
Digital Audio Resampling Home Page

Abstract

This document describes digital audio sampling-rate conversion and related con-
cepts. Open-source software is provided, and pointers are given to related projects and
papers.
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1 What is Bandlimited Interpolation?

Bandlimited interpolation of discrete-time signals is a basic tool having extensive application
in digital signal processing. In general, the problem is to correctly compute signal values at
arbitrary continuous times from a set of discrete-time samples of the signal amplitude. In
other words, we must be able to interpolate the signal between samples. Since the original
signal is always assumed to be bandlimited to half the sampling rate, (otherwise aliasing
distortion would occur upon sampling), Shannon’s sampling theorem tells us the signal can be
exactly and uniquely reconstructed for all time from its samples by bandlimited interpolation.

There are many methods for interpolating discrete points. For example, Lagrange inter-
polation is the classical technique of finding an order N polynomial which passes through
N + 1 given points.

The technique known as cubic splines fits a third-order polynomial through two points
so as to achieve a certain slope at one of the points. (This allows for a smooth chain of
third-order polynomial passing through a set of points.)

You may also have heard of Bezier splines which interpolate a set of points using smooth
curves which don’t necessarily pass through the points. (Bezier curves are commonly used
in graphics and drawing programs, such as Adobe Illustrator.)

The above methods are suitable for graphics and other uses, but they are not ideal for
digital audio. In digital audio, what matters is the audibility of interpolation error between
samples. Since Shannon’s sampling theorem says it is possible to restore an audio signal
exactly from its samples, it makes sense that the best digital audio interpolators would be
based on that theory. Such “ideal” interpolation is called bandlimited interpolation.

A bandlimited interpolation algorithm designed along these lines is described in the
theory of operation tutorial.1 There is also open-source software2 available in the C pro-
gramming language.

1http://www-ccrma.stanford.edu/˜jos/resample/Theory Operation.html
2http://www-ccrma.stanford.edu/ jos/resample/Available Software.html

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.



2 AVAILABLE SOFTWARE Page 3

2 Available Software

• resample-1.7.tar.gz3 (502 Kbytes) (v1.7 released June 19, 2002)
The resample software package contains free sampling-rate conversion and filter design
utilities written in C, including a stand-alone command-line sampling-rate conversion
utility called resample. The package compiles readily under Linux and most other
UNIX operating systems.

– Older Version for NeXT Computers (49 Kbytes)4

• Open Source Audio Library Project (OSALP)5

OSALP contains a C++ class (GNU LGPL) based on the above resample software.

• Optimal FIR Interpolation Filter Design: (.pdf)6 (.ps.gz)7

To receive upgrade notifications, report bugs, or contribute enhancements, please send
email to jos@ccrma.stanford.edu.

3http://www-ccrma.stanford.edu/˜jos/resample/resample-1.7.tar.gz
4http://www-ccrma.stanford.edu/˜jos/resample/resample-1.2.tar.gz
5http://osalp.sourceforge.net/
6http://www-ccrma.stanford.edu/˜jos/resample/optfir.pdf
7http://www-ccrma.stanford.edu/˜jos/resample/optfir.ps.gz

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.
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3 Theory of Operation

3.1 Abstract

This tutorial describes a technique for bandlimited interpolation of discrete-time signals which
supports signal evaluation at an “arbitrary” time, and which performs well for smoothly
changing sampling rates, such as needed for digital audio “scrubbing.” The method is based
on interpolated look-up in a table of filter coefficients, so as to make the filter impulse
response available effectively in continuous-time form. A single pre-computed filter table
handles all interpolation times and sampling-rate conversion ratios. Formulas are given for
determining the look-up table size needed for a given precision requirement. This tutorial is
an expansion of the conference paper in [1].

3.2 Introduction

Bandlimited interpolation of discrete-time signals is a basic tool having extensive application
in digital signal processing. In general, the problem is to correctly compute signal values at
arbitrary continuous times from a set of discrete-time samples of the signal amplitude. In
other words, we must be able to interpolate the signal between samples. Since the original
signal is always assumed to be bandlimited to half the sampling rate, (otherwise aliasing
distortion would occur upon sampling), Shannon’s sampling theorem tells us the signal
can be exactly and uniquely reconstructed for all time from its samples by bandlimited
interpolation.

Considerable research has been devoted to the problem of interpolating discrete points.
A comprehensive survey of “fractional delay filter design” is provided in [2]. A comparison
between classical (e.g., Lagrange) and bandlimited interpolation is given in [3]. The book
Multirate Digital Signal Processing [4] provides a comprehensive summary and review
of classical signal processing techniques for sampling-rate conversion. In these techniques, the
signal is first interpolated by an integer factor L and then decimated by an integer factor M .
This provides sampling-rate conversion by any rational factor L/M . The conversion requires
a digital lowpass filter whose cutoff frequency depends on max{L,M}. While sufficiently
general, this formulation is less convenient when it is desired to resample the signal at
arbitrary times or change the sampling-rate conversion factor smoothly over time.

In this tutorial, a public-domain resampling algorithm is described which will evaluate a
signal at any time specifiable by a fixed-point number. In addition, one lowpass filter is used
regardless of the sampling-rate conversion factor. The algorithm effectively implements the
“analog interpretation” of rate conversion, as discussed in [4], in which a certain lowpass-
filter impulse response must be available as a continuous function. Continuity of the impulse
response is simulated by linearly interpolating between samples of the impulse response
stored in a table. Due to the relatively low cost of memory, the method is quite practical for
hardware implementation.

In section 2, the basic theory is presented, section 3 addresses practical issues, and
implementation details are discussed in section 4. Finally, section 5 discusses numerical
requirements on the length, width, and interpolation accuracy of the filter coefficient table.

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.
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3.3 Theory of Ideal Bandlimited Interpolation

We review briefly the “analog interpretation” of sampling rate conversion [4] on which the
present method is based. Suppose we have samples x(nTs) of a continuous absolutely inte-
grable signal x(t), where t is time in seconds (real), n ranges over the integers, and Ts is the
sampling period. We assume x(t) is bandlimited to ±Fs/2, where Fs = 1/Ts is the sampling
rate. If X(ω) denotes the Fourier transform of x(t), i.e., X(ω) =

∫ ∞
−∞ x(t)e−jωtdt, then we

assume X(ω) = 0 for |ω| ≥ πFs. Consequently, Shannon’s sampling theorem gives us that
x(t) can be uniquely reconstructed from the samples x(nTs) via

x̂(t)
∆
=

∞∑
n=−∞

x(nTs)hs(t− nTs) ≡ x(t), (1)

where

hs(t)
∆
= sinc(Fst)

∆
=

sin(πFst)

πFst
.

To resample x(t) at a new sampling rate F ′
s = 1/T ′

s, we need only evaluate Eq. (1) at integer
multiples of T ′

s.
When the new sampling rate F ′

s is less than the original rate Fs, the lowpass cutoff must
be placed below half the new lower sampling rate. Thus, in the case of an ideal lowpass,
hs(t) = min{1, F ′

s/Fs}sinc(min{Fs, F
′
s}t), where the scale factor maintains unity gain in the

passband.
A plot of the sinc function sinc(t)

∆
= sin(πt)/(πt) to the left and right of the origin t = 0

is shown in Fig. 1. Note that peak is at amplitude 1, and zero-crossings occur at all nonzero
integers. The sinc function can be seen as a hyperbolically weighted sine function with its
zero at the origin canceled out. The name sinc function derives from its classical name as
the sine cardinal (or cardinal sine) function.

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

1

. . .
. . .

. . .
. . .

Figure 1: The sinc function plotted for seven zero-crossings to the left and right.

If “∗” denotes the convolution operation for digital signals, then the summation in Eq. (1)
can be written as (x ∗ hs)(t).

Equation Eq. (1) can be interpreted as a superpositon of shifted and scaled sinc functions
hs. A sinc function instance is translated to each signal sample and scaled by that sample,
and the instances are all added together. Note that zero-crossings of sinc(z) occur at all
integers except z = 0. That means at time t = nTs, (i.e., on a sample instant), the only

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.
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contribution to the sum is the single sample x(nTs). All other samples contribute sinc
functions which have a zero-crossing at time t = nTs. Thus, the interpolation goes precisely
through the existing samples, as it should.

