
FaultTracer: A Change Impact and Regression Fault
Analysis Tool for Evolving Java Programs

Lingming Zhang, Miryung Kim, Sarfraz Khurshid

The University of Texas at Austin
Austin TX, USA

zhanglm@utexas.edu, {miryung, khurshid}@ece.utexas.edu

ABSTRACT
Keeping evolving software fault-free is hard. In our previ-
ous work, we proposed FaultTracer, a change impact and
regression fault analysis tool for evolving programs. It takes
the old and new versions of a program and a regression test
suite as inputs, and then identifies affected tests—a subset
of tests relevant to the program differences between the two
versions and affecting changes—a subset of atomic changes
relevant to each affected test. It adapts spectrum-based
fault localization techniques and applies them in tandem
with an enhanced change impact analysis to identify and
rank failure-inducing program edits. We have shown that
FaultTracer, compared to existing techniques (e.g., Chi-
anti), achieves improvement in selecting influenced tests,
determining suspicious failure-inducing edits, and ranking
failure-inducing program edits. In this paper, we show the
design, implementation, and demonstration of our Fault-

Tracer approach as a publicly available toolkit for testing
and debugging Java programs.

Categories and Subject Descriptors
D2.5 [Software Engineering]: Testing and Debugging

General Terms
Design, Experimentation

Keywords
Regression Testing, Fault Localization, Software Evolution

1. INTRODUCTION
During software evolution, regression test suites have been

utilized to validate the program edits. A large body of re-
search is dedicated to executing regression test suites effi-
ciently and localizing faults effectively when regression tests
fail. For example, Chianti-style change impact analysis [5]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

Old Version P New Version P’Test Suite T
FaultTracer Inputs

2. ECG Collection

1. Change Extraction
ECGs of Affected

Tests in T
ECGs of All
Tests in T g

4. ECG Based Affecting
Change Determination

Tests in T

Atomic Changes
Between P and P’

Tests in T

3. ECG Based Affected
Test Selection g

5. Spectrum Based
Suspicious Edit Ranking

Affected Tests Affecting Changes
Ranked Affecting

Changes
FaultTracer Outputs

Figure 1: FaultTracer architecture.

selects affected tests—a subset of tests whose behaviors have
been influenced by program edits, and determines affecting
changes—suspicious program edits that might have caused
test failures. In our previous work, we proposed Fault-

Tracer [6], which extends Chianti-style change impact anal-
ysis and applies spectrum-based fault localization [1–3] in
tandem to rank affecting changes.

Figure 1 gives an overview of the design of FaultTracer [6].
It takes two program versions P and P ′ and a regression
test suite T as inputs. In Step 1, FaultTracer identifies
atomic changes between P and P ′ and determines depen-
dences among the changes based on a set of prescribed atomic
change dependence rules [5,6]. In Step 2, FaultTracer con-
structs the extended call graphs (ECGs) for all the tests in T
on the old version P . Compared with traditional call graphs
used by Chianti [5], ECGs model field reads and writes di-
rectly in addition to calls between methods. In Step 3, based
on refined selection using ECGs, FaultTracer selects T ′, a
subset of tests whose behaviors might have been influenced
by the program edits—affected tests. In Step 4, based on
refined determination using ECGs, it runs the selected tests
on the new version P ′ and determines suspicious edits that
might have caused each test failure—affecting changes. Fi-
nally, to localize failure-inducing edits more precisely, Fault-
Tracer further ranks the affecting changes for each failed
test based on the aggregated execution profile of passed and
failed tests (i.e., spectrum information). In this paper, we
describe the design and implementation of our FaultTracer

tool, which is publicly available, and give a demonstration
of how to use it.

Test Debugging View

Atomic Change ViewExtended Call Graph View

Figure 2: Overview of FaultTracer’s front-end.

2. FAULTTRACER IMPLEMENTATION
FaultTracer is implemented as a toolkit, which includes

the front-end plug-in, and the back-end library. The follow-
ing subsections present the details of the toolkit.

2.1 FaultTracer Plug-in
The front-end of FaultTracer is implemented as an Eclipse

IDE plugin. The plugin takes two program versions as input
and extracts atomic program changes from the two versions
based on the abstract syntax tree (AST) analysis provided
by the Eclipse JDT toolkit.1 It traverses the ASTs of two
versions to compare fields and methods by their fully quali-
fied names to find atomic changes. For each pair of compared
methods, FaultTracer filters out all comments and white-
spaces before comparison. FaultTracer also finds call and
access dependencies between atomic changes by tracing the
definition and reference of each used method and field.

