Efficient Code Certification

Dexter Kozen
Department of Computer Science
Cornell University
Ithaca, NY 14853-7501
kozen@cs.cornell.edu

January 8, 1998

Abstract

We introduce a simple and efficient approach to the certification of com-
piled code. We ensure a basic but nontrivial level of code safety, including
control flow safety, memory safety, and stack safety. The system is designed
to be simple, efficient, and (most importantly) relatively painless to incorpo-
rate into existing compilers. Although less expressive than the proof carrying
code of Necula and Lee or typed assembly language of Morrisett et al., our
certificates are compact and relatively easy to produce and to verify. Unlike
JAVA bytecode, our system operates at the level of native code; it is not
interpreted and no further compilation is necessary.

1 Introduction

An exciting recent development in program verification is the notion of certified
code. When downloading executable code from an untrusted foreign source, a client
also downloads a certificate that is checked before running the code to ensure that
it is safe to run locally. The certificate is produced by the supplier at compile
time and verified by the client at load time; both operations are (or should be)
automatic and invisible to both parties.

This notion first appeared in a practical system in the JAVA programming
language. The JAVA compiler produces virtual machine instructions that can be
verified by the client before execution and that are meant to provide a certain basic
level of security [2]. Despite certain failings in the initial implementation [1], it
nevertheless constituted a significant step forward in practical programming lan-
guage security. It not only introduced a simple and effective approach to providing
a basic level of security, but more importantly, it helped to galvanize the attention
of the programming language and verification community on critical security issues
engendered by the rise of the Internet.

Recent work by Necula and Lee [5, 6] on proof carrying code (PCC), by Mor-
risett et al. [4] on typed assembly language (TAL), and by Schneider [8, 9] on
automata-based security have demonstrated that general principles of logic, type
theory, and program verification can be brought successfully to bear on the security
problem. These systems are quite general and can potentially be used to express
and verify a variety of safety properties. Schneider [8, 9] identifies the class of
safety properties that can be verified by these methods.

In the case of TAL, typing information from a high-level program written in
a strongly-typed language is carried through a series of transformations through a
platform-independent typed intermediate language (TIL) [3, 10] and finally down to
the level of the object code itself. The resulting type annotation can be checked by
an ordinary type checker. In the case of PCC, correctness properties are expressed
in first-order logic, and a proof is constructed based on a general system such as
Edinburgh LF and provided along with the program. Although these approaches
are quite expressive and general, their chief drawback is that the certificates they
produce tend to be large and time-consuming to generate and to verify. For ex-
ample, proofs in PCC are from 3 to 7 times the size of the object code [5, 6].
The automata-based approach of Schneider [8, 9] requires a runtime call on an
automaton for each executed instruction, unless an optimizer can determine that
the call is unnecessary; thus without effective optimization, runtime performance
could be seriously degraded as well.

In contrast with these approaches, our goal with the present work is to limit
ourselves to a fixed and relatively basic level of security, but to provide it as simply,

efficiently, compactly, and invisibly as possible. We are able to ensure

e control flow safety—the program never jumps to a random location in the
address space, but only addresses within its own code segment containing
valid instructions;

e memory safety—the program does not access random places in memory, but
only valid locations in its own data segment, system heap memory explicitly
allocated to it, or valid stack frames; and

e stack safety—the state of the stack is preserved across subroutine calls.

These rough descriptions are not to be taken as formal definitions. A more rigorous
treatment can be found in Section 3. In that section, we define formally the
meaning of control flow safety, memory safety, and stack safety. These safety
conditions are mutually dependent in the sense that none of them are safe unless
all of them are safe. Thus, the level of safety we provide is, in an informal sense,
the minimal nontrivial level of safety ensuring any one of these conditions.

Our foremost concerns are performance and ease of implementation. We are
willing to sacrifice the generality of TAL or PCC, the platform-independence of
JAVA bytecode, and the enhanced expressiveness of Buchi automata for a more
streamlined system tailored to the platform at hand. Our motivation is that, al-
though the demand for security is great, the technology will not be adopted rou-
tinely in industrial-grade compilers unless it is relatively painless to do so and entails
no significant performance degradation.

Although our approach is necessarily highly platform-dependent, it is still possi-
ble to isolate the logical principles at work. We do this in Section 3 by formulating
and proving a soundness theorem. The theorem can be applied to show that the
conditions checked by our verifier are sufficient to ensure control flow safety, mem-
ory safety, and stack safety.

Although inspired by PCC, it would be inaccurate to call our certificates proofs,
because they are not proofs in any formal system. They are more accurately
described as structured annotations that merely direct the verification process.
Guided by this structural information, the verifier checks a simple set of conditions
that are sufficient to imply the desired safety properties. As such, the system is
closer in spirit to the JAVA bytecode verifier, although it operates at the level of
native code. With PCC, the safety conditions are expressed explicitly and proved
by the compiler as part of the implementation; this becomes difficult in the pres-
ence of loops, since loop invariants cannot be generated automatically in general.
In contrast, our system generates relatively simple annotations from information
already present as part of the compilation process. The proof that the code is safe

(define-method append (x y)
(if (null? x)

y
(pair (head x) (append (tail x) y))))

(append (list 1 2 3) (list 4 5))

==> (1 2 3 4 5)

Figure 1: Appending two lists

to run need not appear as part of the implementation, but can be done on paper
once and for all.

The centerpiece of this initiative is a working prototype that we have built to
demonstrate the feasibility of this approach. The prototype is virtually complete
(six months ahead of schedule!) and we describe it in Section 4. The construction
of the prototype constitutes the first year of a three-year project. In the remaining
two years, we hope to see to what extent this technology can be incorporated in
industrial-grade compilers.

2 How It Works

In this section we describe the form of the certificate and how it obviates the need
for a full first-order proof as with PCC or a complete type annotation as with TAL.

2.1 Block Structure

The code generated by a compiler has a natural context-free structure that mir-
rors the structure of the high level program from which it was compiled. This
is inescapable, since programming languages are typically defined by context-free
grammars and compilation is a recursive process that acts on the parse tree. The
key idea is to exploit this natural structure to direct the verification.

This structure consists of well-nested intervals of instructions, called blocks,
each of which is generated by the compiler for a specific purpose. For example,
a program block contains the compiled code for the main program; a call block
contains the compiled code for the body of a function; and an eval block contains
code for evaluating an expression. The compiler can identify this block structure
and produce the block tree as part of the certificate.

For example, consider the program of Figure 1 for appending two lists. Figure
3 on p. 17 shows the block structure of the compiled code. For example, the block

;;;evaluate (pair (head x) (append (tail x) y))
.begin eval block

;5 ;evaluate 2 argument(s)

;;;evaluate (head x)

.begin eval block

[code to evaluate (head x)]
.end eval block type= 7 status= register location= eax
C26: push eax ;push onto stack
;;;evaluate (append (tail x) y)
.begin call sequence

[code to evaluate (append (tail x) y)]

.end call sequence args= 2 type= PAIR status= register location= eax

;3 ;apply pair

C55: pop ebx ;head of pair

C56: alloc ecx,3 ;new cons cell

C57: mov [ecx],PAIR ;save runtime type of pair
C58: mov [1+ecx],ebx ;save head

C59: mov [2+ecx],eax ;save tail

.end eval block type= PAIR status= register location= ecx

Figure 2: Residue of an eval block

[1,72) labeled “recursive method initialization” contains the definition of append.
The subblock [20,60) labeled “eval block” contains code to evaluate the else clause
of the body of the function, namely (pair (head x) (append (tail x) y)).

2.2 Residues

The residue of a block is the set of instructions remaining after all subblocks
have been deleted. The code in the residue of a block is called residual code.
For example, Figure 2 shows the residue of the block [20,60) mentioned above.
Residues are typically small and there only a small finite number of them. The
residue in Figure 2 contains only six instructions, which perform the pair operation
once the arguments have been evaluated.

The lines starting with .begin and .end are annotations and are part of the
certificate. They define the boundaries of the blocks and give basic typing infor-
mation that is needed for verification.

2.3 Control Flow

There are three control flow mechanisms:
(i) conditional and unconditional jumps;
(ii) call and return; and
(iii) fallthrough.

The instructions call and return have the side effect of manipulating the stack;
they push and pop the return address. A fallthrough is the flow of control to
the instruction immediately following the one just executed. An instruction that
can fall through to the next instruction is called a fallthrough instruction. Most
instructions are fallthrough instructions; examples of those that are not are halt,
call, return, and unconditional jumps. Conditional jumps are always considered
fallthrough instructions.

Our verifier checks that control flow respects block structure: no control flow
instruction (conditional and unconditional jump, call, or return) or fallthrough
may traverse a block boundary except in a few strictly prescribed ways. These
restrictions ensure that residual code is executed with a certain degree of atomicity;
for example, it will be impossible for there to be an unexpected jump to the middle
of a sequence of residual instructions from outside the residue. This is crucial for
ensuring memory safety: without it, we could not be certain that registers contain
correct pointers and data values when writing to memory.

A program block may only be entered via a jump to the first location and
may not exit except via a halt instruction. A call block may not be entered or
exited via a jump or fallthrough, but only via call to the first location and return
or halt. All other types of blocks must be entered via a jump or fallthrough to
the first instruction of the block and must be exited via a jump or fallthrough
to the instruction immediately following the block (not counting subroutine calls
from within the block). The residue of a non-call block may not contain a return.
Conditions reminiscent of these appear in the JAVA bytecode verifier [2].

These are straightforward and natural restrictions. They are satisfied by our
compiler, and we suspect that they (or something very similar) are satisfied by
compilers in general, or can be made to be satisfied fairly easily.

These restrictions alone are not sufficient to ensure control flow safety; we must
have stack safety and memory safety as well. For instance, if the subblock [27,55)
in Figure 2 does not preserve the stack, then there is no guarantee that the object
popped at Cb5, which is supposed to be the same as the object pushed at C26,
is even a valid data object. If that object happened to be a function, this could
result in an invalid call later on.

For example, consider a subroutine call with two arguments. Although the call
sequence could be arbitrarily long depending on the complexity of the arguments
that need to be evaluated, the residue only contains the two pushes, the call, and
the two pops. A random jump into this residue from outside would almost certainly
corrupt the stack. However, the control flow restrictions ensure that this cannot
happen. The block can be annotated with the information that this is a subroutine
call with two arguments, and the verifier need only check that the residue contains
two pushes and two pops in the correct order.

Further control flow conditions are checked in Section 2.6. In particular, all
call instructions must occur in the context of the standard subroutine linkage or
exception handling mechanism. This will guarantee, among other things, that every
call targets the first instruction of a call block.

2.4 Stack Safety

For stack safety, the verifier needs to check that in any residue, pushes and pops
occur in well-nested pairs, and that pushes are always executed before their corre-
sponding pops. This might ordinarily be done using flow analysis on the control
flow graph [7]. However, with the block structure explicit, no expensive analysis is
necessary. Pushes and pops are generated only in well-defined contexts, usually as
part of a standard subroutine call linkage. A simple check of the residual code of
the linkage can ensure that all pushes and pops match.

2.5 Memory Access

Memory must be accessed correctly. Every memory operation, read or write, has
a precondition for safe execution, and we must guarantee that the precondition is
met whenever that instruction is executed.

Our implementation uses a dedicated environment register e, and the envi-
ronment only changes at a subroutine call. For each call block, we must check
that

(i) the old environment pointer is saved at the beginning and restored at the
end of the call block;

(ii) storage for the new environment table is allocated and initialized correctly,
and e is loaded with the address of the new table; and

(iii) all accesses off register e (except in sub-call blocks) are at a constant offset
not exceeding the length of the environment table.

The length of the environment table is known at compile time and is included in
the call block annotation. This information can be used to check (iii). Conditions
(i) and (ii) can be checked simply by comparing the residual code to standard call
linkage code obtained by table lookup.

We must also check that all storage allocated off the system heap is initialized
before it is used. We assume that the language provides a default value for variables
of all types (as does JAVA) and that the compiler initializes newly allocated storage
immediately. This can be verified by table lookup of the residual code. For example,
in the residue of Figure 2, we must check that the new cons cell allocated in line
C56 is immediately initialized, which it is; this is done by table lookup to compare
the residual code to the standard code for an inline application of pair.

2.6 Residual Code

Endpoints of blocks are often annotated with extra typing information. For exam-
ple, the annotation at the end of the block illustrated in Figure 2 says that register
ecx contains a valid pair object. The residual code of the block must correctly
guarantee that these conditions are met whenever control is at that point, under
the inductive assumption that subblocks and calls satisfy memory and stack safety
and guarantee their annotations as well. Then at the very worst, the verifier need
only check by table lookup that the correct residual code is there. Often even
simpler checks suffice.

