EFFECTIVE COMPILE-TIME ANALYSIS FOR DATA
PREFETCHING IN JAVA

A Dissertation Presented

by
BRENDON D. CAHOON

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
September 2002

Department of Computer Science

(© Copyright by Brendon D. Cahoon 2002
All Rights Reserved

EFFECTIVE COMPILE-TIME ANALYSIS FOR DATA
PREFETCHING IN JAVA

A Dissertation Presented

by
BRENDON D. CAHOON

Approved as to style and content by:

Kathryn S. McKinley, Chair

J. Eliot B. Moss, Member

Charles C. Weems, Member

Russell G. Tessier, Member

W. Bruce Croft, Department Chair
Department of Computer Science

To my family, especially my wife Laura

ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Kathryn McKinley, for providing an enjoyable
atmosphere for doing challenging research. | took her first class at UMass, and she has
been stuck with me ever since. She has been an outstanding advisor and |1 am fortunate to
have worked with her. I hope | am able to pass on her principles.

I thank Eliot Moss and Chip Weems for their leadership of our research group. They are
very knowledgeable, and my discussions with them have improved this work significantly.
They also served as members of my committee, and | appreciate their helpful comments
and suggestions. Thanks also to Russ Tessier, my external committee member, for his
careful reading of my dissertation and providing valuable feedback.

A special thanks goes to Fred Green and Arthur Chou, two excellent teachers that in-
troduced me to research and encouraged me to go to graduate school.

I wish to thank all the members of the ALI research group over the years, especially
Steve Blackburn, Jim Burrill, Steve Dropsho, Sharad Singhai, and Zhenlin Wang. Thanks
also to many other friends in Amherst who made my time there enjoyable including Alan
B., Matt K., Alan K., Ron P., Dan R., Matt S., and John W.

I have spent the last three years at the University of Texas. | would like to say thanks
to J.C. Browne and Calvin Lin for hosting me while at UT. | have been fortunate to make
many friends while at UT, including Emery Berger, Rich Cardone, Sam Guyer, Xianglong
Huang, Daniel Jimenez, Ram Mettu, and Phoebe Weidmann. | could always count on them
for stimulating discussions, some of which were actually about research.

I am very grateful to my family, especially my parents, for their support over the years.
They are the ones that have made this work possible. Finally, I want to thank Laura for her

support, patience, and love.

ABSTRACT

EFFECTIVE COMPILE-TIME ANALYSIS FOR DATA
PREFETCHING IN JAVA

SEPTEMBER 2002

BRENDON D. CAHOON
B.A., CLARK UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kathryn S. McKinley

The memory hierarchy in modern architectures continues to be a major performance
bottleneck. Many existing techniques for improving memory performance focus on For-
tran and C programs, but memory latency is also a barrier to achieving high performance
in object-oriented languages. Existing software techniques are inadequate for exposing
optimization opportunities in object-oriented programs. One key problem is the use of
high-level programming abstractions which make analysis difficult. Another challenge is
that programmers use a variety of data structures, including arrays and linked structures, so
optimizations must work on a broad range of programs. We develop a new unified data-flow
analysis for identifying accesses to arrays and linked structures called recurrence analysis.
Prior approaches that identify these access patterns are ad hoc, or treat arrays and linked
structures independently. The data-flow analysis is intra- and inter-procedural, which is

important in Java programs that use encapsulation to hide implementation details.

Vi

We show Java programs that traverse arrays and linked structure have poor memory
performance. We use compiler-inserted data prefetching to improve memory performance
in these types of programs. The goal of prefetching is to hide latency by bringing data into
the cache prior to a program’s use of the data. \We use our recurrence analysis to identify
prefetching opportunities in Java programs. We develop a new algorithm for prefetching
arrays, and we evaluate several methods for prefetching objects in linked structures. Since
garbage collection is an integral part of Java, we evaluate the impact of a copying garbage
collector on prefetching. We demonstrate how to improve the memory performance of the
collector itself by using prefetching. This dissertation shows that a unified whole-program
compiler analysis is effective in discovering prefetching opportunities in Java programs
that traverse arrays and linked structures. Compiler-inserted data prefetching improves
the memory performance even in the presence of object-oriented features that complicate

analysis.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS .. e %

ABS T RACT . vi

LIST OF TABLES. ... o e xii

LIST OF FIGURES e Xiii
CHAPTER

1. INTRODUCTION . e 1

1.1 PrefetChing Arrays e 4

1.2 Prefetching Linked Structures ...t 6

1.3 Organization of Dissertationcciiiiiiiiineeiiiinennnns 7

1.4 Summary of Contributionso 8

2. BACKGROUND AND RELATED WORK 11

2.1 The Memory Hierarchy e 11

2.2 Improving Memory Performancecciiiiiiiiiii, 13

2.2.1 Tolerating LatenCycovviiiii e 13

2.2.1.1 Prefetching 13

2.2.1.2 Multithreading ... 15

2.2.1.3 Out-of-order Execution 15

2.2.2 Program Transformations, 16

2.3 Data-Flow Analysis.ot 18

2.3.1 Intraprocedural Data-Flow Analysist 18

2.3.2 Interprocedural Data-Flow Analysist 20

2.4 Induction Variable Analysis 21

2.5 Vortex: A Compiler Infrastructure.o i 22

2.6 Prefetching: Related Work i 24
2.6.1 Array Prefetchingin Software 24

2.6.2 Array PrefetchinginHardware it 27

2.6.3 Array Prefetching on Multiprocessors...............ccovivieoin. 29

2.6.4 Prefetching Linked Structures: Luk and Mowry 30

2.6.5 Other Linked-Structure Prefetching Techniques 31
DATA-FLOW ANALYSIS FOR IDENTIFYING RECURRENCES 38
3.1 Loop InductionVariables 38
3.2 Linked Data StrUCIUIESo\ v et e 39
3.3 AUNIified ANalysist 39
3.3.1 Basic intraprocedural analysis i 40

3.3.2 Intraprocedural Examples. 44
3.3.3 Interprocedural Algorithm 48

3.3.4 Interprocedural Example. 51
3.3.5 Object Fieldsand Arraysccouuiiiiiiieniiinnannnnnn. 53

3.3.6 Indirect Recurrent Variables 55

3.4 Cooperating AnalyseSot 56
3.4.1 Shared Object AnalysiS.iiiiiiiii i 56

3.4.2 Array Size Analysis.t 60

3.5 Chapter SUMMArYo 64
PREFETCH TECHNIQUES e 66
4.1 Array Prefetching ... 66
4.1.1 Mowry’s Prefetch Algorithm 67

4.1.2 Our Prefetch Algorithm 69

4.2 Greedy PrefetChing 73
4.2.1 Intraprocedural Greedy Prefetch Scheduling 74
4.2.2 Interprocedural Greedy Prefetch Scheduling 77

4.3 Jump-Pointer Prefetching i 79
4.3.1 Creating Jump-Pointers.t 80
4.3.1.1 ObjectCreation.coiiiiiiiiii i 84

4312 Traversal 84

4.3.2 Indirect Jump-POINterst 85

4.3.3 Garbage Collectionc.o i 85

4.4 Stride PrefetChingooo 86
45 Implementation iN VOIeXot 88
45.1 Interprocedural AnalysiS. i 88
4.5.2 Intraprocedural Data-Flow Analysis and Optimization............. 91
45.2.1 High-Level Optimization............................. 92

4522 Low-Level Optimization|l............................ 94

45.2.3 Low-Level OptimizationIl 95

4524 CodeGeneration.ccoiiiiiiiiiiiia 95

45.3 Implementation of Prefetching.............. 96

4.6 Chapter SUMMANYttt e e e e 98
5. EXPERIMENTAL RESULTS ... e 100
5.1 Methodologyo 101
5.2 Array Prefetching 104
5.2.1 Prefetch Effectiveness............co i 107

522 Cache StatiStiCso 110

523 Conflict MISSES i 111

5.2.4 Varying the Prefetch Distanceo, 113

5.2.5 Case Study: Matrix Multiplication 114

5.2.6 True Multidimensional Arrays ... 117

5.2.7 Additional Prefetch Opportunities......................... ..., 119
5271 Arraysof Objects ...t 119

5272 EnumerationClass ... 120

5.3 Linked-Structure Prefetching..............ot 121
531 GreedyPrefetchingo 122
5.3.1.1 Prefetch Effectiveness, 124

5.3.1.2 Cache StatistiCS.coviiiiii i 126

53.1.3 AnalysisFeaturesccoiiiiiiiiii 126

5.3.1.4 Individual Program Performance 129

5.3.2 Jump-Pointer Prefetching i i 132
5.3.2.1 Prefetch Effectiveness, 134

5322 Cache StatisticS. ...ttt 135

5.3.2.3 Individual program performance 136

5.3.3 Stride Prefetching o i 143

5.3.3.1 Individual Program Performance 144

5.3.4 Summary of Prefetching Linked Structures 146

5.4 Architectural Sensitivity 148
541 ArrayPrefetching i 149

54.2 Greedy Prefetchingo i 150

5.4.3 Jump-Pointer Prefetchingo 152

5.4.4 Architectural Sensitivity Summary 152

5.5 Chapter SUMMarYt e e 152

6. GARBAGE COLLECTION AND PREFETCHING....................... 156
6.1 Garbage Collection in MOrteX 157
6.2 Effect of GC on Prefetching Linked Structures 159
6.2.1 Handling Jump-Pointers in the Collector 160

6.2.2 Experimental Results........... 161

6.3 Prefetching in the Garbage Collector it 166
6.4 Chapter SUMMarY e e 171

7. CONCLUSIONS ... 173
7.1 FUtUre WOIK . . . 173
7.2 ContribULIONSot 175
BIBLIOGRAPHY . 178

Xi

LIST OF TABLES

Table Page
5.1 Simulation Parameters 103
5.2 Array-based Benchmark Programs ...t 106
5.3 Array Static and Dynamic Prefetch Statistics........................... 109

5.4 Effect of Prefetch Distance on Prefetching (Execution Times Normalized

to No Prefetching) i 113
5.5 Linked-Structure Benchmark Suite L. 122
5.6 Benchmark Program Statisticso 122
5.7 Greedy Static and Dynamic Prefetch Statistics 126
5.8 Static Greedy Prefetch Statistics o i 128
5.9 Jump-Pointer Prefetch Statistics 136
5.10 Different Simulation Configurations i 149
5.11 Overall Results for Array Prefetching it 150
5.12 Overall Results for Greedy Prefetching 150
5.13 Overall Results for Jump-Pointer Prefetching 150

Xii

LIST OF FIGURES

Figure Page
1.1 Memory Penalty in Array-based Java Programs 4
1.2 Memory Penalty in Java Programs Containing Linked Structures 6
3.1 Similarities Between Array and Linked-Structure Traversals 39
3.2 Recurrence Analysis Example: TraversingaList 45
3.3 Recurrence Analysis Example: Traversingan Array 46
3.4 Recurrence Analysis Example: Kill Data-Flow Information 46
3.5 Recurrence Analysis Example: Traversing a List Conditionally 47
3.6 Recurrence Analysis Example: Complex Induction Variable 48
3.7 Examples Showing Need for IPanalysisooiiiin. 49
3.8 Using Calling Context Information oo, 50
3.9 IP Recurrence Analysis Example: Recursion 52
3.10 Assigning Recurrence InformationtoaField 54
3.11 Example of Indirect Recurrent Variable 56
3.12 Object Sharingt 57
3.13 Using an Array to Representan Oct-tree 61
4.1 Simple Index EXPressiont 67
4.2 0riginal Loop . ..o 69

Xiii

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

Unrolled LOOP ..o 69

Loop After Transformationscoo it 69
Complex Index EXPressioniieiriii i, 70
Array of ODJectS 70
Array Scheduling Algorithm 71
Redundant Prefetch Example 72
Prefetching a Singly Linked List i ... 73
Prefetching a Binary Tree ..ot 73
Redundant Greedy Prefetch Example i, 75
Intraprocedural Greedy Prefetch Scheduling Algorithm 76
Greedy Prefetchingonan Oct-tree i, 77
Naive Interprocedural Prefetch Scheduling 78
Jump-Pointer Prefetching: Binary Tree Traversal 80
Binary Tree Class Definition with Jump-Pointer Field 81
Inserting Jump-Pointers fora Binary Tree, 81
Sparc Assembly for Creating Jump-Pointers 83
Creating JUmp-POINtEIS 84
Example: Indirect Jump-Pointer i 85
Example of Stride Prefetching 87
Overview of the Vortex Compiler: With Our Extensions 89
Example of Prefetch Optimizationin MVorteX 96
Class Hierarchy for Prefetching 97

Xiv

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

Array Prefetching Performance i 105

Effect of Array Prefetching on Busy/Memory Time 105
Array Prefetch Effectiveness i i 108
L1 Cache Miss Rate (Array Prefetching) 110
L2 Cache Miss Rate (Array Prefetching) 110
Comparing FFT Implementations, 112
Applying Different Loop Transformations to Matrix Multiplication 115
Matrix Multiplication Witha Single Array 118
Performance of Prefetching on True Multidimensional Arrays 118
Prefetching Arrays of Objectsco i 120
Usingthe EnunerationClasscccoiiiiiiiiiinnennnnn. 121
Greedy Prefetch Performance ..., 123
Traversal Phase Performance (Greedy Prefetching) 124
Greedy Prefetch Effectiveness ..., 125
L1 Miss Rate (Greedy Prefetching), 127
L2 Miss Rate (Greedy Prefetching)ot 127
Jump-Pointer Prefetching Performance 133
Traversal Phase Performance (Jump-Pointer Prefetching) 134
Jump-Pointer Prefetch Effectiveness i 135
L1 Miss Rate (Jump-Pointer Prefetching) 137
L2 Miss Rate (Jump-Pointer Prefetching) 137
Different Versionsof Health i, 138
Different Versions of MST 139

XV

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

5.37

5.38

6.1

6.2

6.3

6.4

6.5

Prefetch Effectivenessin Treeaddo .. 140

Varying Prefetch Distance in Treeadd it 141
Stride Prefetching Performance 143
Stride Prefetch Effectiveness 144
Comparing Execution Time in the Linked Structure Prefetching Methods

147

Comparing Busy/Memory Time in the Linked Structure Prefetching

Methods 147
Array Prefetching Performance Using the fast Configuration 151
Array Prefetching Performance Using the large Configuration 151
Array Prefetching Performance Using the future Configuration 151
Greedy Prefetching Performance Using the fast Configuration 153
Greedy Prefetching Performance Using the large Configuration 153
Greedy Prefetching Performance Using the future Configuration 153
Jump-Pointer Prefetching Performance Using the fast Configuration 154

Jump-Pointer Prefetching Performance Using the large Configuration
154

Jump-Pointer Prefetching Performance Using the future Configuration
154

The Heap at the Start of a Collection 158
The Heap atthe End of aCollection, 158
Cheney’s Algorithm (from Jonesand Lin [52]) 158
Snapshot of Cheney’s Copying Algorithm 159
Extended to Cheney’s Algorithm to Handle Jump-Pointers 162

XVi

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

Performance with Garbage Collection, 163

Greedy Prefetch Performance with Garbage Collection 164
Jump-Pointer Prefetch Performance with Garbage Collection 164
Stride Prefetch Performance with Garbage Collection 164
Memory Penalty During Garbage Collection Using a Small Heap 167
Prefetching in TO-SPacecoiiiii e 167
Prefetching in From-Spacec.coiiiiiiiii i 167
Prefetching Fields During the ObjectScan 169
Prefetch During Garbage Collection (1*max. live) 170
Prefetch During Garbage Collection (2*max. live) 170
Prefetch During Garbage Collection (3*max. live) 170

Xvii

CHAPTER 1
INTRODUCTION

We develop an effective compile-time analysis that discovers and exploits data prefetch
opportunities to improve memory performance in Java programs that use arrays and linked
structures.

Increases in modern processor speed continue to outpace advances in memory speed re-
sulting in an underutilization of hardware resources due to memory bottlenecks. Schemes
for reducing or tolerating memory latency are necessary to achieve high performance in
modern computer systems. Most commercial architectures use multiple level cache hierar-
chies to alleviate memory bottlenecks. Caches improve memory performance by allowing
quick access to a small amount of frequently used data. Caches work because programs
exhibit locality of reference. Unfortunately, increases in data set sizes and the increasing
disparity between the processor and memory speeds limit the performance of many work-
loads.

Researchers have performed a significant amount of work investigating techniques, in-
cluding compiler support, to improve the effectiveness of caches. These include data and
code transformations to improve the data reuse in the cache. Compile-time program trans-
formations require complex static analysis in order to determine when transformations are
profitable and legal. Compilers must be conservative when making optimization decisions
and will not transform a program if sufficient information is either unavailable or not com-
putable.

Another technique for improving memory performance is data prefetching which at-

tempts to tolerate cache latency. The goal of prefetching is to bring data into the cache

prior to the use of that data. The key to effective prefetching is to determine what to pre-
fetch and when to issue a prefetch. Determining prefetching opportunities may be done by
hardware or software techniques. Hardware prefetching detects run-time access patterns
using additional hardware resources to determine appropriate data to prefetch. Software
methods require compiler support to generate additional instructions for prefetching data.
Software data prefetching has several advantages over hardware-only schemes. The hard-
ware complexity of implementing a prefetch instruction is much less than the complexity of
a complete hardware prefetching implementation. A software prefetch instruction is more
flexible. Programs can choose exactly when to issue prefetches and what to prefetch. For
example, a hardware mechanism may prefetch floating point data only, whereas software
methods can prefetch data of any type. Compilers provide a method to generate software
prefetches automatically. Hardware methods typically ignore program structure, which
results in an increase in memory traffic by issuing superfluous prefetches.

Most existing techniques for improving memory performance using prefetching focus
on Fortran and C programs. Memory latency is a barrier to achieving high performance
in Java programs as well. The software engineering benefits of object-oriented languages
encourage programmers to use Java to implement a wide variety of programs, including
those that require high performance. Traditional techniques for improving memory perfor-
mance are difficult to apply to object-oriented languages. Software engineering practices
make compile-time analysis of object-oriented programs difficult. For example, object-
oriented programming encourages the use of encapsulation and small methods, both of
which complicate compile-time analysis. Overcoming the challenges that software engi-
neering practices introduce requires whole program analysis.

Programmers frequently use arrays and linked structures in Java programs. For ex-
ample, the underlying data structure for several Java core library classes, such as j ava-
.util. Stack, is an array. New versions of Java include library support for container

classes that use linked structures, such asj ava. uti | . Li nkedLi st . We believe that it

is important for compilers to analyze and optimize both arrays and linked structures. Prior
techniques focus on optimizing one or the other, but not both.

To improve the memory performance of object-oriented programs, we investigate soft-
ware controlled data prefetching to improve memory performance by tolerating cache miss
latency. We develop and implement a new data-flow analysis to identify traversal patterns
in arrays and linked structures. The analysis is unique because it presents a single frame-
work for identifying prefetching opportunities in array-based and pointer-based codes. We
believe the data-flow analysis will be useful in other domains, such as data layout optimiza-
tion. We describe and evaluate a compiler implementation of a new compiler technique for
prefetching arrays, and three methods for prefetching linked structures in Java. Our unified
framework is able to identify array and linked structure traversals that occur across method
boundaries. We demonstrate that our new array prefetching technique is able to improve
memory performance significantly. Prefetching linked structures in Java programs is effec-
tive also, but there is still room for improvement.

Java uses garbage collection to manage dynamic memory allocation automatically.
Since Java requires garbage collection, we examine the impact of garbage collection on
prefetching. We investigate generational copying garbage collectors specifically. Since a
copying collector reorganizes data, there is synergy between prefetching and the collector.
We investigate the potential for using the collector to improve prefetching. We also show
that our copying collector has poor memory performance, so we evaluate the effectiveness
of adding prefetch instructions to improve the performance of the collector itself.

We organize the rest of this section as follows. Section 1.1 introduces array prefetch-
ing. Section 1.2 introduces linked-structure prefetching. We summarize our unified data-
flow analysis that detects prefetch opportunities for both arrays and linked structures. Sec-
tion 1.3 describes the organization of the dissertation. Finally, we summarize our contribu-

tions in Section 1.4.

100

80

D
o
1

= CPU
=== Memory stall

% Execution Time
8
|

20

cholesky eigen Iufactlmatmult qrd svd crypt fft heapsortlufact2 sor sparse
Figure 1.1. Memory Penalty in Array-based Java Programs

1.1 Prefetching Arrays

Programmers are using Java increasingly to solve programming problems that require
high performance, including those involving matrix computations. Poor memory efficiency
limits the performance of Java programs just as it does for C and Fortran. Over half the
programs in Figure 1.1 spend more than 50% of time waiting for memory on a simulated
out-of-order superscalar processor. We obtain these measurements by compiling the pro-
grams using Vortex [34], an ahead-of-time compiler, and running them on RSIM [84], an
execution driven simulator. Figure 1.1 illustrates that there is significant room for improve-
ment in these Java programs.

Traditional approaches for improving memory performance in array-based applications
use loop transformations, such as tiling and unrolling [64, 73]. Implementing loop trans-
formations in Java compilers is challenging due to the semantics of Java arrays and excep-
tions [9]. Java multidimensional arrays present challenges because the language specifies
them as arrays-of-arrays. As a result, it is not possible to compute the address of any ele-
ment directly. In a true multidimensional array, such as in Fortran, it is possible to compute
the address of any element relative to the start of the array. The Java language specification
requires precise exceptions, which means that all statements appearing before an exception

must complete, and that the result of any statement appearing after an exception cannot

appear to have completed [43]. Optimizations must be careful not to violate this property
so compilers often do not transform code that occurs in exception handlers.

We develop a simple, yet effective method for prefetching array references that con-
tain induction variables in the index expression. An induction variable is incremented or
decremented by the same value during each loop iteration. We detect the induction vari-
ables using an analysis that is able to detect general recurrences, including those involving
linked structures. We formalize the recurrence analysis as a data-flow problem. Prior ap-
proaches are ad hoc, or focus on either arrays or linked structures, but cannot detect both.

We evaluate array prefetching using benchmark programs from the Jama library [46]
and the Java Grande benchmark suite [14]. Our results show that our simple prefetching
implementation is very effective on array-based Java programs on an aggressive out-of-
order processor. Prefetching reduces the execution time by a geometric mean® of 23%, and
the largest reduction is 58%. We see large improvements on several kernels, include matrix
multiplication, LU factorization, SOR, and Cholesky factorization. In SOR, prefetching
eliminates all memory stalls and reduces execution time by 46%. Performance degrades in
one program, FFT, because of a large number of conflict misses caused by a power of 2
data layout and access of a large 1-D array that make prefetching counterproductive.

We augment these results with a case study of matrix multiplication to explore the utility
of additional loop transformations to schedule prefetches more carefully in the spirit of the
previous work by Mowry et al. [79]. We find that prefetching on modern architectures
is less sensitive to precise scheduling via loop transformations, but loop transformations
may provide further improvements in some cases. The additional functional units and out-
of-order execution in modern processors are able to hide the cost of superfluous prefetch

instructions.

1\We use the geometric mean because we compute the mean of normalized execution times.

—— CPU
=== Memory stall

% Execution Time

bh bisort em3d health mst perimeter power treeadd tsp voronoi
Figure 1.2. Memory Penalty in Java Programs Containing Linked Structures

Our technique is much simpler and faster than existing array software prefetching tech-
nigues because it does not require array dependence testing or loop transformations. These
characteristics make it suitable for a just-in-time (JIT) compiler, but we leave that evalua-

tion for future work.

1.2 Prefetching Linked Structures

The memory penalty can also be high for object-oriented programs that frequently tra-
verse linked data structures. Figure 1.2 illustrates the percentage of time spent servic-
ing memory requests in an object-oriented Java implementation of the Olden benchmark
suite [17]. We compile the programs using Vortex, an ahead-of-time compiler. Memory
stalls account for 15% to 95% of the execution time running on RSIM.

Prefetching linked structures is difficult because distinct dynamically allocated objects
are not necessarily contiguous in memory, and the access patterns in memory may be unpre-
dictable or erratic. Given an object o, we know the address of objects that o references, and
we cannot prefetch other objects without following pointer chains. Recent pointer prefetch-
ing work considers C programs only [66, 70, 90, 56, 101]. Object-oriented Java programs
pose additional analysis challenges because they mostly allocate data dynamically, contain

frequent method invocations, and often implement loops with recursion.

Linked structure traversals are similar to induction variables. A statement in each loop
iteration updates an object by the same field expression, e.g.,, 0 = 0. next . A simple ex-
tension to the data-flow analysis for discovering induction variables enables the recurrence
analysis to recognize linked structures also. Thus we can use the same unified analysis to
discover prefetch opportunities in linked structures and arrays.

Our results show that compile-time prefetching is effective on object-oriented programs
that contain linked structures. We find that object-oriented programs often cross procedure
boundaries during linked structure traversals. The recurrence analysis is successful in de-
tecting most traversal patterns in the presence of encapsulation and recursion. Our com-
piler generates prefetch instructions wherever the program traverses a linked structure. We
implement three prefetch techniques: greedy, jump-pointer, and stride prefetching, which
reduce run time by a geometric mean of 5%, 10%, and 9%, respectively. Greedy pre-
fetching inserts prefetches for directly connected objects. Jump-pointer prefetching uses a
compiler-added field to prefetch objects further away in a linked structure. Stride prefetch-
ing inserts a prefetch for n bytes ahead or behind the current object in a linked structure.
The largest reduction is 53%, which occurs with stride prefetching. Even with prefetching,
memory latency is still a problem, so future work should combine other techniques with

prefetching.

1.3 Organization of Dissertation

We organize the remainder of this dissertation as follows. In Chapter 2, we describe
background material and discuss the related work. We present a basic overview of the
memory hierarchy, and several methods for improving memory performance. We also
present the foundations for the static analysis techniques that we use in our compiler. At
the end of the chapter, we discuss the related work in data prefetching separately.

Chapter 3 describes our recurrence analysis. The analysis discovers loop induction

variables and linked structure traversals. We first define our intraprocedural analysis and

then our interprocedural analysis. We present extensions to the basic analysis to handle
assignment of data-flow information to object fields and arrays. We also describe two other
data-flow analyses that improve our prefetching techniques. These analyses compute array
sizes and determine which object fields are shared or unshared.

Chapter 4 presents the prefetch algorithms. We first describe our array prefetching im-
plementation. Our prefetch algorithm does not require loop transformations, or expensive
data dependence analysis. Then, we describe greedy, jump-pointer, and stride prefetch-
ing for linked structures. We show how we use the recurrence analysis to determine what
to prefetch, and show how the different prefetch algorithms determine when to generate
prefetch instructions. Chapter 4 also describes the details of our compiler implementation.

In Chapter 5, we evaluate the prefetch algorithms. We compile Java programs using
\ortex [34], an ahead of time compiler that produces SPARC assembly, with and with-
out prefetching, to compare the performance benefits directly. We run the programs on
RSIM [84], a simulator for an aggressive out-of-order superscalar processor, to obtain de-
tailed performance statistics. We evaluate Java programs from the Olden [17], Jama [46],
and Java Grande [14] benchmark suites.

In Chapter 6, we turn on garbage collection and evaluate the effect of garbage collection
on prefetching. We run experiments using different heap sizes, and discuss the effect of
garbage collection on prefetching. We show that memory performance during the garbage
collection phase is very poor. To improve the performance of the collector, we add prefetch
instructions at different steps during the collection algorithm. We show that prefetching
can help improve the memory performance of garbage collection as well.

Finally, Chapter 7 provides a summary of the contributions in this dissertation. We also

discuss directions for future work.

1.4 Summary of Contributions

We make the following contributions in this dissertation:

1. We develop a new method for detecting recurrences in programs. We detect re-
currences in linked structures and indices of array references. Our approach uses
interprocedural and intraprocedural data-flow analysis. We do not require explicit
definition-use chains or for the program to be in static single assignment (SSA) form.
Our analysis unifies the discovery of recurrences in linked structures and arrays. We
apply the analysis to compiler-generated data prefetching, but we believe that com-

pilers can use the analysis in other domains, such as data layout optimization.

2. We develop a new technique for prefetching arrays. We prefetch arrays that use
induction variables. We do not require array dependence analysis or loop transfor-
mations. We evaluate prefetching on a set of scientific Java programs. Our array
prefetching technique reduces the execution time by more than 15% in 6 of the 12

programs from the Jama library and Java Grande benchmark suite.

3. We implement a new compiler technique for linked-structure prefetching in Java
programs. We implement three prefetching algorithms: greedy prefetching, jump-
pointer prefetching, and stride prefetching. We find that interprocedural analysis
IS necessary to discover many of the important linked structure accesses. Our re-
sults show that jump-pointer prefetching is able to achieve the largest performance
improvements, but may degrade performance if the compiler is not careful when cre-
ating the jump-pointers. Stride prefetching produces results similar to jump-pointer
prefetching, but the results depend on the layout of the linked structures. Greedy
prefetching produces the smallest improvements, but does not increase the execution

time in any of the programs.

4. We evaluate the effect of prefetching on garbage collection. The Vortex run-time
system uses a generational copying garbage collector. The data reorganization that
the collector performs potentially affects the performance of the linked-structure pre-

fetching methods. We quantify the effect using the Olden benchmarks. We also show

that memory performance during garbage collection is consistently poor. We add pre-
fetch instructions to the collection algorithm, and show that prefetching can reduce

the execution time of the collector.

We believe that it is important for compilers to analyze and optimize both arrays and
linked structures in Java programs. We develop a unified whole-program data-flow anal-
ysis for identifying recurrences and inserting prefetches in Java programs. We show that
our data prefetching algorithm is effective in improving the memory performance of Java

programs.

10

CHAPTER 2
BACKGROUND AND RELATED WORK

In this chapter, we provide background material and discuss related work. We organize
the chapter as follows. In Section 2.1, we describe the memory subsystem of many modern
computer architectures. A main focus of this dissertation is to improve performance by
reducing the memory penalty in programs. Section 2.2 discusses existing techniques for
improving memory performance. We describe methods for tolerating latency and program
transformations to utilize the cache more effectively. Our approach uses static analysis to
reason about programs and obtain information to optimize programs. The specific type of
static analysis is data-flow analysis. Section 2.3 describes the foundations of interprocedu-
ral and intraprocedural data-flow analysis. We develop a data-flow analysis that generalizes
the detection of induction variables. We present related work for induction variable analysis
in Section 2.4. Section 2.5 summarizes the compiler infrastructure that we use to imple-
ment and evaluate our optimization techniques. The specific technique we use to improve
memory performance is data prefetching. We discuss the related work for prefetching in

Section 2.6.

2.1 The Memory Hierarchy

Over the last few decades, a substantial amount of research has focused on cache design
and improving their effectiveness [97]. There are several reasons that researchers continue
to investigate new techniques to improve cache effectiveness. The gap between processor

and memory speed continues to grow, so it is increasingly important to develop methods

11

to reduce the impact of the growing gap. We continue to see programs that spend a large
fraction of time waiting for memory.

Modern computer architectures contain deep memory hierarchies to achieve high per-
formance. The memory hierarchies contain multiple levels of cache that maintain recently
accessed data. The ability to keep data in a cache is crucial to achieving high performance.
There is a delicate balance between the cache size and access time. The access time to
the cache at level | is faster than the cache at level | + 1, but the cache size of level | is
smaller than the cache size of level | + 1. As processor speed continues to increase, first
level caches must remain small in order to achieve one or two cycle access times.

Caches improve performance by taking advantage of data locality, which is the property
that programs tend to access the same memory location or nearby locations frequently
within a short time period. The two general classifications of data locality are temporal and
spatial locality. Temporal locality occurs when one or more statements reference the same
data at different times, and spatial locality occurs when one or more statements reference
nearby memory locations.

A cache is divided into fixed sized blocks, called cache lines. The cache lines are
grouped into sets. The number of cache lines in a set specifies the associativity of the
cache. A cache divided into sets of size n is n-way set associative, and when n is 1, the
cache is direct-mapped. A cache line is associated with a specific set, but it may be located
anywhere in the set. Most caches use a least recently used (LRU) policy to determine which
cache line to evict when the set is full.

Hill and Smith categorize a cache miss as compulsory, conflict, or capacity [47]. A
compulsory miss is the first access to a cache line. A capacity miss occurs when the cache
size is too small to hold all the cache lines referenced by a program. With sufficient ca-
pacity, a conflict miss occurs when multiple cache lines are mapped to the same set in the

cache, and the program subsequently references an evicted line.

12

2.2 Improving Memory Performance
There are many techniques for improving memory performance. These techniques can

be categorized as techniques for tolerating cache latency or improving cache utilization.

2.2.1 Tolerating Latency

One method to improve memory performance is to tolerate cache miss latencies. The
goal of latency tolerating techniques is to perform useful work between the time when a
program requests data and the time when the program uses the data. In a very simple in-
order processor, the request and use occur at the same time, and the processor stalls until
the memory subsystem transfers the data from memory to a register. Modern processors
are able to separate the tasks of requesting and using data. The difficulty is finding enough
work to perform between the request and use.

We discuss three techniques for tolerating cache latency. These include prefetching, the

focus of this dissertation, multithreading, and out-of-order execution.

2.2.1.1 Prefetching

Most high performance architectures contain several simple hardware mechanisms for
hiding memory hierarchy access costs. Early cache designs allowed only a single outstand-
ing memory access to occur. Thus, all memory accesses stalled the processor until com-
pleted. Kroft introduced lockup-free caches [62] to enable multiple concurrent memory
accesses. Lockup-free caches permit non-blocking loads that do not stall the processor un-
til a future instruction references the data. Lockup-free caches require a mechanism, such
as miss status handling registers (MSHRs), to maintain information about pending loads.
A processor limits the number of allowable pending loads, and stalls when the maximum
number of loads are outstanding.

Prefetching is a hardware or software technique for tolerating cache latency by provid-
ing a mechanism to separate the request and use of data explicitly. A software approach

explicitly inserts prefetch instructions into the instruction stream to perform data prefetch-

13

ing. In a hardware approach, the processor contains a mechanism to automatically prefetch
data without the use of extra instructions.

A prefetch initiates a transfer of data in the memory hierarchy prior to the demand re-
quest. A prefetch instruction is similar to a non-blocking load. The main difference is that a
prefetch instruction typically does not cause an exception if the address is invalid. Another
difference is that a prefetch instruction does not load the data into a register. Instead, the
prefetch moves data closer to the processor in the memory hierarchy.

A simple form of hardware prefetching is long cache lines. If an object is smaller than a
cache line, then adjacent objects are also brought into the cache when a miss occurs. Long
cache lines often improve the performance of programs that have spatial locality. Long
cache lines are not always effective because not all programs exhibit spatial locality. The
main disadvantage of long cache lines is the increase demand for available bandwidth to
memory. In a multiprocessor, long cache lines increase false sharing, which occurs when
two processors require separate objects that reside on the same cache line. We discuss more
complex prefetch methods in Section 2.6.

An effective prefetch method must determine what to prefetch and when to issue the
prefetch. We evaluate prefetching effectiveness by categorizing dynamic prefetches as fol-

lows:

The data in a useful prefetch arrives on time and is accessed by the program.

The latency of a late prefetch is only partially hidden because a request for the cache

line occurs while the memory system is still retrieving the cache line.

The cache replaces an early prefetch before the cache line is used. If the cache line

IS never accessed, the prefetch is early.

An unnecessary prefetch hits in the L1 cache, or is coalesced into an MSHR.

14

2.2.1.2 Multithreading

Multithreading is a technique for tolerating latency by switching contexts to a pending
thread when the processor stalls [98, 2, 107]. To improve memory performance, a processor
switches to a thread that can execute instructions when a memory stall occurs in the current
thread. One advantage of multithreading over prefetching is that it is not necessary to
determine what to prefetch and when to issue the request. A multithreaded architecture
simply switches to another context whenever a cache miss occurs. The main disadvantage
is that the program must contain enough parallelism so that when a cache miss occurs,
another context is able to execute. Another disadvantage is that hardware implementations
require complex architectural changes to support multiple contexts, which places additional
pressure on hardware resources.

Recently, several researchers have investigated methods to use additional threads in a
multithreaded system to prefetch data [36, 91, 28, 69, 99]. These methods implement new
hardware, and some also use software support, to create separate threads that speculatively
run ahead of the main thread and prefetch data. The existing methods use different tech-

niques for deciding when to create and how to manage the speculative threads.

2.2.1.3 Out-of-order Execution

Out-of-order (OOO0) execution is a hardware technique for tolerating a small amount
of memory latency. A processor with out-of-order execution is able to execute instructions
when the operands become available rather than in the order that the program specifies.
Out-of-order processors exploit instruction level parallelism by allowing other instructions
to execute when an instruction stalls in the processor waiting for a resource. Out-of-order
processors use a fixed-size instruction window from which instructions may be executed.
In order to preserve program semantics, the processor retires the instructions in-order.
The amount of latency that an out-of-order processor is able to tolerate depends upon the

amount of instruction level parallelism (ILP) and the size of the instruction window. Most

15

high performance commercial processors support out-of-order execution including the Al-

pha 21264 [57], MIPS R10000 [121], and Intel Pentium [48].

2.2.2 Program Transformations

Developing code and data transformations to improve cache utilization is a very active
area of research. Code transformations attempt to reorder the program instructions to utilize
the data in the caches more effectively. Data transformations reorganize data layouts to
increase reuse. These techniques attempt to improve the cache effectiveness by reusing
data that is in the cache already. In contrast, data prefetching attempts to tolerate cache
latency by moving data into the cache speculatively. The techniques we describe below
often complement data prefetching.

A typical code transformation restructures the computation in a loop to improve the
spatial or temporal locality of the program, moving reuse of the same or adjacent locations
closer together in time [1, 64, 73]. Loop tiling is a classic locality optimization that works
by transforming a loop nest so that array accesses reuse smaller blocks of data that fit into
the cache. Compilers typically employ advanced static analysis techniques to determine
when and how to perform a transformation. The static techniques perform data dependence
analysis to determine the access patterns in programs [63]. The static analysis needs to
determine when the transformation is legal. If the compiler is unable to determine the
legality then it cannot perform the optimization. An advantage of data prefetching is that
compilers can be more aggressive in determining opportunities because legality is not a
requirement.

Data transformations attempt to co-locate data to improve spatial locality. Data trans-
formations are often performed at run time or require profiling information to reorganize
data. Calder, Krintz, John, and Austin present and evaluate an approach for cache conscious
data placement [15]. They reduce cache conflicts by using profiling information to relo-

cate objects. Chilimbi and Larus rearrange data at garbage collection time to improve data

16

locality in object-oriented programs [27]. Chilimbi, Hill, and Larus perform object reorder-
ing at allocation time to improve cache locality in C programs [25]. Chilimbi, Davidson,
and Larus evaluate structure splitting and field reorganization to improve cache perfor-
mance [24]. Truong, Bodin, and Seznec use program profiling to evaluate two data layout
techniques, field reorganization and instance interleaving, to improve the cache behavior
of dynamically allocated data in C programs [105]. Since they apply these transformations
by hand, Truong also describes plans for automating the data layout techniques based upon
profile information [104]. Kistler and Franz evaluate a profile-based optimization that re-
orders members in objects to improve spatial locality [59]. Franz and Kistler also propose
physically splitting frequently and infrequently accessed members of objects to improve
cache performance [38].

Other data transformations apply specifically to heap allocated data in a garbage col-
lected environment. Moon describes a mostly depth-first copying garbage collection al-
gorithm to improve the page locality of Lisp programs [75]. Stamos evaluates five static
grouping garbage collection algorithms to improve the locality of objects [100]. Courts pro-
poses a dynamic garbage collection algorithm for improving locality [30]. Wilson, Lam,
and Moher propose and evaluate different static copying algorithms to improve locality in
garbage collected systems [111]. They introduce hierarchical decomposition that combines
breadth-first and depth-first traversals in a copying algorithm. The algorithm is similar to
Moon’s, but does not rescan any locations. Wilson, Lam, and Moher also empirically ex-
amine the cache performance of generational garbage collection [112]. Their results show
that miss rates in garbage collected systems are not very high. Reinhold empirically exam-
ines the cache performance of garbage collected programs, and looks at both the mutator
and the collector [88]. Boehm experiments with adding prefetching to a non-moving, mark-
sweep garbage collector [12]. Boehm prefetches objects during the mark phase. Boehm
shows that prefetching improves performance on a set of microbenchmarks running on a

Pentium Il and HP PA-RISC machine.

17

In this section, we describe many methods for improving memory performance. In
this dissertation, we focus on software data prefetching to tolerate memory latency. Our
approach is applicable to a wide range of programming styles, and does not require complex
hardware mechanisms. We also do not require advanced code or data transformations.
Compilers must be conservative when applying code or data transformations to ensure
program correctness. Although software prefetching does require compiler support, the
prefetch instructions do not affect the correctness of programs. We use data-flow analysis
to discover prefetch opportunities. In the following section, we describe the foundations of

data-flow analysis.

2.3 Data-Flow Analysis

A data-flow framework provides a generic mechanism for specifying a program analy-
sis [58, 55]. Data-flow analysis is a pervasive program analysis technique in many compil-
ers. In this section, we discuss the fundamentals behind data-flow analysis. We separately
define data-flow analysis for use within a procedure and for a whole program. Nielson et

al. present an excellent discussion of intraprocedural and interprocedural analysis [80].

2.3.1 Intraprocedural Data-Flow Analysis

In this section, we describe the basics behind intraprocedural data-flow analysis. An
intraprocedural data-flow analysis operates on a single procedure and makes conservative
assumptions about procedure calls and returns.

A monotone data-flow analysis framework consists of the following:

e Acomplete lattice, (L,C,L,M, L, T). L isasetthat defines the elements in the lattice.
The C function defines a partial ordering of the elements in L. Thus C is reflexive,
transitive, and anti-symmetric. For any X C L, UX denotes the least upper bound of
X. Formally, VI € L,LUX C | if and only if X C I. The greatest lower bound, rX, is

defined by replacing C with J. The LI and 1 functions are known as the join and meet

18

operations, respectively. The join and meet functions are idempotent, commutative,
and associative. The elements L and T are known as bottom and top, respectively.

Thus L =0 =nL,and T =10 = LIL.

e A set F of monotone transfer functions over L. A function f : L — L’ is monotonic if
x Cy implies f(x) C f(y). F is closed under composition, and contains the identity
function. There is a function f for each statement in a procedure. Intuitively, f
computes the data-flow information that captures the semantics from executing part

of a program.

Solving an analysis problem using a data-flow framework requires a flow graph and
a function that maps each node in the flow graph to a function in F. A flow graph is a
representation of the control flow of a procedure. Formally, G = (N, E,no) is a flow graph
where N is the set of nodes that represent the statements in a procedure, E is the set of
edges that represent possible control flow, and ng is the start node of the procedure. The set
of edges is a subset of N x N. An edge (nj,n;) indicates that control flow may leave node
n; and enter n;.

We denote the function in F associated with node n € N by f,. The data-flow instance

yields the following equations for an analysis:

Analysisp(nj) = || Analysisyy(m) (2.1)
(ni,nj)€E
Analysisg;(nj) = fq, (Analysisiy(nj)) (2.2)

Equations 2.1 and 2.2 define a forward analysis. Equation 2.1 represents the data-flow
information upon entering a statement in the procedure, and Equation 2.2 represents the
data-flow information when exiting a statement. A backward analysis begins with the exit

node and processes the statements in reverse order. To define a backward analysis, we

19

change Equation 2.1 so that (nj,n;) € E. We also need to swap the meaning of out and in
so that Equation 2.2 represents the data-flow information upon entering a statement, and
Equation 2.2 represents the data-flow information when exiting.

An analysis may be flow-sensitive or flow-insensitive. In a flow-sensitive analysis, the
order of statements in the procedure matter. A flow-insensitive analysis ignores control
flow within a procedure. In general, a flow-sensitive analysis is more accurate, but usually

takes longer to perform.

2.3.2 Interprocedural Data-Flow Analysis

An interprocedural data-flow analysis takes procedure calls and returns into account
during the analysis. The interprocedural analysis extends the definition of an intraproce-
dural flow graph G to include procedure calls and returns. The interprocedural flow graph
contains a node for each procedure in a program. An edge connects two nodes if there is
a calling relationship between the procedures. Formally, IPG = (N’,S,E’,mg) where N’ is
the set of procedures in a program, S is the set of call site labels, E’ is a set of labeled edges
representing procedure calls, and mq is the main procedure. The set of edges is a subset of
N’ x S x N’. The call site label is necessary to distinguish between multiple calls from one
procedure to the same target procedure.

An interprocedural analysis operates on the IPG and uses Equations 2.1 and 2.2. In
addition, the interprocedural analysis contains two transfer functions for each call. One
transfer function is for the call, f;, and the other is for the return, f,. The callee also
contains two transfer functions: one for the start of the procedure, fs, and one for the end
of the procedure, fe.

At a procedure call, the transfer function f; creates a new context and the initial data-
flow information for analyzing the callee. Upon return, the transfer function f; restores the

caller’s data-flow information and adds new information from the callee for the return.

20

An interprocedural analysis may be context-sensitive or context-insensitive. In a con-
text-insensitive analysis, the data-flow information for a procedure is a combination of the
information from all call sites. The framework analyzes each procedure only once using
the combined information. In a context-sensitive analysis, the framework analyzes target
procedures in each distinct calling context.

At a call site with multiple potential callees, e.g., due to a virtual method call, the
interprocedural framework applies the join operator to the results of the analysis for each

possible callee.

2.4 Induction Variable Analysis

In this section, we describe induction variable analysis, and we survey the related work.
We develop a general recurrence detection analysis in this dissertation that subsumes in-
duction variable analysis.

An induction variable is incremented or decremented by the same value during each
loop iteration. An example of an induction variable is the expressioni = i + ¢ oc-
curring in a loop. During each iteration of the loop, the variable i is incremented by a
loop invariant value, c. Traditional algorithms for finding induction variables are either
loop-based [4] or use static single assignment (SSA) form [31].

The original use for induction variable detection was operator strength reduction [67, 4].
The initial algorithms typically require the compiler to compute reaching definitions and
loop invariant expressions. The algorithms are conservative and find simple linear induc-
tion variables. The PTRAN compiler uses an optimistic approach, and assumes variables in
loops are induction variables until proven otherwise [6]. Gerlek, Stoltz, and Wolfe present
a demand driven SSA approach for detecting general induction variables by identifying
strongly connected components in the SSA graph [40]. Gerlek et al. present a lattice for
classifying different types of induction variables. They detect a wide range of induction

variables including linear, polynomial, exponential, periodic, and wrap-around. Haghighat

21

and Polychronopoulos also categorize different types of induction variables for use in par-
allelizing compilers [44]. Ammarguellat and Harrison describe an abstract interpretation
technique for detecting general recurrence relations, which includes induction variables [8].
The approach requires a set of patterns, which they call templates, that describe the recur-
rences.

Wu, Cohen, and Padua describe a data-flow analysis for discovering loop induction
variables [114, 115]. The analysis computes whether a variable increases or decreases
along a given execution path, and the minimum and maximum change in value. The authors
compute closed form expressions from the distance intervals to perform array dependence
testing. Wu et al.’s induction analysis does not compute information about linked structures.
We present a different data-flow analysis for identifying induction variables, and we use the
analysis to discover both induction variables and linked structure traversals. We also use

the analysis for prefetching rather than array dependence testing.

2.5 Vortex: A Compiler Infrastructure

This dissertation describes several new compiler analyses and optimizations, and pre-
sents empirical results. We implement and evaluate these new techniques in Vortex, an
existing compiler infrastructure. Vortex is an optimizing compiler for object-oriented lan-
guages developed at the University of Washington [34]. We briefly describe Vortex in this
section. In Section 4.5, we describe Vortex in more detail, and we discuss our extensions
to support prefetching.

\ortex supports several object-oriented languages including Cecil, Java, C++, Modula-
3, and Smalltalk. The compiler itself is written in Cecil. The implementation work in this

dissertation uses the Java front-end. At a high level, Vortex performs the following steps:

1. Convert object-oriented program to an intermediate representation.

22

2. Perform interprocedural optimization on the complete program. This step is optional

and performed only when the user specifies an interprocedural optimization.

3. Perform intraprocedural optimization. The backbone of the Vortex compiler is a

flexible data-flow analysis framework.

4. Generate SPARC assembly code.

\ortex does not operate directly on Java source files. Instead, Vortex converts Java class
files (byte codes) to a high-level internal representation. The intermediate language repre-
sents high-level object-oriented features. Vortex performs all analysis and optimization on
the intermediate representation of the program. Vortex represents the control flow and in-
dividual statements as a graph. The nodes in the graph represent operations, and the arcs
between the nodes indicate either data or control flow. During the compilation process,
Vortex performs several conversions on the intermediate language to convert high-level op-
erations to low-level operations. After each conversion, Vortex applies different analyses
and optimizations. The output of the compiler is either C or assembly language.

The high-level form closely matches the original program structure. For example, Vor-
tex contains high-level operators for object creation and method calls. The low-level form
more closely matches the machine level. The low level no longer represents the object-
oriented features. Instead, the graph nodes in the low-level representation are almost a
one-to-one match with the assembly instructions.

A central part of the Vortex optimization infrastructure is a general iterative data-flow
analysis framework [18, 65]. The framework is parameterized by the properties that we
describe in Section 2.3. An important feature of the analysis framework is the ability to
compose, or combine, several analyses so that they run together. Each analysis is able to
query the results of another analysis when running. Running multiple analyses at the same

time potentially improves precision by eliminating phase ordering problems. This feature

23

also improves code reuse by making it easy to incorporate the results of other analyses into

a new analysis, and reduces compilation time.

2.6 Prefetching: Related Work

In this section, we survey existing data prefetching research with a focus on compiler
support. We also refer the reader to a thorough survey of data prefetching techniques for
scientific programs by VanderWiel and Lilja [110]. The article presents an overview of
existing techniques for software data prefetching, hardware data prefetching, combinations
of software and hardware prefetching, and prefetching for multiprocessors.

Sections 2.6.1 and 2.6.2 present related work for array-based software and hardware
prefetching, respectively. For completeness, we briefly describe prefetching in multipro-
cessors in Section 2.6.3, although we do not investigate prefetching for multiprocessors.

In Section 2.6.4, we describe Luk and Mowry’s prefetching algorithms for linked data
structures. Since this work most closely relates to ours, we describe it separately. We
discuss other software and hardware approaches for prefetching linked structures in Sec-

tion 2.6.5.

2.6.1 Array Prefetching in Software

In this section, we describe previous research that uses software approaches for pre-
fetching arrays. Much of the research in data prefetching has focused on data prefetching
for array-based scientific programs. The array prefetching techniques generate prefetch
instructions for array references that will likely occur in future loop iterations.

Callahan, Kennedy, and Porterfield present one of the first descriptions and evaluations
of software prefetching [16]. They use a very simple algorithm to add non-blocking pre-
fetch instructions to twelve array-based Fortran programs. The algorithm prefetches array
references one loop iteration before they are needed. The results show that prefetching

improves miss rates, but the overhead of the prefetch instructions may be too large to im-

24

prove execution times. The authors suggest a few changes to reduce the overheads to make
prefetching profitable.

Klaiber and Levy describe an algorithm for software controlled data prefetching that
holds the prefetched data in a separate fully-associative buffer instead of the cache [60].
The algorithm works by inserting a prefetch for an array element one or more iterations
before the actual load of the datum. Results show that prefetching improves performance
on the Livermore Loops benchmarks using average time per memory reference as the met-
ric. The algorithm is most effective on array-based scientific codes, but it also slightly
improves performance on two non-numeric programs. Klaiber and Levy also indicate that
their algorithm causes little or no increase in bandwidth utilization.

Chen, Mahlke, Chang, and Hwu compare the performance of software prefetching into
the cache verses a special prefetch buffer [22]. They do not specifically target either regular
or irregular access patterns. Instead their algorithm adds prefetches for as many data loads
as possible when they are able to completely hide the memory latency. Their simulation
results on a superscalar processor suggests that a prefetch buffer is more effective than a
larger cache. One drawback of the research is that Chen et al. use very small (1K or 2K)
caches in their evaluation.

Yamada, Gyllenhaal, Haab, and Hwu combine data relocation and block prefetching
to improve data cache performance [118]. The hardware support consists of five special
instructions to perform data relocation and prefetching. They use a compiler to transform
loop nests in scientific programs and add the special instructions. The non-blocking in-
structions compress and preload arrays into sequential cache locations. The compiler also
uses standard cache improvement techniques such as loop unrolling and tiling. Simulation
results show improvements in cache utilization and execution speed.

Mowry, Lam, and Gupta describe and evaluate compiler techniques for adding prefetch-
ing to array-based codes [79, 78]. This paper is one of the first that reports execution times

for compiler inserted prefetching. The algorithm works on affine array accesses within

25

scientific codes. The algorithm significantly improves performance by as much as a factor
of 2. They also show that their algorithm is better than indiscriminate prefetching. The
algorithm involves two steps. First the algorithm performs locality analysis to determine
array accesses that are likely to miss in the cache. Then, the algorithm uses loop split-
ting to isolate predicated cache misses, and uses software pipelining to schedule prefetch
instructions.

In his dissertation, Selvidge presents profile-guided software data prefetching as a
scheduling algorithm [94]. A compiler, called c-flat (Compiler For LAtency Tolerance),
uses profile information to identify regular and irregular data reference streams. In Sec-
tion 2.6.5, we discuss Selvidge’s work in the context of prefetching linked data structures.
C-flat also works on array-based codes, including indirection arrays. Most of the benefits
that Selvidge reports are due to prefetching array elements.

Mclntosh extends Mowry’s work by focusing on the compiler support necessary for
software prefetching [72]. He develops several new compiler techniques to eliminate use-
less prefetches and to improve prefetch scheduling for array-based codes. Mclntosh de-
velops a new technique for detecting cross-loop reuse that provides useful information for
improving software prefetching. Cross-loop reuse summarizes data accesses that occur
between loop nests as opposed to within a single loop nest, i.e., intra-loop reuse.

Two reports evaluate software prefetching on commercial processors using the HP PA-
8000 and the PowerPC. Santhanam, Gornish, and Hsu evaluate software prefetching on
the HP PA-8000, a 4-way superscalar processor [93]. The prefetch algorithm concentrates
on array references occurring within the innermost loops. Santhanam et al. discuss imple-
mentation details and present results showing a 26% speedup on the SPECfp95 benchmark
suite. Bernstein, Cohen, Freund, and Maydan describe a compiler implementation for data
prefetching on the PowerPC architecture [11]. Bernstein et al. follow Mowry’s approach

but the only transformation they apply is loop unrolling. Bernstein et al. provide actual

26

execution times for the SPECfp92 benchmarks and Nasa7 kernels. Improvements occur on

only three of the fourteen SPECfp92 programs and six of the seven Nasa7 kernels.

We propose an array prefetch algorithm that is easy to implement and is effective on
array-based Java programs. Our algorithm does not require array locality analysis or loop
transformations, which prior techniques use. None of the prior methods focus on Java,

which implements multidimensional arrays as arrays-of-arrays.

2.6.2 Array Prefetching in Hardware

Hardware prefetching schemes add prefetching functionality without explicit program-
mer or compiler assistance. The main benefit of hardware schemes is the ability to run ex-
isting program binaries, which enables prefetching without recompiling the program. Most
hardware mechanisms prefetch only array reference streams. Several of the techniques we
describe below require some software support to attain performance improvements.

Smith investigates a simple cache prefetching algorithm called one block lookahead[96,
97]. When a program references cache line i, the one block lookahead scheme fetches the
next cache line, i + 1. Smith shows that one block lookahead is successful in lowering miss
rates.

Jouppi proposes and evaluates stream buffers as a mechanism to prefetch data into a
separate area from the cache [54]. When a reference misses in the cache, the processor first
checks the stream buffer. The stream buffer is a simple FIFO queue; when the processor
removes an item from the head of the queue, the stream buffer fetches a new successive
address. Palacharla and Kessler extend stream buffers and present a more detailed evalu-
ation [85]. The extensions include a filter to reduce the bandwidth requirements and the
ability to prefetch non-unit strides. They conclude that stream buffers work well on regular,
scientific codes but not as well on irregular codes.

Baer and Chen propose a purely hardware prefetching scheme for scientific programs[10,

19]. The scheme predicts the execution stream and preloads references with arbitrary con-

27

stant strides. The hardware mechanism includes a reference prediction table (RPT) and
a look-ahead program counter (LA-PC). The RPT maintains state about load and store in-
structions such as the previous address encountered and the stride value. If an entry appears
in the RPT when the LA-PC encounters a load or store, then the hardware predicts the next
address to be loaded based upon the previous address and stride value. The mechanism
works only for loads and stores with regular accesses. Experiments show reductions in the
number of cycles per instruction (CPI) for scientific programs.

Baer and Chen compare the effectiveness of their hardware mechanism to a non-block-
ing cache [21]. They find that prefetching outperforms a non-blocking cache, in general.
They also propose a hybrid scheme that uses a non-blocking cache and hardware pre-
fetching that results in further performance improvements. Chen and Baer conclude that
a good optimizer and scheduler are necessary to obtain good results for a non-blocking
cache. In later work, Chen briefly describes a user programmable prefetch controller called
Hare [20]. The prefetch engine program signals the processor to begin prefetching. Chen
discusses compiler support for the prefetch engine, including locality analysis to identify
arrays to prefetch. An evaluation on four programs shows memory access time improve-
ments.

VanderWiel and Lilja develop a decoupled prefetching mechanism consisting of an ex-
ternal data prefetch controller (DPC) that uses a small program to control prefetching [109].
At run time, the processor and DPC work separately yet cooperate to perform prefetching.
A compiler creates the prefetch program while compiling the original program. The com-
piler annotates the compiled program to activate the DPC at appropriate points. VanderWiel
and Lilja compare the DPC to Chen and Baer’s RPT prefetching mechanism and software
prefetching [10]. They show execution time improvements over both these schemes on
scientific programs.

Lin, Reinhardt, and Burger propose and evaluate a hardware prefetch mechanism that

prefetches blocks of data nearby recent misses [37]. The technique does not focus on arrays

28

explicitly, but does take advantage of programs with spatial locality. The goal of the work
is to improve the effectiveness of the L2 cache without degrading performance in programs
that are bandwidth intensive. The hardware prefetch engine prefetches data into the L2
cache only when there are idle cycles on the memory channel. The prefetched data has a
low replacement priority in the cache. Results show that the hardware prefetch mechanism

improves the performance significantly in 10 of the 26 SPEC benchmarks.

Hardware prefetching methods require complex additional hardware. There is a large
variation in functionality among the architectures that contain hardware prefetch mech-
anisms. Some architectures prefetch into the 1st level cache (e.g., the POWER4 [103]),
some prefetch into the 2nd level cache (e.g., the Pentium 4 [51]), others prefetch into a
special buffer (e.g., the UltraSPARC I11 [102]), and some prefetch floating point data only
(e.g., UltraSPARC I1I). A software prefetch mechanism requires less complexity. Also,
software prefetching increases flexibility by allowing the compiler to determine what and

when to prefetch.

2.6.3 Array Prefetching on Multiprocessors

Although we do not evaluate prefetching schemes on multiprocessors, several research-
ers have investigated prefetching of array-based codes on multiprocessors.

Fu and Patel evaluate two hardware prefetching schemes on a vector multiprocessor
system [39]. Mowry and Gupta evaluate software prefetching for array-based programs on
shared-memory multiprocessors [77, 78]. Gornish, Granston, and Veidenbaum implement
prefetching for shared-memory multiprocessors [42]. Dahlgren, Dubois, and Stenstrom
evaluate sequential hardware prefetching and stride prefetching on a shared-memory mul-
tiprocessor [32, 33]. In his thesis, Gornish compares software and hardware prefetching,
and presents an integrated prefetching scheme for multiprocessors [41]. Zhang and Torrel-
las describe techniques for prefetching pointer-based programs on multiprocessors using a

scheme that is similar to greedy prefetching [123]. Tullsen and Eggers evaluate compiler

29

assisted software prefetching on shared-memory multiprocessors [106]. Ranganathan, Pai,
Abdel-Shafi, and Adve examine the effectiveness of software prefetching for scientific pro-

grams on a shared-memory multiprocessor built with modern ILP processors [87].

2.6.4 Prefetching Linked Structures: Luk and Mowry

Luk and Mowry develop three prefetching schemes for recursive data structures (RDS)
[68, 70, 71]. These include greedy prefetching, history-pointer prefetching, and data-
linearization. In the initial work, Luk and Mowry have a compiler implementation for
greedy prefetching only. But, in his dissertation, Luk implements and evaluates all three
techniques [68]. They use the Olden benchmarks to evaluate and compare the performance
of prefetching RDSs [17]. Their experiments show that greedy prefetching can increase
performance by as much as 45%. Results also show that greedy prefetching always per-
forms as well or better than SPAID, another non-numeric prefetch technique that we discuss
below. Luk and Mowry use a very simple alias analysis and very little locality analysis to
determine what and when to prefetch. They also show that improving the locality analysis
also improves performance.

The prefetching algorithm uses type declarations to discover recursive linked data struc-
tures and control flow to recognize linked structure traversals. They define a recursive data
structure (RDS) as a record type containing at least one reference that points either di-
rectly or indirectly to itself. The compiler looks at loops and recursive procedure calls to
determine where programs access RDSs. The compiler inserts the appropriate prefetch in-
struction when traversing the RDS depending on the prefetch algorithm. For jump-pointer
prefetching, the default is to update the jump-pointer during traversals. The compiler relies
on the user to identify memory allocation sites to add jump-pointers at the allocation point.

Our contributions over this previous work include a new intra and interprocedural data-
flow analysis for discovering objects to prefetch, and an evaluation on a suite of Java

programs. Luk and Mowry do not perform interprocedural analysis, but they do detect

30

self-recursive calls. Our analysis works in the presence of virtual method calls, and when
data-flow facts are assigned to object fields and arrays. We also detect indirect recurrent
reference variables. We developed our implementation of jump-pointer prefetching simul-
taneously with Luk. We also develop a recurrence analysis that is able to detect both linked
structure and array traversals. We use the same analysis to drive the prefetch algorithms for

arrays and linked structures.

2.6.5 Other Linked-Structure Prefetching Techniques

In this section, we describe existing techniques for software and hardware prefetching
of pointer-based programs. Some of the techniques also apply to prefetching irregular array
accesses.

Harrison and Mehrotra add an indirect reference buffer (IRB) to the cache to perform
hardware prefetching on programs with pointers and indirect array references [45, 74]. The
IRB is able to prefetch regular array references as well. The IRB consists of a recurrence
recognition unit and a prefetch unit that cooperate to detect recurrent address sequences
and generate prefetches based upon the reference stream pattern. For linked list traversals,
the IRB is a hardware implementation of a greedy prefetching algorithm that prefetches
the next element in a linked structure. Most of the loads involved in recurrent address
sequences exhibit either linear patterns or a combination of linear and indirect patterns.
Although they show improvements when using an idealized model (infinite IRB and zero
latency prefetch), they do not see improvements when using a realistic model because their
benchmarks already exhibit good cache performance.

SPAID (speculatively prefetching anticipated interprocedural dereferences) is a com-
pile-time algorithm for prefetching data pointer arguments to function calls [66]. Using a
simple heuristic to prefetch function arguments, they show cache miss improvements, but
not execution time results. They use small C and C++ benchmarks and a statistical cache

model instead of a cycle-by-cycle simulation. Results show that SPAID achieves the best

31

results when prefetching one argument at a call. Unfortunately, this approach is limited by
the amount of latency it is able to tolerate. Luk and Mowry show that greedy prefetching
is a more effective algorithm.

Joseph and Grunwald use a Markov predictor hardware mechanism to prefetch data
into a special buffer [53]. The Markov predictor records the cache miss address stream at
run time using a probabilistic transition table. Upon a cache miss, the prefetch mechanism
looks up the address in the table to prefetch a value with a high probability of also missing.
Joseph and Grunwald evaluate the effectiveness of Markov prefetching using commercial
workloads that mostly contain unstructured references (i.e., non-scientific programs). They
also compare Markov prefetching to stream buffers (e.g., [54]) and stride prefetching (e.g.,
[21]). The Markov prefetcher generates the greatest number of useful prefetches, but also
increases the bandwidth consumed more than the other methods. As with most hardware
prefetching mechanisms, the Markov prefetcher requires a training period before it can
issue prefetches. Another drawback of the Markov prefetcher is the amount of memory
that is necessary to store the table. The Markov predictor uses 1 MB for the predication
table in the experiments.

Roth and Sohi introduce a hardware mechanism called dependence-based prefetching
for prefetching linked data structures [89]. The hardware mechanism recognizes recurrent
pointer accesses by identifying producer-consumer instruction pairs. Hardware mecha-
nisms identify loads that produce addresses and instructions that consume those addresses.
The hardware uses the producer-consumer information to issue prefetch requests. The
dependence-based prefetch mechanism achieves speedups of up to 25% using the Olden
benchmarks although most improvements are much smaller. Although the approach suc-
cessfully predicts linked structure traversals, it requires several complex hardware mecha-
nisms. Dependence-based prefetching is able to prefetch a wider variety of linked struc-

tures than mechanisms such as the IRB.

32

In later work, Roth and Sohi discuss jump-pointer prefetching for tolerating memory
latencies for linked data structures [90]. Roth and Sohi present four schemes for jump-
pointer prefetching that can be implemented in software, hardware, or a combination of
the two. The schemes are queue, full, chain, and root jumping. They use the four different
versions for specific data structure instances. Queue jumping is applicable on simple linked
structures that contain nodes of the same type. In full jumping, each node may contain
multiple jump-pointers, which prefetch nodes of different types. Full jumping is useful on
generic data structures in which each node contains a pointer to another node of a different
type. Roth and Sohi use the term “backbone and ribs” to refer to this type of structure.
Chain jumping achieves the benefits of full jumping, but it uses only a single jump-pointer.
At the beginning of a loop, the hardware prefetches the backbone node using the jump-
pointer and, at the end of the loop, the hardware prefetches the rib node using the natural
pointer. Finally, root jumping uses the existing pointers for prefetching, but attempts to
prefetch the next element in the linked structure during each loop iteration. Roth and Sohi
run experiments evaluating their jump-pointer prefetching schemes using the entire Olden
benchmark suite. They implement the software schemes by hand.

Rubin, Bernstein, and Rodeh combine data reorganization and prefetching of recur-
sive data structures [92]. They create virtual cache lines (VCLSs) that group dynamically
allocated objects with spatial locality. The design of VCLs supports efficient insertion
and deletion operations by allocating a small amount of extra space on each VCL. The
amount of extra space may be parameterized to improve performance. Experiments show
that VCLs improve performance when repeatedly searching linked lists. Using VCLs also
improves performance in programs with insertion and deletion operations. Rubin et al. also
apply Luk and Mowry’s greedy prefetching algorithm to VCLs and run experiments on
the PowerPC 604e. Rather than prefetching individual elements in a linked list, Rubin et
al. prefetch VCL elements. The size of each VCL depends upon the cache line size and

the number of allowable outstanding prefetches. Results show that prefetching VCLs is

33

better than prefetching individual elements when the amount of work performed on each
element is very small. It is difficult to assess the full benefit of VCLs because they perform
experiments on a single toy example that involves repeated scans of a linked list.

Karlsson, Dahlgren, and Stenstrom describe a technique called prefetch arrays for pre-
fetching linked data structures [56]. Their focus is on prefetching short linked data struc-
ture, such as lists in hash tables or trees when the traversal path is unknown. The technique
works by creating an array of jump-pointers that are prefetched during each iteration or just
prior to a loop. They present a software solution only, and a combined software and hard-
ware solution. The authors identify prefetching opportunities and add prefetch instructions
to programs by hand. Karlsson et al. present results using the Olden benchmarks on a sin-
gle issue, in-order processor. The techniques they describe appear to be heavily dependent
upon specific programming idioms and are difficult to apply automatically.

Selvidge discusses prefetching linked lists as well as arrays in his dissertation [94].
Selvidge uses profiling information to discover prefetching opportunities and uses the in-
formation in a compiler to insert prefetch instructions during the scheduling phase. The
algorithm works by matching specific patterns in the strongly connected components of a
data-flow graph. For example, the compiler contains a pattern for matching specific simple
linked list traversals. Selvidge’s prefetching technique uses multiple prefetch instructions
during each iteration to prefetch the next element in the linked list. None of the benchmarks
contain enough linked list traversals to show any benefit from prefetching.

Ozawa, Kimura, and Nishizaki discuss a technique for preloading in non-numeric pro-
grams [81]. Preloading is a form of prefetching where data is loaded into a register instead
of the cache. Preloading attempts to place data in a register far enough in advance to hide
the latency of a cache miss. Ozawa et al. classify load instructions into two categories:
list access and stride access that correspond to traversing a linked list and an array, re-
spectively. The authors propose several effective scheduling heuristics that move loads of

list/stride accesses across basic blocks to increase the distance between a load and a use.

34

The preloading heuristic slightly increases code size and the number of spilled registers,
but they show execution time improvements in most of the SPEC92 benchmarks.

Kohout, Choi, Kim, and Yeung propose and evaluate a programmable prefetch engine
for prefetching linked structures [61]. The technique prefetches a single linked list se-
quentially, but attempts to prefetch multiple lists simultaneously. For this technique to be
effective, the compiler or programmer must identify independent linked structures. The
programmable prefetch engines uses the compiler or programmer information to issue pre-
fetches. Kohout et al. evaluate their prefetch technique on the Olden benchmarks and sev-
eral of the SPEC CPU2000 benchmarks, and show significant improvements. They also
compare their results to jump-pointer prefetching and prefetch arrays.

Stoutchinin et al. develop and evaluate a new algorithm for prefetching linked structures
based upon the idea of induction pointers [101]. They identify linked structure traversals
in a loop through pointer load instructions that are updated by a constant offset in each
iteration. The prefetch algorithm generates prefetches only when sufficient bandwidth is
available. The technique relies on the run-time system to allocate objects a constant dis-
tance apart. They implement the prefetch algorithm in the SGI MIPSpro compiler, and
evaluate the effectiveness using SPEC CINT95 and SPEC CPU2000 benchmarks on the
MIPS R10000 architecture. Prefetching improves performance in three of the ten bench-
marks by 15% to 35%.

Chilimbi and Hirzel design and evaluate a dynamic prefetching scheme that uses on-line
profile information to discover prefetch opportunities [26]. The prefetch technique works
in several phases. First, a low-overhead profile phase gathers data reference streams. After
profiling, the run-time system analyzes the data streams to determine prefetch opportunities
and dynamically generates code to add prefetch instructions to the program. The program
executes the prefetch instructions for a period of time, and then the run-time system starts
the profiling phase again. Initial results on a few of the memory bound SPEC CPU2000

benchmarks show performance improvements.

35

Wau et al. use profiling to identify prefetching opportunities in programs with irregular
accesses [117]. Their insight is that irregular programs contain a large number of loads with
near constant strides. The compiler uses the profile information about loads with constant
strides to generate prefetch instructions. Wu et al. show that the profile information is
stable across input sets and that the profile overhead is low. They evaluate the prefetch
technique on the SPEC CPU2000 programs, and they show large improvements in three of
the programs. Wu et al. improve the profile information to identify more effective prefetch
opportunities [116]. They show large improvements for a few SPEC CPU2000 programs,
and a 7% average improvement on all the programs.

Recently, several researchers have proposed techniques that initiate prefetch requests
lower in the memory hierarchy and push the data up the memory hierarchy. The push model
is different from traditional pull model that initiates requests from the the top of the mem-
ory hierarchy to the lower levels. Zhang et al. present an initial evaluation of a prefetch
scheme for pointer-based structures that prefetches at the memory controller [122]. The
technique uses programmer intervention to identify linked structures, and special hardware
to determine when to initiate prefetches. Yang and Lebeck evaluate a push method that adds
a programmable prefetch engine to each level of the memory hierarchy [119, 120]. They
use software support to identify linked structures and to generate programs for the pre-
fetch engine to execute. Hughes and Adve also evaluate a programmable prefetch engine
at the memory level [50]. The architecture contains special instructions to identify linked
structures and the fields involved in traversals. Content-aware data prefetching is a hard-
ware mechanism that examines objects in the memory subsystem, and attempts to identify
pointers that need to be prefetched [29]. The hardware detects values within objects that

are likely to be pointers and issues prefetch requests for the pointers.

As we show in this section, many researchers have investigated prefetching techniques.
Prior research does not present adequate solutions for software data prefetching in Java

programs. Object-oriented languages promote software engineering practices that make

36

compile-time analysis difficult. We propose whole program analysis to discover prefetch
opportunities across method boundaries. Java programmers frequently use arrays as well
as linked structures. We develop a unified framework that generates prefetches for both

types of data structures.

37

CHAPTER 3
DATA-FLOW ANALYSIS FOR IDENTIFYING RECURRENCES

Programs often iterate over data structures such as arrays and linked structures. Tradi-
tional approaches typically use ad hoc methods to detect these common traversal patterns,
and existing approaches focus on either arrays or linked structures, but not both.

In this chapter, we describe our data-flow analysis for identifying recurrences in pro-
grams. We describe and implement an analysis that unifies the discovery of loop induction
variables and linked structure traversals.

Our analysis, called recurrence analysis, contains an intraprocedural component and
an interprocedural component. The intraprocedural algorithm finds recurrent variables that
occur in loops, and the interprocedural algorithm finds recurrent variables that occur across

function calls.

3.1 Loop Induction Variables

An induction variable is incremented or decremented by the same value during each
loop iteration. An example of an induction variable is the expression i =i +c occurring
in a loop, as shown in Figure 3.1 (a). During each iteration of the loop, the variable i is
incremented by a loop invariant value, c.

There are several classifications of induction variables [40]. A linear induction variable
changes by the addition or subtraction of a loop invariant value in every iteration. A polyno-
mial induction variable changes by a linear induction variable using addition or subtraction
in each iteration. A variable that changes by the addition or subtraction of a polynomial

induction variable produces a polynomial of a higher degree. An exponential induction

38

int i = 0: List o = getList();

while (i<n) { while (o !'= null) {
sum += arr[i]; sum += o. val ue();
i =i +1; 0=0. next ;

} }
(a) Array Traversal (b) Linked-Structure Traversal

Figure 3.1. Similarities Between Array and Linked-Structure Traversals

variable changes by the multiplication of a loop invariant expression in each iteration. Our

analysis discovers each of these types of induction variables.

3.2 Linked Data Structures

We identify regular traversals of a linked data structure by a recurrent update to a
pointer variable. A recurrent update is a field assignment of the form 0 = 0. next that
appears within a loop or recursive call, as shown in Figure 3.1 (b). Each execution of the
assignment updates the pointer variable with a new object of the same type, either directly

or indirectly through one or more intermediate variables.

3.3 A Unified Analysis

In this section, we present our unified analysis that discovers both loop induction vari-
ables and linked structure traversals. An induction variable and linked-structure traversal
are examples of general recurrences. Figure 3.1 illustrates the similarities in the code se-
quences for an array and linked-structure traversal.

The recurrences contain similar patterns. The loop in Figure 3.1 (a) updates variable i
by incrementing the value by 1. The loop in Figure 3.1 (b) updates object o by referencing
the next element in the list. We propose a unified recurrence analysis that detects both of

these traversal patterns.

39

In the remainder of this section, we describe our basic intraprocedural algorithm. We
follow with extensions to handle object fields and arrays that contain recurrent variables and

for indirectly recurrent variables. Then we briefly describe our interprocedural analysis.

3.3.1 Basic intraprocedural analysis

Intraprocedural recurrence analysis discovers the field assignments that are recurrent
due to loops. Our analysis is similar to reaching definitions analysis combined with com-
puting definition-use chains for field references [4]. We discover recurrences using a unified
forward data-flow analysis.

We define the following sets in our data-flow analysis. Let V be the set of variables
in a method, F be the set of object fields, E be the set of binary expressions, FE be the
set of object fields and binary expressions, i.e., FE = F UE, S be the set of statements
in the method, and RS be the recurrent status that we describe below. The basic analysis

information is a set of tuples:

RC P(V xFE xS xRS)

The tuple contains an object field name or binary expression (FE) to improve precision
by reducing the number of recurrent variables that the analysis discovers. For example, if
a program traverses a doubly linked list in one direction, we improve the precision of the
analysis and the effectiveness of prefetching by recording the specific field involved in the
traversal.

We use the statement number (S) to handle the case properly when there are two field
assignments that occur outside a loop or recursive call. For example, if the sequence
0=0. next; 0=o0. next is not in a looping construct, the analysis should not mark o
as a recurrent variable.

The recurrent status (RS) indicates when a program uses a variable to traverse a linked

data structure or as an induction variable. Letrs € RS= {nr ,pr,r }. We order the elements

40

of RS such that nr < pr < r. The < operator forms a lattice for the elements of RS. We

define the element values as follows:

Not recurrent (nr). The initial value that indicates a variable is not updated by the same

expression, i.e., it is not involved in a traversal.

Possibly recurrent (pr). The first time we process a field reference use or binary expres-

sion it is potentially recurrent.

Recurrent (r). This value indicates that a variable is an induction variable or involved in

a linked-structure traversal.

We informally describe the meaning of the recurrent status element values using a
linked-structure example. The first time the analysis processes a loop, an object occur-
ring on the left hand side of a pointer field assignment becomes possibly recurrent, e.g.,
t = 0. next. On the second iteration of the analysis, the object on the left hand side
becomes recurrent if the base object of the field reference, i.e., 0, is possibly recurrent. If
the base object is not recurrent then t ’s value remains the same.

We define a function RA that maps program statements to the analysis information,

RA :s — R, where s € S. The data-flow equations for recurrence analysis are:

RAn(s) = || RAo(p)
pe pred(s)

RAot(S) = (RAin(s) \KILLRA(S,RAin(S)))

LI GENRa(S, RAIn(S))

Given tuples, t1=(v1, fe1, s1,rs1) and to=(vo, feo, S, rs2), we define the join operation,
t1 U tp, as follows. If (vi=vy A fej=fex A s1=5) then t1 U tp = (v1,feq, s1,1s1 LI rs2).
Otherwise, t1 LI tp = {t1, t2}. Given our ordering of the elements rs € RS, rs LI nr =rs, pr

Lipr =pr,andrsur =r.

41

An iterative data-flow solving algorithm takes d + 3 iterations to solve our data-flow
equations, where d is the loop connectiveness? of the control flow graph [55].

We define the GENRra and KILLRa functions as follows:

GENRa,KILLRA:SXR —R

At the initial statement, init(S), we initialize the function RAj, to {(v,0,0,nr)jveV}

The interesting program statements for the analysis include field loads and assignments.
We describe the details of our GEN and KiLL functions for each interesting program state-
ment below. In the following function definitions, f* € F, e’ € E, fe’ € FE, s’ € S, and

rs’ € RS.

o = p.fs A field assignment at statement s may create a recurrent update when it oc-
curs in a loop. Informally, the expression causes a recurrent update when the value
assigned to o is propagated to p, the base object on the right-hand side. The canoni-
cal example iso = 0. next ina loop with no other assignments to 0. The KILLra

and GENRa functions for a field assignment are:

KiLLra(0o=p.f,R) = {(o,fs,pr),(0,0,0,nr)}
{(o,f,s,pr)} : if (p,0,0,nr)eR
{(o,f5,r)} :if(pfspr)eR

GENpa(0=p.f,R) =

The first time the analysis processes a field assignment, it creates a tuple containing
o with the pr recurrent status. If the field assignment occurs within a loop, then
the data-flow analysis does not reach a fixed point due to the change in data-flow
information. The analysis repeatedly processes all the statements in the loop until

reaching a fixed point.

The loop connectiveness of a control fow graph G, with respect to its depth fi rst spanning tree, is the
largest number of back edges found in any cycle-free path of G [55]

42

The second time the analysis processes a field assignment, if there exists a tuple
containing p with the recurrent status pr , then there is no intervening assignment to

p. In this case, the analysis creates a tuple containing o with the r recurrent status.

= j op cg Aninteger binary expression at statement s may create an induction vari-
able when it occurs in a loop. Informally, the expression is an induction variable
when the value assigned to v is propagated to j , the variable on the right-hand side.
The canonical example is j =] +1 in a loop with no other assignments to j . The

KILLRa and GENRa functions for a binary expression are:

KILLra(V=jop c,,R) = {(vjopc,spr),(v0,0nr)}
. {(vjopcspr)} :if(j,0,0nr)eR
GENRa(V=jOp Cg,R) =
{(vjopcsr)} :if(jjopcspr)eR

The actions for a binary expression are similar to those for a field expression. The first
time the analysis processes a binary expression, it creates a tuple containing v, the
expression j +1, and the pr recurrent status. If the binary expression occurs within
a loop, then the data-flow analysis does not reach a fixed point due to the change in
data-flow information. The analysis repeatedly processes all the statements in the

loop until reaching a fixed point.

The second time the analysis processes a binary expression, if there exists a tuple
containing j with the recurrent status possibly recurrent, then there is no intervening
assignmenttoj . In this case, that analysis creates a tuple containing v, the expression

] +1, with the recurrent induction status.

Binary expressions require an additional GEN and KiLL function for the operands.
Propagating information about the operands enables the analysis to create complex
induction variable expressions, such as mutual induction variables. Section 3.3.2

presents an example using mutual induction variables.

43

KILLra(v=jopc,,R) = {(v.e’ opc,l,rs’)

| #s}

GENRra(V=jOp c,,R) = {(v,e’opc,lrs’)| (j,e’,l,rs’) e RAI#s}

u=v A variable assignment expression copies the recurrence information from v to u. For
each tuple containing a variable v, we create a new tuple containing u with the same
field or expression, statement, and recurrent status as v. We kill the old information

associated with u. The KILLRra and GENRa functions for an assignment are:

KILLra(Uu=v,R) = {(u,fe’,s’,rs")}

GENra(U=V,R) = {(u,fe’,;s’,rs’)

(v.fe’,s’,rs’) € R}

u=expr Any other assignment to a variable kills the analysis information for u. Our
analysis sets the recurrent status of any tuple containing u to not recurrent (nr). The

KILLRa and GENRa functions for all other assignments are:

KILLra(u=expr,R) = {(u,fe’;s’rs")}

GENRa(u=expr,R) = {(u,0,0,nr)|(ufe’,s’rs’) € R}

3.3.2 Intraprocedural Examples
In this section, we illustrate the intraprocedural recurrence analysis using a few exam-
ples. In each example, we show the sets RAi(S) and RAq: (S) for each interesting statement.
We show how the information changes during each iteration of the data-flow analysis.
Figure 3.2 shows a simple loop that iterates over a singly linked list. The recurrence
analysis detects the linked list traversal that occurs at line 4. In the first iteration, the

recurrent status for t become possibly recurrent at line 4. At line 5, the analysis copies the

44

1 o0 = createlList();
2 while (o !'=null) {
3 0. compute();
4 t = o0.next;
5 o =1t,;
6 }
stmt | RA Iteration 1 Iteration 2 Iteration 3
2 in (0,0,0,nn), (1,0,0,nr) (o,next,4,pr), (t,next,4,pr) | (o,next4,r), (t,next,4,r)
out (0,0,0,nn), (t,0,0,nr) (o,next,4,pr), (t,next,4,pr) | (o,next4,r), (t,next,4,r)
4 in (0,0,0,nn), (1,0,0,nr) (o,next,4,pr), (t,next,4,pr) | (o,next,4,r), (t,next,4,r)
out (0,0,0,nr), (t,next,4,pr) (o,next,4,pr), (t,next,4,r) | (o,next4,r), (t,next,4,r)
5 in (0,0,0,nr), (t,next,4,pr) (o,next,4,pr), (t,next,4,r) | (o,next,4,r), (t,next,4,r)
out | (o,next,4,pr), (t,next,4,pr) | (o,next,4,r), (t,next,4,r) | (o,next,4,r), (t,next,4,r)

Figure 3.2. Recurrence Analysis Example: Traversing a List

data-flow information from t to 0. In the second iteration, since the status of o is possibly
recurrent, the recurrent status of t becomes recurrent at line 4. At line 5, the analysis copies
the recurrent status from t to o. In the third iteration, the data-flow information does not
change, which means the analysis has reached a fixed point and is done. At the end of the
loop, both o0 and t are recurrent due to the next field at line 4.

Figure 3.3 shows a loop that iterates over an array. The recurrence analysis detects the
array traversal that occurs at line 5. The example is analogous to the linked list example in
Figure 3.2. Instead of propagating the next field, the analysis propagates the expression
i +1. In the first iteration, the analysis computes that both i and j are possibly recurrent
due to the expression i +1. In the second iteration, the analysis computes that i and j
are recurrent because the program does not redefine the variables using different values
between loop iterations.

Figure 3.4 illustrates an example that Kkills the data-flow information during each loop
iteration. Because the intraprocedural analysis does not know the recurrent status informa-
tion from the call to newLi st (), the analysis kills the recurrence information for o at

line 6.

45

1 int sum= O;
2 int i = 0;
3 while (i < n) {
4 sum += Ali];
5 j =1 + 1;
6 o=
7}
simt | RA Iteration 1 Iteration 2 Iteration 3
3 in (1,0,0,nr), (j,0,0,nr) (@i,i+1,5,pr), (j,i+1,5,pr) | (i,i+1,5,r), (j,i+1,5,)
out (1,0,0,nr), (j,0,0,nr) (@i,i+1,5,pr), (j,i+1,5,pr) | (i,i+1,5,r), (j,i+1,5,)
5 in (1,0,0,nr), (j,0,0,nr) (@i,i+1,5,pr), (j,i+1,5,pr) | (i,i+1,5,r), (j,i+1,5,)
out || (i,0,0,nr), (j,i+1,5pr) | (i,i+1,5,pr), (,i+1,5r) | (i,i+1,57r), (j,i+1,5,)
6 in (i,0,0,nr), (j,i+1,5,pr) @i,i+1,5,pr), (j,i+1,5,) | (i,i+1,57r), (j,i+1,5,)
out || (i,i+1,5,pr), (j,i+1,5pr) | (i,i+15r), (j,i+1,5r | (i,i+1,5r), (,i+1,5,)

Figure 3.3. Recurrence Analysis Example: Traversing an Array

1 o0 = createlList();
2 while (o !'=null) {
3 0. compute();
4 O = 0. hext;
5 /'l performsome conputation on o
6 0 = newList();
7}
stmt | RA Iteration 1 Iteration 2
5 in (0,0,0,nr) (0,0,0,nr)
out (0,0,0,nr) (0,0,0,nr)
4 in (0,0,0,nr) (0,0,0,nr)
out | (o,next,4,pr) | (o,next,4,pr)
6 in (o,next,4,pr) | (o,next,4,pr)
out (0,0,0,nr) (0,0,0,nr)

Figure 3.4. Recurrence Analysis Example: Kill Data-Flow Information

46

1 o0 = createlList();
2 while (o !'= null) {
3 0. compute();
4 if (o.someCondition())
5 0 = 0. hext;
6 I f (o.someCondition())
7 0 = 0. hext;
8 }
smt | RA Iteration 1 Iteration 2 Iteration 3
5 in (0,0,0,nr) (o,next,5,pr), (o,next,7,pr) | (o,next,5,r), (o,next,7,r)
out (0,0,0,nr) (o,next,5,pr), (o,next,7,pr) | (o,next,5,r), (o,next,7,r)
5 in (0,0,0,nr) (o,next,5,pr), (o,next,7,pr) | (o,next,5,r), (o,next,7,r)
out (o,next,5,pr) (o,next,5,r), (o,next,7,pr) | (o,next,5,r), (o,next,7,r)
7 in (o,next,5,pr) (o,next,5,r), (o,next,7,pr) | (o,next,5,r), (o,next,7,r)
out || (o,next,5,pr), (o,next,7,pr) | (o,next,5,r), (o,next,7,r) | (o,next,5,r), (o,next,7,r)

Figure 3.5. Recurrence Analysis Example: Traversing a List Conditionally

In Figure 3.5, we illustrate the effect of conditional statements and multiple field refer-
ences on the data-flow analysis. In the first iteration, o becomes possibly recurrent at line 5
and line 7 due to the access of the next field. In the second iteration, o becomes recurrent
at lines 5 and 7. On the third iteration, nothing changes. The data-flow analysis merges the
recurrence information at line 6 and line 8. During the second iteration, the merge at line 6
combines (0, next, 5, pr) and (0o, next, 5, r) to produce (0, next, 5,r).

Figure 3.6 illustrates the how the data-flow analysis processes mutual induction vari-
ables. The analysis creates complex expressions to handle induction variables. In the ex-
ample, j ’s value depends uponi andi ’s value depends upon j . Since the loop increments
each variable by one, both variables increase by two in each iteration. Our recurrence anal-
ysis detects the mutual induction variables, and correctly computes the increment value.
The interesting points occur at lines 5 and 6. For example, in the first iteration, at line 6,
the analysis creates two new tuples. The first tuple, (i, j +1, 6, pr), indicates that vari-
able i is assigned the value j +1. Since the analysis information contains a tuple for j ,
we create a second tuple, (i, 1 +2, 5, pr), which builds a complex expression using the

expression from j ’s tuple. Thus at line 6, the analysis representsi asj + landi + 1

47

1 int sum= O;
2 int i =0; int j =0
3 while (i < n) {
4 sum += Ali];
5 j =i+ 1;
6 =] + 1;
7}
stmt | RA Iteration 1 Iteration 2 Iteration 3
in (1,0,0,nr), (j,0,0,nr) @i,j+1,6,pr), (j,i+1,5,pr) | (i,j+1,6,r), (j,i+1,5,)
3 (i,i+2,5,pr) (1,i+2,5r), (j,j+2,6,pr)
out (1,0,0,nr), (j,0,0,nr) @i,j+1,6,pr), (j,i+1,5,pr) | (i,j+1,6,r), (j,i+1,5,)
(i,i+2,5,pr) (1,i+2,51), (j,j+2,6,pr)
in (1,0,0,nr), (j,0,0,nr) (i,j+1,6,pr), (j,i+1,5pr) | (i,j+1,6,r), (j,i+1,5,)
5 (i,i+2,5,pr) (i,i+2,5,r), (j,j+2,6,pr)
out (1,0,0,nr), (j,i+1,5,pr) | (i,j+1,6,pr), (,i+1,5r) | (i,j+1,6,r), (,i+1,5r)
@i,i+2,5,pr),(j,j+2,6,pr) | (i,i+2,5,r), (j,j+2,6,r)
in (1,0,0,nr), (j,i+1,5,pr) @i,j+1,6,pr), (,i+1,5,) | (i,j+1,6,n), (,i+1,5,)
6 (i,i+2,5,pr), (j,j+2,6,pr) | (i,i+2,5r), (j,j+2,6,r)
out @i,j+1,6,pr), (j,i+1,5pr) | (i,j+1,6,r), (j,i+1,5,) @i,j+1,6,n), (j,i+1,5)
(i,i+2,5,pr) (1,i+2,5r), (,j+2,6,pr) | (i,i+2,5r), (j,j*+2,6,r)

Figure 3.6. Recurrence Analysis Example: Complex Induction Variable

+ 1. After reaching a fixed point, the analysis indicates thati and|j are recurrent and they

increase by two in each iteration.

3.3.3 Interprocedural Algorithm

The interprocedural analysis finds recurrences that are due to recursive method calls
and that cross method boundaries. The interprocedural analysis propagates data-flow in-
formation into the parameters of a method and from the return value.

The algorithm is a bidirectional context-sensitive traversal of the call graph. A context-
sensitive algorithm enables the analysis phase to determine the fields used in recurrent
object updates across recursive function calls. A context-insensitive algorithm cannot track
the recurrence information from multiple call sites because the compiler analyzes each
method only once. For example, in a program that traverses a binary tree using recursion, a

context-sensitive analysis determines that the left and right children are recurrent fields. A

48

public ipRec() { public void iplter(List |) {

int s = data,; Enuneration e = | . el enents();
if (next '=null) { whi |l e (e. hasMoreEl ements()) {
s += next.ipRec(); Node n = (Node)e. next El ement();
} n.cal c();
return s; }
} }
(a) Recursion (b) Iteration with Encapsulation

Figure 3.7. Examples Showing Need for IP analysis

context-insensitive analysis analyzes the recursive method only once and will not determine
that both children are recurrent fields.

A context-sensitive interprocedural algorithm can be quite expensive because each
function may be analyzed multiple times. Our interprocedural analysis analyzes each func-
tion reached at each call site at most three times. Each call site may invoke multiple func-
tions due to polymorphic function calls. In practice, a compiler should perform analysis
to reduce the number of potential methods reachable at each call site. For example, our
compiler uses 0-CFA interprocedural class analysis to reduce the call graph size [95].

There are two distinct classes of interprocedural recurrences. The first is due to a re-
cursive method call. The second is due to iteration combined with encapsulation. We
show an example using recursion in Figure 3.7 (a), and an example using iteration with
encapsulation in Figure 3.7 (b). Example (a) traverses a linked list by recursively calling
itself with the next element in the list. Example (b) uses iteration, but calls another method
to obtain the next element in the list. The recurrent field access is hidden in the call to
next El ement .

A method definition has the form: r = m(po, . . ., Pn) , Where p; is a formal param-
eter, and r is the return value. At a call site, the analysis creates a new set of tuples, Ry,
for the callee. The analysis processes each argument, ao,...,an, as an assignment of the

recurrence information from the argument to the parameter, p; = a;.

49

1 nethod getNext () { i :

_ 1 | = getList();
g \ return next, 2 while (I = null) {
., 3 | . conput e();
5 | =1.getNext(); g } |7 oethet s
6 | =1.getNext();

(@) Two Contexts - Not Recurrent (b) One Context - Recurrent

Figure 3.8. Using Calling Context Information

At a call site, the analysis also adds the recurrent field information to Ry, for each of the
argument’s fields, a;. f . After initializing Ry, we analyze the callee method with Ry, using
the intraprocedural analysis. Recursive calls cause the analysis to iterate until the data-flow
information for each parameter reaches a fixed point.

We process a function return as an assignment of r to the value on the left hand side of
the method call by copying the analysis information from Ry, to Rc. The analysis uses the
appropriate GEN and KiLL function, which depends on whether the left hand side expres-
sion is a simple object, field reference, or array reference.

In our intraprocedural analysis, the data-flow information contains the statement num-
ber where the expression occurs. We augment the statement number with context informa-
tion to process the interprocedural information correctly. The context information distin-
guishes between the recurrence information in different calling contexts. When the analysis
processes a return statement, we prepend context information to the statement number. We
illustrate why the context information is necessary in Figure 3.8.

In Figure 3.8 (a), the analysis should not indicate that | is recurrent. Without context
information, the analysis will compute that | is recurrent. At line 5, the analysis assigns the
result of the call to get Next () to | . The analysis information computed at line 2 from
the first call site is (1 , next, 2, pr) . The analysis creates the tuple (1 , next, 2, pr)

at line 5 because of the assignment. The second call site causes the analysis to create the

50

tuple (I, next, 2, r) atline 2. Then the analysis create the tuple (|, next, 2, r) at
line 6. At the end of processing the code sequence, the analysis indicates that | is recurrent.

We avoid spurious recurrences by adding context information to the data-flow infor-
mation. Upon the return from get Next () at line 5, the analysis prepends the statement
number with context information. We use the call site number as the context information.
In this example, the analysis creates the tuple (1 , next, 1. 2, pr) after the first call site.
When the analysis processes the second call site, it filters the data-flow information and
removes tuples that contain invalid contexts. In this example, the analysis removes the
tuple (1, next, 1. 2, pr) from the callee’s information because the contexts are differ-
ent. After processing the second call site, the data-flow information includes the tuples
(I,next,1.2,pr) and (I, next, 2.2, pr) . If this second sequence occurs within a
loop, then the analysis processes the statements again, and correctly indicates that the two

call sites cause recurrences.

3.3.4 Interprocedural Example

In this section, we illustrate an example of interprocedural recurrence analysis. Fig-
ure 3.9 shows the steps of the interprocedural recurrence analysis using an example with
recursion. The method recursively calls itself with the | eft and ri ght children. The
method contains an implicit parameter, t hi s, that is the current node of the tree.

The tables in Figure 3.9 show the data-flow information that the analysis computes
during each visit of the method. The method contains two call sites; call site 1 at line 3,
and call site 2 at line 4. The subscript in the table header indicates the call site number. The
second and third visits in the analysis are for call site 1, and the fourth and fifth visits are
for call site 2.

On the first visit, the analysis computes that the | ef t and r i ght fields become possi-

bly recurrent. The second visit occurs at line 3. The analysis prepends the call site id to the

51

1 int treeAdd() { // this is an inplicit paraneter
2 int total = val ue;
3 if (left '=null) total += left.treeAdd();
4 if (right '=null) total += right.treeAdd();
5 return total;
6 }
stmt | RA First Visit Second Visity Third Visity
1 in (this,0,0,nr) (thisleft,1.3,pr) | (this,left,1.3,r)
out (this,0,0,nr) (thisleft,1.3,pr) | (thisleft,1.3,r)
3 in (this,0,0,nr) (thisleft,1.3,pr) | (thisleft,1.3,r)
out | (thisleft,3,pr) thisleft,1.3,r) | (thisleft,1.3,r)
4 in (this,l€eft,3,,pr) (this,left,1.3,r) | (thisleft,1.3,r)
out (this,left,3,pr) (thisleft,1.3,r) | (thisleft,1.3,r)
(thisright,4,pr) | (thisright,4,pr) | (thisright,4,pr)
stmt | RA Fourth Visit, Fifth Visit,
1 in (this left,2.3,pr), (thisright,2.4,pr) | (thisleft,2.3,r), (thisright,2.4,r)
out (this|left,2.3,pr), (thisright,2.4,pr) | (thisleft,2.3,r), (thisright,2.4,r)
3 in (this,left,2.3,r), (thisright,2.4,pr) (this,left,2.3,r), (thisright,2.4,r)
out (thisleft,2.3,r), (thisright,2.4,pr) (this,left,2.3,r), (this,right,2.4,r)
4 in (this,left,2.3,r), (this,right,2.4,r) (thisleft,2.3,r), (thisright,2.4,r)
out (this,left,2.3,r), (thisright,2.4,r) (thisleft,2.3,r), (thisright,2.4,r)

Figure 3.9. IP Recurrence Analysis Example: Recursion

52

statement number. On the second visit, the analysis computes that the | ef t field becomes
recurrent atline 3. On the third visit, the analysis information does not change.

The fourth visit occurs at line 4 for the r i ght field. At this point, the analysis propa-
gates the information for both the r i ght and | ef t fields. The analysis prepends the call
site number, 2, to the statement number. At line 3, the analysis computes that the | ef t
field becomes recurrent. When the analysis attempts to analyze the method because of the
call at line 3, it determines that it has already processed this same input on the third visit,
and does not need to process it again. When trying to compute if the analysis has already
seen an input, the comparison ignores the call site number. Finally, at line 4, the analysis
computes that r i ght becomes recurrent.

On the fifth visit, both the | ef t and ri ght children are recurrent, and the analysis
information does not change. When the analysis processes the call sites again, it determines

that is has already seen the inputs and the recursive calls finish.

3.3.5 Object Fields and Arrays

In the this section, we describe extensions to our basic analysis that improve the preci-
sion of the results. In the basic analysis, we assume that the left hand side expression is a
simple variable. We improve the analysis by tracking the recurrence information of vari-
ables assigned to object fields and array elements also. For example, in the code sequence
in Figure 3.10, the analysis of Section 3.3.1 does not indicate that object o is recurrent
because the analysis does not propagate the recurrence information to t enp. f. This se-
guence occurs in Java programs that use the Enunmer at i on class to traverse linked lists
when inlining is enabled.

To improve the analysis, we extend the data-flow tuple to include field references and

arrays. Let VFA be the set of variables, field references, and arrays. We define:

R' C P(VFA x FE x S x RS)

53

while (tenmp.f !'= null) {
o =tenp.f;
0. conpute();
t = o.next;
temp.f =1t;
}

Figure 3.10. Assigning Recurrence Information to a Field

We also define a new analysis function, RA’ :s — R/, where s € S.

For object fields, we associate the analysis information with the field name, and the
analysis ignores the specific base object instance. We prepend the field name with its
class name to avoid ambiguity between fields from different classes. We can potentially
improve the precision by tracking the base object of the field reference, but that increases
the analysis complexity cost. We treat arrays as monolithic objects in our analysis, i.e., as
an assignment or use of the whole array.

We define the GENgy and KILLga functions to include the same definitions as GENra

and K1LLRa With the following extensions:

p. f=0, a[]j] =0 Create data-flow information for a field or array reference. The GENRra

and KI1LLga functions are similar to a pointer variable assignment.

KiLLpa (pf=0,R") = {(f.fe’,s’rs’)}

GENga (p-f=0,R") = {(f,fe’,s’,rs’)

(o,fe’,s,rs’) e R’}
KILLra (a[j]=0,R") = {(afe’,s’,rs’)}

GENra(a[j]=0,R") = {(afe’,s’,rs’)

(o,fe’,s’,rs’) e R’}

o=p.f, o=a[j] Forany tuple containing p. f or a, we create a new tuple containing
o which includes the field, statement, and recurrent status. The GENra and KILLRga

functions are:

54

KILLra(0=p.f,R") = {(o,fe’,s’,r1s")}

GENgy (0=p.f,R") = {(ofe’,s’,r1s")|(f fe’,s",rs’) e R’}

KiLLry(0=a[i],R") = {(o,fe’,s"rs")}

GENrar(0=a[j],R") = {(o,fe’,s’,rs’)|(afe’,s’,rs’) € R’}

p. f=expr, a[]j]=expr Any other assignment to a field or array kills the data-flow

information for p. f or a. The GENga and KiLLgu functions are:

KILLga (p.f=expr,R") = {(ffe’;s’,rs")}
GENga (p.f=expr,R") = {(f,0,0,nr)|(o,fe’,s’,rs’) € R’}
KILLra (a[j]=expr,R") = {(a,(fe’,s’,rs’)}

GENrw (a[j]=expr,R) = {(a,0,0,nr)|(o,fe’,s’,rs’) € R’}

3.3.6 Indirect Recurrent Variables

An indirect recurrent variable is an unshared object that is referenced by a recurrent
variable, but is not recurrent itself. An object is shared if it may be referenced by multiple
objects. In contrast, an object is unshared if it may be referenced by at most one other
object. An example of an indirect recurrent variable occurs in a traversal of a generic
linked list, where the data elements are separate objects from the list nodes. In Figure 3.11,
| is a recurrent variable for a linked list traversal, and both | and o are unshared. In this
example, o is also an indirect recurrent variable because it is unshared and it is referenced
by a recurrent variable.

Both | and o are candidates for prefetching because each iteration of the loop accesses
a new list node and a new data element. We do not want to prefetch shared objects because
each iteration may access the same data element, which results in wasteful prefetches.

We must first classify objects as shared or unshared to compute the set of indirect re-

current variables. We use an approximation because statically classifying dynamically al-

55

o = |.data;

0. conput e();

data data data
| =1.next;
o © O }

Figure 3.11. Example of Indirect Recurrent Variable

located objects exactly is not feasible. Our approximation classifies class fields as shared

or unshared. We describe the shared object analysis in the following section.

3.4 Cooperating Analyses
We develop additional analyses to assist the recurrence analysis and prefetching opti-
mizations. In this section, we describe the analyses and define the data-flow solutions. The

cooperating analyses are:

Shared object analysis Compute which objects are referenced by at most one other ob-

ject. We use this analysis to create jump-pointers.

Array size analysis Compute the size of all arrays, if possible. We use this analysis to

generate prefetches for elements in arrays that contain recurrent objects.

3.4.1 Shared Object Analysis

Shared object analysis determines if multiple object instances may ever contain a field
reference to the same object. We illustrate shared object analysis using Figure 3.12. Classes
Aand Ccontain a single field f that references an object of class B. In each instance of A,
field f contains a reference to distinct objects of type B. In contrast, in each instance of C,
field f contains a reference to the same object of type B.

Determining which fields reference a single object or multiple objects enables our re-
currence analysis to detect an important type of linked structure in which data is not stored

in the linked objects, but is a separate object that is referenced by the linked object.

56

®e

Field f is not shared Field f is shared
Figure 3.12. Object Sharing

We implement an interprocedural context-insensitive data-flow analysis to discover
shared objects. Our analysis is similar to Aldrich et al.’s unshared field analysis for elim-
inating unnecessary synchronization [5], and Dolby’s analysis for finding inlinable ob-
jects [35]. The main difference between our analysis and the prior approaches is the pre-
cision of the analysis. Dolby’s analysis requires more precision since he uses the analysis
to inline unshared objects. Both prior algorithms are context-sensitive, whereas ours is
context-insensitive. It is possible to make our analysis more precise, but our application of
the shared object analysis does not require more precision.

The analysis begins by assuming that all fields are unshared. The analysis maintains a
mapping between program variables and field names. When processing an assignment of
a variable to a field, the analysis creates an association between the variable and the field
name. The analysis removes other existing associations between the field name and any
different variable. If the variable appears on the right-hand side of multiple field store ex-
pressions, then the analysis associates the variable with each field name. When processing
a field store, if there already exists an association between the variable and the field, then
the field is shared.

The analysis also propagates the field information at assignments and field loads. At a
function call, the analysis assigns the field information associated with each argument to
each formal parameter. After processing the function call, the caller updates the analysis

information with changes made in the callee by assigning the field information associated

57

with each formal parameter to each argument. The analysis computes aliases among the
objects to determine if the object has previously been assigned to a field. All fields are
identified as either shared or unshared at the end of this analysis.

The intraprocedural portion of the shared object analysis is a forward data-flow analysis
problem. We define the following sets for our analysis. LetV be the set of variables in a
method, F be the set of object fields, SF be the set of shared fields, and S be the set of
statements. The basic analysis information is a tuple consisting of a mapping between

variables and fields, and the set of fields that are shared:

SH C P(V x F x SF)

We define an analysis function SA that maps program statements to the analysis in-
formation, SA : s — SH, where s € S. The data-flow equations for shared object analysis

are:

pe pred(s)

SAout(s) = (SAin(s) \ KILLsa(S,SAin(S)))

LI GENga(S, SAin(S))

At the initial statement, init(S), we initialize the function SAi, to {(v,0,0)|v eV }. We
define the GENga and KiLLga functions as GENga,KILLga - S x SH — SH. The statements
which effect the analysis include assignments, field stores, and field loads. We describe the
details of the GEN and KiLL functions for each interesting program statement below. In the

following definitions, v’ € V and f* € F.

v = o.f Ata field load, we create a mapping between the variable on the left hand side

and the field. A field load does not change the fields in the shared set.

58

The KILLga and GENga functions for a field assignment are:

KiLLsa(v=0.f,SH) = {(v,f’,SF)}

GENsa(v=0.f,SH) = {(v,f,SF)}

v = u For an assignment, we copy the data-flow information from u to v. For each tuple
containing a variable u, we create a new tuple containing v with the same information

as u. We kill the old information associated with v.

The KILLga and GENga functions for an assignment are:

KiLLsa(v=u,SH) = {(vf,SF)}

GENga(v=u,SH) = {(vf,SF)| (u,f,SF) e SH}

v = expr Any other assignment to a variable kills the variable/field mapping informa-

tion for v. The assignment does not affect the shared field set.

KiLLsa(v=expr,SH) = {(v,f SF)}

GENsa(0=expr,SH) = {(v,0,SF)}

o.f = v A field store may create a shared field. A field is shared if the object on the

right-hand side has been assigned to this field previously.

KiLLea(o.f=v,SH) = {(v’,f,SF)}

59

v,f,SF), (o’,f,SF . if aliases(o’,0
GENsp(0.f=v,SH) = (b) (0%0)

(v,f,SF), (v’ ,f",SFuUf) : if (vf,SF) € SH

The GEN function uses the aliases() function that returns true if the arguments are
aliases. In our compiler implementation, we compute aliases using an existing value

numbering algorithm.

The interprocedural analysis is bidirectional and context-insensitive. At a call site to
method m the analysis creates a new set of tuples, Cyy, for the callee. The analysis pro-
cesses each argument, ao,...,an, as an assignment of the shared object information from the
argument to the formal parameter, f ; = aj. Upon return from a method, the analysis must

propagate data-flow information from the formal parameters to the arguments, i.e., a; =f ;.

3.4.2 Array Size Analysis

The compiler must know the array sizes to generate prefetches when an array contains
recurrent object references. Unfortunately, Java creates all arrays dynamically, and the
array size is not known by simply examining the array declaration. We develop an analysis
to determine the size of arrays by examining the statements in a program rather than just
looking at the declarations.

Programmers use arrays to represent linked structures that may contain multiple re-
cursive connections. Figure 3.13 shows the class definition and use of a tree with eight
children. The count method recursively calls itself with each of the children. To generate
the correct number of prefetches, we need to know the array size. Our array size analysis
computes that the array size is a compile-time constant and the value is eight.

We develop a new data-flow analysis to compute the array sizes. Our analysis must be
run interprocedurally to obtain meaningful results, but we divide the analysis into intrapro-

cedural and interprocedural components. We first describe the intraprocedural analysis,

60

cl ass OctTree {
i nt dat a;
Cct Tree[] children;

Cct Tree(int d) {

data = d;

children = new Cct Tr ee[8] ;
}

int count() {
int ¢ = data;

for (int i=0; i<children.length();

if (children[i] != NULL) {
c += children[i].count();

}
}

return c;
}
}

Figure 3.13. Using an Array to Represent an Oct-tree

61

i ++) {

and present the extensions for dealing with method calls. Our analysis is closely related to
constant propagation.

The intraprocedural analysis determines the array sizes by analyzing the allocation ex-
pressions and propagates the size information to field stores whose type is an array. We
define a forward data-flow analysis for the intraprocedural problem. The lattice in the array
analysis is very similar to the constant propagation lattice.

We define the following sets for the array size analysis. Let VF be the set of variables
and class fields, Z be the set of integers, and T be the set of array types. We need to extend
Z to include the top element of the lattice which indicates the size of the array is unknown.
We define the set Z' = ZU{T}. Let s € S be the set of statements in the CFG.

The basic analysis information is:
CCPNV xZ xT)

We define a function AS that maps program statements to the analysis information,
AS:s—C,whereseS.

