
E�cient Code Certi�cation

Dexter Kozen

Department of Computer Science

Cornell University

Ithaca� NY ����������

kozen	cs
cornell
edu

January �� ����

Abstract

We introduce a simple and e�cient approach to the certi�cation of com�
piled code� We ensure a basic but nontrivial level of code safety� including
control �ow safety� memory safety� and stack safety� The system is designed
to be simple� e�cient� and �most importantly� relatively painless to incorpo�
rate into existing compilers� Although less expressive than the proof carrying

code of Necula and Lee or typed assembly language of Morrisett et al�� our
certi�cates are compact and relatively easy to produce and to verify� Unlike
JAVA bytecode� our system operates at the level of native code� it is not
interpreted and no further compilation is necessary�

�



� Introduction

An exciting recent development in program veri�cation is the notion of certi�ed

code� When downloading executable code from an untrusted foreign source� a client
also downloads a certi�cate that is checked before running the code to ensure that
it is safe to run locally� The certi�cate is produced by the supplier at compile
time and veri�ed by the client at load time� both operations are �or should be�
automatic and invisible to both parties�

This notion �rst appeared in a practical system in the JAVA programming
language� The JAVA compiler produces virtual machine instructions that can be
veri�ed by the client before execution and that are meant to provide a certain basic
level of security ��	� Despite certain failings in the initial implementation ��	� it
nevertheless constituted a signi�cant step forward in practical programming lan

guage security� It not only introduced a simple and e�ective approach to providing
a basic level of security� but more importantly� it helped to galvanize the attention
of the programming language and veri�cation community on critical security issues
engendered by the rise of the Internet�

Recent work by Necula and Lee ��� 
	 on proof carrying code �PCC�� by Mor

risett et al� ��	 on typed assembly language �TAL�� and by Schneider ��� �	 on
automata
based security have demonstrated that general principles of logic� type
theory� and program veri�cation can be brought successfully to bear on the security
problem� These systems are quite general and can potentially be used to express
and verify a variety of safety properties� Schneider ��� �	 identi�es the class of
safety properties that can be veri�ed by these methods�

In the case of TAL� typing information from a high
level program written in
a strongly
typed language is carried through a series of transformations through a
platform
independent typed intermediate language �TIL� ��� ��	 and �nally down to
the level of the object code itself� The resulting type annotation can be checked by
an ordinary type checker� In the case of PCC� correctness properties are expressed
in �rst
order logic� and a proof is constructed based on a general system such as
Edinburgh LF and provided along with the program� Although these approaches
are quite expressive and general� their chief drawback is that the certi�cates they
produce tend to be large and time
consuming to generate and to verify� For ex

ample� proofs in PCC are from � to � times the size of the object code ��� 
	�
The automata
based approach of Schneider ��� �	 requires a runtime call on an
automaton for each executed instruction� unless an optimizer can determine that
the call is unnecessary� thus without e�ective optimization� runtime performance
could be seriously degraded as well�

In contrast with these approaches� our goal with the present work is to limit
ourselves to a �xed and relatively basic level of security� but to provide it as simply�

�



e�ciently� compactly� and invisibly as possible� We are able to ensure

� control �ow safety�the program never jumps to a random location in the
address space� but only addresses within its own code segment containing
valid instructions�

� memory safety�the program does not access random places in memory� but
only valid locations in its own data segment� system heap memory explicitly
allocated to it� or valid stack frames� and

� stack safety�the state of the stack is preserved across subroutine calls�

These rough descriptions are not to be taken as formal de�nitions� A more rigorous
treatment can be found in Section �� In that section� we de�ne formally the
meaning of control �ow safety� memory safety� and stack safety� These safety
conditions are mutually dependent in the sense that none of them are safe unless

all of them are safe� Thus� the level of safety we provide is� in an informal sense�
the minimal nontrivial level of safety ensuring any one of these conditions�

Our foremost concerns are performance and ease of implementation� We are
willing to sacri�ce the generality of TAL or PCC� the platform
independence of
JAVA bytecode� and the enhanced expressiveness of B�uchi automata for a more
streamlined system tailored to the platform at hand� Our motivation is that� al

though the demand for security is great� the technology will not be adopted rou

tinely in industrial
grade compilers unless it is relatively painless to do so and entails
no signi�cant performance degradation�

Although our approach is necessarily highly platform
dependent� it is still possi

ble to isolate the logical principles at work� We do this in Section � by formulating
and proving a soundness theorem� The theorem can be applied to show that the
conditions checked by our veri�er are su�cient to ensure control �ow safety� mem

ory safety� and stack safety�

Although inspired by PCC� it would be inaccurate to call our certi�cates proofs�
because they are not proofs in any formal system� They are more accurately
described as structured annotations that merely direct the veri�cation process�
Guided by this structural information� the veri�er checks a simple set of conditions
that are su�cient to imply the desired safety properties� As such� the system is
closer in spirit to the JAVA bytecode veri�er� although it operates at the level of
native code� With PCC� the safety conditions are expressed explicitly and proved
by the compiler as part of the implementation� this becomes di�cult in the pres

ence of loops� since loop invariants cannot be generated automatically in general�
In contrast� our system generates relatively simple annotations from information
already present as part of the compilation process� The proof that the code is safe

�



�define�method append �x y�

�if �null� x�

y

�pair �head x� �append �tail x� y����

�append �list � � �� �list � ���

		
 �� � � � ��

Figure �� Appending two lists

to run need not appear as part of the implementation� but can be done on paper
once and for all�

The centerpiece of this initiative is a working prototype that we have built to
demonstrate the feasibility of this approach� The prototype is virtually complete
�six months ahead of schedule�� and we describe it in Section �� The construction
of the prototype constitutes the �rst year of a three
year project� In the remaining
two years� we hope to see to what extent this technology can be incorporated in
industrial
grade compilers�

� How It Works

In this section we describe the form of the certi�cate and how it obviates the need
for a full �rst
order proof as with PCC or a complete type annotation as with TAL�

��� Block Structure

The code generated by a compiler has a natural context
free structure that mir

rors the structure of the high level program from which it was compiled� This
is inescapable� since programming languages are typically de�ned by context
free
grammars and compilation is a recursive process that acts on the parse tree� The
key idea is to exploit this natural structure to direct the veri�cation�

This structure consists of well
nested intervals of instructions� called blocks�
each of which is generated by the compiler for a speci�c purpose� For example�
a program block contains the compiled code for the main program� a call block

contains the compiled code for the body of a function� and an eval block contains
code for evaluating an expression� The compiler can identify this block structure
and produce the block tree as part of the certi�cate�

For example� consider the program of Figure � for appending two lists� Figure
� on p� �� shows the block structure of the compiled code� For example� the block

�



���evaluate �pair �head x� �append �tail x� y��

�begin eval block

���evaluate � argument�s�

���evaluate �head x�

�begin eval block

�

� 
 code to evaluate �head x� �

�

�end eval block type	 � status	 register location	 eax

C��� push eax �push onto stack

���evaluate �append �tail x� y�

�begin call sequence

�

� 
 code to evaluate �append �tail x� y� �

�

�end call sequence args	 � type	 PAIR status	 register location	 eax

���apply pair

C��� pop ebx �head of pair

C��� alloc ecx�� �new cons cell

C��� mov 
ecx��PAIR �save runtime type of pair

C��� mov 
��ecx��ebx �save head

C��� mov 
��ecx��eax �save tail

�end eval block type	 PAIR status	 register location	 ecx

Figure �� Residue of an eval block

������ labeled �recursive method initialization� contains the de�nition of append�
The subblock ����
�� labeled �eval block� contains code to evaluate the else clause
of the body of the function� namely �pair �head x� �append �tail x� y���

��� Residues

The residue of a block is the set of instructions remaining after all subblocks
have been deleted� The code in the residue of a block is called residual code�
For example� Figure � shows the residue of the block ����
�� mentioned above�
Residues are typically small and there only a small �nite number of them� The
residue in Figure � contains only six instructions� which perform the pair operation
once the arguments have been evaluated�

The lines starting with �begin and �end are annotations and are part of the
certi�cate� They de�ne the boundaries of the blocks and give basic typing infor

mation that is needed for veri�cation�

�



��� Control Flow

There are three control �ow mechanisms�

�i� conditional and unconditional jumps�

�ii� call and return� and

�iii� fallthrough�

The instructions call and return have the side e�ect of manipulating the stack�
they push and pop the return address� A fallthrough is the �ow of control to
the instruction immediately following the one just executed� An instruction that
can fall through to the next instruction is called a fallthrough instruction� Most
instructions are fallthrough instructions� examples of those that are not are halt�
call� return� and unconditional jumps� Conditional jumps are always considered
fallthrough instructions�

Our veri�er checks that control �ow respects block structure� no control �ow
instruction �conditional and unconditional jump� call� or return� or fallthrough
may traverse a block boundary except in a few strictly prescribed ways� These
restrictions ensure that residual code is executed with a certain degree of atomicity�
for example� it will be impossible for there to be an unexpected jump to the middle
of a sequence of residual instructions from outside the residue� This is crucial for
ensuring memory safety� without it� we could not be certain that registers contain
correct pointers and data values when writing to memory�

A program block may only be entered via a jump to the �rst location and
may not exit except via a halt instruction� A call block may not be entered or
exited via a jump or fallthrough� but only via call to the �rst location and return

or halt� All other types of blocks must be entered via a jump or fallthrough to
the �rst instruction of the block and must be exited via a jump or fallthrough
to the instruction immediately following the block �not counting subroutine calls
from within the block�� The residue of a non
call block may not contain a return�
Conditions reminiscent of these appear in the JAVA bytecode veri�er ��	�

These are straightforward and natural restrictions� They are satis�ed by our
compiler� and we suspect that they �or something very similar� are satis�ed by
compilers in general� or can be made to be satis�ed fairly easily�

These restrictions alone are not su�cient to ensure control �ow safety� we must
have stack safety and memory safety as well� For instance� if the subblock �������
in Figure � does not preserve the stack� then there is no guarantee that the object
popped at C��� which is supposed to be the same as the object pushed at C�
�
is even a valid data object� If that object happened to be a function� this could
result in an invalid call later on�






For example� consider a subroutine call with two arguments� Although the call
sequence could be arbitrarily long depending on the complexity of the arguments
that need to be evaluated� the residue only contains the two pushes� the call� and
the two pops� A random jump into this residue from outside would almost certainly
corrupt the stack� However� the control �ow restrictions ensure that this cannot
happen� The block can be annotated with the information that this is a subroutine
call with two arguments� and the veri�er need only check that the residue contains
two pushes and two pops in the correct order�

Further control �ow conditions are checked in Section ��
� In particular� all
call instructions must occur in the context of the standard subroutine linkage or
exception handling mechanism� This will guarantee� among other things� that every
call targets the �rst instruction of a call block�

��� Stack Safety

For stack safety� the veri�er needs to check that in any residue� pushes and pops
occur in well
nested pairs� and that pushes are always executed before their corre

sponding pops� This might ordinarily be done using �ow analysis on the control
�ow graph ��	� However� with the block structure explicit� no expensive analysis is
necessary� Pushes and pops are generated only in well
de�ned contexts� usually as
part of a standard subroutine call linkage� A simple check of the residual code of
the linkage can ensure that all pushes and pops match�

��� Memory Access

Memory must be accessed correctly� Every memory operation� read or write� has
a precondition for safe execution� and we must guarantee that the precondition is
met whenever that instruction is executed�

Our implementation uses a dedicated environment register e� and the envi

ronment only changes at a subroutine call� For each call block� we must check
that

�i� the old environment pointer is saved at the beginning and restored at the
end of the call block�

�ii� storage for the new environment table is allocated and initialized correctly�
and e is loaded with the address of the new table� and

�iii� all accesses o� register e �except in sub
call blocks� are at a constant o�set
not exceeding the length of the environment table�

�



The length of the environment table is known at compile time and is included in
the call block annotation� This information can be used to check �iii�� Conditions
�i� and �ii� can be checked simply by comparing the residual code to standard call
linkage code obtained by table lookup�

We must also check that all storage allocated o� the system heap is initialized
before it is used� We assume that the language provides a default value for variables
of all types �as does JAVA� and that the compiler initializes newly allocated storage
immediately� This can be veri�ed by table lookup of the residual code� For example�
in the residue of Figure �� we must check that the new cons cell allocated in line
C�
 is immediately initialized� which it is� this is done by table lookup to compare
the residual code to the standard code for an inline application of pair�

��� Residual Code

Endpoints of blocks are often annotated with extra typing information� For exam

ple� the annotation at the end of the block illustrated in Figure � says that register
ecx contains a valid pair object� The residual code of the block must correctly
guarantee that these conditions are met whenever control is at that point� under
the inductive assumption that subblocks and calls satisfy memory and stack safety
and guarantee their annotations as well� Then at the very worst� the veri�er need
only check by table lookup that the correct residual code is there� Often even
simpler checks su�ce�

Some assumptions need not be explicitly represented in the annotation� For
example� in our implementation� methods are always called with a pointer to the
method object in register eax� which the method initialization code depends on�
Because of control �ow safety� the only way a method can be called is from within
a call sequence� which is just another type of block� Since any valid call sequence
guarantees the desired property� the veri�er need only check the residual code of
all call sequences�

� Soundness

In this section we prove a soundness theorem� The theorem characterizes a collec

tion of basic safety properties and establishes su�cient conditions that imply them
and that can be checked by a veri�er� The most di�cult part of this theorem is not
its proof but its formulation� Once the theorem is stated� the proof is a relatively
straightforward inductive argument�

The chief di�culty in the formulation lies in the con�icting desires of estab

lishing the correctness of our implementation and more general applicability� We

�



have found that a su�ciently rigorous proof of correctness of our implementation
depends on various implementation
speci�c assumptions� Although we would like
the argument presented here to establish correctness of our implementation� we
would also hope that it could be applied mutatis mutandis to a variety of situa

tions� We have therefore formulated the theorem in a fairly general way under a few
reasonable assumptions� We are encouraged by the fact that there is considerable
�exibility in both compiler implementation and in the form of the block structure
and veri�cation conditions� If we impose restrictions on the structure of object
code that are not currently satis�ed by some compiler� there is room for movement
on both sides� The reengineering of an existing code generator or optimizer to
make them respect block structure is not an insurmountable task and may even be
worthwhile for independent reasons�

We remark in passing that it would be di�cult to formulate this theorem solely
in terms of types� Although types do enter heavily into the formulation� it is di�cult
to characterize some of the basic safety properties we are interested in� For example�
�the stack is preserved across a subroutine call� is di�cult to express purely type

theoretically� The di�culty lies in the lack of a natural means to compare the values
of variables in two distinct states related by a runtime execution path� Types and
set constraints are very good for talking about the static properties of an object or
relations between objects at a particular point in the execution� but not about the
relationship between objects at di�erent points in the execution�

��� Assumptions

Before we state our soundness theorem� we start with some basic assumptions�
We assume that there are two dedicated registers� namely the environment

pointer e and the stack pointer s� The stack is used to hold arguments to functions�
to preserve e across calls� and to save return addresses� We assume that the stack
pointer s always points to the top element of the stack and that it is initialized by
the system before calling the user code� We assume for simplicity that s is a�ected
only by the instructions push� pop� call� and return� no explicit register operations
involving s are allowed� We also assume for simplicity that there is no danger of
stack over�ow� In a real system� there would need to be some mechanism� either
hardware or software� for checking for stack over�ow� and the veri�er would need
to ensure that that mechanism was in place�

In addition� we assume that there is a mechanism for garbage collection that
periodically and invisibly reclaims heap storage no longer accessible� In our imple

mentation� allocation of heap memory is e�ected by an atomic alloc instruction�
Otherwise� we assume that there are no external agents that can change the state
of memory�

�



We assume that the stack� heap� program� and constant data all occupy dis

joint memory segments� Stack memory is contiguous� and the stack grows in one
direction �in our implementation� from high memory downward��

��� Scoping Discipline

Our high
level language is statically scoped� This means that each method �func

tion� is executed in an environment determined by the bindings that are in e�ect
when the method is initialized� This environment is used to resolve the references
to free identi�ers in the body of the method� In our implementation� when a
method object is initialized� a local copy of each free identi�er occurring in the
body is created and initialized with the current value obtained from the enclosing
environment� This local environment is associated with the method throughout its
lifetime�

This implementation may seem ine�cient due to the cost of creating the local
environment when the method is initialized� But by amortizing the initialization
cost over the lifetime of the method object� it in fact works out to constant time
per access� provided for each free identi�er there is at least one call that accesses
that identi�er�

The environment pointer e is initialized during program initialization and always
points to the current environment� Thereafter� e is saved on the stack and restored
by the standard subroutine linkage before and after any call�

Other scoping disciplines are certainly possible and may even be more compli

cated� as for example with object oriented languages� However� the basic technique
for dealing with changing environments is already exercised at this level� and we
believe that it can serve as a paradigm for more complicated situations�

��� A Soundness Theorem

Suppose we have determined a block structure with annotations that specify the
type of each block as well as any associated pre
 or postconditions� Suppose further
that the blocks are well
nested� the outermost block is a program block containing
all code� and the restrictions on control �ow as speci�ed in ��� are satis�ed� that
is�

�CF�� a program block may only be entered via a jump to the �rst instruction and
may only be exited via a halt instruction �not counting subroutine calls from
within the block��

�CF�� a call block may not be entered via a jump or fallthrough and may only be
exited via a halt or return �not counting subroutine calls from within the

��



block�� and

�CF�� for any other type of block� all jumps or fallthroughs entering the block must
target the �rst instruction of the block� and the block must be exited via a
jump or fallthrough to the instruction immediately following the block �not
counting subroutine calls from within the block��

De�nition ��� A memory operation �read or write� is safe if it references either �i�
a location in heap storage that has previously been allocated� �ii� a valid location
on the runtime stack� or �iii� a valid location in the program�s constant data area�

�

De�nition ��� An execution of a block is a computation sequence beginning at
the �rst instruction of the block in some state satisfying the precondition of the
block� �

De�nition ��� An execution of a block is safe if it satis�es the following properties�

�S�� If and when control exits the block �excluding subroutine calls�� it does so in
an acceptable way as speci�ed by �CF����CF���

�S�� Any call is to the �rst instruction of a call block�

�S�� Registers s and e and the stack are preserved� that is� they are in the same
state on block exit as they were on entry�

�S�� The postcondition of the block is satis�ed on exit�

�S�� All memory references are safe�

�

De�nition ��� The standard assumption for a block is that

�SA�� the precondition of the block is satis�ed on entry�

�SA�� execution begins at the �rst instruction� and

�SA�� the execution of any subblock or called subroutine is safe�

�

De�nition ��� We say that a block is residually safe if

�LS�� under the standard assumption� the residual code guarantees that the pre

condition of any subblock is satis�ed upon entry to that subblock�

��



�LS�� under the standard assumption� the residual code guarantees that when con

trol is at the site of any call instruction in the residue� the target of the call
is the �rst instruction of a call block� and the precondition of the call block
is satis�ed �this may include constraints on the number� type� and location
of arguments��

�LS�� ignoring subblocks and subroutine calls� the residue preserves s� e� and the
stack�

�LS�� under the standard assumption� the residual code guarantees that the post

condition of the block is satis�ed on exit�

�LS�� under the standard assumption� the residual code guarantees that all memory
references in the residue are safe�

�

The following is our main theorem�

Theorem ��� If all blocks are residually safe� then all executions of all blocks are

safe� In particular� if the outermost program block is executed starting at the �rst

location in a state satisfying its precondition� then the entire program is safe�

The safety of an execution is a dynamic notion� but the residual safety of a
block is a static notion that can be checked by a veri�er� We will prove the theorem
formally below� but �rst let us illustrate the idea with an example� Consider the
block of Figure �� an eval block that creates a PAIR object� The residual code of
the block is given explicitly� not shown are the two subblocks that evaluate the
head and the tail of the new PAIR object�

Instruction C�� stores a pointer to the tail of the pair in a newly allocated
cons cell� This is a memory access� and we must verify that it is safe �LS��� By
�CF����CF��� which are veri�ed separately� there are no jumps with target between
C�
 and C�� originating from outside the block or from within any subblocks� and
by inspecting the residual code it can be seen that there are no such jumps from
the residue either� therefore the only computation path leading to C�� is through
C�
� C��� and C��� This guarantees that the memory reference in C�� is to the
cons cell just allocated�

For �LS��� the postcondition of the block states that register ecx contains a
pointer to a valid PAIR object� By de�nition� this means that ecx points to a
heap cell of length � containing the runtime type of a PAIR and pointers to two
valid data objects� the head and the tail� The preconditions of the subblocks that
evaluate the head and the tail are satis�ed vacuously �this is �LS���� therefore by

��



clause �SA�� of the standard assumption� the executions of these subblocks are
safe� By the safety condition �S�� for these subblocks� the objects they produce
are valid data objects� and they are returned in register eax� The head� which is
evaluated �rst� is pushed onto the stack while the tail is being evaluated� since the
subblock evaluating the tail satis�es �S��� the head is still there on top of the stack
after the tail is evaluated�

Property �LS�� holds because the residue does not mention e or s� and there is
one push�pop pair in the correct order� Properties �LS�� and �LS�� are satis�ed
vacuously�

In this case� the easiest way for the veri�er to verify all these conditions is to
compare the residual code of the block to the standard code for creating a PAIR
object produced by the compiler� which the veri�er knows about� The annotation
of the block speci�es a name that identi�es the code that should be there� and the
veri�er checks by table lookup that the correct code is indeed there�

Proof of Theorem ���� The proof of the theorem is by induction on the length
of executions and the number of times subblocks are executed and call blocks are
called�

Assume that all blocks are residually safe� and consider the execution of any
block B� By de�nition� the execution begins at the �rst location of B in some
state satisfying B�s precondition� thus clauses �SA�� and �SA�� of the standard
assumption hold� We also have �SA�� for executions of subblocks and called call
blocks by the induction hypothesis� Thus the standard assumption holds for B�

Since B is residually safe by assumption� as long as the execution remains in
the residue of B� by �LS�� all memory references executed in the residue are safe�
By assumptions �CF����CF��� the execution must remain in the residue of B until
either

�i� it falls through or jumps to the �rst instruction of a subblock�

�ii� it executes a call instruction� or

�iii� it exits B�

In case �i�� since B is residually safe� it satis�es �LS��� therefore the precondition of
the subblock holds� By the induction hypothesis� the execution of that subbblock
is safe� therefore satis�es �S����S��� In particular� if and when the subblock exits�
it does so in a state satisfying its postcondition� and execution of the residue of B
resumes at the instruction immediately following the subblock�

In case �ii�� since B is residually safe� it satis�es �LS��� therefore the precon

dition of the call block holds� By the induction hypothesis� the execution of that

��



call block is safe� therefore satis�es �S����S��� In particular� by �S�� and �S���
the call block returns to the instruction immediately following the call in a state
satisfying the postcondition of the call block� and execution of the residue of B
resumes there�

In case �iii�� since B is residually safe� it satis�es �LS�� upon exit�
Cases �i� and �ii� may occur arbitrarily many times before case �iii�� Indeed�

case �iii� may never occur�
Now we argue that B satis�es �S����S��� It satis�es �S�� by assumptions

�C����C��� It satis�es �S�� because of �LS��� It satis�es �S�� because of �LS��
and the inductive assumption that all executions of subblocks and called call blocks
satisfy �S��� It satis�es �S�� because of �LS��� Finally� it satis�es �S�� because
of �LS�� and the inductive assumption that all executions of subblocks and called
call blocks satisfy �S��� �

� Project Status

We have built a working prototype to illustrate the feasibility of this approach�
The prototype comprises the �rst year of a three
year project as part of a broader
initiative on language
based security� The system consists of

� a compiler for a statically scoped SCHEME
like functional language that
produces something resembling �at ��
bit x�
 �Pentium� assembly code and
a certi�cate�

� a loader that loads the compiled object and preprocesses the certi�cate�

� an x�
 emulator that executes the object interpretively� and

� a veri�er�

The system is publicly available from the Cornell Computer Science Department�s
web site http���www�cornell�edu��

� Other Issues

Optimization For the future� we would like to investigate ways to handle com

piler optimizations in the presence of annotations� Each time an optimization is
performed� a transformation of the certi�cate would also have to be performed� and
it is an interesting question how to do this in a way that preserves the semantics
of the code and the certi�cate� Some simple local optimizations such as inlining
and tail recursion elimination can already be handled easily as special cases� We
would like to investigate methods for handling other optimizations as well�

��



Strong typing vs� runtime checks Our approach works only for type
safe lan

guages� Our prototype compiler is for a statically scoped SCHEME
like functional
language in which some types are inferred� but in general types are dynamic and
runtime checks are used where necessary to insure type safety� In a strongly typed
language or with an optimizing compiler� many of these checks would be unneces

sary� In such languages� the extra type information or information obtained from
program �ow analysis can be included in the certi�cate�

Necula and Lee ��� 
	 argue that PCC can be used to eliminate certain runtime
type checks� This may be true� but to our mind it is an orthogonal issue� For the
purposes of veri�cation of safety properties� it is irrelevant whether the required
type information comes down from a typing of the source code� from program
analysis� or from runtime type checks� The compiler knows for one reason or
another that the program is type safe� and it is our task to �gure out how to make
that reason explicit in the certi�cate�

Dynamic loading One issue that appears not to present a serious problem is the
dynamic loading and linking of libraries� The library can also contain a certi�cate
that can be veri�ed in the same way when it is �rst loaded if necessary�

Storage management This is also not a problem� The garbage collector is
assumed to be part of the local runtime system �not part of the user program�
another reason why this approach would not work for C� and therefore trusted�
Memory safety will prevent the program from accessing garbage
collected storage�

Other worries Many thorny complications exist in industrial
grade compilers�
such as nonlocal jumps� exception handling� aliasing� and concurrency� It remains
to be seen how e�ectively the technology described in this paper will scale�

Acknowledgements

I am indebted to Greg Morrisett for introducing me to the problem and for his gen

erous help and constant encouragement� This work has bene�ted in countless ways
from his deep insight and encyclopedic knowledge of programming languages� Fred
Schneider read an earlier draft of this paper and suggested many improvements to
the presentation� The participants of the MILC seminar at Cornell have provided
an exciting and supportive atmosphere and have contributed greatly to the devel

opment of these ideas� Jason Hartline provided a �ne preliminary implementation
of the emulator�

��



References

	
� Drew Dean� Ed Felten� and Dan Wallach� JAVA security� From HotJava to Netscape
and beyond� In ���� IEEE Symp� Security and Privacy� IEEE� May 


��

	�� Tim Lindholm and Frank Yellin� The JAVA virtual machine speci�cation� Addison
Wesley� 


��

	�� G� Morrisett� D� Tarditi� P� Cheng� C� Stone� R� Harper� and P� Lee� The TIL�ML
compiler� Performance and safety through types� In ���� Workshop on Compiler

Support for Systems Software� 


��

	�� Greg Morrisett� David Walker� Karl Crary� and Neal Glew� From System F to typed
assembly language� In ���� Symposium on Principles of Programming Languages�
IEEE� January 


�� To appear�

	�� George C� Necula� Proof�carrying code� In Proc� ��th Symp� Principles of Program�

ming Languages� ACM� January 


��

	�� George C� Necula and Peter Lee� Safe kernel extensions without run�time checking�
In Proc� �nd Symp� Operating System Design and Implementation� ACM� October



��

	�� Thomas W� Reps� Program analysis via graph reachability� In J� Maluszynski� edi�
tor� Proc� ILPS 	�
� International Logic Programming Symposium� pages ��

� MIT
Press� October 


��

	�� Fred B� Schneider� Enforceable security policies� September 


�� Preprint�

	
� Fred B� Schneider� Towards fault�tolerant and secure agentry� In Proc� ��th Inter�

national Workshop WDAG 	�
� volume 
��� of Lecture Notes in Computer Science�
pages 
�
�� SIGPLAN� Springer�Verlag� September 


��

	
�� D� Tarditi� G� Morrisett� P� Cheng� C� Stone� R� Harper� and P� Lee� TIL� A type�
directed optimizing compiler for ML� In ���� SIGPLAN Conference on Programming

Language Design and Implementation� SIGPLAN� 


��

�




� begin program block

� � begin call block

� � � begin recursive method initialization

� � � � begin call block

� � � � � begin method body

� � � � � � begin eval block

� � � � � � � begin eval block

� � � � � � �� end eval block type	 ��� status	 ��� location	 eax

� � � � � � �� begin eval block

� � � � � � � �� begin eval block

� � � � � � � �� end eval block type	 ��� status	 ��� location	 eax

� � � � � � � �� begin call sequence

� � � � � � � � �� begin eval block

� � � � � � � � �� end eval block type	 ��� status	 ��� location	 eax

� � � � � � � �� end call sequence args	 �

� � � � � � �� end eval block type	 ��� status	 ��� location	 ecx

� � � � � �� end eval block type	 ��� status	 ��� location	 ecx

� � � � �� end method body

� � � �� end call block free	 � bound	 �

� � �� end recursive method initialization fns	 �

� � �� begin call sequence

� � � �� begin eval block

� � � � �� begin eval block

� � � � � �� begin eval block

� � � � � �� end eval block type	 ��� status	 ��� location	 ecx

� � � � ��� end eval block type	 ��� status	 ��� location	 ebx

� � � ��� end eval block type	 ��� status	 ��� location	 ecx

� � � ��� begin eval block

� � � � ��� begin eval block

� � � � ��� end eval block type	 ��� status	 ��� location	 ecx

� � � ��� end eval block type	 ��� status	 ��� location	 ebx

� � ��� end call sequence args	 �

� ��� end call block free	 � bound	 �

� ��� begin call block

� ��� end call block free	 � bound	 �

��� end program block free	 � bound	 �

Figure �� Block structure of append

��


