathematical 

Analysis, vol. 3, no. 2 (2015): 26-31. doi: 10.12691/ajma-3-2-1. 

1. Introduction 

With the rapid development of science and technology, 

a lot of edge sciences are produced, and a lot of new-style 

differential equations are appeared; differential equation is 

also extending in chemistry and biology at the same time, 

and a lot of reaction diffusion equations are appeared; 

differential equation is also widely used in materials 

science [1,2], especially the composite material is widely 

used in industrial area, and some mathematical models of 

the composite material can be summed up in solving 

boundary value problem of composite differential 

equations, and which plays an important role in practical 

application. 

In spherical coordinate system, Spherical Bessel 

equation is ordinary differential equation of radial 

component which is obtained by using the method of 

separation of variables to solve Laplace equation [3], it is 

common in well potential problem of the spherical square 

[4], its solution is called spherical Bessel function, and it 

is used to solve definite solution problem of heat 

conduction for spherically symmetric object [5,6], 

therefore solving the boundary value problem of spherical 

Bessel equation is of significant. 

About the research of solution structure for the 

boundary value problem of differential equation, in 2004, 

similar construction theory of solution was put forward in 

reference [7], namely expression of solution for the 

boundary value problem of differential equation has the 

similar structure, in other words, it is expressed by the 

form of continued fraction, and this theory was 

demonstrated in many references [8-14]. Such as 

boundary value problem of homogeneous linear 

differential equations of second order; boundary value 

problem of Euler hyper-geometric equation and so on. 

This paper studied the following the boundary value 

problem of composite spherical Bessel equations: 
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Where: , , , , , , , , ,a b c E M N P Q    are real constant, 

 1,2in i  is positive constant including zero, and 

2 20 0 0E P Q a c b     ， ， . 

Aimed at the boundary value problem (1), in part one, 

three lemmas are given; in part two, similar structure 

theorem of solution is demonstrated, similar kernel 

function in the left and right region is introduced, and two 

corollaries are obtained; in part three, the concrete step of 

similar construction method is given; finally, superiority 

of similar construction method is illuminated by giving a 

example. 
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2. Preliminary Knowledge 

Lemma 1. [15] spherical Bessel equation 
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can be converted into the normal Bessel equation of 
1

2
n   

order, namely 
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by variable substitution 
2

y
x


 . 

Lemma 2. the general solution of spherical Bessel 

equation is  
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first and second class Bessel function of 
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Proof: Because the general solution [16] of the normal 

Bessel equation (3) is  
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Lemma 3. function of two variables is structured, 

namely 
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Where: ,m n  are constant,    ,v vJ Y   are first and 

second Bessel function of v  order respective. 

Therefore the following formula is easily obtained: 
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Proof: According to the differential property of Bessel 

function [16]: 
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We can obtain  
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By a similar way, (7) and (8) can be demonstrated. 

The guide functions are structured by two linearly 

independent solutions    1 1
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spherical Bessel equation, namely 
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Where: 1,2i  . 

3. The Main Theorem and its Proof 

Theorem If the boundary value problem (1) of 

composite spherical Bessel equations has unique solution, 

its solution in the left region ( a x c  ) is  
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its solution in the right region ( c x b  ) is 
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Where:  x  is called similar kernel function in the 

left region, namely 

 
     

     
 

* 1 1
0,1 0,0

* 1 1
1,1 1,0

, ,
,

, ,

c x c x c
x a x c

c a c a c

  


  


  


(15) 

 * x  is called similar kernel function in the right 

region, namely 

  
   

   
 

2 2
0,0 0,1*

2 2
1,0 1,1

, ,
,

, ,

P x b Q x b
x c x b

P c b Q c b

 


 


  


 (16) 

Proof: According to lemma 2, the general solution of 

the definite solution equation for the boundary value 

problem (1) is 
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Where:  1 2, 1,2i iC C i   are any constant; when 1i  , it 

indicates left region ( a x c  ); when 2i  , it indicates 

right region ( c x b  ). 

Taking the derivative of  iz x , namely 
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The following formulas are obtained by putting the 

formula (17) plug into the boundary condition of the 

boundary value problem (1). 
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Because the boundary value problem (1) has unique 

solution, determinant   of coefficients 1 2 1 2
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for equations (18)-(21) is not equal to zero, according to 

formulas (9)-(12), we can obtain  
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and then according to grammer rule, we can obtain value 
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







 
 
 
            
   
     

 (25) 

 

 

 

 

 

12 2 2

2 12
12 0,1

2 2
2

3
2 2

,

b n

n

b n

b

n

P Y b

E
Y bC c c

Q
Y b













 
 
 

             
   
     

 (26) 

By putting the formula (23)-(26) plug into the formula 

(17) and using the similar kernel function in the left and 

right region (15);(16), the solution in the left and right 

region of boundary value problem (1) is obtained, namely 

(13);(14). 

According to the theorem, it is easy to obtain the 

following corollary. 

Corollary 1. If right boundary value condition of the 

boundary value problem (1) is  2 0z b  , namely 

0 0Q P ， , the corresponding similar kernel function 

in the right region is  

  
 

 

2
0,0*

2
1,0

,

,

x b
x

c b





 . 