The data-flow equations for array size analysis are:

pepred(s)

ASout(s) = (ASin(S) \ KILLAS(S,ASin(s)))

LI GENas(S,ASin(S))

We define the GENag and KILL as functions as GENag,KILLas: S x C — C.
The statements that affect the analysis include array creation statements, assignments,
and field stores. We describe the details of the GEN and KiLL functions for each interesting

program statement below. In the following function definitions,c € Z’,andt € T.

v = newarray(n, T) Anarray creation statement. The function new_ar r ay creates

an array of size n of type T. If the size of the array is a compile-time constant, we

62

vV =

o.f

propagate the size information to the LHS. Otherwise, we indicate that the size of the

array is unknown.

The KILLas and GENas functions for an array creation statement are:

KiLLas(v=new_array(n,T),C) = {(vc,T)}
{(v,n,T)} :ifneZz

GENag(v=new_arrray(n,T),C) =
{(v,T,T)} : otherwise

u For an assignment, we copy the array size information from u to v. For each tuple
containing a variable u, we create a new tuple containing v with the same size and

type information as u. We kill the old information associated with v.

The KiLLas and GENas functions for an assignment are:

KiLLas(v=u,C) = {(v,.c,t)}

GENas(v=u,C) = {(v,c,t)| (u,ct) eC}

= v Create data-flow information for an assignment of an array object to an object
field. When f is an array reference, propagate the array size information from v to
f . If there is no tuple with f , then create a new tuple containing f with the same size
and type information as v. If there is another tuple with f , then the array size and

type must be the same, otherwise we create a tuple with an undefined size and type.

The KILLas and GENags for a field definition are:

KiLLas(o.f=v,C) = {(f.c,t)}
(f,7,0) : if (vct)eCA(fe't)eCAC #¢

GENag(0.f=v,C) =
(fct) :if(vct)eC

63

The interprocedural analysis is bidirectional. The analysis propagates the data-flow in-
formation from the method arguments to the formal parameters, and propagates the method
return value from the callee to the caller. At a call site to method m the analysis creates a
new set of tuples, Cyy,, for the callee. The analysis processes each argument, ao,...,an, as an
assignment of the array size information from each arguments to each formal parameter,
fi = a;. The analysis processes a function return as an assignment of r to the value on the
left hand side of the method call by copying the analysis information from C,, to Cc. The
analysis uses the appropriate GEN and KiLL function, which depends on whether the left
hand side expression is a field store or variable.

After analyzing the methods in Figure 3.13, the analysis contains the tuple, (chi | dr en,

8, Oct Tr ee) which indicates that the chi | dr en array contains 8 elements.

3.5 Chapter Summary

In this chapter, we describe a new data-flow analysis for identifying recurrences in
programs. Prior approaches are typically ad hoc, require explicit use-def chains, or focus
on either arrays or linked structures. Our recurrence analysis recognizes induction vari-
ables and linked structure traversals. We show that the two common traversal idioms are
closely related, which we exploit to create a unified analysis. The analysis contains an in-
traprocedural component to discover recurrences due to loops. The intraprocedural analy-
sis efficient enough to implement in a just-in-time (JIT) compiler that contains a data-flow
analysis framework. The analysis is also interprocedural, which enables the compiler to
discover recurrences that are due to recursion or that occur across method calls. Since the
interprocedural analysis is context-sensitive, it is not suitable for a JIT compiler. We need
to investigate techniques for reducing the cost of the interprocedural analysis. Our anal-
ysis is able to propagate data-flow information that is assigned to object fields and array

elements.

64

We present two additional analyses, shared object analysis and array size analysis, that
assist the recurrence analysis and prefetch optimizations. Shared object analysis statically
computes which objects are referenced by at most one other object. We use the shared
object analysis to detect indirect recurrent objects, which are objects that are not recurrent,
but are referenced by a recurrent object via an unshared field. The array size analysis com-
putes the size of arrays when possible. Java creates all arrays dynamically, and the array
size is not known by examining the declaration only. The analysis performs interprocedural
constant propagation to compute array sizes. Since both shared object analysis and array
analysis are interprocedural, it is uncertain whether they are suitable for JIT compilers.
However, the algorithms are context-insensitive, which reduces the complexity cost.

In the next chapter, we show how to use the recurrence analysis to identify prefetch
opportunities in arrays and linked structures. Computing recurrences is also applicable to
other domains besides prefetching, such as data layout and code optimizations on linked

structures.

65

CHAPTER 4
PREFETCH TECHNIQUES

Effective software data prefetching requires methods to determine what to prefetch and
when to generate a prefetch instruction. The previous chapter presents a new technique for
identifying what to prefetch. In this chapter, we discuss several algorithms that determine
when to generate a prefetch.

The Java core library contains classes that use arrays and linked structures. Through
using of these core classes, Java programs frequently access both arrays and linked struc-
tures that result in cache misses. To improve the memory performance of Java programs,
we need to use algorithms that are able to prefetch both types of data structures.

In this chapter, we describe the implementation of an array prefetch technique and three
algorithms for prefetching linked structures. The linked-structure algorithms are greedy
prefetching, jump-pointer prefetching, and stride prefetching.

In the next section, we describe our novel array prefetch algorithm. Section 4.2 de-
scribes greedy prefetching. In Section 4.3, we present a compiler implementation of jump-
pointer prefetching. We describe stride prefetching in Section 4.4. Finally, Section 4.5
discusses the compiler implementation of the recurrence analysis and prefetch algorithms.
We show that the prefetch algorithms are quite similar, and we are able to share a large

amount of code among the prefetch implementations.

4.1 Array Prefetching
In this section, we describe our algorithm to insert array prefetch instructions. The

prefetch algorithm must identify an array access pattern and insert a prefetch for an element

66

for (int i=0; i<n; i++) {
prefetch(&arr[i+d]);
sum+= arr[i];

}

Figure 4.1. Simple Index Expression

that will be accessed in the future. We illustrate a simple array prefetching example in
Figure 4.1. During each iteration, the program references the i 1" element, and we prefetch
element i +d, where d is the prefetch distance. Prefetching is most effective when the
prefetch distance value, d, is large enough to move the i +d" array element into the L1
cache before d iterations of the loop.

We first describe Mowry et al.’s array prefetch algorithm, which is the most common
algorithm that compilers use in practice. Mowry et al. developed and evaluated the algo-
rithm on in-order uniprocessor architectures and multiprocessors. Our insight is that most
modern processors are out-of-order architectures and often do not fully utilize the func-
tional units in the processor. We describe a simpler prefetch algorithm that does not require
locality analysis or loop transformations. We believe that our algorithm is suitable for a
just-in-time (JIT) compiler because it requires a data-flow framework only. Although our
evaluation uses an ahead-of-time compiler, several existing JIT compilers support data-flow

methods including HotSpot and the Jikes RVM (i.e., Jalapefio) [86, 7].

4.1.1 Mowry’s Prefetch Algorithm
Compilers that contain support for prefetching typically base their implementation on
Mowry et al.’s prefetch algorithm [11, 93]. Generating prefetch instructions using Mowry

et al.’s algorithm requires several steps [79].

1. The compiler performs locality analysis on the array references in a loop to approxi-

mate the cache misses.

67

2. The compiler performs loop unrolling and loop peeling to prefetch the specific refer-

ences causing cache misses.

3. The compiler attempts to improve prefetch effectiveness by performing software

pipelining on loops.

Step 1 requires array dependence analysis to identify the locality relationships between
array references within a loop. The dependence information enables the compiler to cat-
egorize the types of reuse and locality that occur within a loop. For each reference, reuse
analysis determines if the reference contains temporal, spatial, or group reuse. The spe-
cific type of reuse guides the loop transformations. Data reuse results in locality only if
the data remains in cache. Locality analysis approximates the iteration space of a loop to
determine the references that might remain in the cache. Mowry et al. use Wolf and Lam’s
data locality analysis to determine the reuse relationship for array references [113]. Based
upon the locality analysis, Mowry et al. compute a prefetch predicate, which is a function
that returns true whenever a reference might suffer a cache miss. Whenever the predicate
indicates true, the compiler needs to generate a prefetch.

Steps 2 and 3 of the prefetch algorithm are responsible for scheduling prefetch instruc-
tions according to the prefetch predicates. The goal of the second step is to reduce the cost
of a dynamic prefetch instruction. Mowry et al. use loop peeling, loop unrolling, and strip
mining to isolate the loop iterations that satisfy a prefetch predicate. Loop transformations
improve prefetch effectiveness by prefetching the first array elements prior to starting the
loop, eliminating prefetches that hit in the L1 cache, and eliminating useless prefetches
past the end of the last array element.

Loop peeling removes one or two iterations from a loop so that they are executed prior
to entering the loop. Loop unrolling makes additional copies of the code in the loop, and ex-
ecutes several iterations of the original code in a single iteration of the unrolled loop. Loop
unrolling reduces the number of unnecessary prefetches by unrolling the loop according to

the cache line size.

68

for (int i=0; i<n; 1++) { for (int i=0; i<10; i=i+4) {

sum += arr[i]; prefetch(&arr[i]);
} }
. L int i=0;
Figure 4.2. Original Loop for (: i<n-3: i=i+d) {
prefetch(&arr[i+10]);
for (int i=0; i<n-3; i=i+4) { Sum+=arr[i];
sum += arr[i]; sum += arr[i+1];
sum += arr[i]; sum += arr[i+2];
sum+= arr[i]; sum += arr[i+3];
sum+= arr[i]; } . .
} for (; i<n; i++) {

) sum += arr[i];
Figure 4.3. Unrolled Loop]

Figure 4.4. Loop After Transformations

Figures 4.2, 4.3, and 4.4 illustrate the steps of Mowry’s algorithm using a simple exam-
ple. If four array elements fit on a cache line, then the locality analysis in Step 1 determines
that every fourth access of the array is a cache miss. Figure 4.3 shows the code after Step
2 performs loop unrolling so that each prefetch operation brings in a different cache line.
Figure 4.4 shows the code after Step 3 performs software pipelining. Software pipelining
prefetches the first few elements in the arrays prior to entering the loop. In this example
the prefetch distance is 10 array elements.

Although our example is very simple, the analysis and transformations that the compiler
needs to perform are complex. In loops with control flow, inner loops, and multiple array
references, it is easy to imagine cases when the compiler is unable to compute precise

information that is necessary for the prefetch algorithm.

4.1.2 Our Prefetch Algorithm

Our prefetch algorithm does not perform locality analysis or loop transformations,
which reduces the complexity of our approach. Our results in Chapter 5 suggest that loop
transformations are not required to achieve significant performance improvements with

prefetching. We take advantage of available instruction level parallelism (ILP) in modern

69

for (int i=0; i<n; i++) { for (int i=0; i<n; i++) {

prefetch(&arr[2*(i+d)]); prefetch(&arr[i+d]);
sum += arr[2*i]; t = arr[i+(d/2)];
} prefetch(t);

Figure 4.5. Complex Index Expression sum += arr[i].val ue;

}
Figure 4.6. Array of Objects

processors to reduce the effect of unnecessary prefetches. When a processor has available
ILP, an unnecessary prefetch is very cheap, and the cost is much less than the benefit from
prefetching useful data.

Our algorithm generates a prefetch instruction for array references that contain a linear
induction variable in the index expression. The compiler generates the prefetch only if the
array reference is enclosed in the loop that creates the induction variable.

Our algorithm generates prefetches for array elements and objects referenced by array
elements, if appropriate. Prior prefetching algorithms focus on Fortran arrays and prefetch
array elements only. In Java, arrays may contain object references as well as primitive
types, such as doubl e. For an array of objects, we want to hide the latency of accessing
the array element and the object. Figure 4.6 illustrates array object prefetching. The first
prefetch instruction is for the array element, and the second prefetch is for the object. The
second prefetch must load an array element to get the address of the object. To ensure the
array element is in cache, the algorithm must load an array element that has already been
prefetched. The prefetch distance for the object is half the distance of the prefetch distance
for the array element.

The algorithm allows only linear induction variables because they generate arithmetic
sequences. Since the induction variable value changes by the same loop invariant expres-
sion in every iteration, the prefetch distance remains the same during each iteration. Poly-
nomial and exponential induction variables generate geometric progressions. To prefetch
array references with geometric progressions effectively, a new prefetch distance needs to

be computed during each iteration, and the distance depends upon the loop index value.

70

1 let | = 1Sy(exit(S)); // exit(S) is the | ast statenent
2 for each assignnent, t = arr[v]
if (v, e s,i) €l
let | = set of statements in current | oop
if s €l and is_linear(e)
let le = linear(e)
l et ¢ = increnent/decrenent value of e
let d = prefetch distance x c
generate prefetch (&arr[v + d])
10 if array of objects
11 let o = arr[v + d/2]
12 generate prefetch (0)

© 0o ~NO O bW

Figure 4.7. Array Scheduling Algorithm

An array index expression may contain other terms besides the induction variable. For
example, in Figure 4.5 the array index expression is 2*i , and the induction variable is
i . We generate a prefetch in this example because the induction variable is linear. The
compiler generates code to add the prefetch distance toi before the multiplication.

The pseudo-code in Figure 4.7 summarizes our prefetch scheduling algorithm. The
algorithm examines each array load instruction and checks if the index expression is a linear
induction variable. The function i s_l i near (e) returns true if either the expression e
or a subexpression of e is a linear induction variable. The function | i near (e) returns
the linear (sub)expression in e. The increment/decrement value of e is the amount that the
expression changes during each iteration. The loop invariant value may be a compile-time
or run-time constant. If the loop invariant value is a run-time constant, then the compiler
may need to generate code to compute the value. The algorithm always generates a prefetch
for an array element regardless of the type of the array. If the array contains references to
objects, we generate a prefetch for an object.

We eliminate redundant prefetches using a simple common subexpression (CSE) anal-
ysis. Most compilers implement CSE, so one can leverage the existing analysis to elimi-
nate redundant prefetches. A prefetch is redundant if the compiler has already generated

a prefetch for the cache line that contains the data. We illustrate redundant prefetches in

71

for (int i=0; i<n; i++) {
prefetch(&arr[i+d]);
prefetch(&rr[i+1+d]); // redundant
sum+= arr[i] + arr[i+1];
prefetch(&rr[i+d]); // redundant
foo(arr[i]);

Figure 4.8. Redundant Prefetch Example

Figure 4.8. Our algorithm generates a prefetch instruction for each array reference. If a
loop accesses the same array element multiple times in the same iteration of a loop, our
algorithm generates a prefetch instruction for each of the references. In Figure 4.8, our al-
gorithm generates 3 prefetch instructions. Only the first prefetch is useful. The last two are
redundant because they prefetch the same cache line as the first. The CSE phase eliminates
all but the first prefetch. The algorithm eliminates only prefetches that are redundant in the
same loop iteration.

The CSE analysis eliminates redundant prefetches using the same mechanism for elim-
inating redundant load instructions. The CSE analysis associates a value with each load
expression. When processing a load instruction, the CSE analysis records the value. If a
subsequent load instruction contains the same value, the CSE analysis removes the load.
The CSE analysis must be conservative and so must invalidate the load values due to inter-
vening store instructions or changes in control flow.

We use the existing CSE optimization in the compiler, but eliminating redundant pre-
fetches is simpler than the standard CSE analysis. The largest impact comes from elimi-
nating prefetches that are redundant in the same loop iteration. Rather than tracking values
for all expressions and having to deal with control flow, we restrict the analysis to prefetch
instructions only. Furthermore, we invalidate the analysis information when following the

back edge of a loop.

72

class Tree {

int data;
: Tree left;
cl_ass SLi st { Tree right:
i nt dat a; int sun() {
SLi st next; .
; prefetch(left);
int sum() { -]
) prefetch(right);
prefetch(next); ; - -
. - int s = data,;
if (next '=null)

if (left '= null)

s += left.sun();
if (right '=null)
s += right.sum();
return s;

return data + next.sum();
return data;

}
}

Figure 4.9. Prefetching a Singly Linked List }
}

Figure 4.10. Prefetching a Binary Tree
4.2 Greedy Prefetching
In this section, we describe the greedy prefetching algorithm that prefetches directly
connected objects in linked structures. The goal of greedy prefetching is to hide the la-
tency of accessing future elements in a linked structure traversal. The greedy prefetching

algorithm consists of two steps.

1. Identify linked structure traversals

2. Schedule prefetches for fields involved in linked structure traversals

We use the recurrence analysis from Chapter 3 to discover the linked structure traver-
sals. The recurrence analysis also discovers the fields involved in the traversal. The sched-
uling part of the algorithm inserts prefetch instructions for each set of recurrent field ref-
erences as early as possible in the program. The number of prefetch instructions that the
algorithm generates depends upon the object size and cache line size. The compiler inserts
multiple prefetches if the object size is larger than the cache line size, and one prefetch
otherwise.

We illustrate an example of greedy prefetching in Figure 4.9 using a singly linked list.

The class SLi st contains a summethod that adds the elements in the list. Greedy pre-

73

fetching inserts a prefetch for the next field prior to performing computation on the current
object. This example shows the main disadvantage of greedy prefetching, which is that it
can prefetch only the next object in the list. The technique cannot prefetch arbitrary ob-
jects because the address of only directly connected objects is known. If the cost of the
addition and function call is less than the cost of a memory access, then greedy prefetching
only partially hides the read latency of accessing the next object.

Achieving the full benefits of prefetching requires that the computation time between
the prefetch and use of the object be greater than or equal to the memory access time in
order to hide the latency completely. Greedy prefetching is most effective on linked struc-
tures that traverse multiple fields within an object. For example, Figure 4.10 shows a sum
method for a binary tree that performs a depth first traversal using the | ef t and ri ght
fields. Greedy prefetching inserts prefetches for both the | ef t and ri ght children. Al-
though the prefetches only partially hide the latency of accessing the | ef t object, the
prefetches may completely hide the latency of accessing the r i ght object. The prefetches
for the objects at the top of a tree may be useless if the tree is very large, but this occurs

infrequently because half the objects are at the leaf nodes.

4.2.1 Intraprocedural Greedy Prefetch Scheduling

The scheduling phase computes which recurrent objects to prefetch and where to insert
the prefetch instructions. The algorithm is greedy because we do not perform any analysis
to determine if an object is already in the cache, and we try to prefetch as much as possible.

For each recurrent object at each program point, we generate a prefetch for its recurrent
fields when the object is not null. The scheduler computes the set of non-null objects
using information from the program structure. The scheduler uses a data-flow analysis
that computes which objects are null and not-null. The default is to assume an object

may be null. Certain program statements establish that an object is not null, and the data-

74

while (o !'= null) {
prefetch(o. next);
prefetch(t.next); // no generated, redundant

0. comput e();
t = o.next();
0 =t,;

}
Figure 4.11. Redundant Greedy Prefetch Example

flow analysis propagates the information through the program. The following statements

establish that an object is not null:

e An object allocation site. The object on the left-hand side is not null.

e An object comparison to nul | . The object is not null along the false path following

the comparison.

e An object field reference. The base object of the field reference is not null, otherwise

the reference causes a fault.

e A method call. The first argument is not null following a method call, otherwise a

fault occurs.

e Start of a method. The first parameter, i.e., the t hi s object, is not null upon entering

a method.

For example, a loop that traverses a linked list typically compares the current head
element to null at the start of the loop. In this case, the data-flow analysis computes that the
head element is not null, and the scheduler can generate a prefetch for the recurrent field in
the list.

The scheduler uses alias analysis information to generate a single prefetch for groups
of aliased recurrent objects. For example, Figure 4.11 shows a loop with two recurrences,

t and o, that are aliases of each other. The greedy prefetching algorithm only generates

75

1 let R= RAu(exit(m); // exit(m is the |ast statenent
2 for each assignnment, o = expr, at statenent s:

3 if ois not null // uses the null/not-null analysis
4 for each tuple (o,f,s,r) € R

5 /1 generate multiple prefetches for |arge objects
6 c = 0; size = sizeof(0);

7 while (c < size) {

8 generate prefetch (o.f+c)

9 c += cache |ine size;

10 }

11 remove (o,f,s,r) fromR

12 for each p that is an alias of o

13 remove (p,f,s,r) fromR

Figure 4.12. Intraprocedural Greedy Prefetch Scheduling Algorithm

a single prefetch instruction in this example. The pseudo-code in Figure 4.12 summarizes
our intraprocedural scheduling process.

If the size of the object is greater than the cache line size, then the compiler inserts
multiple prefetches in order to prefetch the entire object. A command line option specifies
the cache line size.

The scheduling phase inserts prefetches for all the individual elements of an array,
if the array contains recurrent objects and the size of the array is a small compile-time
constant. Computing the size of a Java array is not trivial since Java programs allocate
arrays dynamically at run time. Many programs allocate arrays of the same type using
compile-time constants, which makes it possible for the compiler to determine the size of
an array. When performing interprocedural analysis, the compiler analyzes all the array
allocation sites, and computes the set of constant size arrays of the same type and size, as
we describe in Section 3.4.2. Figure 3.13 shows an example of a program that uses an array
to represent a tree with eight children. In Figure 4.13, we show the count method after

performing greedy prefetching.

76

int count() {
int ¢ = data;
prefetch(children[0]);
prefetch(children[1]);
prefetch(children[2]);
prefetch(children[3]);
prefetch(children[4]);
prefetch(children[5]);
prefetch(children[6]);
prefetch(children[7]);
for (int i=0; i<children.length(); i++) {
if (children[i] != NULL) {
c += children[i].count();

}
}

return c;

}
Figure 4.13. Greedy Prefetching on an Oct-tree

4.2.2 Interprocedural Greedy Prefetch Scheduling

The greedy prefetching algorithm uses an interprocedural scheduling phase to gener-
ate prefetches for recurrent parameters. As long as we perform interprocedural recurrence
analysis, we can extend the intraprocedural algorithm by adding the recurrent parameters.
Let RAintra be the recurrence information computed by the intraprocedural analysis, and
Rm be the recurrence information for formal parameters in method m. To generate pre-
fetches for interprocedural recurrences, we change the first line in Figure 4.12tol et R
= RAintraURm.

Extending the intraprocedural algorithm to include recurrent parameters may result
in unnecessary prefetch instructions. We illustrate this problem with an example in Fig-
ure 4.14. The program traverses a linked list using recursion and calls conput e() for
each object in the list. The interprocedural recurrence analysis identifies the next field in
the t hi s object in method sumas recurrent. Since sumcalls conput e with the t hi s
object, the recurrence analysis also identifiesthe t hi s objectin conput e as recurrent. As

Figure 4.14 shows, the intraprocedural scheduling algorithm generates a prefetch instruc-

7

int sum() {

prefetch(next);
if (next '=null)

return conpute() + next.sum();
return conpute();

}
int conpute() {

prefetch(next); // redundant!
return data * 2;

}
Figure 4.14. Naive Interprocedural Prefetch Scheduling

tion in sumand conput e. The prefetch in conput e is redundant because it prefetches
the same object as the prefetch in sum

The redundant prefetches are due to recurrent objects passed as parameters from a re-
cursive method to another method. We minimize redundant prefetches as follows. The
interprocedural scheduling algorithm performs a single, in-order pass over the call graph
to schedule recurrent parameters as high as possible in the call graph. The scheduler does
not insert a prefetch of a recurrent parameter when the scheduler inserts a prefetch for
the parameter in a calling method. Using the example in Figure 4.14, the interprocedu-
ral scheduling algorithm does not schedule a prefetch for the t hi s object in conput e
because it schedules a prefetch for the same object in the caller, sum

Another source of useless prefetches occurs in non-recursive methods due to method
overriding. When a program contains several implementations of a method that has a recur-
rent parameter, but only one of the implementations is recursive, our analysis indicates that
the parameter is recurrent in all the implementations. We eliminate this source of useless
prefetches by not generating a prefetch for a field of a recurrent parameter if the callee does

not reference the field.

78

4.3 Jump-Pointer Prefetching

In this section, we discuss the design and implementation of compile-time jump-pointer
prefetching. Jump-pointers are a flexible mechanism for prefetching linked data structures
because the technique can prefetch arbitrary objects, not just directly connected objects.
Jump-pointer prefetching is potentially able to tolerate any amount of latency by varying
the prefetch distance between two objects.

Jump-pointer prefetching adds information to an object to indicate which object to pre-
fetch. The target object does not need to be directly connected to the source object. Instead,
we add a new prefetch field to the source object, and we generate code to initialize the
jump-pointer at run time and to use the jump-pointer for prefetching. The jump-pointer is
effective when the creation and access order of the data structure are similar. Figure 4.151l-
lustrates jump-pointer prefetching for a binary tree. Each tree node contains a jump-pointer
to a tree node two links away. Thus we issue a prefetch for node 3 when the program ac-
cesses node 1. The number of links depends upon the amount of latency that needs to
be hidden. In this example, the program accesses the nodes using a depth first traversal
starting with the left child. In the picture, the program accesses the nodes in increasing
order from node 1 to node 7. If the program also creates the tree top-down starting with
the left child, then we add the jump-pointers in the forward direction, from a lower num-
bered node to a higher numbered node. We show forward jump-pointers in Figure 4.15. If
the program creates the nodes top-down starting with the right child, then we add jump-
pointers in the reverse direction, from the higher numbered node to the lower numbered
node. Unfortunately, if the program creates the tree bottom-up, then we cannot create ef-
fective jump-pointers for top-down traversals.

Greedy prefetching restricts the amount of latency tolerance by prefetching direct links
only, but does not require an additional field to store the jump-pointer. Jump-pointer pre-
fetching may also reduce the number of prefetches, yet still remain effective. In Figure 4.15

for example, greedy prefetching adds two prefetches for each node reference, but jump-

79

Creation Order

---=Jump Pointer 1234567
. or
— Natural Pointer " 7654321
Q Tree Node Access Order
1234567

Figure 4.15. Jump-Pointer Prefetching: Binary Tree Traversal

pointer prefetching adds only one. Furthermore, jump-pointer prefetching does not pre-
fetch nul | objects at the leaf nodes.

Our compiler automates jump-pointer prefetching by inserting code to initialize and
update the jump-pointers as well as inserting prefetch instructions at appropriate places in

the program. The jump-pointer prefetching scheduling algorithm consists of three steps:

1. Identify linked-structure traversals
2. Schedule prefetches for objects containing jump-pointers

3. Insert the code to create the jump-pointers

Just as with greedy prefetching, we use the recurrence analysis from Chapter 3 to dis-
cover linked-structure traversals. The second step uses the scheduling algorithm in Fig-
ure 4.12 with a couple of minor changes. Instead of generating a prefetch for each recurrent
field at line 8, the compiler generates a prefetch for the jump-pointer field, i.e., pr ef et ch
(0. prefetch). The third step is the major difference between jump-pointer and greedy

prefetching, and we describe it below.

4.3.1 Creating Jump-Pointers
The compiler creates jump-pointers either when an object is created, e.g., using new,

or when traversing a data structure. We use a compiler option to specify the choice. By

80

class Tree

{

i nt

val ue;
Tree left;
Tree right;
Tree prefetch;

static Tree[] junpQueue;

static int junplndex; // used in exanple

static Tree queuePtr; // used in inplenmentation

}

Figure 4.16. Binary Tree Class Definition with Jump-Pointer Field

Tree createTree(int 1)

{

}

if (I ==0) return null;
el se {

}

Tree n = new Tree();

jumpObj = junpQueuelj unpl ndex] ;
junpQj . prefetch = n;

j unpQueue[j unpl ndex++ % si ze] = n;
Tree left = createTree(l-1);

Tree right = createTree(l-1);

n.left =left;
n.right = right;
return n;

Figure 4.17. Inserting Jump-Pointers for a Binary Tree

default, our compiler builds jump-pointers at the object creation site. In our current imple-
mentation, the compiler adds only one jump-pointer field to a recurrent object. We do not
create jump-pointers when linked structures are updated, unless the update occurs while
traversing the linked structure. The effectiveness of jump-pointer prefetching depends on

when and where the compiler creates the jump-pointers. We discuss each choice in detail

below.

Figure 4.16 shows the extra field members that we add to each class that uses jump-

pointers. The pr ef et ch field is the jump-pointer. The initial value for the prefetch field

81

is nul | , although the field may be set to refer to itself instead. We add j unpQueue,
j unpl ndex, and queuePt r as static fields to assist with creating the jump-pointers.
Note that in our implementation we use queuePt r and j unpQueue only. We use the
j unpl ndex field to illustrate the jump-pointer creation process. The fields j unpQueue
and j unpl ndex are static members of the Tr ee class that the class initialization method
allocates and initializes. We initialize each entry in j unpQueue to a special dummy
object. Figure 4.17 shows the code for initializing jump-pointers in a binary tree object
at creation time. The circular queue, j unpQueue, maintains a reference to the last n
objects allocated. The compiler uses a separate circular queue for each class that contains
a jump-pointer.

When an object allocation occurs, the code creates a jump-pointer from the object at
the head of] unpQueue to the new object. Then the code inserts the new object at the end
of j unpQueue, and advances the circular queue index. Currently, our compiler creates
jump-pointers from the j unpQueue object to the current object unless a command line
option specifies the reverse direction. We also use a circular queue when the compiler
updates the jump-pointers during a traversal.

The code sequence in Figure 4.18 replaces the use of j unpQueue and j unpl ndex
with queuePt r, a pointer to the current entry in j unpQueue. The class initialization
method sets queuePt r to the start of j unpQueue. The jump-pointer creation code
sequence is more efficient when it uses one static field member rather than two static field
members. Since the SPARC uses two instructions to load or store a global variable, we
need to minimize the number of references to global variables. An alternative approach is
to use a global register to maintain the jump queue pointer instead of a static field member,
but a program may have several jump queues.

Another efficiency factor is the queue size. The jump-pointer creation code is efficient

only if the queue size is a power of two because the code sequence can use cheap bit

82

1 ; 10 contains the new node

2 ; |1 contains the junp queue ptr

3 ; junp queue contains 8 objects

4 ; prefetch field is |located at offset 20

5 sethi 9%i (queuePtr), %1 ; load the junp queue ptr
6 Id [% 1+% o(queuePtr)], %1 ; (two insts on SPARC)

7 Id [%1],%2 ; |l oad object from queue
8 st % 0, [% 2+20] ; Create junp-pointer

9 st % 2, [% 1+%g0] ; store new obj. in queue
10 add %1,4,%3 ; incr. queue ptr, and

11 and % 3, 31, % 3 ; wap if at end of

12 and %1,-32,%1 ; gqueue

13 or %1,%3,%1

14 sethi 9%i (queuePtr), % 2 ; store the new queue ptr
15 st % 1, [% 2+% o(queuePtr)] ; (two insts on SPARC)

Figure 4.18. Sparc Assembly for Creating Jump-Pointers

mask operations instead of an expensive division operation. Figure 4.18 shows the SPARC
assembly code that the compiler generates when the queue size is a power of two.

Figure 4.18 creates the jump-pointer from the object in the jump queue to the newly
allocated object at line 8. In lines 10 — 13, we increment the queue pointer to the next
location. We use a series of bit operations to ensure that the pointer does not exceed the
queue size.

Figure 4.19 shows two other possible code sequences to create the jump-pointers. The
sequence in Figure 4.19 (a) uses an explicit check to test if the jump queue index needs
to be reset to the start. This sequence is efficient when the size of the jump queue is not
a power of 2. Otherwise, the sequence in Figure 4.17 is more efficient. The sequence in
Figure 4.19 (b) uses separate variables for each element in the jump queue. This approach
mimics a circular queue by copying objects between the variables in a last-in, first-out
manner. This sequence is efficient only if the jump queue size is very small because the

cost of the sequence is proportional to the queue size.

83

jumpQbj = junpQueue[j unpl ndex++] ; junmpQbj 4. prefetch = n;

junmpQbj . prefetch = n; jump@oj 4 = junmpObj 3;
if (junplndex > queueSi ze) { junmpOoj 3 = junpObj 2;
j unpl ndex = O0; jumpOoj 2 = junpObj 1;
} jumpQoj 1 = n;
(@) An explicit check (b) Separate variables

Figure 4.19. Creating Jump-Pointers

4.3.1.1 Object Creation

Adding jump-pointers during object creation is beneficial for data structures with regu-
lar access patterns that do not change frequently. This choice minimizes the run-time cost
because the jump-pointers are created once. Unfortunately, it is not always possible to cre-
ate effective jump-pointers at the creation site. For example, in Figure 4.15, the creation
phase must be preorder, beginning with either the left or right subtree. If the program builds
the tree bottom-up, then the jump-pointers will not be useful. Another problem occurs in
programs that frequently update a linked structure that contains jump-pointers because the

original jump-pointers no longer correspond to the original structure.

4.3.1.2 Traversal

Building jump-pointers during traversals is effective for programs that contain multiple
instances of a linked structure that a program traverses frequently and may also update.
Due to the overhead of maintaining the jump-pointer queue, this approach is less effective
when programs do not change the linked structures, or when the traversal patterns change
frequently, e.g., traversing a list in one direction alternating with a traversal in the reverse
direction. An advantage of initializing the jJump-pointers during traversal is that the code to
create jump-pointers appears locally with the prefetches, which means the compiler does

not need knowledge of the entire program.

84

1 2

4.3.2 Indirect Jump-Pointers

Section 3.3.6 discusses our analysis for discovering indirect recurrent variables. An
indirect recurrent variable is a unshared object that is referenced by a recurrent variable.
We prefetch indirect recurrent variables by creating a second jump-pointer from the re-
current variable to the indirect recurrent variable. We illustrate indirect jump-pointers in
Figure 4.20, which contains a generic linked list (the rectangles) with pointers to the list
elements (the circles). If a program allocates the list objects in order, A, B, C, and D, then
we add jump-pointers as illustrated (1 to C, 2 to D, etc.). When the program traverses the
linked list, we schedule prefetch instructions for the list and element jump-pointers. Greedy
prefetching is unable to prefetch these objects effectively because there are no direct links

between them.

4.3.3 Garbage Collection

Java uses garbage collection for automatic memory management instead of allowing
the user to manage dynamically allocated objects. In this work, we use a generational
copying garbage collector. Garbage collection has a significant impact on our jump-pointer
prefetching implementation. Jump-pointer prefetching adds a field to each object that in-
dicates the object to prefetch. The garbage collector needs to be aware of the field, and
must handle the field specially. When the collector copies an object, it must update the

jump-pointers to point to valid, preferably useful, objects. By updating the jump-pointers,

85

the collector can potentially improve the effectiveness of the jump-pointers. We discuss the
relationship between the collector and prefetching in more detail in Chapter 6.

The garbage collector computes which objects are live and reclaims the rest of the
objects. It then uses the reclaimed memory for future allocations. The collector computes
the live objects by identifying an initial set of root objects as live, and then the collector
traces all the objects reachable from the root objects by following the pointer fields of each
reachable object. It is important that the collector does not trace the jump-pointer fields.
If the only reference to an object is through the jump-pointer, then the collector should
identify the object as dead (unreachable) and reclaim the space. A memory leak occurs if
the collector identifies the referent of a jump-pointer as live. If a jump-pointer refers to
a dead objects, then the collector must set the jump-pointer to refer to a live, preferably
useful, object.

During a collection, a copying garbage collector moves all the live objects to a new
region of memory. A copying garbage collector must update the jump-pointers to contain
references to the objects in the new region. Otherwise, the jump-pointers become invalid
because they point to unallocated data. We solve the jump-pointer problem by treating the
collector as a traversal phase. We add code to the collector to re-initialize the jump-pointers
using a jump-pointer queue. As the collector copies objects, it creates a jump-pointer from
an object on the queue to the copied object, and then inserts the copied object into the

queue.

4.4 Stride Prefetching

In this section, we discuss stride prefetching for linked structures. Stride prefetching
generates a prefetch for an address n bytes ahead or behind the current object in a linked-
structure traversal. Stride prefetching works when a linked structure is laid out in con-
secutive memory locations. Unlike greedy prefetching or jump-pointer prefetching, stride

prefetching does not access any fields of the linked structure to perform a prefetch.

86

while (o !'= null) {
0. conpute();
0 = 0.next();
prefetch(o+64);

}
Figure 4.21. Example of Stride Prefetching

Stride prefetching is able to tolerate any amount of latency, but the program may never
access the address that is prefetched. If the linked structure is not laid out in consecutive
locations, then stride prefetching may potentially hurt performance by bringing in useless
cache lines that may displace useful data. Stride prefetching exploits the characteristic that
programs often co-locate objects in the same linked structure. In a garbage collected envi-
ronment, stride prefetching is potentially more effective when the collector uses a copying
algorithm that naturally groups together objects in the same linked structure.

The stride prefetch algorithm consists of two steps:

1. Identify linked structure traversals

2. Insert a prefetch for n bytes ahead (or behind)

We use the recurrence analysis from Chapter 3 to discover the linked structure traver-
sals. The second step inserts a prefetch immediately after the field reference statement that
performs the structure traversal.

Figure 4.21 illustrates stride prefetching for a linked list. In the example, the compiler
generates a prefetch for the address 64 bytes ahead of the current object. By default, the
algorithm generates a prefetch using a positive value. The prefetch may be more effective if
the prefetch distance is a negative value. For example, if a program adds new objects to the
beginning of a linked list, then the addresses of the objects in the list most likely decrease
during a traversal, but this depends upon the allocator. When the compiler performs inter-
procedural analysis, it uses a heuristic to classify the memory order of the objects in the

list. The heuristic examines how a program inserts a new object into a linked structure. If

87

the program assigns the new object to the linked structure, then the compiler uses a positive
distance. If the program assigns the linked structure to the new object, then the compiler

uses a negative distance.

4.5 Implementation in Vortex

We implement the recurrence analysis and prefetching algorithms in Vortex, an opti-
mizing compiler for object-oriented programs. We briefly describe Vortex in Section 2.5.
In this section, we describe the implementation details and our extensions. Figure 4.22
presents a high level overview of the compiler with our extensions. We list our extensions

in bold.

45.1 Interprocedural Analysis

The first main phase of the compiler is interprocedural analysis. Vortex performs inter-
procedural analysis using the entire program. Vortex contains an interprocedural data-flow
analysis framework for performing whole program optimizations. The framework presents
a uniform interface that allows a compiler writer to define interprocedural optimizations
conveniently. Using the framework, the compiler writer can specify the context-sensitivity
and flow-sensitivity. An important part of the framework is that it allows the compiler writer
to define an interprocedural analysis using the intraprocedural analysis as a component. We
discuss the intraprocedural data-flow analysis framework in detail in Section 4.5.2. The in-
terprocedural analysis algorithm operates on the program call graph, starting at the main
node.

To perform a interprocedural analysis and optimization, Vortex must first create a call
graph of the program. The call graph is a representation of calling relationships between
the procedures, or methods, in the programs. The graph contains a node for each procedure,
and a directed edge between two nodes indicates that one procedure may call the other. For

example, if procedure A calls procedure B, then the call graph contains an edge from the

88

Java Cecil

C++ Modula—-3

Vortex IL '

Call graph computation
(class analysis)
Constant propagation

Escape analysis

Array size analysis
Field analysis
Recurrence analysis
Prefetch scheduling
Add prefetch hints

for each

file

Vi

Inlining
CSE

Splitting

Compute loops
Class analysis

Constant prop.

Recurrence analysis
Prefetch
Greedy
Jump-pointer
Stride
Array

Dead assignments

Lower IL

CSE

Dead assignments
Write barrier elim.

Lower IL

CSE
Dead assignments
Allocate registers
Scheduling

Code generation

Assembly level

Sparc assembly

Interprocedural
Optimization

Framework

High Level
Intraprocedural
Optimization
Framework

Low Level
Intraprocedural
Optimization
Framework

Low Level
Intraprocedural
Optimization
Framework

Figure 4.22. Overview of the Vortex Compiler: With Our Extensions

89

node representing A to the node representing B. In some languages, such as C or Fortran,
creating the call graph is fairly simple and straightforward, except when C programs use
function pointers frequently. The program source indicates the specific target for each
procedure call. In object-oriented languages, the call graph may be more difficult to create
accurately due to virtual method calls. For a virtual call, the target may not be known until
run time. When the exact target is not known, the call graph must conservatively include
edges to all potential targets.

\ortex analyzes the program to reduce the number of potential targets of a method call,
which reduces the size of the call graph. The benefit of a more accurate call graph is that
interprocedural optimizations are more efficient. Vortex contains a set of algorithms for
constructing the call graph that vary in complexity and accuracy. The default class analysis
algorithm in Vortex is 0-CFA (zero-order control-flow analysis) [95]. Shivers originally
defined the k-CFA algorithm for Scheme programs. The algorithm is flow sensitive, and
the algorithm is context insensitive when k is 0. Larger values for k indicate the degree
of context sensitivity. The 0-CFA algorithm performs an iterative data- and control-flow
analysis of the program when constructing the call graph. The algorithm propagates type
information available in the program to compute potential callees at each call site. In
practice the algorithm works well and is reasonably fast for large programs.

After performing call graph analysis, Vortex performs interprocedural analysis by it-
erating over the call graph. Vortex implements several interprocedural algorithms includ-
ing constant propagation, escape analysis, and mod/ref analysis. We implement several
new interprocedural analysis phases, including array size analysis, shared object analy-
sis, recurrence analysis, and prefetch scheduling. We describe the array size analysis in
Section 3.4.2, the shared object analysis in Section 3.4.1, the recurrence analysis in Sec-
tion 3.3.3, and the prefetch scheduling algorithms in the previous sections of this chapter.

Each interprocedural analysis may be run independently of the others using command

line options. We group some of the optimizations together when running the compiler.

90

When we run array size analysis, we also run interprocedural constant propagation. Oth-
erwise we are unable to identify array sizes accurately. When we perform interprocedural
linked-structure prefetching, we also run the array size analysis to help identify prefetch op-
portunities. Of course, we first perform interprocedural recurrence analysis when running
any of the interprocedural prefetch algorithms.

The interprocedural optimizations do not actually make changes to the intermediate
representation. An interprocedural analysis records analysis information in a separate data
structure that Vortex uses during the intraprocedural analysis phase of the compiler. Since
an interprocedural analysis uses the intraprocedural analysis as a component, incorporat-
ing the interprocedural results is straightforward. In general, the interprocedural analysis

records information about the method formal parameters and return values.

4.5.2 Intraprocedural Data-Flow Analysis and Optimization

\ortex operates on each file, i.e., Java class, separately after the interprocedural phase.
The user may specify different compilation levels and enable/disable specific optimizations
for each file. The intraprocedural compilation step consists of several phases starting with
a high-level representation and successively lowering the representation until code gener-
ation. During each phase the compiler performs a set of optimizations using a data-flow
analysis framework.

We describe the foundations of data-flow analysis in Section 2.3. The data-flow frame-
work in Vortex is general and parameterizable. The compiler writer describes the following

information about a specific data-flow analysis problem:

e A data structure to represent the data-flow information, e.g., a bit vector
e The join operator to combine data-flow information, e.g., bit vector OR

e A function that returns true once the analysis reaches a fixed point, e.g., checking if

the bit vector changes

91

e Transfer functions for each appropriate statement type
e The direction of the analysis, either forward or backward

e The flow sensitivity of the analysis, either flow-sensitive or flow-insensitive

The analysis framework iterates over the control-flow graph and calls the user-supplied
transfer function for each appropriate statement. The framework applies the identify trans-
fer function to all other statements. The framework allows the transfer functions to modify

the flow graph during an analysis.

45.2.1 High-Level Optimization

Vortex initially performs several optimizations on the high-level intermediate repre-
sentation. The first step is to analyze each method to identify loops using a dominator
algorithm. When the user specifies the highest level of optimization, Vortex performs the

following optimizations during a single pass:
e Class analysis and method inlining
e Common subexpression elimination, with constant and copy propagation
e Splitting

The goal of class analysis is to analyze the program in order to convert virtual method
calls to direct calls. Since class analysis determines which method calls can be direct, it is
also responsible for inlining appropriate methods. Vortex uses several heuristics, including
a cost model that depends upon the method’s expressions, to determine the direct method
calls to inline. Class analysis works by propagating type information throughout a method.
Many statements in a method provide explicit type information, such as new expressions

that create objects of a specific type.

92

The common subexpression elimination (CSE) phase performs constant and copy prop-
agation as well as removing redundant expressions. The CSE algorithm uses value num-
bering to compute equivalent expressions. CSE also attempts to eliminate redundant load
and store expressions whenever it is safe. As part of constant propagation, the CSE phase
eliminates branches when the outcome of the branch is a known constant value.

Splitting is a technique that eliminates redundant type tests. Prior to a virtual method
call, Vortex inserts a type test that checks the object type of the method call, i.e., message
send. The type test enables Vortex to generate a direct method call instead of an indirect call
because the type of the callee, i.e., receiver, is known. If a program contains several method
calls to the same object, then Vortex generates the same type test prior to each call. Vortex
uses a forward type propagation data-flow analysis to determine when it is possible to apply
splitting. At each type test, the analysis checks if a prior control flow merge includes the
type as a possible data-flow value. If so, then the compiler attempts to move the statements
below the current type test to the prior type test. Vortex’s implementation of splitting does
not support splitting past a loop node.

\ortex runs the recurrence analysis and prefetch scheduling algorithms during the high-
level optimization phase. We implement the recurrence analysis and prefetch optimization
as a single data-flow analysis pass. As the recurrence analysis discovers linked structures
or induction variables, the prefetch optimization uses the information to insert prefetch
instructions appropriately. The prefetch optimizations also require type information, so
Vortex runs the prefetch algorithm with class analysis, if class analysis has not yet been
performed.

Vortex performs dead-assignment elimination once all the major optimizations and
analyses are done. Dead-assignment elimination performs a reverse pass over the control-
flow graph. The optimization eliminates a statement if the left hand side value is never used

again, and the right hand side does not cause an exception.

93

45.2.2 Low-Level Optimization |

After performing the high-level optimizations, Vortex converts some of the high-level
operations in the intermediate representation to a low-level form. The main reason for the
conversion is to prepare the compiler to generate C code. The compiler stills performs
the lowering even when generating assembly language. The lowering phase uses the data-
flow analysis framework to traverse the intermediate representation and replace nodes. The
lowering is a single pass and does not require a data-flow meet operator.

Lowering is mainly responsible for cleaning up the intermediate representation after
applying the high-level optimizations. The lowering phase eliminates some type tests and
lowers operations that are specific to Cecil and Modula-3.

After lowering the representation, Vortex runs another set of optimizations. It performs
common subexpression elimination, dead-store elimination, dead-assignment elimination,
and write-barrier elimination. Dead-store elimination attempts to delete useless store and
load instructions. This is different from dead-assignment elimination, which attempts to
delete the results of useless computations. Dead-store elimination also performs a reverse
pass over the control-flow graph and records the memory locations at each store and load
instruction.

Vortex eliminates unnecessary write-barrier code sequences during this compilation
phase. Vortex generates a write barrier for each pointer store instruction when the com-
piler generates assembly language and uses the generational garbage collector. The write
barrier keeps track of references from older generations to younger generations. It is not
necessary to generate a write barrier if the modified object is already in the youngest gen-
eration. The write-barrier elimination optimization indicates that the write barrier is not

necessary when the source object is known to be in the nursery.

94

45.2.3 Low-Level Optimization Il

When generating assembly language, Vortex lowers the intermediate representation in
preparation for code generation. The goal of this lowering pass is to create a single node
in the intermediate representation for each machine instruction. The lowering translates all
high-level nodes, such as array references and object creation operations, into a sequence
of low-level operations.

Vortex performs a series of optimizations on the lowered representation because the
lowering may expose more optimization opportunities. The optimizations include common
subexpression elimination, dead-store elimination, and dead-assignment elimination.

Vortex performs global register allocation and scheduling on this representation. The
global register allocation implementation is based upon Briggs et al.’s algorithm [13]. The
global register allocator creates an interference graph and assigns registers using a graph
coloring algorithm. The algorithm spills registers to the stack as necessary. After per-
forming register allocation, Vortex traverses the intermediate representation, adds moves,
loads and stores, and replaces variables with physical registers. The scheduling phase is
very simple and only tries to fill the delay slot of branch instructions on processors that use

delay stots.

45.2.4 Code Generation

The final phase of the compiler generates SPARC assembly language. The code gener-
ator is straightforward because each node in the internal representation represents roughly
one instruction. The code generator is responsible for choosing the correct instruction
based upon the node type. In some cases, the code generator must generate a sequence of
instructions. For example, the code generator generates a write-barrier sequence for each

pointer store that needs one.

95

1 let ra := pair(new recurrence_info(),

2 &(n: RTL, data flow_ info:recurrence_info){
3 n.find _recurrences(data_fl ow_ i nfo)

4 1)

5 -- add interprocedural recurrence information

6 let pf := pair(new _greedy_schedul e_info(),

7 &(n: RTL, data_flow_info:schedule_info) {
8 n. schedul e_prefetch(data_fl ow_ i nfo)

9 1

10 traverse(cfg, forward, iterative,

11 new _conposed_anal ysis([ra, pf]),

12 &(n: RTL, ca:conposed_anal ysis_info) {

13 n. process(ca);

14 1)

Figure 4.23. Example of Prefetch Optimization in Vortex

The code generator is responsible for generating the assembly directives for global
variables, procedures, and other miscellaneous structures. The output of the code generator

is a file containing valid assembly code for the SPARC assembler.

4.5.3 Implementation of Prefetching
In this section, we describe some details of our prefetch implementation in the Vortex

infrastructure. Each of our prefetch algorithms has a similar form:
e Identify prefetch opportunities
e Schedule prefetch instructions

We use our recurrence analysis from Chapter 3 to discover the prefetching opportunities
and the prefetch algorithms from this chapter to schedule prefetch instructions. Although
these two steps are logically distinct, we run them together during a single pass of the
control-flow graph. In Vortex, we create a composable analysis with the recurrence analysis
and a specific prefetch optimization.

Figure 4.23 illustrates the use of the composable analysis in Vortex. We show the code

example in Cecil. The & operator defines a closure. In our code example, we define three

96

Pr ef et ch_Schedul er

AN

Array G eedy Jurrp Poi nt er Stride

Flgure 4.24. Class Hlerarchy for Prefetchlng

closures that each take two parameters. The closures call the transfer functions for the
specific data-flow analysis problem.

We create a recurrence analysis object at line 1. The recurrence analysis object is a
pair of objects. The first element is a data-flow analysis object specific to the recurrence
analysis algorithm. This object defines the information that we describe in Section 4.5.2.
The second element is a closure that is executed at each statement. At line 5, we add
interprocedural information to the recurrence object, but we exclude the actual code from
the figure.

Line 6 defines the data-flow object to perform prefetching. We create a greedy prefetch
object to perform the scheduling. We perform jump-pointer prefetching, stride prefetching,
or array prefetching by changing line 6 to newj unp_poi nt er schedul ei nfo(),
new.st ri de_schedul e_i nfo(),ornew.array_schedul e_.i nfo(), respectively.

Line 10 performs the composed intraprocedural analysis involving the recurrence anal-
ysis and greedy prefetching optimization. We specify a forward, iterative traversal over
the control-flow graph. At each statement, t r aver se calls the closure that contains the
call to pr ocess. The pr ocess method first calls the closure containing the recurrence
analysis, i.e., f i nd_r ecur r ences, and then calls the closure containing the prefetch op-
timization, ie schedul e_pr ef et ches, for each statement. We specify the analyses that

the t r aver se method performs in an array at line 11.

97

In our implementation, we define an abstract prefetch scheduling class. Each specific
prefetch implementation inherits from the abstract class. Figure 4.24 illustrates the class
hierarchy we implement in Vortex. The Pr ef et ch_Schedul er abstract class defines
methods to perform prefetching. The Gr eedy, Junp_Poi nter, Stri de, and Arr ay
classes are subclasses that implement the prefetch algorithms. We implement the schedul-
ing algorithms as data-flow analysis passes. The abstract class maintains a data structure
to keep track of the variables that become recurrent. The different concrete scheduling
algorithms implement the heuristics for a particular algorithm. For example, the greedy
prefetch scheduling algorithm generates a prefetch for the recurrent field after determining
that the object cannot be null. The array prefetching scheduler generates a prefetch when
an induction variable is used in an array reference. We are able to run different prefetch-
ing algorithms at the same time by composing them in the data-flow analysis framework.
For example, we prefetch arrays and perform greedy prefetching by creating a composable

analysis with the array prefetching scheduler and greedy prefetching scheduler objects.

4.6 Chapter Summary

In this chapter, we describe the implementation of our new array prefetching algorithm,
and three linked-structure prefetching algorithms. The linked-structure prefetching algo-
rithms are greedy prefetching, jump-pointer prefetching, and stride prefetching. The overall
structure of the prefetch algorithms are similar and require two steps each. In the first step,
the compiler identifies the recurrences in the program using the recurrence analysis from
Chapter 3. The second step schedules the prefetch instructions. The different algorithms
perform different actions to schedule the prefetches. Jump-pointer prefetching requires a
third step to initialize the jump-pointers.

We also describe the implementation of the prefetch schemes in Vortex, an optimizing
compiler for object-oriented languages. We describe the overall structure of the compiler,

and we discuss the changes to the compiler to add the prefetching algorithms. The im-

98

plementation requires changes in the interprocedural and intraprocedural compiler phases.
Although the prefetch algorithms appear to be quite different, the compiler shares a large

amount of code between the prefetch implementations.

99

CHAPTER5
EXPERIMENTAL RESULTS

In this chapter, we evaluate the effectiveness of array and linked-structure prefetching.
We first describe our experimental methodology in Section 5.1. We present results for
array prefetching and linked-structure prefetching in Sections 5.2 and 5.3, respectively.
For linked-structure prefetching, we present results for greedy prefetching, jump-pointer
prefetching, and stride prefetching separately. At the end Section 5.3, we directly compare
the results of the three different linked-structure prefetching techniques. In Section 5.4, we
vary several architecture parameters to evaluate the effectiveness of prefetching on a range
of architectures.

We show that array and linked-structure prefetching are effective techniques for im-
proving the performance of Java programs. Our array prefetch algorithm produces large
performance improvements. Array prefetching reduces the execution time in our bench-
marks by a geometric mean® of 23%. The results show that complex analysis and loop
transformations are not necessary to generate useful prefetch instructions for arrays. The
linked-structure prefetch optimizations reduce execution time by a geometric mean of 5%,
10%, and 9% for greedy, jump-pointer, and stride prefetching, respectively. The linked-
structure prefetch techniques produce improvements in programs that traverse large linked
structures in a regular manner. However, generating effective prefetches for short linked

structures is difficult.

LWe use the geometric mean because we compute the mean of normalized execution times.

100

5.1 Methodology

As we describe in Section 4.5, we use Vortex to compile our Java programs, perform
object-oriented and traditional optimizations, and generate SPARC assembly code. Since
\ortex reads Java class files (i.e., byte codes) as input, and not Java source files, we compile
the Java programs using JDK 1.1.6.

We evaluate our prefetching algorithms using programs from the Jama library [46], the
Java Grande benchmark suite [14], and a Java version of the Olden benchmark suite [17].
We evaluate array prefetching using the Jama library and Java Grande programs. The Jama
library provides Java classes for performing basic linear algebra operations on dense ma-
trices. The Java Grande benchmark suite is a set of programs for evaluating a variety of
Java applications. We use the kernel programs from Section 2 of the sequential bench-
marks. These programs operate mostly on large array data structures. We use the Olden
benchmarks to evaluate the linked structure prefetching techniques. The Olden benchmark
suite contains ten small programs that manipulate linked structures. The original Olden
programs were written in C and used to evaluate parallel compiler techniques for linked
structures. Other researchers use the C versions to evaluate optimizations, including pre-
fetching, for pointer-based programs [25, 70, 90].

We use RSIM, the Rice Simulator for ILP Multiprocessors, to perform detailed cycle
by cycle simulation of the programs. We summarize RSIM’s processor model here, but we
refer the reader to the RSIM Reference Manual [84] for more details. RSIM contains archi-
tecture features to exploit instruction level parallelism (ILP) aggressively. RSIM models a
uniprocessor or shared-memory multiprocessor, but we use the uniprocessor configurations
only. The key features of the processor model include superscalar execution, out-of-order
scheduling, register renaming, dynamic branch prediction, non-blocking loads and stores,
and speculative load execution. The key memory hierarchy features include two levels of
cache, multiported and pipelined L1 cache, pipelined L2 cache, multiple outstanding cache

requests, memory interleaving, and software prefetching.

101

The RSIM processor model is most similar to the MIPS R10000 [121]. RSIM models
the R10000 active instruction list, register map table, and shadow mappers. The active
instruction list, also known as a reorder buffer or instruction window, contains the current
instructions that the processor can schedule dynamically. The register map table maintains
a mapping between the logical and physical registers. The shadow mappers maintain the
register state at branches to allow quick recovery on mispredictions. A main difference
between RSIM and the R10000 is that RSIM executes the SPARC instruction set, which
uses a register window mechanism that the R10000 does not implement.

The RSIM pipeline contains five stages: fetch, decode, issue, execute, and complete.
The fetch and decode stages process instructions in program order, but the issue, execute,
and complete stages may process the instructions out-of-order. Instructions graduate in-
order after passing through all five stages, which enables RSIM to implement precise ex-
ceptions.

RSIM allows many of the processor and memory features to be configurable at simu-
lation time. Table 5.1 lists many of the interesting simulation parameters that we use to
obtain the base results. We refer the reader to the RSIM Reference Manual to obtain the
complete list of parameters. We vary several of the memory parameters in Section 5.4.

We configure RSIM to fetch and graduate a maximum of four instructions per cycle.
Our processor configuration contains two ALU, two FPU, and two address generation func-
tional units. RSIM uses a two-bit history branch predictor that contains up to 512 counters.
RSIM uses eight shadow mappers, which restricts the number of outstanding branches to
eight.

Table 5.1 lists the latencies for the ALU and FPU instructions. The floating point con-
version and division instructions have a repeat delay also. The repeat delay is the number
of cycles that the processor must wait until using the functional unit after the instruction

completes.

102

Table 5.1. Simulation Parameters

Processor parameters

Issue width

Pipeline stages

Active list size

Memory queue size
Functional units

Branch predication
Outstanding branches
Integer multiplication
Integer division

Other integer operations
Floating point mult,add,sub
Floating point conversion
Floating point div,sqrt

4
5

64 instructions

16 entries

2 ALU, 2 FPU, 2 Addr

2-bit history predictor

8

3 cycles

9 cycles

1 cycle

3 cycles

5 cycles, 2 cycle repeat delay
10 cycles, 6 cycle repeat delay

Memory hierarchy parameters

L1 cache
L2 cache

Write buffer size

Miss handlers (MSHR)
L1 hit time

L2 hit time

Memory hit time
Memory banks

Bus width

Bus cycle time

32KB, 32B line

direct, write through, 2 ports
256KB, 32B line

4-way, write back, 1 port
8 entries

8L1,8L2

1 cycle

12 cycles

60 cycles

4-way interleaved

32 bytes

3 cycles

103

RSIM supports non-blocking load and store instructions that may execute out-of-order,
but they must appear to execute in-order. RSIM uses miss status holding registers (MSHRS)
to maintain information about outstanding requests. RSIM uses a coalescing write buffer
for stores. RSIM implements a software prefetch instruction, which brings one cache line
into the L1 cache.

The L1 cache is write-through with a no allocate policy. The L1 cache has two ports,
which means that two accesses can occur concurrently. The L2 cache is write-back with a
write-allocate policy. The L2 cache maintains inclusion with the L1 cache. The L1 and L2
cache line size is 32 bytes. The memory is interleaved and we configure the memory with
four banks.

The main metric we obtain from RSIM is execution time in cycles. RSIM divides the
execution time in to busy time and memory stall time. The memory stall time includes both
load and store instructions, but most of the time is due to load instructions. The busy time
includes all other execution cycles, including branches and multi-cycle arithmetic opera-
tions. In a processor with ILP, dividing the execution time is not straightforward because
instructions may overlap. RSIM counts a cycle as a memory stall if the first instruction that
the processor cannot retire in a cycle is a load or store. Otherwise RSIM counts the cycle

as busy time.

5.2 Array Prefetching

We evaluate array prefetching using scientific library routines in the Jama package [46],
and programs from Section 2 of the Java Grande benchmark suite [14]. Table 5.2 lists the
benchmarks we use in our experiments, along with some characteristics of each program.
In several Java Grande benchmarks, we use input sizes other than the suggested size in
order to complete our simulations within a reasonable time limit. We exclude seri es

because it does not use an array as a main data structure.

104

Normalized Execution Time (%)

Normalized Busy/Memory Time (%)

100

80—

60—

20

100

80

60

20

N P N P N P N P N P N P N P N P N P N P N P N P

cholesky eigen Iufactl matmult grd svd crypt fft heapsort lufact2 sor sparse
Figure 5.1. Array Prefetching Performance

N P N P N P N P N P N P N P N P N P N P N P N P

cholesky eigen lufactl matmult qrd svd crypt fft heapsort lufact2 sor sparse

Figure 5.2. Effect of Array Prefetching on Busy/Memory Time

105

mm busy
=3 memory

N: no prefetch
P: prefetch

=m busy
=3 memory

N: no prefetch
P: prefetch

Table 5.2. Array-based Benchmark Programs

. Inst.
Name Description Inputs lssued
Jama library
cholesky | Cholesky decomposition 300x300 matrix 1381 M
eigen Eigenvalue decomposition 250%x250 matrix 1675 M
lufactl LU factorization 300x300 matrix 1570 M
matmult | Matrix multiply 400x400 matrix 1744 M
grd QR factorization 400x400 matrix 1811 M
svd Singular value decomposition | 300x300 matrix 5733 M
Java Grande
crypt IDEA Encryption 250000 elements 2500 M
fft FFT 262144 elements 1828 M
heapsort | Sorting 1000000 integers 2916 M
lufact2 LU factorization 500x500 matrix 1167 M
sor SOR relaxation 1000x1000 matrix 6972 M
sparse Sparse matrix multiply 1250012500 matrix | 815 M

Figure 5.1 presents the results of array prefetching (P) on our programs. We specify a
prefetch distance of twenty elements as a compile-time option. We normalize the execution
times to those without prefetching (N). Figure 5.2 normalizes the busy and memory stall
times for each program. This graph shows how prefetching changes the amount of time that
each program spends waiting for memory stalls. The six programs on the left side are part
of the Jama library, and the other six programs are Java Grande benchmarks. We divide
execution time into the amount of time spent waiting for memory requests, and the amount
of time the processor is busy using the methodology described in Section 5.1.

Figure 5.1 shows that these programs spend a large fraction of time waiting for memory
requests. Seven of the twelve programs spend at least 50% of execution time waiting for
memory requests. Clearly, these programs have substantial room for improvement.

We see improvements in six programs, performance degrades in four programs, and
there is no change in two programs. Across all programs, prefetching reduces the execution
time by a geometric mean of 23%. The largest improvement occurs in | uf act 2 where

prefetching reduces the execution time by 58%. In five of the programs, prefetching reduces

106

the execution time by more than 30%. Prefetching increases execution time in f ft by
13% due to a large number of conflict misses. In Section 5.2.3, we show that prefetching
improves the performance of a different FFT implementation, which is faster than the Java
Grande version.

Prefetching results in large improvements in chol esky, | ufact 1, mat mul t , | u-
fact 2, and sor . The performance improvement is due to memory stall reduction. In the
programs that improve significantly, the amount of time spent stalling due to memory re-
quests decreases substantially. Prefetching eliminates almost all the memory stalls in sor ,
chol esky, | ufact 1,and | uf act 2.

Prefetching does not have any effect on crypt or heapsort. The time spent on
memory stalls in cr ypt is less than 1% of total execution time, so we do not expect to see
any performance improvement. The access pattern in heapsor t is not regular and is data
dependent. It is difficult to improve heapsor t using prefetching.

Software prefetching increases the number of executed instructions. The amount of
busy time in the programs tends to increase slightly. The additional functional units in a
superscalar processor are able to hide the cost of the additional instructions due to available
functional units.

In summary, compile-time data prefetching is effective on array-based programs, even
without loop transformations and array dependence information. Our results show that
generating prefetches for array references that contain induction variables improves per-
formance substantially. We now explore in more detail how array prefetching achieves its

improvements.

5.2.1 Prefetch Effectiveness
Figure 5.3 categorizes the dynamic L1 prefetches as useful, late, early, or unnecessary.
We describe the meaning of these categories in Section 2.2.1.1. Figure 5.3 shows that the

percentage of useful prefetches does not need to be large to improve performance. The

107

100 — = useful = late = early =m unnec.

80

60 —

Per centage of prefetches
I

20

L |
Ch()l%ke}/gelr%J facr%[tmulgrd svd crypt fft1 i’ actzsorsparse
Figure 5.3. Array Prefetch Effectiveness

number of useful prefetches is less than 16% in each program, except for f ft. In the
program which the largest improvement, | uf act 2, the number of useful prefetches is just
12%.

Only mat nul t has a noticeable number of late prefetches. We can slightly improve
performance in mat mul t by increasing the prefetch distance which reduces the number of
late prefetches. The program with the largest number of useful prefetches, f f t , is also the
program with the worst overall performance. The large number of early prefetches results
in poor performance. The early prefetches are due to conflict misses, which we discuss in
more detail in Section 5.2.3. Another potential source of early prefetches is due to using a
prefetch distance that is too large, but we do not see this effect in our programs.

Figure 5.3 shows that using a twenty element compile-time prefetch distance is effective
in achieving most of the performance gains. The prefetch distance is large enough to bring
data into the cache when needed, and small enough so that the data is not evicted prior to
the demand request. We do not see a compelling reason to use more sophisticated analysis
to determine the appropriate prefetch distance automatically. Section 5.2.4 shows that the

results are stable when we vary the prefetch distance.

108

Table 5.3. Array Static and Dynamic Prefetch Statistics

. Dynamic Bus Utilization
Program | Static total prefetches prefetches/read N P
cholesky 32 97374473 10% | 13% 28%
eigen 153 47214494 10% 8% 8%
lufactl 36 48721596 12% | 13% 24%
matmult 22 77693667 38% | 21% 31%
qrd 20 40771107 9% 9% 9%
svd 74 134700673 9% | 10% 10%
crypt 31 500794 3% | 01% 0.1%
fft 37 7159698 12% | 16% 16 %
heapsort 27 1442004 0.3% 9% 9%
lufact2 50 55797 568 25% | 17% 39%
sor 30 224896 104 16% | 11% 20%
sparse 29 24234710 19% | 20% 24%

Table 5.3 lists statistics about the static and dynamic prefetches. The static prefetch
value is the number of prefetch instructions that the compiler generates. We present the
number of dynamic prefetch instructions executed, and the percentage of dynamic pre-
fetches relative to the number of dynamic load instructions. The largest percentage of
dynamic prefetches occurs in mat mul t because most of the execution time is spent in a
short inner loop. The small number of prefetches in heapsort is one reason that pre-
fetching is ineffective. It is difficult to generate effective prefetches in heapsort because
the array access pattern is data dependent and irregular.

Table 5.3 also shows the bus utilization values with (P) and without prefetching (N).
Prefetching does increase the bus utilization. In some cases, the utilization percentages
double, but the bus utilization in these programs remains under 40% even with prefetching.
The main reason for the utilization increase is that the execution time decreases substan-

tially. Except for f f t , prefetching uses the data brought into the cache effectively.

109

Miss Rate

Miss Rate

1.0

0.8 1

0.6
m no prefetch
@ prefetch

0.4 H

0.2 1

0.0 -
% % e o % Y, U T A e Y

o 9. 9. R o o L, ’%@
% %, A SN

Figure 5.4. L1 Cache Miss Rate (Array Prefetching)

10

0.8

0.6
m no prefetch
@ prefetch

0.4

0.2 1

0.0 -
. 7
Q}O/ % (% Q/b ‘SLJ O{L 75 6%0

2% Y Y W
% > Ry,
Q‘ﬁ%%%& ! Y

®

Figure 5.5. L2 Cache Miss Rate (Array Prefetching)

5.2.2 Cache Statistics
The cache miss rate is a useful metric to illustrate the benefits of prefetching. Fig-
ures 5.4 and 5.5 show the L1 and L2 cache miss rates, respectively. Effective prefetching
improves the miss rate by moving data into the cache prior to the demand request.
The miss rates vary considerably in our benchmark programs. The L1 miss rates are
much better than the L2 miss rates for most programs. When computing the L2 miss rate
we count only the references that miss in the L1 cache. The number of references to the L2

cache is far less than the number of references to the L1 cache in most programs.

110

The L1 miss rate varies from almost 0% to just under 50%. The L2 miss rate varies
from 6% to 98%. Over 50% of the references that miss in the L1 cache also miss in the L2
cache for several programs. It is possible to increase the cache sizes to improve the miss
rates. We find that increasing the cache size tends to improve prefetching slightly, until the
data fits in cache.

Prefetching effectiveness does not correspond to high or low miss rates. Prefetching
improves or does not affect the L1 miss rate in each program. In the programs with the
largest execution time improvements, we see significant miss rate reductions. Prefetching
almost completely eliminates L1 cache misses in sor by reducing the miss rate from 38%
to 1%. Prefetching improves the L1 miss rate in each program, and the L2 miss rate in
most programs. The L2 miss rate is slightly worse in several programs because there are
fewer L2 references, but the percentage of references that miss is higher.

Improving the miss rate does not always correspond to execution time improvements.
We see a significant improvement in the L1 and L2 miss rates for f f t even though pre-
fetching increases the execution time. The problem is due to conflict misses, which we

discuss in the next section.

5.2.3 Conflict Misses

Performance degrades by 13% in f f t due to a large number of cache conflict misses.
The implementation uses the radix-2 algorithm, which computes results in-place using a
single dimension array. The size of the array, and the strides through the array are powers
of two. For large arrays, the power of two stride values cause the conflict misses. Without
prefetching, 7% of the read references cause conflict misses in the L1 cache, and 37% of the
read references in the L2 cache cause conflict misses. Prefetching exacerbates the problem
by increasing the number of conflict misses. With prefetching, 8% and 34% of the read
references cause conflict misses in the L1 and L2 cache, respectively. Due to a power of

two prefetch distance, the prefetches evict data that are prefetched in prior iterations.

111

=

o

o
|

| busy
[=—oo01 memory

Normalized Execution Time
(o]
o
L.

N P N P
radix-2 mixed

Figure 5.6. Comparing FFT Implementations

We also evaluate prefetching using a mixed radix implementation of FFT and compare
the performance to the radix-2 implementation. The mixed radix version is a more complex
algorithm which requires additional storage. We compare the two FFT versions in Fig-
ure 5.6. We present results with and without prefetching for the two implementations. We
normalize each result in Figure 5.6 to r adi x- 2 with prefetching. The bars for r adi x- 2
on the left side are the same results shown in Figure 5.1. Our results show that m xed
is 34% faster than r adi x- 2 and, furthermore, prefetching improves the performance of
m xed by 10% over m xed without prefetching.

We made a change to the garbage collector to reduce the occurrence of conflict misses
in two of the programs. Vortex uses the UMass Language-Independent Garbage Collector
Toolkit for memory management [49]. The generational collector allocates memory in
fixed-sized 64 KB blocks. Each generation may contain multiple blocks. Our collector
contains a large object space for objects larger than 512 bytes. The initial large object space
implementation allocated very large arrays in new blocks aligned on a 64 KB boundary.
This allocation strategy results in many unnecessary conflict misses when programs access

multiple large arrays at the same time. We fix the problem by adding a small number of pad

112

Table 5.4. Effect of Prefetch Distance on Prefetching (Execution Times Normalized to No
Prefetching)

Prefetch Distance
Program 5 10 20 30
cholesky 52 48 48 49
eigen 101 102 102 102
lufactl 57 54 55 55
matmult 7 72 67 67
grd 99 100 101 101
svd 101 101 101 101
crypt 100 100 100 100
fft 108 111 113 110
heapsort 100 100 100 100
lufact2 53 41 43 44
sor 58 54 54 54
sparse % 85 85 85

Geom.Mean | 80 77 77 77|

bytes? to the beginning of each large object. The pad bytes eliminate conflict misses and
result in improvements in spar se and gr d. Without the pad bytes, prefetching actually
degrades performance by a few percent. The pad bytes do not help in f ft because f f t

allocates a single array.

5.2.4 Varying the Prefetch Distance

In this section, we vary the prefetch distance to examine the impact on the results. By
default, the compiler uses a prefetch distance of twenty elements. We run experiments
using a prefetch distance of five, ten, and thirty elements. We show that computing a
specific prefetch distance is not necessary because the results are similar across a range of
short distances.

Table 5.4 summarizes the results by presenting the normalized execution times for each

program. We normalize the execution times to those without prefetching. These results

2The number of pad bytes needs to be larger than the prefetch distance (in bytes). The collector increases
the number of pad bytes for each large object and resets the pad byte value after allocating ten large objects.

113

show that the overall performance is stable across different prefetch distances. The only
noticeable difference occurs when the prefetch distance is five elements.

Although the performance is stable when we aggregate the execution times, we see
some differences among the individual programs. The largest difference occur when the
prefetch distance is five elements. Prefetching is not as effective in spar se, | uf act 1,
and | uf act 2 when the prefetch distance is five elements. For example, the difference is
11% for spar se relative to the longer prefetch distances. The shorter prefetch distance
results in more late prefetches, which has a large effect in some programs.

When prefetching degrades performance, the short prefetch distance reduces the pre-
fetching penalty. For example, although prefetching hurts performance in fft, using a
five element prefetch distance increases execution time by 8%, but using a twenty element
prefetch distance increases execution time by 13%. Using the shorter prefetch distance

reduces the number of conflict misses compared to the longer prefetch distance.

5.2.5 Case Study: Matrix Multiplication

In this section, we examine the effects of loop transformations and additional analyses
on performance by applying loop unrolling, software pipelining, and read miss cluster-
ing [82] on matrix multiplication.

