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Abstract

We propose and test a fully automatic, goal-oriented hp-adaptive strategy for elliptic
problems. The method combines two techniques: the standard goal-oriented adaptivity
based on a simultaneous solution of a dual problem, and a recently proposed hp-strategy
based on minimizing the projection-based interpolation error of a reference solution.
The proposed strategy is illustrated with two numerical examples: Laplace equation in
L-shape domain, and an axisymmetric Maxwell problem involving radiation of a loop
antenna wrapped around a metallic cylinder into a conductive medium.
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1 Introduction

The research presented in this paper is a continuation of the study on a fully automatic
hp-adaptivity for elliptic problems in energy norm [8]. One of the main advantages of this
strategy is that it does not need to use an a-priori information about singularities of the
solution for the construction of the initial mesh. It has been documented in [8] that the
strategy is capable of delivering exponential convergence rates and optimal meshes in the



full range of error level, especially also in the preasymptotic range. The algorithm is based
on the solution of the problem on a globally refined hp-mesh, and on the construction of a
next optimal Ap-mesh which minimizes the projection-based interpolation error of the fine
grid solution.

The idea of adding the solution of the dual problem to this strategy is motivated by
several practical examples, a representative of which is presented in paragraph 1.1.

Before we bring together the goal-oriented adaptivity and hAp-adaptivity proposing a
new adaptive strategy in section 2, we shortly review the basic principles of each of them
separately in paragraphs 1.2 and 1.3. In paragraph 1.4, a special attention is given to the
mesh optimization procedure which is the very core of the fully-automatic algorithm.

In section 3 we solve a model elliptic problem (Laplace equation in the L-shape domain)
and in section 4 we come back to the problem introduced in paragraph 1.1. Conclusions and
outlook for future work are drawn in section 5.

1.1 A motivating problem: Radiation from a loop antenna

We are concerned with the solution of the standard model radiation problem relevant to
drilling technologies, [10]. The problem is illustrated in Fig. 1. A loop antenna, wrapped
around an infinite metallic cylinder, radiates into a conductive homogeneous medium.

The problem consists in solving the time-harmonic Maxwell’s equations,
1
V x (—V X E) — (w* — Jwo)E =0, (1.1)
1

to be satisfied in the whole space minus domain D occupied by the loop antenna, with a
prescribed impressed surface current on the surface of the antenna,

1 .
n X (;V X E) = —Jwd ", (1.2)

We choose to model the antenna with a surface rather than volume current (Neumann
boundary condition instead of a source term) to avoid unnecessary refinements in the domain
occupied by the antenna.

The standard variational formulation reads as follows [16]
1 .
/ —~VXE-V xF — (w2e—Jwa)E-F:—Jw/ J - F, (1.3)
R3\D R3\D oD
for every test function F, with E and F' satisfying appropriate boundary conditions at

infinity and 0D denoting the boundary of domain D occupied by the antenna. Two essential
simplifications can be made:

e Due to the axisymmetry of the problem, components F, = E, = 0 and £ = E, =
E,(r, 2) (in the sequel we leave out the index ¢ for tangential component of E).
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2D computational domain

- receiving antenna (modelled by mesh element)

>~ material interfaces

T emitting antenna (modelled by boundary condition)
e Rt R TR axis of symmetry

- metallic mandrel

Figure 1: Basic arrangement of the device and computational domain (with adjusted scaling
in the r-direction). The actual measures are given in paragraph 1.1.1.

e Due to the exponential decay of the solution away from the antenna, the resulting two-
dimensional problem for E can be stated in a bounded rectangular domain €2 shown in
Fig. 1, encompassing a portion of the metallic mandrel terminated away from r = 0.
The equation is accompanied with a homogeneous Dirichlet boundary condition on the
truncating boundary I'.

The ultimate 2D variational problem, stated in polar coordinates (r, z) reads as follows:

( E=0onTl
1 [0E0v 1 o0E ov 9
/Q {; [%@ + - (E + TE> ('v + raﬂ — (w’e —JwU)Ev} rdrdz (1.4)
= Jw/ rJTP . p ds, for every test function v,v =0 on I.
\ oD

(Here ds? =dr?+ dz?)
Notice that the original Neumann boundary condition on [' translates now into a Cauchy
(Robin) boundary condition,



where n = (n,,n,)".