The FaultTracer plugin also includes three views to visu-
alize internal and final outputs of FaultTracer (Figure 2):
Atomic-change view is implemented using the Eclipse Zest
Visualization Toolkit.2 It visualizes the all atomic changes
between program versions and their dependencies, and sup-
ports various user interaction (details shown in Appendix).
Note that this view depends on the data produced by Step
1 in Figure 1.
Extended-call-graph view is also implemented using the
Eclipse Zest Visualization Toolkit. It visualizes the extended
call graphs for individual tests. This view can help the user
to better understand the behaviors of individual tests. This
view depends on the data produced by Step 2 in Figure 1.
Testing-debugging view lists the affected tests between
two compared versions, the affecting changes for each af-
fected test, and the ranked list of affecting changes for each
failed test. This view visualizes all the final outputs of Fault-

1http://www.eclipse.org/jdt/. Accessed in Aug. 2012.
2http://www.eclipse.org/gef/zest/. Accessed in Aug.
2012.

Tracer. When the user double-clicks an affected test in the
view, the view immediately displays the affecting changes for
the selected test. The view would also display the ranked list
of affecting changes for the test along with their suspicious-
ness scores computed based on program spectra. When the
user double-clicks any affecting change in the view, Fault-

Tracer extracts corresponding changed code fragments in
the Java Editor to facilitate manual inspection of relevant
code. Note that this view uses the data produced by Steps
3, 4, and 5 respectively.

2.2 FaultTracer Library
The back-end of FaultTracer is implemented as Ant3

tasks, which fully automate the process of constructing ex-
tended call graphs, selecting affected tests, determining af-
fecting changes, and ranking affecting changes for failed tests.
The back-end performs the ECG construction task on-the-
fly through byte code instrumentation. It dynamically in-
struments classes loaded into the JVM through a Java agent
without any modification of the target program. For instru-
mentation, FaultTracer uses the ASM4 bytecode manipu-
lation and analysis framework. We extend visitor classes
in ASM and override visit methods to trace method in-
vocation relations, field access relations, and associated at-
tributes (e.g., receiver object types, static target methods
for virtual method invocations, and types of field accesses).

The back-end of FaultTracer also performs all the core
analysis tasks: selection of affected tests, determination of
affecting changes, and spectrum-based ranking of affecting-
changes. The final results are then visualized by the front-
end plugin.

3. DEMONSTRATION
This section illustrates how to configure FaultTracer and

how to perform the five key steps for regression test execu-

3http://ant.apache.org/. Accessed in Aug. 2012.
4http://asm.ow2.org/. Accessed in Aug. 2012.

http://www.eclipse.org/jdt/
http://www.eclipse.org/gef/zest/
http://ant.apache.org/
http://asm.ow2.org/

<project name="FaultTracer -Configuration ">
<property name="subject" value="..."/>
<property name="prefix" value="..."/>
<property name="testsuite" value="..."/>
<property name="newversion " value="..."/>
<property name="faulttracer " value="..."/>
<property name="cp" value="..."/>
<property name="maxmemory" value="..."/>
<import file="${faulttracer }\resources\

faulttracer .xml"/>
</project>

Figure 3: FaultTracer’s user config file.

Figure 4: Launch FaultTracer and extract program
edits.

Figure 5: Open FaultTracer views.

tion and fault localization using the tool. Consider the two
versions xml-sec1.0 and xml-sec2.0 of the open-source appli-
cation XML-security (as available in the Software-artifact
Infrastructure Repository5).

The user provides the configuration for each program ver-
sion under test as an XML file called config.xml. Figure 3
shows a skeletal configuration: subject is the name of the
version under test; prefix is the common package prefix
(shared by the project); testsuite is the fully qualified
name for the test suite class; newversion is the absolute
path of the next version with respect to the current version;
faulttracer is the absolute path of the FaultTracer back-
end (i.e., the path to the unzipped FaultTracer library);
cp is the class path needed for executing the program under
test; and maxmemory is the maximum memory allowed for
executing FaultTracer. In this demonstration we use the
same setup as described in detail in our ICSM paper [6].

3.1 Extract Program Edits
Execution of FaultTracer begins by extracting program

edits and collecting ECGs for regression tests. To extract
program edits, the user right-clicks the two program versions
and selects “Launch FaultTracer” (Figure 4). The user can
view the visualized atomic changes in the Atomic-Change
View. The complete list of FaultTracer views is accessible
using the following Eclipse menu: “Window”→ “Show View”
→ “Other” → “FaultTracer” (Figure 5). Figure 6 illustrates
a subset of the atomic changes between xml-sec1.0 and xml-
sec2.0. As illustrated, the user can search a specific change
node, apply and unapply a specific change, as well as change
the graph layout by right-clicking it. When the user clicks
one change node, FaultTracer highlights all the changes
that the selected change transitively depends on (marked as
yellow nodes in Figure 6). When the user double clicks a
specific change node, FaultTracer shows change details in

5http://sir.unl.edu/. Accessed in Aug. 2012.

Figure 6: FaultTracer’s atomic-change view.

Figure 7: Detailed changes shown by FaultTracer.

the Java Editor. For example, Figure 7 illustrates the Java
Editor content after the user double clicks the change node
for method IntegrityHmac.engineInitSign(Key).