Figure 5.7 presents results for four versions of matrix multiplication with different code
and data transformations on an out-of-order and an in-order processor. We provide results
for each version with and without prefetching. We normalize all times to ori gi nal ,
the Jama library version from Figure 5.1, without prefetching on either an out-of-order
or in-order processor. We do not directly compare the execution time on the out-of-order
processor to the in-order processor because the out-of-order processor is much faster. We

perform the transformations by hand starting with the code in or i gi nal .

114

(o]
o
|

[o2]
o
|

100 — out-of-order in-order
m busy

e

NP NP NP NP NP NP NP NP

Normalized Execution Time
8
1

N
o
|

origina unroll origina unroll
locality+ cluster locality+ cluster
unroll+pipe unroll+pipe

Figure 5.7. Applying Different Loop Transformations to Matrix Multiplication

We obtain the out-of-order results using the processor configuration parameters from
Table 5.1. To obtain the in-order results, we simulate a single issue processor with blocking
reads. The prefetch instructions do not stall the in-order processor.

We apply Mowry et al.’s [79] prefetch algorithm to matrix multiplication in | ocal -
i ty+unrol | +pi pe. We present results for loop unrolling only inunrol | . Incl us-
t er, we apply read miss clustering, which is a loop transformation that improves perfor-
mance by increasing parallelism in the memory system [82].

Transforming | ocal i t y+unr ol | +pi pe requires several steps. We unroll the in-
nermost loop four times to generate a single prefetch instruction for an entire cache line.
We perform software pipelining on the innermost loop to begin prefetching the array data
prior to the loop. We generate a prefetch for one of the arrays only. Matrix multiplication
operates on the same portion of the second array during the two innermost loops. Thus,
prefetching the second array results in many unnecessary prefetches.

Figure 5.7 shows that a state of the art prefetching algorithm does not provide much
benefit beyond our simpler technique for matrix multiplication on the out-of-order proces-

sor. Without prefetching, both | ocal i t y+unr ol | +pi pe and unr ol | improve per-

115

formance by 5%. The execution time of ori gi nal with prefetching is the same as the
execution time after applying loop transformations, locality analysis, and prefetching. But,
the transformations and locality analysis do improve prefetch effectiveness. Only 3% of
prefetches in| ocal i t y+unr ol | +pi pe are unnecessary compared to 86% inori gi -
nal .

The loop transformations do have an impact on the in-order processor. In or i gi nal ,
prefetching improves performance by 43%, which is larger than the performance improve-
ment on the out-of-order processor. The better scheduling methods improve performance
by an additional 18% over or i gi nal with prefetching on the in-order processor. The im-
provement occurs because the locality analysis and loop transformations reduce the number
of dynamic instructions. These results show that careful scheduling is more important on
the in-order processor than the out-of-order processor for matrix multiplication.

A major bottleneck in or i gi nal is a lack of memory parallelism, not an inability to
prefetch the correct data. The lack of memory parallelism is evident by a large number
of read instructions that stall the processor and stop other completed instructions from
graduating in-order. Pai and Avde propose read miss clustering, which uses unroll-and-
jam, to improve performance by increasing memory parallelism [82]. Read miss clustering
groups together multiple misses in order to overlap their latencies. Clustering reduces
execution time by 50% without any prefetching. Our prefetching method with clustering
improves performance further, and almost eliminates all memory stalls. Pai and Adve also
show that combining prefetching and clustering results in larger improvements than either
technique alone [83]. The main disadvantage of clustering is that unroll-and-jam is difficult
to implement, and requires dependence and other related analysis.

Our results suggest that advanced prefetch algorithms are not necessary to achieve ben-
efits from prefetching on modern processors. In a superscalar, out-of-order processor, the
cost of checking if data is already in the cache is cheap. The additional functional units and

out-of-order execution hide the effects of issuing unnecessary prefetches. Loop transforma-

116

tions can reduce the number of unnecessary prefetches, but the resulting performance gain
may be negligible. Furthermore, transformations may not be possible due to exceptions or
inexact array analysis information. When loop transformations are possible, we strongly

suggest implementing read miss clustering to improve memory parallelism.

5.2.6 True Multidimensional Arrays

Java treats arrays as objects. The elements of an array can be a primitive type, e.g.,
f | oat, or a reference type, e.g., Cbj ect . Java implements multidimensional arrays as
arrays-of-arrays, unlike languages such as Fortran that implement true multidimensional ar-
rays. Java allocates each array dimension separately, so there is no guarantee that memory
allocator allocates a contiguous region of memory for the entire array. True multidimen-
sional arrays allocate a single contiguous region of memory for the entire array. Using a
single contiguous region of memory simplifies compile-time analysis and optimization be-
cause the compiler can compute the address of any element relative the start of the array.
The array specification in Java makes it challenging to apply existing array analysis and
loop transformations.

In this section, we examine the performance of prefetching on true multidimensional
arrays. We simulate true multidimensional arrays using a single array with explicit index
expressions. We also use the multiarray package from IBM, which is a Java class that
contains an implementation of true multidimensional arrays [76]. The underlying structure
is a one dimensional array, and the class provides methods that mimic Fortran style array
operations. IBM is attempting get the package included in the standard Java library. We
compare the performance of standard Java arrays, simulated true multidimensional arrays,
and the IBM multiarrays using matrix multiplication.

We can simulate a true multidimensional array by allocating a single array and using
explicit index expressions to treat the array as a multidimensional array. Figure 5.8 shows

the implementation of matrix multiplication when we implement a two-dimensional array

117

Normalized Execution Time

for (int i=0; i<rows; i++) {
for (int j=0; j<cols; j++) {
doubl e val = 0;
for (int k=0; k<cols; k++) {
val += mil[i*col s+k] * n2[k*col s+j];
}
nB[i*col s+j] = val
}
}

Figure 5.8. Matrix Multiplication With a Single Array

150 +

=

(@]

o
|

m busy
=== memory

[
(@]
[

N P N P N P
Original Single Multiarray

Figure 5.9. Performance of Prefetching on True Multidimensional Arrays

using a single dimension. The code multiplies array ml by array n® and places the result
in array nB. The array index expression mL[i * col s+Kk] is equivalent to the expression
mi[i][K].

Figure 5.9 shows the results of prefetching on the standard array representation, the
simulated true multidimensional array representation, and the multiarray representation for
matrix multiplication. We normalize all timesto Or i gi nal , the Jama library version from
Figure 5.1. The Si ngl e version uses a single array with explicit addressing to simulate
a two dimensional array, and the Mul t i ar r ay version uses IBM’s multiarray package.
The performance of Si ngl e and Mul ti array without prefetching is 46% and 59%

worse than the performance of Ori gi nal without prefetching. One reason is that the

118

programmer is able to hoist the loop invariant address expressions out of the inner loop
in Original. Miltiarray has an additional cost because of more method calls and
object allocations. Figure 5.9 shows that our array prefetching algorithm is able to dis-
cover the complex loop induction expression and insert effective prefetch instructions. The
performance of Si ngl e with prefetching is slightly better than the performance of Or i g-
i nal with prefetching by 1%. Prefetching improves the performance of Mul ti arr ay
further. The performance of Si ngl e and Mul ti ar r ay with prefetching is better than
Ori gi nal with prefetching because there are less late prefetches. Since Si ngl e and
Mul ti array perform more work in the inner loop, there is more time for the prefetches

to bring data into the L1 cache.

5.2.7 Additional Prefetch Opportunities
In this section, we illustrate that our analysis and prefetching techniques work on other
program idioms. Although these idioms do not appear in any of our benchmarks, we believe

they are useful in Java programs.

5.2.7.1 Arrays of Objects

Java allows arrays of references as well as arrays of primitive types such as doubl e.
In an array of references, the array element contains a pointer to another object instead of
the actual data. As we describe in Section 4.1, our compiler generates prefetches for array
element value and referent object. The prefetch distance for the array element is twice as
much as the prefetch distance for the array element referent object.

Since none of the array benchmarks use arrays of objects, we changed the Jama version
of matrix multiplication to use Conpl ex objects instead of doubl e values. The Com
pl ex object contains two fields, which represent the real and imaginary parts of a complex
number.

Figure 5.10 shows the results for matrix multiplication with complex numbers. We

generate results for no prefetching, prefetching just the array elements, and prefetching both

119

100

80

60
—_ e
memory

40 -

Nor malized Execution Time

20+

No Prefetch Prefetch Index
Prefetch Index Only and Object

Figure 5.10. Prefetching Arrays of Objects

the elements and the referent objects. Prefetching just the array elements reduces execution
time by just 10%. When we prefetch both the array elements and the referent objects,
prefetching reduces execution time by almost 38%. This large improvement occurs even
though we increase the number of instructions by issuing two prefetches and an additional

load for each array reference.

5.2.7.2 Enumeration Class

The Enuner at i on class is a convenient mechanism for encapsulating iteration over
a data structure. For example, programmers use the Enuner at i on class to iterate over
elements in a Vect or . Figure 5.11 illustrates the use of the Enurnrer at i on class. We
also show the version after the compiler performs inlining and inserts a prefetch.

Our induction variable algorithm detects that e. count is an induction variable even
though e. count is an object field and not just a simple variable. We discuss the analysis
extensions for object fields in Section 3.3.5. Once the analysis detects the induction variable
in an object field, the array prefetch algorithm generates a prefetch for a reference that

contains the object field in the index expression.

120

Enunerati on e=o0. el enents();

whil e (e. hasMoreEl enents()) {
El ement m = (El ement) e. next El enent () ;
sum += mval ue();

}

/1 Inlined Enuneration for a Vector object

Vect or Enuner at or e;

e. vect or =o;

e. count =0;

while (e.count < e.vector. el enent Count)
prefetch &e.vector. el enentDataf e.count + d];
El enent m = e.vector. el enent Dat a[e. count] ;
e.count = e.count + 1;
sum += mval ue();

}

Figure 5.11. Using the Enurrer at i on Class

5.3 Linked-Structure Prefetching

In this section, we evaluate the performance of prefetching linked data structures us-
ing greedy, jump-pointer, and stride prefetching. We first present the results for the three
schemes separately. We summarize the results and we discuss the advantages of each
scheme.

We evaluate prefetching using a Java version of the Olden benchmarks written in an
object-oriented style [17]. Other researchers use the C version of the Olden suite to eval-
uate optimizations for pointer-based programs [25, 70, 90]. Tables 5.5 and 5.6 list the
benchmarks we use in our experiments along with some characteristics of each program.
The lines of code (LOC) number excludes comments and blank lines.

We present the results in this section with garbage collection disabled. The programs
allocate memory, but the garbage collector never frees objects that the program no longer
references. We run experiments in this manner because garbage collection affects the re-
sults, but our prefetching schemes do not target the allocation portion of programs. Further-
more, different garbage collection algorithms and heap sizes have a significant impact on

performance. By disabling garbage collection initially, we are able to see the impact of pre-

121

Table 5.5. Linked-Structure Benchmark Suite

| Name | Main Data Structure(s) | Inputs |
bh oct-tree, linked list 4096 bodies, 2 iters.
bisort binary tree 100,000 numbers
em3d linked list 2000 nodes, 100 degree, 4 iters.
health quad-tree, linked list 5 levels, 500 iters.
mst hashtable 1024 nodes
perimeter | quad-tree 4K x 4K image
power tree 10K customers
treeadd binary tree 20 levels
tsp binary tree, linked list | 60,000 cities
voronoi | binary tree 20,000 points

Table 5.6. Benchmark Program Statistics

Inst. Total Max. | Bytes
Name LOC | Methods Issued | Memory Live | /Obj.
bh 487 74| 731M | 76 MB | 1.3 MB 28
bisort 164 14 | 1292M | 15MB | 15MB | 24.1
em3d 182 22 | 2120M | 6.5MB | 0.58MB | 413
health 279 36| 366M| 22MB | 26 MB | 19.4
mst 183 26| 955M | 41MB | 40MB | 25.9
perimeter | 242 47| 188M | 35MB | 3.5MB 32
power 347 30 | 2086 M | 24MB | 0.7 MB 32
treeadd 81 11| 168M | 24MB | 24 MB 24
tsp 289 15| 787 M 7MB 3MB 37
Voronoi 526 70| 848M | 68MB | 27 MB 25

fetching more easily. We discuss issues of prefetching with garbage collection, including

results, in Chapter 6.

5.3.1 Greedy Prefetching

Figure 5.12 shows the results of greedy (G) prefetching. We normalize the results to
those without prefetching (N). We divide execution time into the amount of time spent wait-
ing for memory requests, and the amount of time the processor is busy using the method-

ology described in Section 5.1.

122

Normalized Execution Time (%)

100 ——.

80
60

] . busy

=3 memory

40

] N: no prefetch

G: greedy prefetch
20
0
N G N G N G

N G N G N G N G N G N G N G
health mst perimeter treeadd bh bisort tsp VOoronoi em3d power

Figure 5.12. Greedy Prefetch Performance

In Figure 5.12, we group the Olden programs into three sets based upon our results. We
see the largest improvements in the first set of four programs, smaller improvements in the
second four programs, and the final two programs do not contain significant linked structure
accesses. In the programs, greedy prefetching improves performance by as much as 20%
intreeadd. Across all benchmarks, we see improvements of 5% using the geometric
mean.

Figure 5.12 shows execution times for the entire program from start to finish. Several of
the programs divide the execution time into creation phases and traversal phases. Greedy
prefetching inserts prefetch instructions only in traversals. Greedy prefetching does not
add prefetch instructions during the creation phase, unless the program traverses the linked
structure while it is being created. In Figure 5.13, we show the performance of greedy
prefetching in the traversal phase of five of the programs that contain separate creation
and traversal phases. Above each result in Figure 5.13, we list the percentage of time the
program spends in the traversal phase. For example, nst spends 50% of its time creating
a binary tree, and 50% of its time traversing the tree.

Greedy prefetching reduces the execution time in the traversal phase of the programs

in Figure 5.13 by a geometric mean of 12%. The largest decrease in execution time is 26%

123

100 50% 87% 76% 20% 66%

80

60 —
mm busy

=3 memory
40

N: no prefetch

G: greedy prefetch
20

Normalized Execution Time (%)

N G N G N G N G N G
mst perimeter treeadd bisort tsp

Figure 5.13. Traversal Phase Performance (Greedy Prefetching)

intreeadd. Figure 5.13 also shows that the memory performance is much worse in the
traversal phase than in the rest of the program.
We present prefetch effectiveness and cache statistics in the following two sections.

Then, we discuss the performance of the individual programs in more detail.

5.3.1.1 Prefetch Effectiveness

Figure 5.14 categorizes the dynamic prefetches as useful, late, early, and unnecessary
for the L1 cache. We discuss the meaning of the different types of prefetches in Sec-
tion 2.2.1.1.

Figure 5.14 shows that the percentage of useful prefetches does not have to be large
to improve performance. Except for one program, the percentage of useful prefetches is
less than 35%. The percentage of late prefetches illustrates why the potential of greedy
prefetching is limited. Several of the programs contain a large number of late prefetches.
Since greedy prefetching is able to prefetch only directly connected objects, reducing the
number of late prefetches is difficult. Most of the programs do not have a large number
of early prefetches. In general, greedy prefetching generates early prefetches only in pro-
grams that search large n-ary trees, e.g., bh. Several programs have a large number of

unnecessary prefetches, but they tend not to hurt performance. The cost of checking if a

124

= useful = late = early BN Unnec.

100 ——pum I
B 80
= | |
19
T 60
o
‘46 —]
o)
& 40
g -
5 |
O 204 i

1 | |

[]

O — - -
health m&er'meitr%readd bh bisort ts|ovoronoi emgdpower
Figure 5.14. Greedy Prefetch Effectiveness

cache line is already in the L1 cache is cheap, and the additional functional units in the
processor are able to hide the cost of an unnecessary prefetch.

Table 5.7 lists the number of static and dynamic prefetches that our benchmarks gener-
ate. The static value represents the number of compiler generated prefetches. The dynamic
value is the number of prefetches issued at run time. We also list the number of prefetches
as a percentage of the read instructions. A low percentage suggests that the prefetch algo-
rithm is not able to identify opportunities very well. Finally, the third value is the percentage
increase in bus bandwidth due to prefetching.

Table 5.7 shows that the number of static and dynamic prefetches does not need to
be large to achieve improvements. To be effective, the prefetch algorithms must identify
a few key places to insert prefetch instructions. The dynamic prefetching counts show
why prefetching is ineffective on enBd and power ; these programs do not access linked
structures frequently. Although bus traffic increases due to prefetching, the maximum bus
utilization with and without prefetching is 31% and 26%, respectively. The largest increase
in bandwidth is 6% for t r eeadd. In general, an increase in the bandwidth is due to a

decrease in run time, and not from prefetching useless data.

125

Table 5.7. Greedy Static and Dynamic Prefetch Statistics

. Dynamic Bus Utilization
Program | Static total prefetches prefetches/read | N P
health 18 9870906 20% | 26 % 28 %
mst 6 2879206 10% | 15% 16 %
perimeter 17 718768 27% | 7% 8%
treeadd 2 856 600 10% | 25% 31%
bh 45 1701207 1.3% | 16% 17%
bisort 10 3297458 14% | 2% 3%
tsp 26 12115480 19% | 3% 4%
voronoi 15 522169 6.3% | 9% 9%
em3d 24 55861 0.06% | 4% 4%
power 4 44957 001% | 2% 2%

5.3.1.2 Cache Statistics

The cache miss rate is a measure of the effectiveness of the caches at execution time.
Effective prefetching reduces the miss rate by moving data into the cache prior to the de-
mand request. Figures 5.15 and 5.16 show the L1 and L2 cache miss statistics, respectively.

Greedy prefetching improves the L1 miss rate for 5 of the programs, and the L2 miss
rate for 9 of the programs. In a processor that allows outstanding loads, not all misses are
equal. Some of the references that miss in the cache, hit in the MSHR, and do not need to
pay the entire cost of going to the L2 cache. A reference hits in the MSHR when a prior
miss causes the memory subsystem to transfer the reference to the cache. Although the
miss rate increases for heal t h, the percentage of MSHR hits increases from 16% to 33%.
Thus, with greedy prefetching many of the misses are in the process of moving into the L1
cache. The cache statistics mirror the overall results; when prefetching improves overall

performance, the number of cache hits and coalesced hits increase as well.

5.3.1.3 Analysis Features
Table 5.8 shows the features of our recurrence analysis that are responsible for gener-
ating static prefetch instructions in our greedy prefetching scheme. We show the contri-

bution from interprocedural analysis (IP), analyzing stores into fields (F), and intraproce-

126

Miss Rate

Miss Rate

m no prefetch @ greedy prefetch

1.0

0.8

0.6

0.4

0.2

00-
B D Rz b 6. &, &
%&O%%%” %, % o, %%,

-

Figure 5.15. L1 Miss Rate (Greedy Prefetching)

m no prefetch @ greedy prefetch

1.0

0.8

0.6

0.4

0.2

0.0 -
L P
2. 9, %
/Ooo/. Y .

S,

2 'OQ.. 2 64 é/ @b
b ¥ Q‘?‘b 0,
&& (o4

Figure 5.16. L2 Miss Rate (Greedy Prefetching)

127

Table 5.8. Static Greedy Prefetch Statistics

IP Fields | Intra . Array
Program M P| (P) Inline size Total
health 12 5 115 (P4 (P) 18
mst 6 4 () 6
perimeter | 9 8 17
treeadd 2 2
bh 22 9 5 5 (F)|8 (IP) 362
bisort 6 4 10
tsp 4 7 6 174
voronoi 9 1 9 (I 102
em3d 2 10 10 (F) 122
power 4 4

@ These values differ from those in Table 5.7. In this table, we do not
consider the size of objects and the cache line size.

dural analysis only (1). The total number of greedy prefetches is IP+F+1. Interprocedural
class analysis divides the IP results into monomorphic (M) and polymorphic (P) recursive
method calls. The Inline column shows how inlining affects our recurrent analysis. For ex-
ample, in heal t h we generate the five prefetches in the Fields column only when inlining
is enabled and interprocedural analysis is disabled. In st , the compiler still generates the
prefetches if we perform intraprocedural analysis only, and inlining is enabled. The Array
size column shows the results of our analysis for computing the array sizes. Only two of
the programs, heal t h and bh, use constant size arrays to represent n-ary trees.

Table 5.8 shows that both interprocedural analysis and the extensions for propagating
the data flow into fields fields are important in our Java programs. Intraprocedural analysis
rarely discovers recurrent accesses on its own. In heal t h, most of the improvement
comes from analyzing field stores. When we disable field stores, performance improves
by less than 1% instead of 7%. In per i net er, the prefetches in the monomorphic and

polymorphic recursive calls contribute 2% and 4%, respectively.

128

5.3.1.4 Individual Program Performance

We describe the effect of greedy prefetching on the performance of each Olden bench-

mark below.

heal t h Greedy prefetching improves heal t h by almost 7%. The improvement is not

surprising considering its poor locality. Heal t h spends 94% of its time waiting for
memory while traversing very long singly linked lists. There is significant room for
improvement, but greedy prefetching is limited because it can only prefetch the next
element in the list. The limiting factor is that there is not enough computation on

each node in the list to tolerate the memory latency.

nmst Improving the performance of nst using prefetching is difficult because the linked

peri

structure is a hashtable. Because the hashtable accesses a different element during
each probe, it is difficult to predict what to prefetch. In nst , the hashtable is small
and each hash entry contains a list of objects. Because the hashtable is small, each
probe of the hashtable results in a linked list traversal. The traversal often accesses

only a few elements.

Greedy prefetching improves performance by 4%. Figure 5.13 shows that greedy
prefetching improves the traversal phase by 8%. Figure 5.14 shows that over 80% of
the prefetches are either useful or late, which is why performance improves. How-
ever, mst has a noticeable number of early prefetches as well. Early prefetches can
be very harmful to performance by evicting useful data. In nst , the early prefetches
occur because the list traversals are conditional, and may end before reaching the
end of the list. When this occurs, the last prefetch is early because the object is not

referenced.

nmet er The main data structure in peri met er is a quad tree. After creating the
tree, per i met er traverses the tree twice. The first traversal is a simple depth-first

pass over all the nodes in the quad tree, which counts the number of leaves in the tree.

129

The second traversal is a directed pass over the quad tree to compute the perimeter
of the image that the tree represents. The traversal actions to compute the perimeter

depend upon the node type in the quad tree.

Prefetching improves the performance of per i net er by 9%. When we consider
the traversal phase only, the improvement is 11%. Prefetching improves the perfor-
mance of the initial pass over the quad tree by 33%, but counting the leaf nodes is

very fast and does not contribute to the overall execution time significantly.

We obtain performance improvements even though most of the prefetches hit in the
L1 cache. Only 3% of the memory references result in cache misses. Prefetching
reduces the miss rate to 2%. Figure 5.16 shows a large reduction in the L2 miss rate

from 67% to 21%.

t reeadd Tr eeadd shows the largest performance improvement from greedy prefetch-
ing. Tr eeadd is a very simple program that creates a binary tree and traverses the
tree in a depth first manner. A binary tree is the model data structure for illustrating
the potential of greedy prefetching. Greedy prefetching generates two prefetch in-
structions for each node, one for the left child and one for the right child. We expect
to hide the latency of one of the prefetches only partially, and to hide the latency of
the other prefetch completely. If the tree is too large, then we may evict prefetched
data. Early prefetches are rare because they will occur only towards the root of the

tree.

Greedy prefetching reduces the whole program execution time by 20%, and the
traversal phase execution time by 26%. Figure 5.14 show that 50% of the prefetches
are either useful or late, and 50% hit in the L1 cache. The percentage of useful and
late prefetches is 25% each, which we expect since, at each node, prefetching only
partially hides the latency of one prefetch and completely hides the latency of the

other prefetch. We see a large number of unnecessary prefetches because each node

130

in the tree is smaller than a cache line, so each prefetch instruction brings two tree
nodes into the L1 cache. At the leaf nodes, the processor drops the prefetch instruc-

tions because address to prefetch is zero.

bh Greedy prefetching slightly improves performance by 4%. The main linked structure
in bh is an Oct-tree. The internal nodes in the tree are larger than a cache line. The
program contains a couple of methods that traverse the Oct-tree. One of the methods,
wal kSubTr ee, conditionally traverses the children. If the compiler generates the
prefetch instructions prior to checking the condition, then the performance of bh
degrades. The improvement occurs only when the compiler inserts the prefetches

after the condition.

bi sort Bi sort performs a bitonic sort. The main data structure is a binary tree, which
the program updates while traversing. Bi sort first sorts, and traverses, the binary

tree in one direction, and then sorts the tree in the opposite direction.

Greedy prefetching only slightly improves the performance of bi sort by 1.2%. A
limiting factor is that the access pattern is data dependent. The prefetching effec-
tiveness values illustrate the problems that data dependent traversals pose to greedy
prefetching. In bi sort, 10% of prefetches are useful, 10% are late, 9% are early,
and the rest are unnecessary. Greedy prefetching is able to find prefetching opportu-
nities, but the data dependent traversal results in many early prefetches. Even without
the data dependent traversal, obtaining further improvements in bi sor t is difficult

because the memory stall percentage is low.

t sp Greedy prefetching reduces the execution time int sp by 3%. Tsp creates a binary
tree with linked lists between the nodes to represent the cities to visit. The perfor-

mance improvement is due to the prefetch instructions at the linked list traversals.

The number of unnecessary prefetches is high because the miss rate in this program

is low. There is not much room for improving the L1 miss rate. Prefetching reduces

131

the L2 miss rate from 54% to 17%. The rest of the prefetches are equally divided
among useful, late, and early at approximately 3.5% each. The reason is that the

linked lists tend to be short.

vor onoi The reduction in execution time is negligible. The main data structure is a small
binary tree that represents a diagram. Vor onoi also contains a quad-tree, which
represents the edges in the diagram. Vor onoi links the edges using a linked list.
The number of dynamic prefetches in vor onoi issmall. The ratio between prefetch
and read instructions is less than 7%. In vor onoi , 79% of the dynamic prefetches
are unnecessary. One reason for the large number of unnecessary prefetches is the

low miss rate. Only 5% of the cache references miss in the L1 cache.

enBd EnBd does not suffer from poor memory performance. Only 12% of the execution
time is spent waiting for memory. The L1 miss rate is only 6%. Because memory
performance is good, greedy prefetching has little effect on enBd. Another factor is
that the linked structure traversals do not contribute to the misses significantly. Ta-
ble 5.7 shows that the number of dynamic prefetch instructions is very small relative

to the number of read instructions.

power Greedy prefetching does not affect the execution time of power . Although the
main data structure is a tree, the time spent on memory operations is not due to
linked structure traversals. Power performs a significant amount of floating point

computation. Figure 5.15 shows that the L1 miss rate is 1%.

5.3.2 Jump-Pointer Prefetching

Figure 5.17 shows the results of jump-pointer (J) prefetching. We divide execution
time into the amount of time spent waiting for memory requests and the amount of time
the processor is busy using the methodology described in Section 5.1. We normalize the

results to those without prefetching (N). We use a prefetch distance of eight objects by

132

Normalized Execution Time (%)

100 .
80
60
= busy
1 =3 memory
40
| N: no prefetch
J: jump prefetch
20
0
N J N J N J N J N J

N J N J N J N J N J
health mst perimeter treeadd bh bisort tsp VOronoi em3d power

Figure 5.17. Jump-Pointer Prefetching Performance

default, except for nst which uses a distance of two. In most of the programs, using a
distance value greater than eight does not improve performance significantly. The compiler
could compute this distance based upon the number of instructions between accesses, but
we have not implemented this cost model.

Jump-pointer prefetching improves the execution time in four of the ten programs.
Across all benchmarks, we reduce the execution time by a geometric mean of 10%. Pre-
fetching reduces the execution time in heal t h, nst, peri meter, and treeadd. In
these four programs, the execution time reduction ranges from 5% inmst t050%int r ee-
add for an improvement of a geometric mean of 24%. Prefetching has little effect in four
other programs. Prefetching increases the execution time inbi sort by 1% and vor onoi
by 3%.

Figure 5.18 shows the performance of jump-pointer prefetching in the traversal phase
of the five programs that contain separate creation and traversal phases. Our prefetch al-
gorithms insert prefetch instructions only in linked-structure traversals, so we demonstrate
the full effect of prefetching by isolating the traversal phase from the creation phase. Fig-
ure 5.13 presents a similar graph for greedy prefetching. An important difference between

the two results is that jump-pointer prefetching increases the execution time in one of the

133

50% 87% 76% 20% 66%

100 + . l

s [

60 = busy
=3 memory

40

N: no prefetch

J: jump prefetch
20 jumpp

Normalized Execution Time (%)

N J N J N J N J N J
mst perimeter treeadd bisort tsp

Figure 5.18. Traversal Phase Performance (Jump-Pointer Prefetching)

programs. Above each result in Figure 5.18 we list the percentage of time the program
spends in the traversal phase.

Jump-pointer prefetching reduces the execution time of the traversal phase by a geomet-
ric mean of 24%. When we consider the whole program time, the reduction in execution
time is just 15%. The two programs with the most significant execution time improve-
ments are st and t r eeadd. Prefetching reduces the execution time of the traversal
phase of t r eeadd by 70%. When we consider the entire program, the improvement is
50%. Jump-pointer prefetching negatively affects the performance of bi sor t, so the per-
formance degradation is even larger when we consider the traversal phase only.

We present prefetch effectiveness and cache statistics in the following two sections.

Then, we discuss the performance of the individual programs in more detail.

5.3.2.1 Prefetch Effectiveness

Figure 5.14 categorizes the dynamic prefetches as useful, late, early, and unnecessary
for the L1 cache. Section 2.2.1.1 describes the meaning of each type of prefetch.

In the four programs for which prefetching improves performance, the percentage of
useful and late prefetches is high. In the programs that prefetching does not affect, the

percentage of early prefetches is relatively high, especially when we compare the results

134

100 = useful = late = early BN Unnec.

80

60 —

40

Per centage of prefetches
[

20

0 —— .
health mge”meitr%readd bh bisort ts|ovoronoi em‘gdpower
Figure 5.19. Jump-Pointer Prefetch Effectiveness

to greedy prefetching. The increase in the number of early prefetches is an important
issue with jump-pointer prefetching. If the compiler is not careful when creating the jump-
pointers, then the referent of the jump-pointer may not be a useful object to prefetch.
Table 5.9 provides information about the static and dynamic prefetches. The static
values are the number of prefetch instructions that the compiler generates. The dynamic
values are the number of prefetch instructions executed at run time. The number of com-
piler inserted prefetches for jump-pointer prefetching is typically less than the number in-
serted for greedy prefetching. Jump-pointer prefetching inserts one prefetch instruction for
each linked structure, while greedy prefetching inserts a prefetch for each recurrent field
in a linked structure. Jump-pointer prefetching results in fewer dynamic prefetches for the

Same reason.

5.3.2.2 Cache Statistics
Figures 5.20 and 5.21 present the cache miss rate statistics for the L1 and L2 caches,
respectively. Jump-pointer prefetching reduces the L1 miss rate in six of the ten programs,

and reduces the L2 miss rate in all of the programs. The largest L1 miss rate reduction is

135

Table 5.9. Jump-Pointer Prefetch Statistics

. Dynamic Bus Util.
Program | Static total prefetches prefetches/read | N P
health 10 10162 465 13% | 26% 36%
mst 6 2370368 74% | 15% 18%
perimeter 16 1018676 37% | 7% 9%
treeadd 1 786 663 78% | 25% 50%
bh 19 761242 06% | 16% 17%
bisort 6 3468116 13% | 2% 4%
tsp 16 11879660 20% | 3% 5%
voronoi 14 500779 6% | 9% 11%
em3d 22 21056 0.02% | 4% 4%
power 4 52400 001% | 2% 2%

18% in heal t h, and we see large improvements in t r eeadd and enBd. The average
miss rate reduction is 2% and 6% for the L1 and L2 caches, respectively.

In all four of the programs for which prefetching reduces the execution time, the L1 and
L2 miss rates decrease in each of the programs. Figure 5.21 shows large reductions in the
L2 miss rate. Prefetching reduces the miss rate in the four programs by an average of 4%
and 26% for the L1 and L2 caches, respectively. These results predict the execution time

improvements.

5.3.2.3 Individual program performance

heal t h Jump-pointer prefetching reduces the execution time of heal t h by 33%. The
execution time improvement is a result of the flexibility of jump-pointers to tolerate
more latency than greedy prefetching. Figure 5.19 shows that 93% of the prefetch
instructions are useful, and there are no more late prefetches. Heal t h contains a
small percentage of early prefetches because the program often deletes and inserts
objects in the linked lists. Figure 5.20 shows a larger reduction in the L1 miss rate

with prefetching.

136

Miss Rate

Miss Rate

m no prefetch @ jump-pointer prefetch

1.0

0.8

0.6

0.4

0.2

0.0-

B D Rz b 6. &, &
%&O%%é % %,
&

Figure 5.20. L1 Miss Rate (Jump-Pointer Prefetching)

m no prefetch @ jump-pointer prefetch

1.0

0.8

0.6

0.4

0.2

0.0-

4
¥

il

N %&0 'Oo,@&

2 'OQ.. 2 64 é/ @b
> ”b&f%& AN %,

Figure 5.21. L2 Miss Rate (Jump-Pointer Prefetching)

137

100

®
o
|

D
o
|

busy
memory

Normalized Execution Time
8
I

N
o
|

N J J
(traversal) (creation)

Figure 5.22. Different \Versions of Health

Heal t h is the only program that both builds jump-pointers while traversing its
linked structures and contains indirect recurrent variables. The jump-pointers elim-
inate all of the late prefetches, but we do not see larger improvements due to the

overhead of updating the jump-pointers at traversal time.

Figure 5.22 shows the results when the compiler creates jump-pointers at traversal
time versus creation time. We normalize the times to those without prefetching.
When heal t h creates jump-pointers at the creation site, the execution time in-
creases by 4%. When heal t h creates the jump-pointers while traversing the linked
structures, the execution time decreases by 23%. The reason for the difference in
performance is that heal t h frequently updates the linked structures at run time.
This result shows that it is important that the compiler generate the jump-pointers

appropriately.

nmst Jump-pointer prefetching increases the number of useful prefetches, but the number
of early prefetches also increases because the objects at the end of each list do not

have useful jump-pointers.

We create the jJump-pointers in the reverse direction because new elements are added

to the beginning of each list. We must limit the jump-pointer prefetch distance to

138

peri

100 —

80 -}

60 - = busy
== memory

40 -

Normalized Execution Time

20

N J J J J
backward backward forward forward
distance2 distance8 distance2 distance8

Figure 5.23. Different Versions of MST

see an improvement because each linked list is small. Figure 5.23 compares the
performance of mst when the compiler creates the jump-pointers in the backward

and forward directions.

nmet er Jump-pointer prefetching reduces the execution time by 7%. When we
consider the traversal phase only, the execution time decreases by 10% with jump-
pointers. The decrease in execution time is slightly less than with greedy prefetch-
ing. With jump-pointer prefetching, the percentage of useful and late prefetches is
15% and 5%, respectively. Greedy prefetching results in the same number of useful
prefetches, but has more late prefetches. Jump-pointer prefetching is less effective

because per i met er has data dependent traversals.

Adding the jump-pointer field increases the object size from 32 bytes to 40 bytes,
so the compiler inserts two prefetch instructions instead of just one. Prefetching the
extra cache line reduces the L2 hit rate relative to the greedy prefetching results.
Prefetching the extra cache line does help; if we prefetch only one cache line, then

performance improves only by 1% instead of 7%.

139

== useful = |gte ——0 early === unnec.

100 —

80—-

60—-

-

0_-
J J J

distance 8 distance 16 distance 32
Figure 5.24. Prefetch Effectiveness in Treeadd

Per centage of Prefetches

t reeadd Jump-pointer prefetching reduces the execution time in t r eeadd by 50%.
Jump-pointer prefetching is effective because t r eeadd creates and traverses the
binary tree in the same order. The improvement is much larger than with greedy
prefetching because jump-pointer prefetching is able to tolerate more latency. Fig-
ure 5.19 shows that jump-pointer prefetching contains a large percentage of useful
and late prefetches. Figures 5.20 and 5.21 show large reductions in the miss rate,

especially in the L2 cache where the miss rate decreases from 97% to 25%.

Figure 5.24 shows that increasing the prefetch distance almost completely eliminates
the late prefetches int r eeadd. We use a compile-time option to create jJump point-
ers with a distance of sixteen and thirty two objects. When the prefetch distance is
eight objects, 50% of the prefetches are late, and only 22% are useful. A distance
of sixteen objects almost completely eliminates the late prefetches; only 1% of the
prefetches are late. Doubling the prefetch distance again completely eliminates the

late prefetches, but the number of early prefetches increases slightly to 2%.