1.1.1 Goal of computation

Besides the emitting antenna, a receiving antenna, occupying another subdomain D; C €2 is
placed into the computational domain. Our task is to compute the value

N(FE) = 2010g10/D Erdrdz (1.6)
1

representing a measure to the electromagnetic force at the receiving antenna, measured in dB.

We shall describe now the geometry of the domain in more detail. All values are given in
meters (some of them being converted from inches...).

Both antennas have identical form of a single axisymmetric ring of radius r, = 0.03048.
The cross-section of the antennas is circular with radius r. = 0.000718. Midpoints of the
emitting and receiving antenna in the axisymmetric geometry are Py = [0.03048,0] and
P, =1[0.03048, 0.5], respectively.

Recall that we model the emitting antenna by means of a Cauchy boundary condition
for F in order to avoid refinements in its interior. Hence, our computational domain €2 is
obtained after subtracting the emitting antenna (i.e. circle with the midpoint Py and radius
r.) from the rectangle [0.02,2.0] x [-2.0, 2.0]. The subdomain €2,,, C Q, Q,, = [0.02,0.0254] x
[—2.0,2.0] represents a metallic mandrel with the material properties 4 =1, 0 = 107, ¢ = 1.
The same material properties are chosen also for the receiving antenna. The rest of €2
represents mud and soil with the material properties =1, 0 =1, ¢ = 1. Here pu stands for
the permeability, o for the electrical conductivity and € for the dielectric constant.

The frequency and angular frequency of the harmonic field have the values f = 2.10°,
w = 27 f. The computational domain with the initial mesh is shown in Fig. 2. Grid points
in the r- and z-direction are listed in Tables 1 and 2, respectively.

0.02 0.0254 | 0.029214 | 0.030226 | 0.030734
0.031746 | 0.03738 | 0.075042 | 0.326024 2.0

Table 1: Grid points in the r-direction.

We impose certain geometrical gradation of the mesh towards the antennas in order to
minimize the initial mesh error. Let us remark that the shape of the initial mesh influences
the convergence of adaptive schemes in a non-negligible way.
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-2.0 -0.500254 | -0.499746 | -0.044248 | -0.007003
-0.001266 | -0.000254 | 0.000254 | 0.001266 | 0.007003
0.044248 | 0.455752 | 0.492997 | 0.498734 | 0.499746
0.500254 | 0.501266 | 0.507003 | 0.544248 2.0

Table 2: Grid points in the z-direction.

It turns out that it is extremely difficult to resolve this problem with a sufficiently high
accuracy using schemes which are h- or hp-adaptive in a global energy norm.

1.2 Basic principles of goal-oriented adaptivity

During the last decade, goal-oriented adaptivity for PDE’s has been a topic of permanent
scientific and engineering interest, and several basic methodologies have been proposed (see,
e.g., [3, 4, 17, 5, 13, 14, 2|). In comparison with the adaptivity in energy norm which
attempts to minimize the energy of the residual of the approximate solution, the goal-
oriented approach attempts to control concrete features of the solved problem (quantities
of interest). Goal-oriented adaptive techniques are designed to achieve precise resolution in
quantities of interest with significantly less degrees of freedom than the standard adaptive
schemes.

Quantities of interest can be represented, e.g., as bounded linear functionals of the solu-
tion. The goal in the motivating problem from the previous paragraph leads to a functional
of the type
(1.7)

where (), is a subdomain of the computational domain €2. For vector-valued solutions, we
may be interested, e.g., in the flux through the boundary of a subdomain €2 of :

L(u) = /m w(z) - n(z)dS =

However, there are numerous quantities of interest which cannot be directly expressed in
terms of bounded linear functionals. A particularly important example is the value of the

V- u(x)de.

Qs

(1.8)

solution u at a selected point xy in domain 2. In such cases we may try to find a suitable
approximation of the quantity of interest, e.g.,

1
L(u) = 7|B(a:0,7“)| /B(xo’r)u(x)dx

where B(zg,r) C 2 is a ball with the center xy and a sufficiently small radius r. Another
possible approach to pointwise values is the use of regularizing mollifiers (see, e.g. [12]).

(1.9)

Let us recall the basic ideas of the goal-oriented adaptivity leading to the formulation and
solution of the dual problem:



Consider a problem to find a solution u lying in a Hilbert space V' and satisfying the
weak fomulation

b(u,v) = f(v) (1.10)
for all v € V, b being an elliptic bilinear form defined on V' x V and f € V.

Consider the discrete problem

b(Whp, Vip) = f(Vhp) (1.11)

for all v, € Vj,, where V3, , C V' is a polynomial finite element approximation of space
V.

Define the error e, , = u — u;, and consider the residual
Php(Vnp) = f(Vnp) = b(Wnp, Vnp). (1.12)

Relate the residual r,, to the error in the quantity of interest, i.e. find G € V" such
that

G(rnp) = L(eny).

By reflexivity, G can be related to an element v in the original space (influence func-
tion),

G(Thp) = Thp(v) = f(V) = b(upy, v) = b(uw, v) — b(upy, v) = blen,,v) = L(ehypl

.

"'

where v is the solution to the dual problem:

Find v € V such that
b(u,v) = L(u) (1.13)

for all u € V.

Consider the discrete dual problem

b('u,hyp, vh,p) = L(’U,h,p) (114)
for all wyp, € Vi p.

Estimate the error in the quantity of interest by means of the errors in energy norms
for both the direct and dual problem:

|[L(w) = L(uny)| = |L(u = unp)| = [b(w = upp, v)| = [b(w = wpp, v = vnp)| < (1.15)

< Y u—wnpllexl|v — vapllex-
KeT,,

(Standard orthogonality property for the error in the solution was used.)



1.3 Brief review of hp-adaptivity

The hp-version of the finite element method combines the adaptivity in h (spatial refine-
ments) with the adaptivity in p (variation of the degree of polynomial approximation in
finite elements) in a unique way. The basic advantage with respect to other h- or p- only
adaptive schemes is based on the fact that the method achieves an exponential convergence
in the energy norm for linear elliptic boundary value problems with possibly singular so-
lutions. In other words, as opposed to h- and p-methods, the simultaneous refinements in
both h and p allow to concentrate the degrees of freedom at singularities in a way which
is sufficient to control them numerically. Such singularities are natural for domains with
re-entrant corners, for points on the boundary where the boundary conditions change their
type, and intersections of material interfaces. Their efficient resolution is crucial in many
practical problems arizing in the engineering practice.

Nowadays, the theory of the hp-version of the finite element method is well-established and
founded on solid results mostly due to the efforts of Babuska and coworkers. However, the
practical realization of fully automatic and robust 3D hp-adaptive algorithms still presents
many serious difficulties mainly due to excessive programming complexity. We refer to
8, 6, 15].

1.4 Mesh optimization procedure

An adaptive finite element strategy is always based on some information about the local
approximation error that decides where the finite element mesh is to be refined. Most
approaches are based on the evaluation of error estimators of various kinds on each mesh
element. This seems to be sufficient for schemes which are adaptive either in A or in p only,
because it is only the magnitude of the error in an element which decides about the refinement
of the element. However, the hp-adaptivity brings more choices for an element to be refined:
there is the possibility to perform either a p-refinement only, or to split the element spatially
with various distributions of the polynomial degree p for its sons. Obviously, we must be
critical when deciding between various refinement possibilities, which means that we must
take into account both the invested number of degrees of freedom and the profit which the
various refinement options bring. Such refinement options for a mesh element are called
competitive element refinements.

An original approach based on the maximization of the decrease rate for the local hp-
interpolation error with respect to a reference solution was presented in [15]. A reference
solution u,.r is an approximation of the exact solution u which is closer to the exact solution
than the original approximation uy ,. Hence, the difference u,.r—uy, is capable of delivering
useful information not only about the magnitude but also about the concrete shape of the
error ey ,. The reference function can be obtained in several different ways (see, e.g., [15]
where for this purpose Babuska’s extraction formulas were used).