A plot indicating how sinc functions sum together to reconstruct bandlimited signals is
shown in Fig. 2. The figure shows a superposition of five sinc functions, each at unit amp-
litude, and displaced by one-sample intervals. These sinc functions would be used to recon-
struct the bandlimited interpolation of the discrete-time signal x = [. . . , 0, 1, 1, 1, 1, 1, 0, . . .].
Note that at each sampling instant t = nTs, the solid line passes exactly through the tip of
the sinc function for that sample; this is just a restatement of the fact that the interpolation
passes through the existing samples. Since the nonzero samples of the digital signal are all
1, we might expect the interpolated signal to be very close to 1 over the nonzero interval;
however, this is far from being the case. The deviation from unity between samples can
be thought of as “overshoot” or “ringing” of the lowpass filter which cuts off at half the
sampling rate, or it can be considered a “Gibbs phenomenon” associated with bandlimiting.

Figure 2: Bandlimited reconstruction of the signal The dots show the signal sam-
ples, the dashed lines show the component sinc functions, and the solid line shows
the unique bandlimited reconstruction from the samples obtained by summing the
component sinc functions.

A second interpretation of Eq. (1) is as follows: to obtain the interpolation at time t,
shift the signal samples under one sinc function so that time t in the signal is translated
under the peak of the sinc function, then create the output as a linear combination of signal
samples where the coefficient of each signal sample is given by the value of the sinc function
at the location of each sample. That this interpretation is equivalent to the first can be
seen as a result of the fact that convolution is commutative; in the first interpretation, all
signal samples are used to form a linear combination of shifted sinc functions, while in the
second interpretation, samples from one sinc function are used to form a linear combination
of samples of the shifted input signal. The practical bandlimited interpolation algorithm
presented below is based on the second interpretation.

3.4 From Theory to Practice

The summation in Eq. (1) cannot be implemented in practice because the “ideal lowpass
filter” impulse response hs(t) actually extends from minus infinity to infinity. It is necessary

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.
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in practice to window the ideal impulse response so as to make it finite. This is the basis of
the window method for digital filter design [5, 6]. While many other filter design techniques
exist, the window method is simple and robust, especially for very long impulse responses.
In the case of the algorithm presented below, the filter impulse response is very long because
it is heavily oversampled. Another approach is to design optimal decimated “sub-phases” of
the filter impulse response, which are then interpolated to provide the “continuous” impulse
response needed for the algorithm [7].

Figure 3 shows the frequency response of the ideal lowpass filter. This is just the Fourier
transform of hs(t).

Ideal Lowpass Filter Frequency Response
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Figure 3: Frequency response of the ideal lowpass filter.

If we truncate hs(t) at the fifth zero-crossing to the left and the right of the origin, we
obtain the frequency response shown in Fig. 4. Note that the stopband exhibits only slightly
more than 20 dB rejection.

If we instead use the Kaiser window [8, 9] to taper hs(t) to zero by the fifth zero-crossing
to the left and the right of the origin, we obtain the frequency response shown in Fig. 5.
Note that now the stopband starts out close to −80 dB. The Kaiser window has a single
parameter which can be used to modify the stop-band attenuation, trading it against the
transition width from pass-band to stop-band.

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.
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Frequency Response : Rectangular Window
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Figure 4: Frequency response of the ideal lowpass filter after rectangularly win-
dowing the ideal (sinc) impulse response at the fifth zero crossing to the left and
right of the time origin. The vertical axis is in units of decibels (dB), and the
horizontal axis is labeled in units of spectral samples between plus and minus half
the sampling rate.

Frequency Response : Kaiser Window
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Figure 5: Frequency response of the ideal lowpass filter Kaiser windowed at the
fifth zero crossing to the left and right.

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.
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3.5 Implementation

Our implementation provides signal evaluation at an arbitrary time, where time is specified
as an unsigned binary fixed-point number in units of the input sampling period (assumed
constant). Figure 6 shows the time register t, and Figure 7 shows an example configuration
of the input signal and lowpass filter at a given time. The time register is divided into three
fields: The leftmost field gives the number n of samples into the input signal buffer, the
middle field is an initial index l into the filter coefficient table h(l), and the rightmost field
is interpreted as a number η between 0 and 1 for doing linear interpolation between samples
l and l + 1 (initially) of the filter table. The concatenation of l and η are called P ∈ [0, 1)
which is interpreted as the position of the current time between samples n and n+ 1 of the
input signal.