140

100 —
80

60 = busy
E===1 memory

Normalized Execution Time

20

N J Ji6 J32
distance8 distance16 distance 32

Figure 5.25. Varying Prefetch Distance in Treeadd

Increasing the prefetch distance from eight objects to sixteen reduces the L1 miss
rate from 41% to just 2%. Unfortunately, Figure 5.25 shows that increasing the
prefetching distance int r eeadd from eight objects to sixteen and thirty two objects
does not have an impact on execution time. The reason is that accessing the L1 cache
becomes a bottleneck when we increase the prefetch distance, and many of the tree

node objects are in cache when accessed.

bh Jump-pointer prefetching has very little effect on the performance of bh. In contrast,
greedy prefetching causes the execution time to increase. One reason that perfor-
mance does not degrade with jump-pointer is that the compiler generates less pre-
fetches. Since bh uses an Oct-tree, greedy prefetch generates eight prefetches per
node, but jump-pointer prefetching generates only one prefetch. Unfortunately, the
traversal path is data dependent so the single prefetch instruction is often ineffec-
tive. As a result, Figure 5.19 shows that jump-pointer prefetching results in a large

percentage of early prefetches.

bi sort Jump-pointer prefetching results in a slight increase in execution time of 1%.
Bi sort traverses a binary tree two times, once in each direction, and updates the

tree during each traversal. Because the traversal direction changes, and the tree struc-

141

ture changes at run time, the jump-pointers are often ineffective. Figure 5.19 shows
that 30% of the prefetches are early, and only 2% are useful. Figure 5.20 shows that

the ineffective prefetches cause the L1 miss rate to increase.

t sp Jump-pointer prefetching improves performance by less than 1%. Since the miss rate
is so small in t sp, there is very little room for improvement. Due to the low miss
rate, most of the prefetches hit in the L1 cache and are unnecessary. Because t sp has
many short linked lists, the prefetches that do not hit in the L1 cache often prefetch
objects that the program never references. These early prefetches are just 5% of all

prefetches, but only 4% of the prefetches are useful.

vor onoi Jump-pointer prefetching increases the execution time by almost 4%. The main
linked structures in Vor onoi are a binary tree and a quad-tree. Jump-pointer pre-
fetching is able to insert prefetches for the binary tree effectively, but unable to insert
effective prefetches for the quad-tree. The quad tree is a complex structure that uses
an array of four objects to represent the children. The four children are connected in
a ring using a linked list. Due to the data dependent traversal pattern on the quad-
tree, the jJump-pointers are unable to prefetch useful objects. With jump-pointers,
the percentage of early prefetches is 11%, and the percentage of useful prefetches is
only 5%. The rest of the prefetches are unnecessary. The early prefetches pollute the

cache and cause the L1 miss rate to increase slightly by 1%.

enBd, power Similar to greedy prefetching, jump-pointer prefetching has little effect on
performance for both en8d and power . As we mention in Section 5.3.1.4, there
is very little room for improvement in either program because the linked structure

accesses contribute very little to overall performance.

142

Normalized Execution Time (%)

100 . I

80
60 . busy

] =3 memory
40

] N: no prefetch

S: stride prefetch
20
0
N S N S N S N S N S

N S N S N S N S N S
health mst perimeter treeadd bh bisort tsp VOoronoi em3d power

Figure 5.26. Stride Prefetching Performance

5.3.3 Stride Prefetching

Figure 5.26 shows the results of stride (S) prefetching. We normalize the results to those
without prefetching (N). We divide execution time into the amount of time spent waiting
for memory requests and the amount of time the processor is busy using the methodology
described in Section 5.1. We use a stride distance of ten objects® by default, except for st
and heal t h which use a stride distance equal to three objects.

The results in Figure 5.26 show that stride prefetching improves performance overall,
but the results are inconsistent. Stride prefetching improves the performance of four of
the ten programs, but degrades performance in four programs as well. Stride prefetching
decreases the execution time of all the programs by a geometric mean of 9%. The largest
improvement is 53% in t r eeadd.

Stride prefetching is most effective when the layout of the data matches the traversal
direction. Chapter 6 shows that garbage collection can improve the performance of stride
prefetching. Stride prefetching is not effective in programs that contain data dependent

traversals or short linked structures. Since stride prefetching does not explicitly consider the

3The distanceis 10 * the size of each object.

143

100 = useful = late = early BN Unnec.

80

60 —

40

Per centage of prefetches

20

0 e
health mge”meitr%readd bh bisort ts|ovoronoi em‘gdpower
Figure 5.27. Stride Prefetch Effectiveness

relationship among objects in a linked structure, the prefetch instructions are ineffective if
the linked structure is not allocated in the proper order. The data that the prefetch instruction
brings in may not be useful, and performance suffers when this happens.

Figure 5.27 shows the prefetch effectiveness statistics for stride prefetching. In the
programs for which stride prefetching degrades performance, we see a large percentage of
early prefetches. The prefetch instructions in these programs do not bring in cache lines

that are used again.

5.3.3.1 Individual Program Performance
Rather than discussing each program separately, we group the programs into sets that

share similar performance characteristics.

heal t h, mst Stride prefetching increases the execution time of heal t h by 6%, and
decreases the execution time of nst 9%. For both of these programs, the stride
value is negative because the programs add new objects to the beginning of the linked
structures. If the stride value is positive then prefetching increases the execution time

in st .

144

The execution time of heal t h increases because most of the prefetches are inef-
fective. Figure 5.27 shows that 97% of the prefetches are early. One reason for the
excessive number of early prefetches is that heal t h frequently inserts and deletes
objects from its linked structures. As the linked structures change over time, the

effectiveness of stride prefetching decreases.

peri et er,treeadd Stride prefetching reduces the execution time of peri net er
and t r eeadd by 10% and 53%, respectively. Both programs create and traverse a
binary tree in the same order. The memory allocator lays out the tree node objects in
consecutive locations, which enables the prefetch instructions to be effective. Stride
prefetching is especially effective because the prefetch instructions are able to toler-
ate large latencies without the space and time cost of a jump-pointer. The space cost
is an issue especially with peri met er . Recall that the jump-pointer increases the
size of each object from 32 bytes to 36 bytes, which is larger than the cache line in

our experiments.

bh, bi sort,tsp,voronoi Stride prefetching either increases the execution time of
these programs slightly, or has no effect on performance. The results are similar to
jump-pointer prefetching. The difficulty is that these programs use data dependent
traversals, have short linked structures, or low miss rates. Any of these characteristics
make stride prefetching ineffective. Figure 5.27 shows that many prefetches in these

programs are early or unnecessary.

enBd, power There is little room for improvement in these programs. Similar to the other
linked-structure prefetching techniques, stride prefetching does not have any effect.
Figure 5.27 shows that many of the prefetches are useful, but neither program issues

many dynamic prefetch instructions.

145

5.3.4 Summary of Prefetching Linked Structures

Each linked structure prefetching technique produces noticeable improvements on four
of the ten programs, i.e., heal t h, nst, peri neter, and t r eeadd, although stride
prefetching is ineffective on heal t h. Either greedy, jump-pointer, or stride prefetching
slightly improves performance in bh, bi sort, t sp, and vor onoi . None of the linked-
structure prefetching techniques is able to improve enBd or power . The number of cache
misses is very low in these programs so most of the prefetches hit in the L1 cache. Our
prefetching results are similar to those reported in related work for linked structures in C
programs [68, 70, 90].

Figure 5.28 presents a direct comparison of jump-pointer, greedy, and stride prefetching
by combining the data in Figures 5.12, 5.17, and 5.26. Greedy prefetching, jump-pointer
prefetching, and stride prefetching reduce the execution time by a geometric mean of 5%,
10%, and 9%, respectively. The largest reduction in execution time occurs in t r eeadd
from stride prefetching.

In Figure 5.29 we normalize the bars to compare the busy and memory stall percentages
directly. In contrast, Figure 5.28 normalizes the execution times and scales the busy and
memory times appropriately. Figure 5.29 enables us to see the how much the prefetch
methods affect the percentage of busy and memory time.

The effectiveness of greedy prefetching is limited. As the processor-memory gap in-
creases, the usefulness of greedy prefetching will decrease. The problem is that the amount
of latency that can be hidden is limited by the amount of computation that each object
performs. Greedy prefetching performs best on binary trees where the prefetch instruc-
tions will hide the latency of accessing one child only partially, but may hide the latency of
accessing the other child completely.

Jump-pointer prefetching has the best potential for improving the performance of pro-
grams with linked structures. The advantage of jump pointers is the potential to tolerate

larger amounts of latency than greedy prefetching. The disadvantage of jump pointers is

146

- I

80 -
60 — m busy

] = memory
40 -

] N: no prefetch

G: greedy prefetch

20 J: jump prefetch

| S: stride prefetch

0

NGJS NGJS NGJS NGJS NGJS NGJS NGJS NGJS NGJS NGJS
health mst perimeter treeadd bh bisort tsp voronoi em3d power

Figure 5.28. Comparing Execution Time in the Linked Structure Prefetching Methods

il
80—
60 — m busy

] = memory
40 -

] N: no prefetch

G: greedy prefetch

20 J: jump prefetch

| S: stride prefetch

0

NGJS NGJS NGJS NGJS NGJS NGJS NGJS NGJS NGJS NGJS
health mst perimeter treeadd bh bisort tsp voronoi em3d power

Figure 5.29. Comparing Busy/Memory Time in the Linked Structure Prefetching Methods

Normalized Execution Time (%)

Normalized Busy/Memory Time (%)

147

the run time cost of creating, updating, and using them, and the space cost for the additional
field.

Stride prefetching eliminates the cost of the jump pointers, and is able to hide large
amounts of latency. The effectiveness of the prefetch instructions relies upon the data lay-
out. Chapter 6 discusses the interactions between stride prefetching and garbage collection.
We show that the collector has the potential to improve the effectiveness of stride prefetch-

ing by laying out the data appropriately.

5.4 Architectural Sensitivity

The results in the previous sections of this chapter use a fixed architecture. We describe
the architecture in Section 5.1, and list the simulation parameters in Table 5.1. In this
section, we examine the performance of prefetching using different simulation parameters.
We run experiments using different size caches, and we vary the memory hierarchy access
times.

We run experiments using three other simulation configurations: fast, large, and future.
Table 5.10 lists the parameters for each configuration. In the fast configuration, we decrease
the L2 cache size and memory access times by dividing them in half. We change the
memory parameters in the future configuration to model a realistic architecture that may
appear several years in the future. The future parameters roughly correspond to projections
made by Agarwal et al. [3]. The future projections suggests that cache sizes will remain
small, and the cache access times will increase. RSIM allows only a single cache line size
for both the L1 and L2 caches, but the future projections indicate that the L2 cache line size
will be much larger. In the large configuration, we increase the L1 and L2 cache sizes.

For each cache configuration, we run experiments using array prefetching, greedy pre-
fetching, and jump-pointer prefetching. We present overall execution times and normalize
the execution times to those without prefetching. In each graph, the percentage at the top

of each program’s bar is the execution time of the new configuration normalized to that

148

Table 5.10. Different Simulation Configurations

Memory Configuration

Parameter Base | Fast | Large | Future
L1 size 32K | 32K 64K 32K
L2 size 256K | 256K | 1024K | 512K
L1 time (cycles) 1 1 1 2
L2 time (cycles) 12 6 12 16
Mem. time (cycles) 60 30 60 100
L1 associativity 1 1 1 2
L2 associativity 4 4 4 4
Line size 32B | 32B 32B 32B

of the base configuration. Both the fast and large configurations result in faster execution
times than the base configuration. The execution time improvement is not surprising since
we increase the cache sizes and decrease the access times in these configurations. The fu-
ture configuration requires more cycles, which is not surprising because we increase the
memory access time. However, we expect the clock speed in future architectures to be

faster.

5.4.1 Array Prefetching

Figures 5.30, 5.31, and 5.32 show normalized execution times for array prefetching
with the fast, large, and future configurations, respectively. Table 5.11 summarizes the
average reduction in execution time for each configuration. Prefetching on the future ar-
chitecture results in the largest reduction in execution time across all the benchmarks. The
fast architecture results in the smallest improvement. The variation between the different
configurations is high, and ranges from 26% to 15%.

In general, the trends in each configuration are similar. Prefetching improves the same
programs, but the amount depends upon the memory parameters. In the fast and large con-
figurations, the amount of time spent waiting for memory operations decreases. Thus there
is less room for improvement. The future configuration has more room for improvement,

which is the reason why prefetching performs the best on this configuration.

149

Table 5.11. Overall Results for Array Prefetching

Base

Fast

Large Future

Avg. Change

23%

15%

17%

26 %

Table 5.12. Overall Results for Greedy Prefetching

Avg. Change | Base Fast Large Future
All 5% 3% 4% 5%
Top Four 10% 8% 10% 10%

Table 5.13. Overall Results for Jump-Pointer Prefetching

Avg. Change | Base Fast Large Future
All 10% 9% 8% 9%
Top Four 24% 21% 21% 23%

In each of the experiments, we use the same prefetch distance. Changing the prefetch
distance for some individual benchmarks may result in slightly different results, but using a
fixed value is robust for these configurations. Only a couple of programs may benefit from
a larger prefetch distance in the future configuration, but using a smaller prefetch distance
in the other configurations will most likely not change the results. In the fast and large

configurations, we do not see a noticeable increase in the percentage of early prefetches.

5.4.2 Greedy Prefetching

Figures 5.33, 5.34, and 5.35 show normalized execution times for greedy prefetching
with the fast, large, and future configurations, respectively. Table 5.12 summarizes the
average reduction in execution time for each configuration. We show the average reduction
for each program and for the four programs that prefetching improves, i.e., heal t h, st ,
perimeter,andtreeadd.

The smallest improvement occurs with the fast configuration, and the largest occurs
with the future configuration. The variation in the performance improvements is not large.
Across all programs, the smallest improvement is 3% and the largest is 5%. In the top four

programs, the smallest improvement is 8% and the largest is 10%.

150

| 72% 7% 73% 74% 7% 75%

100% 69Y 88% 65% 78% 66%
mm busy
=3 memory
E N: no prefetch
P: prefetch
0
N P N P N P N P N P N P N P N P

N P N P N P N P
cholesky eigen lufactl matmult qgrd svd crypt fft heapsort lufact2 sor sparse

Figure 5.30. Array Prefetching Performance Using the fast Configuration

5 8 8 8
| R R |

Normalized Execution Time (%)

N
o
|

1004 67% 60% 53% 94% 71% 65% 100% 989 89% 80% 100% 53%
g]
s
£ 80
=
- |
i=l
'g 60 == busy
X =3 memory
wl 4
B o]
c
§ 1 N: no prefetch
S P: prefetch
Z 204 P
0
N P N P N P N P N P N P N P N P N P N P N P N P
cholesky eigen lufactl matmult qgrd svd crypt fft heapsort lufact2 sor sparse
Figure 5.31. Array Prefetching Performance Using the large Configuration
100_118% 188% 101% 132% 127% 112% 101% 1419 109% 139% 130% 112%
g | I
©
£ 80
=
. |
S
3 60 == busy
§ =3 memory
wl 4
T
N 40+
©
g | N: no prefetch
S P: prefetch
Z 204 P
0
N P N P N P N P N P N P N P N P N P N P N P N P
cholesky eigen lufactl matmult qrd svd crypt fft heapsort lufact2 sor sparse

Figure 5.32. Array Prefetching Performance Using the future Configuration

151

Greedy prefetching results in larger improvements as the cache access time increases
because there is more room for improvement. As the memory access time increases, greedy

prefetching generates slightly more late prefetches.

5.4.3 Jump-Pointer Prefetching

Figures 5.36, 5.37, and 5.38 show normalized execution times for jump-pointer pre-
fetching with the fast, large, and future configurations, respectively. Table 5.13 summaries
the average reduction in execution time for each configuration. We show the average reduc-
tion for all the programs, and the four programs that prefetching improves, i.e., heal t h,
nst, peri meter,andtreeadd.

With jump-pointer prefetching, the smallest improvements occur when the caches are
large. The largest improvements occurs on the base configuration. The average improve-
ment on all the programs range from 8% to 10%. In the top four programs, the average
improvement ranges from 21% to 24%. These results indicate that pointer prefetching is

robust to changes in memory parameters for these programs.

5.4.4 Architectural Sensitivity Summary

In this section, we vary several of the memory hierarchy parameters and discuss the
impact on prefetching performance. As we expect, prefetching has less effect on the archi-
tectures with faster memory access times or larger caches. The memory system is less of a
bottleneck when the caches are more efficient. Prefetching results in better improvements
with slower caches. As the gap between processor speed and memory speed continues to

grow, our results suggest that prefetching will have a greater impact.

5.5 Chapter Summary
In this chapter, we evaluate the effectiveness of array and linked structure prefetching.
We use two sets of array-based Java programs to evaluate array prefetching. These pro-

grams are from the Jama library package and the Java Grande benchmark suite. We eval-

152

Normalized Execution Time (%) Normalized Execution Time (%)

Normalized Execution Time (%)

100 +

57%

78%

91% 2%

70%

95%

83%

89%

94%

88%

== busy
=3 memory

N: no prefetch
G: greedy prefetch

== busy
=3 memory

N: no prefetch
G: greedy prefetch

. busy
=3 memory

N: no prefetch
G: greedy prefetch

80

60

40

20

O_
N G N G N G N G N G N G N G N G N G N G
health mst perimeter treeadd bh bisort tsp voronoi em3d power
Figure 5.33. Greedy Prefetching Performance Using the fast Configuration

100 4 71% 93% 99% 99% 83% 95% 95% 93% 96% 99%

80

60 -

40 |

20

O_
N G N G N G N G N G N G N G N G N G N G
heath mst perimeter treeadd bh bisort tsp voronoi em3d power
Figure 5.34. Greedy Prefetching Performance Using the large Configuration

100 4 144% 122% 115% 150% 122% 102% 113% 112% 104% 114%

80

60_

40 -

20

o_
N G N G N G N G N G N G N G N G N G N G
health mst perimeter treeadd bh bisort tsp voronoi em3d power

Figure 5.35. Greedy Prefetching Performance Using the future Configuration

153

Normalized Execution Time (%) Normalized Execution Time (%)

Normalized Execution Time (%)

100 4 57% 78% 91% 2% 2% 95% 83% 89% 94% 88%
80
60 = busy
i =3 memory
40
] N: no prefetch
J: jump prefetch
20
0
N J N J N J N J N J N J N J N J N J N J
health mst perimeter treeadd bh bisort tsp VOronoi em3d power

Figure 5.36. Jump-Pointer Prefetching Performance Using the fast Configuration

100 4 71% 93% 99% 99% 83% 95% 95% 93% 96% 99%
80 I
60 = busy
i =3 memory
40
] N: no prefetch
J: jump prefetch
20
0
N J N J N J N J N J N J N J N J N J N J
health mst perimeter treeadd bh bisort tsp VOronoi em3d power

Figure 5.37. Jump-Pointer Prefetching Performance Using the large Configuration

1004 144% 122% 115% 150% 122% 102% 113% 1129 104% 114%
I I
80 .
60 == busy
i =3 memory
40
] N: no prefetch
J: jump prefetch
20
0
N J N J N J N N J

N J N J N J N J N J
health mst perimeter treeadd bh bisort tsp VOronoi em3d power

Figure 5.38. Jump-Pointer Prefetching Performance Using the future Configuration

154

uate three prefetch algorithms for linked-structure prefetching: greedy prefetching, jump-
pointer prefetching, and stride prefetching. We use a Java version of the Olden benchmark
suite to evaluate the linked-structure prefetch methods. We use RSIM, a simulator for an
out-of-order superscalar processor, to obtain results with and without prefetching.

Array prefetching improves performance in six of the twelve programs by a geomet-
ric mean of 23%. The largest improvement is 58%, which occurs in LU factorization.
Our results show that loop transformations and array analysis are not necessary to achieve
large performance gains with prefetching in Java programs. Greedy prefetching often im-
proves the performance of our programs even in the presence of object-oriented features,
such as encapsulation, that hide accesses to underlying data structures. As memory latency
increases, we show that greedy prefetching will become less effective in improving mem-
ory performance. Jump-pointer prefetching results in bigger improvements than greedy
prefetching for some programs, but it is less consistent overall. Better compiler analysis
IS necessary to improve jump-pointer prefetching. Stride prefetching produces large im-
provements for some programs, but the results depend upon the data layout of the linked
structures. The largest improvement occurs from using stride prefetching for t r eeadd.
In the future, combining stride prefetching with dynamic optimization may produce more
reliable results. Even with prefetching, our results show that there is still considerable room
for improving the locality of object-oriented programs.

Compile-time data prefetching is effective in improving the memory performance of
Java programs that traverses arrays and linked structures. We show that complex analy-
ses and transformations are not necessary improve the performance of array-based codes.
With modern processors, additional effort is not likely to produce much larger improve-
ments over our results. Prefetching linked structures is more difficult. Although we see

improvements, there is still room for further gains.

155

CHAPTER 6
GARBAGE COLLECTION AND PREFETCHING

Garbage collection automatically reclaims heap allocated memory that a program no
longer references. Many modern object-oriented languages, including Java, require gar-
bage collection for dynamic memory management. Garbage collection reduces the pro-
grammer’s burden of managing memory and provides software engineering benefits.

In the previous chapter, we present our results without garbage collection because gar-
bage collection can affect program performance significantly. Since our linked-structure
prefetch algorithms do not alter the collector, disabling the collector enables us to under-
stand the effects of prefetching better. In this chapter, we discuss the effect of a generational
copying garbage collection on our prefetching schemes. Our results show that this garbage
collector has little effect on the performance of prefetching for most programs. In some
cases, it improves prefetching by improving locality.

We also show that memory performance during garbage collection is consistently poor.
Across a range of programs, 50% of the execution time during garbage collection is spent
waiting for memory. We propose using prefetching to improve the memory performance of
a generational copying garbage collector. We add prefetch instructions to three places in the
collector’s algorithm by hand. Our approach is easy to implement in any copying collector.
Our initial results show that the prefetch instructions are effective in reducing the execution
time of garbage collection by as much as 32%, and by a geometric mean of 26% across
all programs in one collector configuration. Although our prefetch instructions improve
performance, the collector still spends a large percentage of time waiting for memory. The

successful results from using just three prefetch instructions suggests that more aggressive

156

prefetching can further reduce the memory penalty. However, identifying more effective
prefetch strategies is challenging.

We organize the chapter as follows. Section 6.1 describes the garbage collector in
Vortex. In Section 6.2, we evaluate the impact of garbage collection on prefetching. We
discuss specifically how the collector handles jump-pointers. We use several collector sizes
in our evaluation. In Section 6.3, we experiment with adding prefetch instructions to the
garbage collection algorithm itself. We show that our generational copying collector has

poor memory performance, and that a few prefetch instructions can improve performance.

6.1 Garbage Collection in Vortex

The garbage collector in Vortex uses the UMass Language-Independent Garbage Col-
lection Toolkit [49]. The collector uses a generational copying algorithm. A semi-space
copying collector divides the heap into two equal size areas called From-space and To-
space. The allocator obtains memory from To-space, and From-space contains old data.
Garbage collection typically occurs when To-space is full. A copying garbage collector be-
gins by flipping the meaning of To-space and From-space. The collector traverses the live
objects in From-space, and copies them to To-space. After processing all the live objects,
To-space contains a copy of all the live objects. The objects in From-space are dead. At
this point, the program continues to allocate memory from To-space.

We illustrate the start of a collection in Figure 6.1. The heap contains six live objects.
The collector begins by copying the root objects, A and F, to To-space. The collector
processes the root objects, and copies all objects reachable from the roots. Figure 6.2
shows the heap after the collection. Notice that the live objects have been linearized in
To-space.

The garbage collection toolkit uses Cheney’s copying algorithm [23]. Cheney’s algo-
rithm copies the objects without using recursion by using two additional pointers, called

scan and f r ee. The pointers delineate the unprocessed objects, and f r ee provides the

157

From-Space To—-Space

LS €] |
o] [F

Figure 6.1. The Heap at the Start of a Collection

From-Space To—Space

P N
—~ AJF|B[C]E[D]

Figure 6.2. The Heap at the End of a Collection

cheney_scan() {
scan = free = To-space;

for each root R
*R = copy(R);

while (scan < free) {
for each field P of scan
*P = copy(P);
scan = scan + size(scan);

}
Figure 6.3. Cheney’s Algorithm (from Jones and Lin [52])

current allocation point. Cheney’s algorithm processes each object between scan and
f r ee, copying each object’s reference fields, until the two pointers are equal. The algo-

rithm performs a breadth first traversal of the live objects. Figure 6.3 shows the pseudo

code for Cheney’s algorithm.

Figure 6.4 shows a snapshot of To-space during a collection. The collector has pro-

cessed the dark objects to the left of scan. The collector still needs to process the light

objects between scan and f r ee. The collector copies the newly encountered objects to

the right of f r ee.

158

To—Space

scan free
Figure 6.4. Snapshot of Cheney’s Copying Algorithm

A generational collector divides the heap into two or more regions, called generations,
that contain increasingly older objects. The youngest generation is the nursery and contains
the most recently allocated objects. As objects survive collections, the collector copies
them to older generations. The collector processes the older generations less frequently
than the younger generations. The basic principle behind generational collectors is the
weak generational hypothesis, which states that most objects die young [108].

The garbage collection toolkit enables the user to configure the heap at program start-
up. A configuration file specifies the number of generations, the size of each generation,
and when to promote objects between generations. The configuration file specifies a fixed
size for each generation. A collector with fixed sized generations does not allow the nursery
to grow during execution time and performs a collection when the amount of new allocation

reaches the fixed limit.

6.2 Effect of GC on Prefetching Linked Structures

In this section, we evaluate the impact of garbage collection on the performance of our
prefetch algorithms. Garbage collection can increase a program’s execution time due to the
additional cost of determining the live objects and copying them. In some cases, a copying
collector may reduce execution time by improving the locality of the program. The cost
of generational garbage collection depends upon several factors, including the size of each

generation, the frequency of collections, and the number of generations.

159

6.2.1 Handling Jump-Pointers in the Collector

In this section, we discuss the details of how the garbage collector handles the jump-
pointer prefetching field. As we describe in Section 4.3, jump-pointer prefetching adds a
field to recurrent objects. The additional field contains a reference to another object, which
we use to perform prefetching.

The garbage collector needs to be aware of the jump-pointer field and must handle the
field specially. The garbage collector must not identify the referent of the jump-pointer field
as a live object. If the jump-pointer is the only reference to an object, then the collector
should not copy the object, which allows the memory allocator to reclaim the object. If
the collector treats the jump-pointer as a regular field reference, then the collector retains
excess objects that may be dead.

We extend Cheney’s algorithm to handle the jump-pointers. The collector must up-
date the jump-pointers to refer to the new objects in To-space, and the collector has an
opportunity to improve the effectiveness of the jump-pointers. Updating the jump-pointers
is a correctness issue. Since the collector must do work to update the jump-pointers, we
re-initialize all the jump-pointers in order to improve the effectiveness as well.

While copying objects, the collector updates each field reference to refer to the new
location of the copied object. Since the collector does not trace the jump-pointers, we
need to extend the copying algorithm to update the jump-pointers. The difficulty is that the
referent for the jump-pointer may not have been copied yet. We need a method to keep
track of the pending jump-pointers that the collector can process once it copies the referent
object.

The collector has an opportunity to improve the effectiveness of the jump-pointers. If
a program updates a linked structure frequently during execution, then the jump-pointers
may become ineffective over time. Programs that initialize the jump-pointers during object

creation are prone to this problem. Rather than paying the cost of updating the jump-

160

pointers during each linked structure traversal, we use the collector to re-initialize the jJump-
pointers as it copies the objects to To-space.

Section 4.3.1 describes our technique for creating jump-pointers during the traversal
of a linked structure. Since Cheney’s algorithm is a breadth first traversal of all the live
objects, we incorporate the ideas from Section 4.3.1 into Cheney’s algorithm. To initialize
jump-pointers, the extended algorithm uses a circular queue that contains the last n objects
copied. The extended algorithm uses a separate circular queue for each class that contains
a jump-pointer and only inserts objects of the appropriate type into the queue.

Figure 6.5 shows the code for the extended algorithm. The code corresponds to the
sequence in Figure 4.17. The code uses three functions to access the jump-pointer infor-
mation for an object. The method j pp_queue() returns the circular queue for an ob-
ject. In our implementation, there is one queue for each type that contains a jump-pointer
prefetch field. The method j pp_i ndex() returns the current index into the queue, and
] pp_next _i ndex() advances the index to the next entry in the circular queue.

The extended algorithm updates the jump-pointers correctly and potentially improves
the effectiveness of the jJump-pointers. We no longer have the problem of updating jump-
pointers that contain references to objects in From-space. Since the extended algorithm
inserts the objects into a queue and creates jump-pointer links between objects in the queue,

we ensure that the objects are in To-space.

6.2.2 Experimental Results

We evaluate the effect of garbage collection on the performance of greedy, jump-
pointer, and stride prefetching. In our experiments, we vary the size of the generations,
but we fix the number of generations at two. Objects that survive a collection are promoted
from the nursery to the older generation. We experiment with different heap sizes.

In our experiments, the size of the generations depends upon the amount of memory

that each program allocates. Table 5.6 lists the total amount of memory allocated, and

161

cheney_scan_junp_pointer() {
scan = free = To- Space;
for each root R
*R = copy(R);

while (scan < free) {
for each junp pointer field J of scan {
j queue = jpp_queue(J);
jindex = jpp_index(J);
j Obj = jqueue[jindex];
] Qbj . prefetch = scan;
j queue[j i ndex] = scan;
] pp_next _i ndex(J);

}

for each field P of scan
*P = copy(P);

scan = scan + size(scan);

}
Figure 6.5. Extended to Cheney’s Algorithm to Handle Jump-Pointers

the maximum amount of memory live at any given point for each program. We use three
different collector configurations in our experiments. In GC1, the size of the heap is the
maximum live size for each program. Thus, since we specify two generations, each gen-
eration is half the maximum live size. The GC1 heap size is very small. In GC2, the size
of the heap is twice the maximum live size. In GC3, the size of the heap is three times the
maximum live size.

Figure 6.6 shows the results of the Olden programs with garbage collection, but with-
out prefetching. These results illustrate the cost of garbage collection in each program.
For each program, Figure 6.6 shows the results with no garbage collection (N), the GC1
collector (1), the GC2 collector (2), and the GC3 collector (3), from left to right. Note that
the order of the programs on the x-axis in Figure 6.6 is different than in the figures from
Chapter 5. We divide the programs into two groups. The programs in the second group,

on the right side of Figure 6.6, have a maximum live size that is equal or almost equal to

162

162%
160% 156% 185% 383%

: I II
1 m busy
] = memory
50 —
] N: no GC
1: max. live (GC1)
1 2: 2* max. live (GC2)
] 3: 3* max. live (GC3)
0

N123 N123 N123 N123 N123 N123 N123 N123 N123 N123
em3d health power VOronoi bisort mst perimeter treeadd

Figure 6.6. Performance with Garbage Collection

—

Normalized Execution Time (%)

the total memory allocated. These four programs do not have interesting garbage collec-
tion characteristics, and should not be used to draw meaningful conclusions. We normalize
all times to those without garbage collection. Several of the programs have large running
times with garbage collection. The figure displays values up to 130% only, but we list the
normalized execution time above the bars that have very long running times.

Garbage collection has an interesting effect on heal t h. The executiontime of heal t h
actually decreases when using garbage collection. The reason for the decrease in execution
time is that the program achieves better locality when the collector reorganizes the data.
Figure 6.2 shows that a collector tends to linearize data and co-locate objects that have
connections. Co-locating objects increases spatial locality, and improves the performance
of heal t h.

Garbage collection has a severe negative impact on the performance of st , peri ne-
ter, treeadd, and vor onoi for the small collectors. These programs contain large
heap allocated data structures that are persistent during the program’s execution. The per-
formance of these programs suffers because the collection cost in a copying collector is
proportional to the amount of live data. For example, t r eeadd creates a 24MB binary

tree that never changes. The program frequently performs garbage collection, and all the

163

Normalized Execution Time (%)

Normalized Execution Time (%)

Normalized Execution Time (%)

m busy
= memory

N: no GC

1: max. live (GC1)

2: 2* max. live (GC2)
3: 3* max. live (GC3)

N123 N123 N123 N123 N123 N123 N123 N123 N123 N123
bh em3d health power tsp VOronoi bisort mst perimeter treeadd
Figure 6.7. Greedy Prefetch Performance with Garbage Collection
181% 173%

m busy
= memory

N: no GC

1: max. live (GC1)

2: 2* max. live (GC2)
3: 3* max. live (GC3)

N123 N123 N123 N123 N123 N123 N123 N123 N123 N123
bh em3d health power tsp VOronoi bisort mst perimeter treeadd

Figure 6.8. Jump-Pointer Prefetch Performance with Garbage Collection

m busy
= memory

N: no GC

1: max. live (GC1)

2: 2* max. live (GC2)
3: 3* max. live (GC3)

N123 N123 N123 N123 N123 N123 N123 N123 N123 N123
bh em3d health power tsp VOronoi bisort mst perimeter treeadd

Figure 6.9. Stride Prefetch Performance with Garbage Collection

164

objects are live during each collection. The cost of collecting the large structure is very
high, which is why the execution time of t r eeadd with garbage collection increases by
383%.

The performance of GC3, the large configuration, is similar to the performance without
garbage collection, but GC3 triggers collections in only four of the ten programs. These
programs are heal t h, bh, t sp, and power . The execution time with GC3 ranges from
4% faster to 20% slower in heal t h and bh, respectively.

Figure 6.7 shows the performance of greedy prefetching with garbage collection. Since
we are interested in the effect of garbage collection, we normalize the execution times
to the corresponding values in Figure 6.6. Garbage collection has a small effect on the
performance of greedy prefetching in most programs. Using a garbage collector has a
small positive effect on greedy prefetching in peri net er and t sp. Tr eeadd is the
only program that produces significant variation among the different collectors. Greedy
prefetching improves t r eeadd by only 3% with GC1, but by 20% with GC2, GC3, and
no garbage collection. The difference is due to the large amount of time spent in garbage
collection with GC1 and GC2. With these collectors, t r eeadd spends just 17% of the
execution time traversing the binary tree, and 77% of the execution time in the garbage
collector.

Figure 6.8 shows the performance of jump-pointer prefetching with garbage collection.
We normalize the execution times to the corresponding values in Figure 6.6.1 There is a
tight relationship between prefetching and garbage collection with jump-pointer prefetch-
ing. Section 4.3.3 summarizes how the garbage collector deals with jump-pointers. Due to
the interaction, there is a potential for cooperation between the collector and the prefetching

algorithm.

1\We do not show aresult for st with GC1 due to an undetermined bug.

165

The performance of heal t h improves at different levels of garbage collection. The
execution time in heal t h decreases by 8% with GC3 when compared to the execution
time without garbage collection. The performance of vor onoi shows significant vari-
ation with different collectors. With GC2, jump-pointer prefetching slightly reduces the
execution time, but the execution time increases with GC1 and GC2 in vor onoi .

Figure 6.8 illustrates an interesting effect due to the interaction between jump-pointer
prefetching and garbage collection. Jump-pointer prefetching adds an extra field to objects
that contain jump pointers. The extra field increases the amount of memory the program
allocates. In most cases, the extra memory is not an important issue. In peri net er and
vor onoi , the extra memory results in additional garbage collection. With GC2, the addi-
tional collection causes per i et er to run 173% more slowly with prefetching. Without
the jump-pointer field, per i met er does not invoke the collector with GC2. The same
effect occurs in vor onoi with GC3.

Figure 6.9 shows the results for stride prefetching when we enable garbage collection.
The most interesting result occurs in heal t h. Without garbage collection, stride prefetch-
ing increases the execution time by 6% because the linked structures in heal t h become
disjoint as the program inserts and deletes objects. As Figure 6.2 shows, the garbage col-
lector linearizes the linked structures making them amenable to stride prefetching. With

GC2, stride prefetching reduces the execution time by 15%.

6.3 Prefetching in the Garbage Collector

In this section, we experiment with adding prefetch instructions to the garbage collec-
tor itself. We show that prefetching is able to reduce the cost of garbage collection by
improving memory performance.

The memory performance during garbage collection is poor. Figure 6.10 shows that
memory performance is a problem during the garbage collection portion of a program’s

execution time. In Figure 6.10, the nursery size is half the maximum live size for each pro-

166

Normalized Execution Time (%)

100 —
80
60
1 busy
memory

40 -
20
0-

health mst perimeter treeadd bisort voronoi em3d power

Figure 6.10. Memory Penalty Durlng Garbage Collection Using a Small Heap

cheney_scan_prefetch() {
scan = free = To- Space;
for each root R
*R = copy_prefetch(R);

copy_prefetch(P) {
i f forwarded(P)
return forward_addr(P);

prefetch (P+n);

addr = free;

mencpy(free, P, size(P));
free = free + size(P);
forward_addr(P) = addr;
return addr;

while (scan < free) {

prefetch (scan+n);
for each field P of scan
*P = copy_prefetch(P);
scan = scan + size(scan);

})
Figure 6.12. Prefetching in From-Space

Figure 6.11. Prefetching in To-Space

gram, but we see similar values for larger heaps. The size of the heap affects the number of
collections that occur and does not affect the memory penalty. Table 5.6 lists the maximum
live size for each of the Olden programs. Figure 6.10 shows that garbage collector often
spends at least 50% of the time waiting for memory. The amount is fairly steady across dif-
ferent programs, which use different amounts of memory, and invoke the garbage collector
at different rates. We do not have results for enBd because it does not perform garbage
collection.