In [8], reference solution is computed as an approximate solution corresponding to an
hp-grid obtained by a uniform h- and p-refinement such that h — h/2 and p — p+ 1 for all
mesh elements. By u;/2,11 we denote the fine grid solution.

Let us remark that for h-adaptivity the fine mesh is constructed by uniform A-refinement
only. This is sufficient as, in this case, the variation in p is not involved in the mesh
optimization process.

It is our aim to minimize the error in energy norm
2 _ 2
llefle = llw — wny[c- (1.16)
In the language of element contributions we can write

2 2
lw —unplle < 30 [l — unylle (1.17)
KEThp
where 7}, stands for the Ap-mesh and K for a mesh element. Obviously the minimization
of [|u — wp |2  cannot be done locally. But, asymptotically, we can achieve the same goal
by minimizing
ltrer — nptarerlle (1.18)
on all K € Tj,p, where I, , is a suitable projection-based interpolation. The projection-based
interpolation must satisfy the following conditions, see [7],

e the interpolant must lie in the finite element space,

e the interpolation must be local, i.e. it must be capable of projecting a function onto
an element using only information accessible from inside of the element,

e the interpolation must be optimal, i.e. deliver the same convergence rates as the global
approximation.

The projection-based interpolation I, , (of reference solution u,.s), analyzed in [7], consists
of three steps:

e evaluation of u,.; at mesh vertices and its extension to the element interior - resulting
in (bi)linear vertex interpolant denoted by w;

e projection of u,.; — u; in Hy on edges and its extension to the element interior -
resulting in edge interpolant denoted by ws: this step involves a discrete minimization
problem (= solution of a system of linear equations) on each edge;

e projection of u,.f — u; — wy on the element bubble functions; this step involves one
solution of a system of linear equations for each element.

With a suitable projection-based interpolation in hand, one step of the mesh optimization
looks as follows [8]:



1. Perform the global hp-refinement and compute fine mesh solution w2 p41.
2. Compute elementwise error ||y 2 p11 — Unplle,x for all T € Tjp.

3. Determine the element isotropy flags ( = determine if the element is going to be refined
isotropically or anisotropically).

4. Determine optimal refinement for each edge in the mesh 7, using competitive refine-
ments.

5. Determine the maximum edge error decrease rate and identify all edges with error
decrease equal at least to (e.g.) one third of the maximal one; those edges are going
to be refined.

6. Use the information about edge h-refinements and the element isotropy flags to decide
about h-refinements for all elements.

7. Determine optimal orders of approximation for all element interiors monitoring the
error decrease rate.

8. Enforce the minimum rule to all edges in the mesh: order of approximation for an edge
must be equal to the minimum of orders for the adjacent elements.

The fully automatic hp-adaptive strategy proposed in [8] starts with an initial mesh and re-
peats the mesh-optimization procedure until a sufficient accuracy of the solution (measured
in the energy norm of the difference of wy /3,11 — Wp,p) is reached. Solution Up 2541 Can be
used as a final result.

Let us mention that strategies based on the reference solution are not the only possibility —
for an alternative strategy based on monitoring local h-convergence rates, see [1].

2 Fully automatic goal-oriented hp-adaptivity

We have given now enough background to introduce the goal-oriented hp-adaptive strategy.
The basic difference between the energy driven hp adaptive strategy from [8], and the new
approach, is that instead of minimizing the error in the energy norm (1.16), we will minimize
the error in the quantity of interest,

| L(wnjapi1) = L(unp)l- (2.19)

Here wp 2,41 denotes the fine mesh solution corresponding to the globally refined current
mesh, both in h and p.



Replacing the exact solution w and the (exact) dual solution v with the corresponding
fine mesh solutions w241, Vp/2,p+1, TESp., We repeat now the steps discussed in subsection
1.2, to arrive at the following identity,

|L(uh/2,p+1) — L(uny)| = b(uh/2,p+1 — UWh,p;s Uh/2,p+1 — Vhp)- (2.20)

We assume that the bilinear form b(wu, v) can be split into a bilinear, positive definite part
a(u,v) and a compact perturbation c(u,v), see [9],

b(u,v) = a(u,v) + c(u,v). (2.21)

Recall that in (2.20) w241 and wuy,y, are fine and coarse grid solution to the original problem,
Vp/2,p+1 18 the fine grid solution of the dual problem, and vy, stands for any coarse grid test
function. We make now the following assumptions.

1. We select for vy, the projection-based interpolant of fine mesh dual problem solution,
L(uh/2:p+1) - L(’u’hyp) = b(uh/2,p+1 - Huh/Z,p+1; Vh/2,p+1 — th/27p+1) (222)
_b(Huh/2,p+1 — Upp, Vn/2,p+1 — th/2,p+1)'

2. We neglect the second term corresponding to the contribution of the difference between
the coarse grid interpolant ITwy /5,1 and coarse grid solution.

This leads to the estimate

| L(unzp1) = L(unp)l < D0 b (wnjopir — Mupjopin Unpzpen — Mopgopin)] (2:23)
KeThp

< Z {|aK(uh/2,p+1 — Hupopi1, Vnjoprr — Hopjopi)|
K

+| CK(uh/Z,p-i-l - Huh/Z,p-}-la Un/2,p+1 — th/Z,p+1)|}

< Z(l + M)l wn2pr1 — U o piille i ||Vn/2p41 — HVn/2p4a
K

e,K-

Here by, ak,ckx denote element contributions to global forms b, a, ¢ respectively and
My stands for the continuity constant of bilinear form cg,

|ex (wny2pir — Tn 2 pi1, Ony2pen — Tvnjap i) (2.24)

< Millunjapi1 — Mo prille.xl|Vn2pe1 — HUnjopillex-

3. We expect constant My to be asymptotically (both in A and p) converging to zero,
and we shall neglect it in our estimate.
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This leads to the final estimate,

|L(wnjopi1) — Llwnp)| < D Ntrer — Mpptreglle i l|Vrer — Thpvreslle. » (2.25)
KeThp

which is approximate in sense of neglecting the difference between fine mesh solution and
fine mesh solution interpolant in (2.22). Consequently, instead of minimizing the projection
based interpolation error,

wn/2pe1 — Waptnjopiill” = D l|unjopsn — Hh,puh/Z,p+1||f23,K : (2.26)
K
we shall modify the original hp strategy to minimize now estimate (2.25). The steps of the
algorithm are analogous to those discussed in section 1.4.

1. Compute element contributions to estimate (2.25),

||uh/2,p+1 - Hh,puh/2,p+1||e,K||vh/2,p+1 - Hh,pvh/2,p+1“e,Ka (2.27)
for all T € Tp .

2. Determine the element isotropy flags. An element is declared to be a candidate for an
anisotropic refinement if both differences wy 241 — wpy and vy 0,41 — vy, represent
the same anisotropic behavior.

3. Determine optimal refinement for each edge e in the current mesh 7,, comparing
competitive refinements. Use product of the interpolation errors for the primal and
dual problems in place of the interpolation error of the fine mesh solution,

[z p1 = apunjopll 4 (2.28)
0]

o

o ||vh/2,p+1 - Hh,pvh/2,p+1||Hé)(e)

4. Determine the maximum edge error decrease rate and identify all edges with error

decrease greater or equal than one third of the maximal one; those edges are going to
be refined.

5. Use the information about edge h-refinements and the element isotropy flags to decide
about h-refinements for all elements.

6. Determine optimal orders of approximation for all element interiors monitoring the
decrease rate of the product of the element interpolation errors (2.27).

7. Enforce the minimum rule for all edges in the mesh: order of approximation for an
edge must be equal to the minimum of orders for the adjacent elements.

With the one step minimization strategy described above, the ultimate goal-oriented hp
strategy looks as follows.
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1. Initiate £ := 0.