Let the three fields have nn, nl, and nη bits, respectively. Then the input signal buffer
contains N = 2nn samples, and the filter table contains L = 2nl “samples per zero-crossing.”
(The term “zero-crossing” is precise only for the case of the ideal lowpass; to cover practical
cases we generalize “zero-crossing” to mean a multiple of time tc = 1/fc, where fc is the
lowpass cutoff frequency.) For example, to use the ideal lowpass filter, the table would
contain h(l) = sinc(l/L).

Our implementation stores only the “right wing” of a symmetric finite-impulse-response
(FIR) filter (designed by the window method based on a Kaiser window [6]). It also stores
a table of differences h(l) = h(l + 1) − h(l) between successive FIR sample values in order
to speed up the linear interpolation. The length of each table is then Nh = L(Nz + 1).

Consider a sampling-rate conversion by the factor ρ = F ′
s/Fs. For each output sample,

the basic interpolation Eq. (1) is performed. The filter table is traversed twice—first to
apply the left wing of the FIR filter, and second to apply the right wing. After each output
sample is computed, the time register is incremented by 2nl+nη/ρ (i.e., time is incremented
by 1/ρ in fixed-point format). Suppose the time register t has just been updated, and an
interpolated output y(t) is desired. For ρ ≥ 1, output is computed via

v ←
h end∑

i=0

x(n− i)
[
h(l + iL) + ηh(l + iL)

]
(2)

P ← 1− P (3)

y(t) ← v +
h end∑

i=0

x(n + 1 + i)
[
h(l + iL) + ηh(l + iL)

]
, (4)

where x(n) is the current input sample, and η ∈ [0, 1) is the interpolation factor. When
ρ < 1, the initial P is replaced by P ′ = ρP , 1 − P becomes ρ − P ′ = ρ(1 − P ), and the
step-size through the filter table is reduced to ρL instead of L; this lowers the filter cutoff to
avoid aliasing. Note that η is fixed throughout the computation of an output sample when
ρ ≥ 1 but changes when ρ < 1.

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.
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Figure 6: Time register format.
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Figure 7: Illustration of waveforms and parameters in the interpolator.

When ρ < 1, more input samples are required to reach the end of the filter table, thus
preserving the filtering quality. The number of multiply-adds per second is approximately
(2Nz + 1)max{Fs, F

′
s}. Thus the higher sampling rate determines the work rate. Note

that for ρ < 1 there must be �NzFs/F
′
s
 extra input samples available before the initial

conversion time and after the final conversion time in the input buffer. As ρ → 0, the
required extra input data becomes infinite, and some limit must be chosen, thus setting a
minimum supported ρ. For ρ ≥ 1, only Nz extra input samples are required on the left and
right of the data to be resampled, and the upper bound for ρ is determined only by the
fixed-point number format, viz., ρmax = 2nl+nη .

As shown below, if nc denotes the word-length of the stored impulse-response samples,
then one may choose nl = 1+nc/2, and nη = nc/2 to obtain nc − 1 effective bits of precision
in the interpolated impulse response.

Note that rational conversion factors of the form ρ = L/M , where L = 2nl and M is
an arbitrary positive integer, do not use the linear interpolation feature (because η ≡ 0).

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.
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In this case our method reduces to the normal type of bandlimited interpolator [4]. With
the availability of interpolated lookup, however, the range of conversion factors is boosted
to the order of 2nl+nη/M . E.g., for ρ ≈ 1, nl = 9, nη = 8, this is about 5.1 decimal digits of
accuracy in the conversion factor ρ. Without interpolation, the number of significant figures
in ρ is only about 2.7.

The number Nz of zero-crossings stored in the table is an independent design parameter.
For a given quality specification in terms of aliasing rejection, a trade-off exists between
Nz and sacrificed bandwidth. The lost bandwidth is due to the so-called “transition band”
of the lowpass filter [6]. In general, for a given stop-band specification (such as “80 dB
attenuation”), lowpass filters need approximately twice as many multiply-adds per sample
for each halving of the transition band width.