Corollary 2. If right boundary value condition of the 

boundary value problem (1) is  '
2 0z b  , namely 

0, 0P Q  , the corresponding similar kernel function in 

the right region is  

   
 

 

2
0,1*

2
1,1

,

,

x b
x

c b





  

4. Step of Similar Construction Method 

According to above the solving process for the 

boundary value problem (1), by analysis and summary, it 

is easy to obtain concrete step of similar construction 

method, which solving the boundary value (1). 

Step 1. The function of two variables (5) is constructed, 

and then the guide functions (9)-(12) are constructed by 

using the two linearly independent solutions 

    1 1
2 2

1 2
2 2n ni i

Y x J x i
x x

 
 

、 、  of the definite 

solution equation for the boundary value problem (1). 

Step 2. According to the guide functions in the right 

region        2 2 2 2
0,0 0,1 1,0 1,1, , , ,x x x x       、 、 、  and 

the coefficients P Q、 of the right boundary value 

condition '
2 2 0

x b
Pz Qz



  
 

, the similar kernel function 

in the right region  * x  is assembled by using the 

formula (16); According to the guide functions in the left 

region 

       1 1 1 1
0,0 0,1 1,0 1,1, , , ,x x x x       、 、 、 ;  * c  

and the coefficients  、  of the connective condition 

' '
1 2 1 2,x c x c x c x cz z z z      , the similar kernel 

function in the left region  x  is assembled by using 

the formula (15). 

Step 3. According to the coefficients E M N、 、 of the 

left boundary value condition 

  '
1 11

x a
Mz MN z E



   
 

and    x a 、 , the 

solution in the left region of the boundary value problem 

(1) is assembled by using the formula (13); According to 

the coefficients E M N、 、 of the left boundary value 

condition   '
1 11

x a
Mz MN z E



   
 

 and  a , the 

guide functions in the left region 

     1 1 1
0,1 1,0 1,1, , ,x x x     、 、 , the coefficients  、  

of joint conditions ' '
1 2 1 2,x c x c x c x cz z z z       

and the similar kernel function in the right region  * x , 

the solution in the right region is assembled by using the 

formula (14) for the boundary value problem (1). 

5. Example 

The following boundary value problem is solved by 

using the above step of similar construction method. 

 

   

   

 

 

2 '' ' 2
1 1 1

2 '' ' 2
2 2 2

'
1 1

1

1 10 2 10

' '
1 10 2 10

'
2 2

20

2 2 0 1 10

2 6 0 10 20

2 1

0

x

x x

x x

x

x z xz x z x

x z xz x z x

z z

z z

z z

z z



 

 



      



     


 

 

 

  


 (27) 

Where: In this case 

1 2

1, 20, 10, 1,

1, 2.

a b c M N E P Q

n n

          

 
 

Step 1. The function of two variables and guide 

functions are constructed, namely 

         3 3 3 3 3 3
2 2 2 2 2 2

,x Y x J J x Y    
，

 and 

         5 5 5 5 5 5
2 2 2 2 2 2

,x Y x J J x Y    
，

 are called 

function of two variables, the following functions are 

called guide function.  

 

     

   

 

1
0,0 3 3

2 2

3 3
2 2

3 3,
2 2

,
2 2

2 2

1
,

2

x Y x J
x

J x Y
x

x
x

 
  



 





 



 

 


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     

   

 
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
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


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
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





 
  

 





 
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 


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

 
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

 
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


   


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 


 

 


 




 

 


 


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

 
 
 


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

 
  

 

 
 
   









 
 
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x

 
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  
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

  
 


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Step 2. The similar kernel functions are constructed, 

namely  
   

   

2 2
0,0 0,1*

2 2
1,0 1,1

, 20 ,20

10,20 10,20

x x
x

 


 





 is called 

similar kernel function in the right region of the boundary 

value problem (27).  

 
     

     

* 1 1
0,1 0,0

* 1 1
1,1 1,0

10 ,10 ,10

10 1,10 1,10

x x
x

  


  





is called similar 

kernel in the left region of the boundary value problem (27) 

and  
     

     

* 1 1
0,1 0,0

* 1 1
1,1 1,0

10 1,10 1,10
1

10 1,10 1,10

  


  





. 

Step 3. The solution is constructed, namely 

 
 

 1

1 1

1 1 1
1

1 1

z x




  





 ( 1 10x  ) is called 

solution in the left region of the boundary value problem 

(27).  

 
 

 

     
 

2

1
0,1 *

* 1 1
1,1 1,0

1 1

1 1 1
1

1 1

10,10
, (10 20)

10 1,10 1,10

z

x x







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 





   


 is 

called solution in the right region of the boundary value 

problem (27). 

According to the concrete step of similar construction 

method, the changing curve of the solution in the 

designated area is drawn by using Matlab  for the 

boundary value problem (27), namely figure 1 

 

Figure 1. Curve of solution to the boundary value problem (27) 

6. Conclusion 

(1) Aimed at the solution (13) and (14) of the boundary 

value problem (1), it is expressed by continued fraction in 

form, namely similar structure. 

(2) For solving process of the boundary value problem 

(1), similar construction method that is put forward can 

solve its solution, and this method is simple and effective, 

the step of this method plays an important role in drawing 

the changing curve of solution of the corresponding 

boundary value problem for men of mathematics. 

(3) For the boundary value problem (1), when the 

coefficient of right boundary value condition changes, it is 

merely changing similar kernel function, but expression 

form of the solution is not changing. 

(4) Observing the formula (13) and (14), the following 

relational expression is obtained, namely 

   

 

'
1 1 1x a

E
z x Nz x

M
N a



  
 




. 
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