We experiment with adding prefetch instructions during three parts of the garbage col-

lection algorithm.

167

To-Space Figure 6.2 shows that the live objects become linearized as the collector copies
them to To-space. Figure 6.4 shows a snapshot of To-space during the collection
process. We add a prefetch instruction to the Cheney scan algorithm, as shown in
Figure 6.11. Prior to processing the object to the right of scan, we prefetch n bytes

ahead. Thus, we ensure that future objects will be in the cache when they are scanned.

From-Space Figure 6.1 depicts the heap just prior to the collection. Although the objects
in this picture are spread throughout memory, live objects often cluster into consecu-
tive locations in practice. We thus prefetch objects in From-space during the copying
algorithm also. Whenever the algorithm copies an object, the collector prefetches n

bytes ahead. Figure 6.12 shows the copying code with the prefetch instruction.

Object Scan The prior two methods do not explicitly take advantage of a linked object’s
pointer structure. While scanning the objects in To-space, we add prefetch instruc-
tions that prefetch the fields of each object. The prefetch is effective when the fields
reference objects that the collector has not copied yet. Figure 6.13 shows the change
from adding a prefetch instruction to Cheney’s algorithm. Before the algorithm
copies the fields of an object, we add a loop to prefetch the fields of the object. In
the implementation, we unroll the prefetch loop to handle the common cases when

an object contains one, two, or three fields.

In our experiments, the prefetch distance is 32 bytes for the to-space and from-space
prefetch instructions. Figures 6.14, 6.15, and 6.16 show the effect of prefetching during
garbage collection when the size of the initial heap is one, two, and three times the max-
imum live size, respectively. The y-axis is the execution time during garbage collection
only. We normalize all the garbage collection times to those without prefetching (N). The
value above each bar without prefetching (N) is the percentage of total execution time that
the programs spend in the collector. For example, in Figure 6.14 heal t h spends 8% of

its execution time in the collector. The figures present separate results for prefetching in

168

cheney_scan_prefetch() {

scan = free = To- Space;
for each root R
*R = copy(R);

while (scan < free) {
for each field P of scan
prefetch (P);
for each field P of scan
*P = copy(P);
scan = scan + size(scan);

}
}

Figure 6.13. Prefetching Fields During the Object Scan

To-space (T), From-space (F), in the object scan (R), and with all the prefetch instructions
(A).

In Figure 6.14, the amount of time spent in the collector ranges from 2% to 77% of total
execution time for the programs that perform garbage collection. Tr eeadd is an outlier
since the next closest value is 38% in peri nmet er. Int r eeadd, a negligible number of
objects become garbage, so the collector copies the entire binary tree repeatedly. Prefetch-
ing in To-space, From-space, and in the object scan decreases the collector’s execution time
by a geometric mean of 10%, 11%, and 12%, respectively. The largest improvement occurs
in power by prefetching the objects in To-space. With all three prefetches, the execution
time of the collector decreases by a geometric mean of 26%.

In Figure 6.15, the amount of time spent in the collector ranges from 1% to 38% of total
execution time. When we increase the size of the nursery, neither nst nor peri net er
require garbage collection. Prefetching in To-space, From-space, and in the object scan
decreases the execution time by a geometric mean 10%, 10%, and 11%, respectively. With
all the prefetches, the collector execution time decreases by a geometric mean of 25%.

In Figure 6.16, the amount of time spent in the collector ranges from 1% to 18% of

total execution time. Only four of the ten programs allocate enough objects to invoke

169

8% 35% 38% 7% 23% 4% 9% 37% 0% 2%

g
s
E
'_
8 m busy
= memor
3 y
N
<
€ .
5 N: no prefetch
2

T: prefetch to-space
F: prefetch from-space
R: prefetch field refs.

A: al prefetches
NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA
health mst perimeter treeadd bh bisort tsp voronoi em3d power
Figure 6.14. Prefetch During Garbage Collection (1*max. live)

% 0% 0% 20% 4% 6% 38% 0% 1%

4% 0y
80
60
] | busy
= memory
40+
] N: no prefetch
T: prefetch to-space
20 F: prefetch from-space
| R: prefetch field refs.
A: prefetch all
0 -

NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA

Normalized GC Time (%)

health mst perimeter treeadd bh bisort tsp voronoi em3d power
Figure 6.15. Prefetch During Garbage Collection (2*max. live)
% 0% 0% 18% 0% 5% 0% 0% 1%

B D o)
o o (=)
| | |

Normalized GC Time (%)

N
o
|

0,
100 _4% 0%
] m busy
= memory

] N: no prefetch
T: prefetch to-space
F: prefetch from-space

| R: prefetch field refs.
A: prefetch al

04

NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA NTFRA
health mst perimeter treeadd bh bisort tsp voronoi em3d power

Figure 6.16. Prefetch During Garbage Collection (3*max. live)

170

the collector. Prefetching in To-space, From-space, and in the object scan improves the
collector performance by a geometric mean of 11%, 9%, and 10%, respectively. With all
three prefetches, the execution time decreases by a geometric mean of 24%.

The amount that the prefetch instructions improve the garbage collector appears to be
independent of the nursery size. Each prefetch instruction contributes to the execution time
improvements. There is only small variation between the programs, so the improvements
are fairly stable. The largest reduction in execution time is 32% in bi sort when using
all three prefetch instructions. These programs still suffer from poor memory performance
even with prefetching, but we show that simple prefetching techniques in the collector are

able to improve performance.

6.4 Chapter Summary

In this chapter, we discuss the effect of garbage collection on prefetching. We enable
garbage collection at run time and discuss the results for the linked-structure prefetching
schemes. The cost of garbage collection is high for several of our benchmarks. We vary
the heap size to obtain more general results. Garbage collection does not have a significant
impact on prefetching in many of the programs, but there are a few exceptions. For exam-
ple, jump-pointers consume more memory, which results in additional garbage collections
in a couple of the programs. In contrast, we notice that the garbage collector is able to reor-
ganize data such that the performance of prefetching improves. More research is necessary
to quantify and exploit this effect further.

We also show that the memory performance of the garbage collector is poor. We im-
prove the memory performance by adding three prefetch instructions. One instruction pre-
fetches memory in To-space, one prefetches memory in From-space, and the third pre-
fetches field references during the scan phase. The prefetch instructions reduce the garbage

collection time by as much as 32%. Even with prefetch instructions, there is still room

171

for improvement. We believe it is worthwhile to pursue more aggressive techniques for

reducing the memory penalty during garbage collection.

172

CHAPTER 7
CONCLUSIONS

The memory hierarchy in modern architectures continues to be a major performance
bottleneck. Many existing techniques for improving memory performance focus on Fortran
and C programs. Memory latency is also a barrier to achieving high performance in object-
oriented languages. Existing software techniques are inadequate for exposing optimization
opportunities in object-oriented programs that traverse linked structures and arrays. In this
dissertation, we develop and evaluate new compiler algorithms for software prefetching.
We show that software prefetching can improve the memory performance of Java programs
that use arrays and linked structures.

In this chapter, we discuss directions for future work, and we summarize our contri-
butions. The techniques that we develop in this dissertation lead directly to a number of
potential directions for further investigation. We conclude by summarizing our contribu-

tions.

7.1 Future Work

We improve the memory performance of linked structures, but there is still much room
for improvement. Better techniques are needed to reduce the memory penalty further, espe-
cially in programs that contain irregular traversals of linked structures. We suggest combin-
ing prefetching with data layout optimizations or code transformations to improve locality.
We also believe that more advanced jump-pointer prefetching techniques can improve the

potential of prefetching. Some possible extensions include adding multiple jump-pointers

173

to each object, inserting jump-pointers between objects of different types, and more selec-
tive methods for updating jump-pointers to minimize the cost.

We are interested in evaluating performance of our prefetching techniques on a real
processor that contains a useful prefetch instruction. Our compiler currently generates
SPARC assembly language, but we are unlikely to see improvements from prefetching on
an UltraSPARC Il because it is an in-order processor, allows a very limited number of
outstanding loads, and prefetches into the L2 cache only. We would like to evaluate our
prefetching technique on an UltraSPARC 111, which implements hardware prefetching and
contains a separate cache for prefetched data. We believe that prefetching will produce
more significant results on architectures that contain better support for prefetching, such
as the POWER4 or Pentium 4 architectures. To support effective software prefetching, an
architecture needs a non-binding instruction that prefetches a cache line into the L1 cache,
multiple ports to the L1 cache, the ability to support a large number of outstanding loads,
the ability to prefetch integer and floating point data, and allow out-of-order execution.

We also are interested in evaluating our analysis and prefetching algorithms in a just-
in-time (JIT) Java compiler. We believe our intraprocedural recurrence analysis is efficient
enough to run in a JIT environment. Several JIT compilers, such as the Jikes RVM and
Sun’s HotSpot, contain data-flow analysis frameworks already. We would like to investigate
techniques to make our interprocedural analysis more efficient so that it may used ina JIT
compiler. Since the current interprocedural analysis is context-sensitive, it is too expensive
to run in a JIT compiler. Discovering efficient interprocedural analysis techniques ina JIT
compiler is a stimulating research focus.

This dissertation focuses on static analysis to discover prefetching opportunities. A po-
tential research direction is to use run-time information to identify objects to prefetch. The
Java environment encourages dynamic and adaptive compilation strategies. The challenge
is to find techniques that compute useful information about memory references cheaply at

run time.

174

Our results are encouraging, but we would like to evaluate prefetching on a larger set
of benchmarks. Evaluating optimizations for Java is difficult due to a lack of interesting
benchmark programs. Other than the programs we use, the SPECjvm98 benchmarks suite
is the only set of standard Java programs that researchers use to evaluate performance.
We have performed initial experiments on several of the SPECjvm98 programs, but we
have encountered limited success. As a whole, the SPECjvm98 programs do not spend a
significant amount of time traversing linked structures or arrays in a regular manner. The
community needs a larger set of interesting programs for performance evaluation.

We use our recurrence analysis for prefetching only. We are interested in exploring the
potential of using the recurrence analysis to solve other problems. We believe that further
improvements are possible by using the recurrence analysis for data layout optimizations
and code transformations. One potential idea is to extend the garbage collector to use the
recurrence information for improving locality.

Our initial results from investigating the synergy between the garbage collector and pre-
fetching suggest that further research will be useful. The ability of the garbage collector to
assist prefetching is very interesting. Our preliminary results show that a copying collector
can help organize the linked structures to improve the effectiveness of prefetching. Our
results also show that prefetching can improve the memory performance of the collector

itself. There is still room for improvement though.

7.2 Contributions

We develop a new data-flow analysis for identifying recurrences in object-oriented pro-
grams. The types of recurrences include induction variables and linked structure traversals.
Our unified treatment of arrays and linked structures is unique. The analysis contains an
intraprocedural component for finding recurrences in loops, and an interprocedural com-
ponent for finding recurrences across procedure calls. We extend the analysis to track

recurrences that are stored in fields and arrays between loop iterations. We use our analysis

175

to implement and evaluate array prefetching and three linked-structure prefetching tech-
niques: greedy prefetching, jump-pointer prefetching, and stride prefetching.

We implement a new array prefetch technique that does not require locality analysis or
loop transformations. Our algorithm generates prefetches for all array references contain-
ing loop induction variables. We generate an additional prefetch for array elements that
contain object references. We present results showing the effectiveness of prefetching on a
set of array-based Java programs. Prefetching improves performance in six of the twelve
programs by a geometric mean of 23%. The largest improvement is 58%, which occurs in
LU factorization. Our simple technique is able to eliminate almost all the memory stalls
in several programs. Our results show that loop transformations and array dependence
analysis are not necessary to achieve large performance gains with prefetching on modern
processors.

Linked structure prefetching often improves the performance of our programs even in
the presence of object-oriented features, such as encapsulation, that hide accesses to un-
derlying data structures. The linked structure prefetching techniques improve performance
in several of the Olden benchmark programs. Greedy prefetching improves performance
by a small, yet consistent, amount. Jump-pointer and stride prefetching produce larger
improvements than greedy prefetching, but the techniques are less consistent. In one pro-
gram, stride prefetching improves performance by 53%. One reason that prefetching is
not more effective is that several of our programs do not spend very much time access-
ing linked structures. Prefetching is most effective on programs that exhibit poor locality
during linked structure traversals.

As memory latency increases, greedy prefetching will become less effective in improv-
ing memory performance. Jump-pointer and stride prefetching have the potential for larger
improvements, but also can increase execution time by prefetching useless data. Better
compiler analysis with additional run-time support is necessary to improve jump-pointer

prefetching. Stride prefetching requires dynamic information or greater assistance from

176

the garbage collector to be most effective. Although prefetching improves the performance
of programs with linked structures, there is still room for improvement.

We also evaluate the effect of garbage collection on prefetching, and we improve our
collector’s memory performance by inserting prefetch instructions into the collector itself.
The collector can potentially improve the performance of jump-pointer and stride prefetch-
ing, and we see this effect in one program. For most of the other programs, garbage collec-
tion does not change the overall trends significantly. We show that the collector itself has
poor memory performance. We add prefetch instructions to the collector in three parts of
the algorithm. The prefetch instructions improve the collector’s memory performance and

reduce the execution time of the collector by as much as 32%.

We develop a unified whole-program data-flow analysis for identifying recurrences in
Java programs. We use our recurrence analysis to identify and exploit prefetch opportu-
nities in array and linked structure traversals. We show that compile-time software data

prefetching is effective in improving the memory performance of Java programs.

177

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

BIBLIOGRAPHY

Walid Abu-Sufah. Improving the Performance of Virtual Memory Computers. PhD
thesis, University of Illinois at Urbana-Champaign, Department of Computer Sci-
ence, 1979.

Anant Agarwal, Beng Hong Lim, David Kranz, and John Kubiatowicz. APRIL:
A processor architecture for multprocessing. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, pages 104-114, Seattle, WA,
June 1990.

Vikas Agarwal, M.S. Hrishikesh, Stephan W. Keckler, and Doug Burger. Clock rate
versus IPC: The end of the road for conventional microarchitectures. In Proceedings
of the 27th Annual International Symposium on Computer Architecture, pages 248—
259, 2000.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, MA, 1986.

Jonathan Aldrich, Craig Chambers, Emin Gun Sirer, and Susan Eggers. Static analy-
ses for eliminating unnecessary synchronization from Java programs. In Proceedings
of the Sixth International Static Analysis Symposium, pages 19-38, Venice, Italy,
September 1999.

Frances Allen, Michael Burke, Phillippe Charles, Ron Cytron, and Jeanne Ferrante.
An overview of the PTRAN analysis system for multiprocessing. Journal of Parallel
and Distributed Computing, 5(5):617-640, October 1988.

B. Alpern, C.R. Attanasio, J.J. Barton, M.G. Burke, P. Cheng, J.-D. Choi, A. Coc-
chi, S.J. Fink, D. Grove, M. Hind, S.F. Hummel, D. Lieber, V. Litvinov, M.F Mer-
gen, T. Hgo, J.R. Russell, V. Sarkar, M.J. Serrano, J.C. Sheperd, S.E. Smith, V.C.
Sreedhar, H. Srinivasan, and J. Whaley. The Jalapefio virtual machine. IBM System
Journal, 39(1):211-238, February 2000.

Zahira Ammarguellat and W.L. Harrison Ill. Automatic recognition of induction
variables and recurrence relations by abstract interpretation. In Proceedings of the
1990 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 283-295, White Plains, N, June 1990.

Pedro V. Artigas, Manish Gupta, Samuel P. Midkiff, and Jose E. Moreira. Automatic
loop transformations and parallelization for Java. In Proceedings of the 2000 Inter-
national Conference on Supercomputing, pages 1-10, Santa Fe, NM, May 2000.

178

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Jean-Loup Baer and Tien-Fu Chen. An effective on-chip preloading scheme to re-
duce data access penalty. In Proceedings of 1991 Conference on Supercomputing,
pages 176-186, Alburquerque, NM, November 1991.

David Bernstein, Doron Cohen, Ari Freund, and Dror E. Maydan. Compiler tech-
niques for data prefetching on the PowerPC. In Proceedings of the 1995 Inter-
national Conference on Parallel Architectures and Compilation Techniques, pages
19-26, Limassos, Cyprus, June 1995.

Hans-J. Boehm. Reducing garbage collector cache misses. In Proceedings of the
2000 International Symposium on Memory Management, pages 59-64, Minneapolis,
Minnesota, October 2000.

Preston Briggs, Keith Cooper, and Linda Torczon. Improvements to graph coloring
register allocation. ACM Transactions on Programming Languages and Systems,
16(3):428-455, May 1994.

J.M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey. A bench-
marks suite for high performance Java. Concurrency : Practice and Experience,
12(6):375-388, May 2000.

Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. Cache-conscious data
placement. In Eighth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 139-149, San Jose, CA, Octo-
ber 1998.

David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching. In
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 40-52, Santa Clara, CA, April 1991.

Martin C. Carlisle and Anne Rogers. Software caching and computation migration
in Olden. In Proceedings of the 1995 ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 29-38, Santa Barbara, CA, July 1995.

Craig Chambers, Jeffrey Dean, and David Grove. Frameworks for intra- and inter-
procedural dataflow analysis. Technical Report TR 96-11-02, Department of Com-
puter Science, University of Washington, November 1996.

Tien-Fu Chen. Data Prefetching for High Performance Processors. PhD thesis,
University of Washington, Department of Computer Science and Engineering, July
1993.

Tien-Fu Chen. An effective programmable prefetch engine for on-chip caches. In
Proceedings of the 28th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO-28, pages 237-242, Ann Arbor, MI, December 1995.

Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-blocking
and prefetching caches. In Fifth International Conference on Architectural Support

179

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

for Programming Languages and Operating Systems, pages 51-61, Boston, MA,
October 1992.

William Y. Chen, Scott A. Mahlke, Pohua P. Chang, and Wen-mei W. Hwu. Data
access microarchitectures for superscalar processors with compiler-assisted data pre-
fetching. In Proceedings of the 24th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-24, pages 69-73, November 1991.

C.J. Cheney. A nonrecursive list compacting algorithm. Communications of the
ACM, 13(11):677-678, November 1970.

Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious structure
definition. In Proceedings of the 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 13-24, Atlanta, GA, May 1999.

Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure
layout. In Proceedings of the 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1-12, Atlanta, GA, May 1999.

Trishul M. Chilimbi and Martin Hirzel. Dynamic hot data stream prefetching for
general-purpose programs. In Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 199-209, Berlin,
Germany, June 2002.

Trishul M. Chilimbi and James R. Larus. Using generational garbage collection to
implement cache-conscious data placement. In Proceedings of the 1998 Interna-
tional Symposium on Memory Management, pages 37-48, Vancouver, BC, October
1998.

Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes, Yong-Fong
Lee, Dan Lavery, and John P. Shen. Speculative precomputation: Long-range pre-
fetching of delinquent loads. In Proceedings of the 28th Annual International Sym-
posium on Computer Architecture, pages 14-25, Goteborg, Sweden, June 2001.

Robert Cooksey, Dennis Colarelli, and Dirk Grunwald. Content-based prefetching:
Initial results. In Proceedings of the 2nd Workshop on Intelligent Memory Systems,
Boston, MA, November 2000.

Robert Courts. Improving locality of reference in a garbage-collecting memory man-
agement system. Communications of the ACM, 31(9):1128-1138, September 1988.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451-490, October 1991.

Fredrik Dahlgren, Michel Dubois, and Per Stenstrom. Fixed and adaptive sequential
prefetching in shared-memory multiprocessors. In Proceedings of the 1993 Interna-
tional Conference on Parallel Processing, volume 1, pages 56-63, August 1993.

180

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Fredrik Dahlgren and Per Stenstrom. Effectiveness of hardware-based stride and
sequential prefetching in shared-memory multiprocessors. In Proceedings of the 1st
International Symposium on High Performance Computer Architecture, pages 68—
77, January 1995.

Jeffrey Dean, Greg DeFouw, David Grove, Vassily Litinov, and Craig Chambers.
\ortex: An optimizing compiler for object-oriented languages. In Proceedings of
the 1996 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages & Applications, pages 83—100, San Jose, CA, October 1996.

Julian Dolby and Andrew A. Chien. An automatic object inlining optimization and
its evaluation. In Proceedings of the 2000 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 345-357, Vancouver, Canada,
June 2000.

James Dundas and Trevor Mudge. Improving data cache performance by pre-
executing instructions under a cache miss. In Proceedings of the 1997 International
Conference on Supercomputing, pages 68-75, Vienna, Austria, July 1997.

Wei fen Lin, Steven K. Reinhardt, and Doug Burger. Designing a modern memory
hierarchy with hardware prefetching. IEEE Transactions on Computers, 50(11):1-
17, November 2001.

Michael Franz and Thomas Kistler. Splitting data objects to increase cache utiliza-
tion. Technical Report TR 98-34, Department of Information and Computer Science,
University of California, Irvine, CA, October 1998.

John W.C. Fu and Janak H. Patel. Data prefetching in multiprocessor vector cache
memories. In Proceedings of the 18th Annual International Symposium on Computer
Architecture, pages 54-63, Toronto, Canada, May 1991.

Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond induction variables:
Detecting and classifying sequences using a demand-driven SSA form. ACM Trans-
actions on Programming Languages and Systems, 17(1):85-122, 1995.

Edward H. Gornish. Adaptive and Integrated Data Cache Prefetching for Shared-
Memory Multiprocessors. PhD thesis, University of Illinois at Urbana-Champaign,
Department of Computer Science, October 1995.

Edward H. Gornish, Elana D. Granston, and Alexander V. Veidenbaum. Compiler-
directed data prefetching in multiprocessors with memory hierarchies. In Proceed-
ings of the 1990 International Conference on Supercomputing, pages 342-353, Am-
sterdam, The Netherlands, June 1990.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison
Wesley, 1996.

181

[44] Mohammad R. Haghighat and Constantine D. Polychronopoulos. Symbolic analysis
for parallelizing compilers. ACM Transactions on Programming Languages and
Systems, 18(4):477-518, July 1996.

[45] Luddy Harrison and Sharad Mehrotra. A data prefetch mechanism for accelerat-
ing general-purpose computation. Technical Report CSRD Technical Report 1351,
Dept. of Computer Science, University of Illinois at Urbana-Champaign, May 1994.

[46] J. Hicklin, C. Moler, P. Webb, R.F. Boisvert, B. Miller, R. Pozo, and K. Remington.
Jama: A Java matrix package. URL.: http://math.nist.gov/javanumerics/jama, 2000.

[47] Mark D. Hill and Alan Jay Smith. Evaluating associativity in CPU caches. IEEE
Transactions on Computers, 38(12):1612-1630, December 1989.

[48] Glenn Hinton, Dave Sager, Mike Upton, Darren Boggs, Doug Carmean, Alan Kyker,
and Patice Roussel. The microarchitecture of the Pentium 4 processor. Intel Tech-
nology Journal, (Q1 2001), 2001.

[49] Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and Christopher F. Weight. A
language-independent garbage collector toolkit. Technical Report Technical Report
91-47, University of Massaschusetts, Dept. of Computer Science, September 1991.

[50] Christopher J. Hughes and Sarita Adve. Memory-side prefetching for linked data
structures. Technical Report UIUCDCS-R-2001-2221, University of Illinios at
Urbana-Champaign, Department of Computer Science, May 2001.

[51] Intel Corporation. Intel Pentium 4 and Intel Xeon Processor Optimization Reference
Manual, 2002.

[52] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management. John Wiley & Sons, 1996.

[53] Doug Joseph and Dirk Grunwald. Prefetching using Markov predictors. In Proceed-
ings of the 24th Annual International Symposium on Computer Architecture, pages
252-263, Denver, CO, June 1997.

[54] Norman P. Jouppi. Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pages 364-373, Seattle,
WA, April 1990.

[55] John B. Kam and Jeffrey D. Ullman. Global data flow analysis and iterative al-
gorithms. Journal of the Association for Computing Machinery, 23(1):158-171,
January 1976.

[56] Magnus Karlsson, Fredrik Dahlgren, and Per Stenstrom. A prefetching technique for
irregular accesses to linked data structures. In Proceedings of the 6th International
Symposium on High Performance Computer Architecture, pages 206-217, Toulouse,
France, January 2000.

182

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Richard E. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24-36,
Mar/Apr 1999.

Gary Kildall. A unified approach to global program optimization. In Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 194-206, Boston,MA, October 1973.

Thomas Kistler and Michael Franz. Automated data-member layout of heap objects
to improve memory-hierarchy performance. ACM Transactions on Programming
Languages and Systems, 22(3):490-505, May 2000.

Alexander C. Klaiber and Henry M. Levy. An architecture for software-controlled
data prefetching. In Proceedings of the 18th Annual International Symposium on
Computer Architecture, pages 43-53, Toronto, Canada, May 1991.

Nicholas Kohout, Senugryul Choi, Dongkeun Kim, and Donald Yeung. Multi-chain
prefetching: Effective exploitation of inter-chain memory parallelism for pointer-
chaising codes. In Proceedings of the 2001 International Conference on Paral-
lel Architectures and Compilation Techniques, pages 268-279, Barcelona, Spain,
September 2001.

David Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceed-
ings of the 8th Annual International Symposium on Computer Architecture, pages
81-87, May 1981.

David J. Kuck, R.H. Kuhn, David Padua, B. Leasure, and M. Wolfe. Depen-
dence graphs and compiler optimizations. In Proceedings of the Eigth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
207-218, Williamsburg, VA, January 1981.

Monica Lam, Edward R. Rothberg, and Michael E. Wolf. The cache performance
and optimization of blocked algorithms. In Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages 63—
74, Santa Clara, CA, April 1991.

Sorin Lerner, David Grove, and Craig Chambers. Composing dataflow analyses
and transformations. In Proceedings of the Twenty Ninth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 270-282,
Portland, OR, January 2002.

M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roediger. SPAID: Software
prefetching in pointer- and call-intensive environments. In Proceedings of the 28th
Annual IEEE/ACM International Symposium on Microachitecture, pages 231-236,
1995.

Edward S. Lowry and C.W. Medlock. Object code optimization. Communications
of the ACM, 12(1):13-22, January 1969.

183

[68] Chi-Keung Luk. Optimizing the Cache Performance of Non-Numeric Applications.
PhD thesis, University of Toronto, Department of Computer Science, 2000.

[69] Chi-Keung Luk. Tolerating memory latency through software-controlled pre-
execution in simulteneous mulithreading processors. In Proceedings of the 28th An-
nual International Symposium on Computer Architecture, pages 40-51, Goteborg,
Sweden, June 2001.

[70] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for recursive data
structures. In Seventh International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 222-233, Cambridge, MA, Oc-
tober 1996.

[71] Chi-Keung Luk and Todd C. Mowry. Automatic compiler-inserted prefetching
for pointer-based applications. IEEE Transactions on Computers, 48(2):134-141,
February 1999.

[72] Nathaniel Mcintosh. Compiler Support for Software Prefetching. PhD thesis, Rice
University, May 1998.

[73] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality
with loop transformations. ACM Transactions on Programming Languages and Sys-
tems, 18(4):424-453, July 1996.

[74] Sharad Mehrotra. Data Prefetch Mechanisms for Accelerating Symbolic And Nu-
meric Computation. PhD thesis, University of Illinois at Urbana-Champaign, De-
partment of Computer Science, April 1996.

[75] David A. Moon. Garbage collection in a large Lisp system. In Proceedings of
the 1984 ACM Conference on Lisp and Functional Programming, pages 235-246,
Austin, TX, August 1984,

[76] Jose Moreira, Sam Midkiff, Manish Gupta, and Pedro Artiga. Numerically intensive
java: Multiarrays. URL: http://www.alphaWorks.ibm.com/tech/ninja, 1999.

[77] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled pre-
fetching in shared-memory multiprocessors. Journal of Parallel and Distributed
Computing, 12(2):87-106, June 1991.

[78] Todd C. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching.
PhD thesis, Stanford University, Department of Electrical Engineering, March 1994.

[79] Todd C. Mowry, Monica S. Lam, and Annop Gupta. Design and evaluation of a
compiler algorithm for prefetching. In Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 63—72,
October 1992.

[80] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 1999.

184

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Toshihiro Ozawa, Yasunori Kimura, and Shin’ichiro Nishizaski. Cache miss heuris-
tics and preloading techniques for general-purpose programs. In Proceedings of the
28th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
28, pages 243-248, Ann Arbor, Michigan, November 1995.

Vijay S. Pai and Sarita Adve. Code transformations to improve memory paral-
lelism. In Proceedings of the 32nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-32, pages 147-155, November 1999.

Vijay S. Pai and Sarita V. Adve. Comparing and combining read miss clustering and
software prefetching. In Proceedings of the 2001 International Conference on Par-
allel Architectures and Compilation Techniques, pages 292—-303, Barcelona, Spain,
September 2001.

Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. RSIM reference man-
ual (version 1.0). Technical Report Technical Report 9705, Rice University, Dept.
of Electrical and Computer Engineering, August 1997.

Subbarao Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary
cache replacement. In Proceedings of the 21st Annual International Symposium on
Computer Architecture, pages 24-33, Chicago, IL, April 1994,

Michael Paleczny, Christopher Vick, and CIliff Click. The Java HotSpot server com-
piler. In Java Virtual Machine Research and Technology Symposium, Monterey,
California, April 2001.

Parthasarathy Ranganathan, Vijay S. Pai, Hazim Abdel-Shafi, and Sarita V. Adve.
The interaction of software prefetching with ILP processors in shared-memory sys-
tems. In Proceedings of the 24th Annual International Symposium on Computer
Architecture, pages 144-156, Denver, CO, June 1997.

M. B. Reinhold. Cache performance of garbage-collected programs. In Proceedings
of the 1994 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 206-217, Orlando, Florida, June 1994.

Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence based prefetch-
ing for linked data structures. In Eighth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 115-126, San
Jose, CA, October 1998.

Amir Roth and Gurindar Sohi. Effective jump-pointer prefetching for linked data
structures. In Proceedings of the 26th Annual International Symposium on Computer
Architecture, pages 111-121, Atlanta, GA, May 1999.

Amir Roth and Gurindar S. Sohi. Speculative data-driven multithreading. In Pro-
ceedings of the 7th International Symposium on High Performance Computer Archi-
tecture, pages 191-202, Monterrey, Mexico, January 2001.

185

[92] Shai Rubin, David Bernstein, and Michael Rodeh. Virtual cache line: A new tech-
nique to improve cache exploitation for recursive data structures. In Proceedings
of the 8th International Conference on Compiler Construction, pages 259-273.
Springer, March 1999.

[93] Vatsa Santhanam, Edward H. Gornish, and Wei-Chung Hsu. Data prefetching on
the HP PA-8000. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 264-273, Denver, CO, June 1997.

[94] Charles W. Selvidge. Compilation-Based Prefetching for Memory Latency Toler-
ance. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, Septem-
ber 1992.

[95] Olin Shivers. Control flow analysis in Scheme. In Proceedings of the 1988
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 164-174, 1988.

[96] Alan Jay Smith. Sequential program prefetching in memory hierarchies. IEEE
Computer, 11(12):7-21, December 1978.

[97] Alan Jay Smith. Cache memories. Computing Surveys, 14(3):473-530, September
1982.

[98] Burton Smith. Architecture and applications of the HEP multiprocessor computer
system. In SPIE Real Time Signal Processing 1V, pages 241-238, 1981.

[99] Yan Solihin, Jaejin Lee, and Josep Torrellas. Using a user-level memory thread for
correlation prefetching. In Proceedings of the 29th Annual International Symposium
on Computer Architecture, pages 171-182, Anchorage, AK, May 2002.

[100] James W. Stamos. Static grouping of small objects to enhance performance of a
paged virtual memory. ACM Transactions on Computer Systems, 2(2):155-180,
May 1984.

[101] Artour Stoutchinin, Jose Nelson Amaral, Guang R. Gao, James C. Dehnert, Suneel
Jain, and Alban Douillet. Speculative prefetching of induction pointers. In Proceed-
ings of the 10th International Conference on Compiler Construction, pages 289—
303, Genova, Italy, April 2001.

[102] Sun Microsystems. UltraSparc Il Cu User’s Manual, version 1.0 edition, May
2002.

[103] J.M. Tendler, J.S. Dodson, Jr. J.S. Fields, H. Le, and B. Sinharoy. POWER4 system
microarchitecture. IBM Journal of Research and Development, 46(1):5-26, January
2002.

[104] Dan Truong. Considerations on dynamically allocated data structure layout opti-
mization. In Workshop on Profile and Feedback Directed Compilation, Paris, France,
October 1998.

186

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Dan N. Truong, Francois Bodin, and Andre Seznec. Improving cache behavior of
dynamically allocated data structures. In Proceedings of the 1998 International
Conference on Parallel Architectures and Compilation Techniques, pages 322-330,
Paris, France, October 1998.

Dean M. Tullsen and Susan J. Eggers. Effective cache prefetching on bus-based
multiprocessors. ACM Transactions on Computer Systems, 13(3):57-88, August
1995.

Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture, pages 392-403, Ligure, Italy, June
1995.

David M. Ungar. Generation scavenging: A non-disruptive high performance stor-
age reclamation algorithm. ACM SIGPLAN Notices, 19(5):157-167, April 1984.

Steven P. VanderWiel and David J. Lilja. A compiler-assisted data prefetch con-
troller. In Proceedings of the 1999 International Conference on Computer Design,
pages 372-377, Austin, TX, October 1999.

Steven P. VanderWiel and David J. Lilja. Data prefetch mechanisms. ACM Comput-
ing Surveys, 32(2):174-199, June 2000.

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Effective static-graph
reorganization to improve locality in garbage-collected systems. In Proceedings
of the 1991 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 177-191, Toronto, Ontario, Canada, June 1991.

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching considerations for
generational garbage collection. In Proceedings 1992 ACM Conference on Lisp and
Functional Programming, pages 32—42, San Francisco, CA, June 1992.

Micheal E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In
Proceedings of the 1991 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 30-44, Toronto, Canada, June 1991.

Peng Wu, Albert Cohen, Jay Heflinger, and David Padua. Monotonic evolution:
An alternative to induction variable substitution for dependence analysis. In Pro-
ceedings of the 2001 International Conference on Supercomputing, pages 78-91,
Sorrento, Italy, June 2001.

Peng Wu, Albert Cohen, and David Padua. Induction variable analysis without idiom
recognition: Beyond monotonicity. In Proceedings of the 14th International Work-
shop on Languages and Compilers for Parallel Computing, Cumberland Farms, KY,
August 2001.

187

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Youfeng Wu. Efficient discovery of regular stride patterns in irregular programs and
its use in compiler prefetching. In Proceedings of the 2002 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 210-221,
Berlin, Germany, June 2002.

Youfeng Wu, Mauricio Serrano, Rakesh Krishnaiyer, Wei Li, and Jesse Fang. Value
profile guided stride prefetching for irregular code. In Proceedings of the 11th Inter-
national Conference on Compiler Construction, pages 307-324, Grenoble, France,
April 2002.

Yoji Yamada, John Gyllenhaal, Grant Haab, and Wen-mei W. Hwu. Data relocation
and prefetching for programs with large data sets. In Proceedings of the 27th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-27, pages 118—
127, San Jose, CA, November 1994,

Chia-Lin Yang and Alvin R. Lebeck. Push vs. pull: Data movement for linked data
structures. In Proceedings of the 2000 International Conference on Supercomputing,
pages 176-186, Santa Fe, NM, May 2000.

Chia-Lin Yang and Alvin R. Lebeck. A programmable memory hiearchy for pre-
fetching linked structures. In Proceedings of the 4th International Symposium on
High Performance Computing, pages 160-174, Japan, May 2002.

Kenneth C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro,
16(2):28-40, April 1996.

Lixin Zhang, Sally A. McKee, Wilson C. Hsieh, and John B. Carter. Pointer-based
prefetching within the Impulse adaptable memory controller: Initial results. In Pro-
ceedings of the Workshop on Solving the Memory Wall Problem, Vancouver, BC,
Canada, June 2000.

Zheng Zhang and Josep Torrellas. Speeding up irregular applications in shared-
memory multiprocessors: Memory binding and group prefetching. In Proceedings
of the 22nd Annual International Symposium on Computer Architecture, pages 188—
200, S. Margherita Ligure, Italy, June 1995.

188