2. Consider mesh 7, and corresponding space of functions V;*,.

3. Solve direct problem on the coarse mesh: b(uj, ,,v) = f(v), forallv € V), .
4. Solve dual problem on the coarse mesh: b(u, v} ) = L(u), for all w € V}, .

D. C(]:nstruct globally hp-refined mesh 77[“/27[) 41 and the corresponding finite element space
V,

h/2,p+1°

6. Solve direct problem on the fine mesh: b(uf , ,,,,v) = f(v), forall v € Vi, ., .
7. Solve dual problem on the fine mesh: b(w, v}, ,,,) = L(u), for allw € Vi, .|

8. Compute estimate (2.25). If the estimated difference (relative to fine mesh goal
L(wpj2,p41) is within the prescribed tollerance, quit.

9. Apply the mesh optimization procedure described above to construct next optimal
mesh 7"

Remarks:

1
1. Similarly as in [8], we replace the Hg (e) norm with a weighted H{(e) norm, see [8] for
details.

2. Notice that the stopping criterion is based on the actual difference of the fine and
coarse mesh goals and not its estimate.

Energy and goal driven h-adaptivity

One of the goals of the presented work is to gain some experience with how much can we gain
using hp-adaptivity when compared with h-adaptivity only using quadratic elements. The
choice of quadratic elements seems to be fair as, in general, they deliver vastly superior results
to linear elements, and their implementation is much simpler than, say, cubic elements.
Quadratic element, for instance, have only one d.o.f. (scalar case) per edge, face, and
element interior (no orientation needed !) and present a good balance between accuracy and
complexity of the corresponding implementation.

There are many possible h-adaptive schemes, for both energy and goal-driven adaptivity,
and we present now shortly the two schemes that we have used for our comparison. We shall
discuss one step for both of the algorithms only.
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Energy driven h-adaptive algorithm

Given a coarse mesh 77 and corresponding finite element space V¥, we construct the next

coarse mesh 77 as follows.

1. Solve direct problem on the coarse mesh: b(uf,v) = f(v), for all v € V.
2. Construct globally h-refined mesh T,’f/Q and the corresponding FE space th/Q.
3. Solve direct problem on the fine mesh: b(ujf, ,, v) = f(v), for all v € V;f,.

4. Compute the difference between the coarse and fine mesh solutions,

by, —upll2 = > lluh — il k-
KET}I:

When computing the element contributions, determine the anisotropy flags for the
elements.

5. Quit if the error estimate is below the prescribed tollerance.

6. Determine the maximum element contribution to the error estimate, and refine all
elements that contribute with error within one third of the maximum one. Use the
isotropy flags to decide between the isotropic and anisotropic refinements.

Goal driven h-adaptive algorithm

Given a coarse mesh 77 and corresponding finite element space V¥, we construct the next

coarse mesh 77 as follows.

1. Solve direct problem on the coarse mesh: b(uf,v) = f(v), for all v € V.

2. Solve dual problem on the coarse mesh: b(u,v¥) = L(u), for all u € V/¥.

3. Construct globally h-refined mesh 75, and the corresponding FE space V;l),.
4. Solve direct problem on the fine mesh: b(’u,ﬁ/Q, v) = f(v), for all v € th/Q.

5. Solve dual problem on the fine mesh: b(w, vy ,) = L(u), for all u € V5.

6. Compute the estimate of the difference in goal for the coarse and fine mesh solutions,

|L(ufyp) = L) < 37 [y, — uj,

KET,’_f

G,K“vﬁ/Q - ’U£||87K .

When computing the element contributions, determine the anisotropy flags for the
elements.
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7. Quit if the difference in goals for the fine and coarse mesh solutions is below the
prescribed tollerance.

8. Determine the maximum element contribution to the error estimate, and refine all
elements that contribute with error within one third of the maximum one. Use the
isotropy flags to decide between the isotropic and anisotropic refinements.

3 Model problem

We consider the standard L-shape Q domain problem, see [8].

ﬁe

Figure 2: Geometry and initial mesh.