3.2 Collect ECGs
Since the collection of ECGs is implemented as an Ant

task, the user can construct ECGs of the program under
test using the following command-line script:

cd path−of−program−to−trace
ant −f config.xml collectECGCoverage

This script navigates to the base directory of the program
under test, and then runs the Ant task collectECGCover-

age. Then FaultTracer automatically runs the test suite
for the program and records an ECG for each test. The user
can choose to see the visualized ECG using Extended-Call-
Graph View. Figure 8 illustrates the ECG for test XMLSigna-
tureInputTest.testNodeSetIsNotOctetStream(), where the
green nodes denote the test, blue nodes denote methods in-
voked, pink nodes denote fields accessed, solid arrows de-
note method invocations, and dashed arrows denote field
accesses. When the user clicks a node, FaultTracer high-
lights all the methods and fields transitively invoked or ac-
cessed by the node (marked as yellow nodes in Figure 8).
The user can select a test to display by clicking the “Choose
Test” menu. The user can also choose to view the ECG on
the old or the new version of the chosen test by clicking“Old
ECG” or “New ECG”.

3.3 Select Affected Tests
Once the program edits and ECGs are computed, the user

can select affected tests as follows:

cd path−of−xml−sec1.0
ant −f config.xml selectAffectedTests

http://sir.unl.edu/

Figure 9: FaultTracer’s testing-debugging view.

Figure 8: FaultTracer’s extended-call-graph view.

This script will select affected tests due to the edits between
xml-sec1.0 and xml-sec2.0. Next, the user can selectively
run the affected tests on the new version:

cd path−of−xml−sec2.0
ant −f config.xml runAffectedTests

Between xml-sec1.0 and xml-sec2.0, 64 of all the 94 regres-
sion tests cases are selected by FaultTracer because their
behaviors may be different after the edits.

3.4 Determine Affecting Changes
When some affected tests fail on the new version (i.e., xml-

sec2.0), the user can determine the affecting changes using
the following script:

cd path−of−xml−sec2.0
ant −f config.xml determineAffectingChanges

Once the affecting changes are determined, the user can
view the affecting changes for each affected test in theTesting-
Debugging View (Figure 9). The table on the left side of the
view lists all the affected tests. When the user double-clicks
an affected test in this table, the view displays all the affect-
ing changes for the test in the table on the right side. The
view displays all suspicious values as 0 and does not rank
affecting changes.

3.5 Rank Affecting Changes
To localize failure-inducing edits more precisely, the user

can rank affecting changes using the following script:

cd path−of−xml−sec2.0
ant −f config.xml rankAffectingChanges

The user can then view the ranked list of affecting changes
for each affected test in the Testing-Debugging View (Fig-
ure 9). The view ranks affecting changes and displays sus-
picious values for affecting changes. As the figure shows,
when the user double-clicks the failed test XMLSignatureIn-
putTest.testSetNodeSetGetOctetStream1, the tool ranks
AM: CanonicalizerBase.canonicalizeXPathNodeSet, which
is the cause of the test failure, as the second most likely
failure-inducing edit in the list of 11 edits that are deter-
mined as affecting changes (from the full set of 329 edits
between xml-sec1.0 and xml-sec2.0).

4. SUMMARY
In this paper, we present the design, implementation, and

demonstration of our change impact and regression fault
analysis approach, FaultTracer. Our tool is publicly avail-
able at https://webspace.utexas.edu/~lz3548/ftracer.html.
Developers may use our tool for running regression tests and
debugging regression faults. According to our previous eval-
uation [6], FaultTracer outperforms Chianti [5] in both se-
lecting affected tests and determining affecting changes. In
terms of ranking affecting changes, it also outperforms Ren
et al.’s ranking heuristic [4] by more than 50%.

5. ACKNOWLEDGEMENT
This work was in part supported by National Science

Foundation under the grants CCF-0845628, CCF-1117902,
CCF-1149391, and CCF-1043810, AFOSR grant FA9550-09-
1-0351, and the Microsoft SEIF award.

6. REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. Van Gemund. On the

accuracy of spectrum-based fault localization. In
TAIC-PART, 2007.

[2] J. Jones, M. Harrold, and J. Stasko. Visualization of
test information to assist fault localization. In ICSE,
2002.

[3] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan.
Scalable statistical bug isolation. In PLDI, 2005.

[4] X. Ren and B. Ryder. Heuristic ranking of java
program edits for fault localization. In ISSTA, 2007.

[5] X. Ren, F. Shah, F. Tip, B. Ryder, and O. Chesley.
Chianti: A tool for change impact analysis of Java
programs. In OOPSLA, 2004.

[6] L. Zhang, M. Kim, and S. Khurshid. Localizing
failure-inducing program edits based on spectrum
information. In ICSM, 2011.

https://webspace.utexas.edu/~lz3548/ftracer.html

	Introduction
	FaultTracer Implementation
	FaultTracer Plug-in
	FaultTracer Library

	Demonstration
	Extract Program Edits
	Collect ECGs
	Select Affected Tests
	Determine Affecting Changes
	Rank Affecting Changes

	Summary
	Acknowledgement
	References