As a practical design example, we use Nz = 13 in a system designed for high audio
quality at 20% oversampling. Thus, the effective FIR filter is 27 zero crossings long. The
sampling rate in this case would be 50 kHz.8 In the most straightforward filter design, the
lowpass filter pass-band would stop and the transition-band would begin at 20 kHz, and the
stop-band would begin (and end) at 25 kHz. As a further refinement, which reduces the
filter design requirements, the transition band is really designed to extend from 20 kHz to 30
kHz, so that the half of it between 25 and 30 kHz aliases on top of the half between 20 and
25 kHz, thereby approximately halving the filter length required. Since the entire transition
band lies above the range of human hearing, aliasing within it is not audible.

Using 512 samples per zero-crossing in the filter table for the above example (which is
what we use at CCRMA, and which is somewhat over designed) implies desiging a length
27×512 = 13824 FIR filter having a cut-off frequency near π/512. It turns out that optimal
Chebyshev design procedures such as the Remez multiple exchange algorithm used in the
Parks-McLellan software [6] can only handle filter lengths up to a couple hundred or so. It
is therefore necessary to use an FIR filter design method which works well at such very high
orders, and the window method employed here is one such method.

It is worth noting that a given percentage increase in the original sampling rate (“over-
sampling”) gives a larger percentage savings in filter computation time, for a given quality
specification, because the added bandwidth is a larger percentage of the filter transition
bandwidth than it is of the original sampling rate. For example, given a cut-off frequency
of 20 kHz, (ideal for audio work), the transition band available with a sampling rate of 44
kHz is about 2 kHz, while a 48 kHz sampling rate provides a 4 kHz transition band. Thus,
a 10% increase in sampling rate halves the work per sample in the digital lowpass filter.

3.6 Quantization Issues

In this section, we investigate the requirements on the sampling density L = 2nl of the
lowpass-filter impulse response, and the number of bits nη required in the interpolation
factor η. These quantities are determined by computing the worst-case error and comparing
it to the filter coefficient quantization error.

8We arbitrarily define the 20% guard band as a percentage of half the sampling rate actually used, not
as 20% of the desired 20 kHz bandwidth which would call for a 48 kHz sampling rate.

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.
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3.6.1 Choice of Table Size

It is desirable that the stored filter impulse response be sampled sufficiently densely so that
interpolating linearly between samples does not introduce error greater than the quantization
error. We will show that this condition is satisfied whenever the filter table contains at least
L = 21+nc/2 entries per zero-crossing, where nc is the number of bits allocated to each table
entry.

Linear Interpolation Error Bound.
Let h(t) denote the lowpass filter impulse response, and assume it is twice continuously

differentiable for all t. By Taylor’s theorem [10, p. 119], we have

h(t0 + η) = h(t0) + ηh′(t0) +
1

2
η2h′′(t0 + λη),

for some λ ∈ [0, 1], where h′(t0) denotes the time derivative of h(t) evaluated at t = t0, and
h′′(t0) is the second derivative at t0.

The linear interpolation error is defined as

h̃(t)
∆
= h(t)− ĥ(t),

where t = t0 + η, t0 = �t�, η = t− t0, and ĥ(t) is the interpolated value given by

ĥ(t)
∆
= ηh(t0) + ηh(t1),

where η
∆
= 1 − η and t1

∆
= t0 + 1. Thus t0 and t1 are successive time instants for which

samples of h(t) are available, and η ∈ [0, 1) is the linear interpolation factor. (We ignore
errors in the linear interpolation itself at this point.)

Expressing h(t) as
h(t0 + η) = ηh(t0 + η) + ηh(t1 − η)

applying Eq. (3.6.1) to both terms on the right-hand side, and subtracting Eq. (3.6.1) gives

h̃(t0 + η) = ηη

[
h′(t0)− h′(t1) +

ηh′′(ξ0) + ηh′′(ξ1)

2

]
,

where both ξ0 and ξ1 are in [t0, t1]. Defining

M2
∆
= max

t
|h′′(t)|

and noting that h′(t1) = h′(t0) + h′′(t0 + λ) for some λ ∈ [0, 1] which implies

|h′(t0)− h′(t1)| ≤ M2,

we obtain the upper bound

∣∣∣h̃(t0 + η)
∣∣∣ ≤ ηη

[
M2 +

M2

2

]
≤ 3

8
M2.

Application to the Ideal Lowpass Filter.

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
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For the ideal lowpass filter, we have

h(t) = sinc(ωLt/π)
∆
=

sin(ωLt)

ωLt
=

1

ωL

∫ ωL

0
cos(ωt),

where ωL = π/L, and L = 2nl is the number of table entries per zero-crossing. Note that the
rightmost form in Eq. (3.6.1) is simply the inverse Fourier transform of the ideal lowpass-filter
frequency response. Twice differentiating with respect to t, we obtain

h′′(t) = − 1

ωL

∫ ωL

0
ω2 cos(ωt),

from which it follows that the maximum magnitude is

M2 =
ω2

L

3
=

π2

3L2
.

Note that this bound is attained at t = 0. Substituting Eq. (3.6.1) into Eq. (3.6.1), we obtain
the error bound ∣∣∣h̃(t0 + η)

∣∣∣ ≤ π2

8L2
<

1.234

L2
= 1.234 · 2−2nl .

Thus for the ideal lowpass filter h(t) = sinc(t/L), the pointwise error in the interpolated
lookup of h(t) is bounded by 1.234/L2. This means that nl must be about half the coefficient
word-length nc used for the filter coefficients. For example, if h(t) is quantized to 16 bits,
L must be of the order of 216/2 = 256. In contrast, we will show that without linear
interpolation, nl must increase proportional to nc for nc-bit samples of h(t). In the 16-bit
case, this gives L ∼ 216 = 65536. The use of linear interpolation of the filter coefficients
reduces the memory requirements considerably.

The error bounds obtained for the ideal lowpass filter are typically accurate also for
lowpass filters used in practice. This is because the error bound is a function of M2, the
maximum curvature of the impulse response h(t), and most lowpass designs will have a value
of M2 very close to that of the ideal case. The maximum curvature is determined primarily
by the bandwidth of the filter since, generalizing equations Eq. (3.6.1) and Eq. (3.6.1),

h′′(0) = − 1

π

∫ π

0
ω2H(ω),

which is just the second moment of the lowpass-filter frequency response H(ω) (which is
real for symmetric FIR filters obtained by symmetrically windowing the ideal sinc function
[6]). A lowpass-filter design will move the cut-off frequency slightly below that of the ideal
lowpass filter in order to provide a “transition band” which allows the filter response to give
sufficient rejection at the ideal cut-off frequency which is where aliasing begins. Therefore,
in a well designed practical lowpass filter, the error bound M2 should be lower than in the
ideal case.

Relation of Interpolation Error to Quantization Error.
If h(t) ∈ [−1, 1−2−nc ] is approximated by hq(t) which is represented in two’s complement

fixed-point arithmetic, then

hq(t0) = −b0 +
nc−1∑
i=1

bi2
−i,
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where bi ∈ {0, 1} is the ith bit, and the worst-case rounding error is

|h(t)− hq(t)| ≤ 2−nc .

Letting hq(ti) = h(ti) + εi, where |εi| ≤ 2−nc , the interpolated look-up becomes

ĥq(t0 + η) = ηhq(t0) + ηhq(t1) = ĥ(t0 + η) + ηε0 + ηε1.

Thus the error in the interpolated lookup between quantized filter coefficients is bounded by

∣∣∣h̃q(t)
∣∣∣ ≤ 3

8
M2 + 2−nc ,

which, in the case of h(t) = sinc(t/L), can be written

∣∣∣h̃q(t)
∣∣∣ < 1.234

L2
+ 2−nc = 1.234 · 2−2nl + 2−nc .

If L = 21+nc/2, then |h̃q(t)| < 1.5 · 2−nc , and the interpolation error is less than the quanti-
zation error by more than a factor of 2.