We solve the Laplace equation
—Au =0 (3.29)

in €2, with Dirichlet boundary conditions u(x) = ¢(z) for all z € 9. Function ¢ is chosen
to be compatible with the harmonic function

u(wy, x9) = r*3sin (20/3 + 7/3) (3.30)

where (r, z) are standard polar coordinates. Derivatives of the solution are singular at origin
[0, 0].

The goal of our computation is the average value of the solution u over a small neighbor-
hood € of point P, = [-0.5,0.5] (shown in Fig. 2).

14



Figures 3, 4, 5, 6 show meshes which have been obtained to yield a relative error in the
quantity of interest to be less than 107, Scale on the right hand side indicates the order of
polynomial approximation, starting with p = 1.

1 B
x

Figure 3: Energy-based h-adaptivity. Mesh after 18 h-refinements (all elements are second-
order), number of DOF = 3114.

1 B
X1

Figure 4: Goal-oriented h-adaptivity. Mesh after 17 h-refinements (all elements are second-
order), number of DOF = 2448.
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x

Figure 5: Energy-based hp-adaptivity. Mesh after 15 hp-refinements, number of DOF =

1366.
g oo

Figure 6: Goal-oriented hp-adaptivity. Mesh after 10 hAp-refinements, number of DOF = 803.
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The neighborhood €2, of point P, = [—0.5,0.5] is defined as follows: tet us consider the
mesh edges e;, 7 =1,2,...,6, starting at P,. For each of them we consider a point ); which
lies at e; and whose distance from P is

&1
Q; — Pi| = 2—?, (3.31)

The neighborhood €2, is defined as the convex envelope of points @)1, Qs, . . ., Qs. We mention
that the choice of the shape of neighborhood €2, has been motivated with the ease of numerical
integration over {2, only.

Fig. 7 shows the history of the relative error in goal for all four tested approaches. The
x-axis represents the number of degrees of freedom.

001 [ T T T T T T | T T _
[ 'H-ADAPTIVE' ——— ]
'GOAL-H-ADAPTIVE’ -------
| 'HP-ADAPTIVE’ -
0.001 L 'GOAL-HP-ADAPTIVE' - 1

0.0001 |
1e-05

1e-06

1e-07 I I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 7: Relative error wrt. the exact solution in goal.

17



4 The radiation problem (continued)

Finally we return to the motivating problem introduced in paragraph 1.1. We have to control
the error in the nonlinear quantity N(E), i.e. to find an approximation Ej,, of E such that

IN(Eh,) — N(E)| < TOL (4.32)

where E is the (unknown) exact solution.

Dual problem:

We look for a suitable linear functional of interest for the dual problem approximating
N(E). Assuming that the value

/ By, drdz (4.33)
B(P1,r¢)
corresponding to the approximate solution will lie close to
/ Edrdz, (4.34)
B(Pi1,rc)

gives us the right to approximate

fB(Pl,T'c) Eh,p d?”dZ
fB(Pl,T'C) E deZ
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fB(Pl,T'c) Eh,p d’I“dZ - fB(Pl,TC) E d’I“dZ
~In10 '

fB(Pl 77.c) E deZ

[N (Enp) = N(E)| = 20 |log;,

(4.35)
We see that due to the ’linearity’ of function log,,(y) at y = 1, the minimization of the error
in N(FE) translates into the minimization of the error in the quantity

L(E) = /B o Bdrdz (4.36)

Thus, the goal of our computation is the integral of E over the receiving antenna B(Py,r.).
The constant 20/1In(10) will play a role only in the stopping criterion for the adaptive
algorithm.

4.1 Results

In this paragraph we show a few results (sequences of meshes) of energy-based and goal-
oriented h- and hp-adaptive schemes, applied to the radiation problem. All schemes start
from the same coarse initial mesh consisting of second-order elements.

4.1.1 Energy-based and goal-oriented h-adaptivity

Similarly as in Section 3, the scale on the righ hand side represents the order of polynomial
approximation. Energy-based and goal-oriented h-adaptivity will be performed using second
order elements only,

18
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Figure 8: Energy-based h-adaptivity (left) and goal-oriented h-adaptivity (right), meshes
corresponding to approx. 11000 degrees of freedom.

19



xOJ xO1

Figure 9: Energy-based h-adaptivity (left) and goal-oriented h-adaptivity (right), zoom =
10 towards the emitting antenna.

Figure 10: Energy-based h-adaptivity (left) and goal-oriented h-adaptivity (right), zoom =
100 towards the emitting antenna.
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Figure 11: Energy-based h-adaptivity (above) and goal-oriented h-adaptivity (below), zoom
= 1000 towards the emitting antenna.
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Figure 12: Energy-based h-adaptivity (left) and goal-oriented h-adaptivity (right), zoom =
10 towards the receiving antenna.

Figure 13: Energy-based h-adaptivity (left) and goal-oriented h-adaptivity (right), zoom =
100 towards the receiving antenna.
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Figure 14: Energy-based h-adaptivity (above) and goal-oriented h-adaptivity (below), zoom
= 1000 towards the receiving antenna.
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4.1.2 Energy-based and goal-oriented hp-adaptivity
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Figure 15: Energy-based hp-adaptivity (left) and goal-oriented hp-adaptivity (right), meshes
corresponding to approx. 11000 degrees of freedom.
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Figure 16: Energy-based hp-adaptivity (left) and goal-oriented hp-adaptivity (right), zoom
= 10 towards the emitting antenna.
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Figure 17: Energy-based hp-adaptivity (left) and goal-oriented hp-adaptivity (right), zoom
= 100 towards the emitting antenna.
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Figure 18: Energy-based hp-adaptivity (above) and goal-oriented hp-adaptivity (below),
zoom = 1000 towards the emitting antenna.

26



! GG E B

Figure 19: Energy-based hp-adaptivity (left) and goal-oriented hp-adaptivity (right), zoom

= 10 towards the receiving antenna.
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Figure 20: Energy-based hp-adaptivity (left) and goal-oriented hp-adaptivity (right), zoom
= 100 towards the receiving antenna.

Fig. 22 shows the history of the relative error in goal (i.e. in the nonlinear quantity (1.6)) for
all four tested approaches. The unknown exact solution to the radiation problem is replaced
by the corresponding fine mesh solution for the error evaluation. The z-axis represents the
number of degrees of freedom.

The presented results show a dramatic difference between the energy and goal driven
adaptivity. The corresponding meshes are essentially different, and the goal-oriented adap-
tivity delivers results that are at least an order of magnitude better.
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Figure 21: Energy-based hp-adaptivity (above) and goal-oriented hp-adaptivity (below),
zoom = 1000 towards the receiving antenna.

Concerning the difference between the goal-driven h- and hp-adaptive schemes, we can
risk a statement that, within the investigated range of problem size, hp-adaptivity delivers
results that are an order of magnitude better than those produced by h-adaptivity only.

For all investigated strategies, the (estimated or computed) error in goal does not decrease
monotonically, especially for energy driven schemes.

Finally, we would like to emphasize that for the antenna problem, that has motivated this
research project, the goal oriented hp-adaptive scheme has delivered an outstanding 1/10 of
a percent accuracy (on the decibel scale) which seems to be more than satisfactory from the
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Figure 22: Relative error in goal (h-adaptivity with quadratic elements only, hp-adaptivity
with initially quadratic elements).

practical point of view.

5 Conclusions

The aim of this study was to bring together the advantages of two powerful tools of numerical
mathematics, the hp-adaptivity and the goal-oriented adaptivity, into a fully automatic
goal-oriented hp-adaptive strategy for elliptic problems. We have extended an existing fully
automatic hp-adaptive strategy in energy norm by introducing the solution of the dual
problem and applying it to the mesh optimization algorithm based on the minimization of
the projection-based hp-interpolation error of reference solutions to both the direct and the
dual problems.

The numerical results presented in the last two sections demonstrate the advantages of
this approach with respect to both the goal-oriented h-adaptive strategy and hp-adaptive
strategy in energy norm.

However, as almost with all 2D computations, also this work is merely a proof of concept.
The ultimate challenge we are heading for is the fully automatic goal-oriented hp-adaptivity
in three spatial dimensions, on which we hope to report soon.
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