Error in the Absence of Interpolation.
For comparison purposes, we derive the error incurred when no interpolation of the filter

table is performed. In this case, assuming rounding to the nearest table entry, we have

t = t0 + η, |η| ≤ 1

2
(5)

ĥ(t) = h(t0) (6)

h̃(t) = h(t)− h(t0) (7)

= ηh′(t0) +
1

2
η2h′′(t0 + λη) (8)

∣∣∣h̃(t)∣∣∣ ≤ M1

2
+

M2

8
, (9)

where M1
∆
= maxt |h′(t)|. For the ideal lowpass, we have

h′(t) = − 1

ωL

∫ ωL

0
ω sin(ωt)dω =

ωLt cos(ωLt)− sin(ωLt)

ωLt2
.

Note that h′(L) = 1/L and |h′(t)| < ωL/2 = π/2L. Thus M1 = a/L where 1 ≤ a < π/2.
The no-interpolation error bound is then

|h′(t)| ≤ a

2L
+

π2

24L2
<

0.7854

L
+

0.4113

L2
.
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3.6.2 Choice of Interpolation Resolution

We now consider the error due to finite precision in the linear interpolation between stored
filter coefficients. We will find that the number of bits nη in the interpolation factor should
be about half the filter coefficient word-length nc.

Quantized Interpolation Error Bound.
The quantized interpolation factor and its complement are representable as

ηq = η + ν

ηq = η − ν

where, since η, η are unsigned, |ν| ≤ 2−(nη+1). The interpolated coefficient look-up then gives

ĥqq(t) = (η − ν)[h(t0) + ε0] + (η + ν)[h(t1) + ε1]

= ĥ(t) + ηε0 + ηε1 + ν[h(t1)− h(t0)],

where second-order errors νε0 and νε1 are dropped. Since |h(t1) − h(t0)| ≤ M1, we obtain
the error bound ∣∣∣h̃qq(t)

∣∣∣ ≤ 2−nc + 2−(nη+1)M1 +
3

8
M2.

The three terms in Eq. (3.6.2) are caused by coefficient quantization, interpolation quanti-
zation, and linear-approximation error, respectively.

Ideal Lowpass Filter.
For the ideal lowpass, the error bound is

∣∣∣h̃qq(t)
∣∣∣ ≤ 2−nc + a2−(nl+nη+1) +

π2

8
2−nl .

Let nl = 1 + nc/2 and require that the added error is at most 1
2
2−nc . Then we arrive at the

requirement

nη ≥ nc

2
.

3.7 Conclusions

A digital resampling method has been described which is convenient for bandlimited interpo-
lation at arbitrary times and for smoothly varying sampling rates, and which is attractive for
hardware implementation. We have presented the case which assumes uniform sampling of
the input signal; however, extensions to variable sampling rates and isolated-point evaluation
are straightforward.

A quantization error analysis led to the conclusion that for nc-bit filter coefficients, the
number of impulse-response samples stored in the filter lookup table should be on the order
of 2nc/2 times the number of “zero-crossings” in the impulse response, and the number of bits
in the interpolation between impulse-response samples should be about nc/2. With these
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choices, the linear interpolation error and the error due to quantized interpolation factors are
each about equal to the coefficient quantization error. A signal resampler designed according
to these rules will typically be limited primarily by the lowpass filter design, rather than by
quantization effects.

We note that the error analysis presented here is pessimistic in the sense that it assumes
worst-case input signal conditions (e.g., a sinusoid at half the sampling rate or white noise).
A different type of error analysis is possible by treating the filter coefficients as exact but
subject to time jitter. In this approach, the error can be expressed in terms of the input
signal Taylor series expansion, and consequently in terms of the input signal bandwidth (or
maximum slope). Such an analysis reveals that for most practical signals, the quantization
error is considerably less than the levels derived here.

3.8 Appendix: Periodic Sinc Interpolation

Periodic sampled signals can be sinc-interpolated exactly using the following formula [11]:

x(t) =
sin(πt)

2N

M−1∑
n=−L

xn(−1)n
[
(−1)N+1 tan

(
π
t− n

2N

)
+ cot

(
π
t− n

2N

)]
, N = L + M

where the sampling rate is normalized to be T = 1, and the period is N = L + M samples.
The first step in the derivation is the exact general formula

x(t) =
∞∑

n=−∞
xn

sin[π(t− n)]

π(t− n)
(10)

=
sin(πt)

π

∞∑
n=−∞

xn
(−1)n

t− n
(11)

which follows immediately from the identity sin[π(t − n)] = (−1)n sin(πt). This form can
be used to develop a table-based sinc interpolation algorithm in which the function 1/t is
sampled, windowed, and stored in a table over a small range of t. (Reverting to the weighted
sinc table is advisable near an argument of zero where there is a pole-zero cancellation in
the definition of sinc, i.e., when |t− n| � 1.) Note that when t crosses 2, the 1/t table
can be implemented as (1/2)(1/(t/2)). In other words, the table between t = 2 and t = 4
can be computed from the table between t = 1 and t = 2 using a simple one-bit right-shift
on the table address and the table output. If this trick is used, the table window must
be applied separately, but there ways to synthesize simple windows (e.g., the Hanning or
Hamming windows which consist of a single sinusoidal component) using waveform synthesis
techniques, avoiding a separate table for the interpolated window function.

3.9 Appendix: Relation between Sinc and Lagrange Interpolation

Lagrange interpolation is a well known, classical technique for interpolation [12]. It is also
called Waring-Lagrange interpolation, since Waring actually published it 16 years before
Lagrange [13, p. 323]. Given a set of n + 1 known samples f(xk), k = 0, 1, 2, . . . , n, the
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problem is to find the unique order n polynomial y(x) which interpolates the samples. The
solution can be expressed as a linear combination of elementary nth order polynomials:

y(x) =
n∑

k=0

lk(x)f(xk)

where

lk(x)
∆
=

(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

From the numerator of the above definition, we see that lk(x) is an order n polynomial having
zeros at all of the samples except the kth. The denominator is simply the constant which
normalizes its value to 1 at xk. Thus, we have

lk(xj) = δkj
∆
=

{
1, j = k
0, j �= k

In other words, the polynomial lk is the kth basis polynomial for constructing a polynomial
interpolation of order n over the n + 1 sample points xk.

In the case of an infinite number of equally spaced samples, with spacing xk+1 − xk = ∆,
the Lagrangian basis polynomials converge to shifts of the sinc function, i.e.,

lk(x) = sinc

(
x− k∆

∆

)
, k = . . . ,−2,−1, 0, 1, 2, . . .

where

sinc(x)
∆
=

sin(πx)

πx

A simple argument is based on the fact that any analytic function is determined by its zeros
and its value at one point. Since sin(πx) is zero on all the integers except 0, and since
sinc(0) = 1, it must coincide with the infinite-order Lagrangian basis polynomial for the
sample at x = 0 which also has its zeros on the nonzero integers and equals 1 at x = 0.

The equivalence of sinc interpolation to Lagrange interpolation was apparently first pub-
lished by the mathematician Borel in 1899, and has been rediscovered many times since [13,
p. 325].

A direct proof can be based on the equivalance between Lagrange interpolation and
windowed-sinc interpolation using a “binomial window” [14, 15]. That is, for a fractional
sample delay of D samples, multiply the shifted-by-D, sampled, sinc function

hs(n) = sinc(n−D) =
sin[π(n−D)]

π(n−D)

by a binomial window

w(n) =

(
N
n

)
, n = 0, 1, 2, . . . N

and normalize by [15]

C(D) = (−1)N
π(N + 1)

sin(πD)

(
D

N + 1

)
,

“Digital Audio Resampling Home Page,” http://www-ccrma.stanford.edu/˜jos/resample/, based
on “A Flexible Sampling-Rate Conversion Method,” by J. O. Smith and P. Gossett, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego,
March 1984 (ICASSP-84), Volume II, pp. 19.4.1–19.4.2. New York: IEEE Press.



REFERENCES Page 18

which normalizes the interpolating filter to have a unit L2 norm, to obtain the Nth-order
Lagrange interpolating filter

hD(n) = C(D)w(n)hs(n), n = 0, 1, 2, . . . , N

Since the binomial window converges to the Gaussian window as N → ∞, and since the
window gets wider and wider, approaching a unit constant in the limit, the convergence of
Lagrange to sinc interpolation can be seen.
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