Some assumptions need not be explicitly represented in the annotation. For
example, in our implementation, methods are always called with a pointer to the
method object in register eax, which the method initialization code depends on.
Because of control flow safety, the only way a method can be called is from within
a call sequence, which is just another type of block. Since any valid call sequence
guarantees the desired property, the verifier need only check the residual code of
all call sequences.

3 Soundness

In this section we prove a soundness theorem. The theorem characterizes a collec-
tion of basic safety properties and establishes sufficient conditions that imply them
and that can be checked by a verifier. The most difficult part of this theorem is not
its proof but its formulation. Once the theorem is stated, the proof is a relatively
straightforward inductive argument.

The chief difficulty in the formulation lies in the conflicting desires of estab-
lishing the correctness of our implementation and more general applicability. We

have found that a sufficiently rigorous proof of correctness of our implementation
depends on various implementation-specific assumptions. Although we would like
the argument presented here to establish correctness of our implementation, we
would also hope that it could be applied mutatis mutandis to a variety of situa-
tions. We have therefore formulated the theorem in a fairly general way under a few
reasonable assumptions. We are encouraged by the fact that there is considerable
flexibility in both compiler implementation and in the form of the block structure
and verification conditions. If we impose restrictions on the structure of object
code that are not currently satisfied by some compiler, there is room for movement
on both sides. The reengineering of an existing code generator or optimizer to
make them respect block structure is not an insurmountable task and may even be
worthwhile for independent reasons.

We remark in passing that it would be difficult to formulate this theorem solely
in terms of types. Although types do enter heavily into the formulation, it is difficult
to characterize some of the basic safety properties we are interested in. For example,
“the stack is preserved across a subroutine call” is difficult to express purely type-
theoretically. The difficulty lies in the lack of a natural means to compare the values
of variables in two distinct states related by a runtime execution path. Types and
set constraints are very good for talking about the static properties of an object or
relations between objects at a particular point in the execution, but not about the
relationship between objects at different points in the execution.

3.1 Assumptions

Before we state our soundness theorem, we start with some basic assumptions.

We assume that there are two dedicated registers, namely the environment
pointer e and the stack pointer s. The stack is used to hold arguments to functions,
to preserve e across calls, and to save return addresses. We assume that the stack
pointer s always points to the top element of the stack and that it is initialized by
the system before calling the user code. We assume for simplicity that s is affected
only by the instructions push, pop, call, and return; no explicit register operations
involving s are allowed. We also assume for simplicity that there is no danger of
stack overflow. In a real system, there would need to be some mechanism, either
hardware or software, for checking for stack overflow, and the verifier would need
to ensure that that mechanism was in place.

In addition, we assume that there is a mechanism for garbage collection that
periodically and invisibly reclaims heap storage no longer accessible. In our imple-
mentation, allocation of heap memory is effected by an atomic alloc instruction.
Otherwise, we assume that there are no external agents that can change the state
of memory.

We assume that the stack, heap, program, and constant data all occupy dis-
joint memory segments. Stack memory is contiguous, and the stack grows in one
direction (in our implementation, from high memory downward).

3.2 Scoping Discipline

Our high-level language is statically scoped. This means that each method (func-
tion) is executed in an environment determined by the bindings that are in effect
when the method is initialized. This environment is used to resolve the references
to free identifiers in the body of the method. In our implementation, when a
method object is initialized, a local copy of each free identifier occurring in the
body is created and initialized with the current value obtained from the enclosing
environment. This local environment is associated with the method throughout its
lifetime.

This implementation may seem inefficient due to the cost of creating the local
environment when the method is initialized. But by amortizing the initialization
cost over the lifetime of the method object, it in fact works out to constant time
per access, provided for each free identifier there is at least one call that accesses
that identifier.

The environment pointer e is initialized during program initialization and always
points to the current environment. Thereafter, e is saved on the stack and restored
by the standard subroutine linkage before and after any call.

Other scoping disciplines are certainly possible and may even be more compli-
cated, as for example with object oriented languages. However, the basic technique
for dealing with changing environments is already exercised at this level, and we
believe that it can serve as a paradigm for more complicated situations.

3.3 A Soundness Theorem

Suppose we have determined a block structure with annotations that specify the
type of each block as well as any associated pre- or postconditions. Suppose further
that the blocks are well-nested, the outermost block is a program block containing
all code, and the restrictions on control flow as specified in 2.3 are satisfied; that
is,

(CF1) a program block may only be entered via a jump to the first instruction and
may only be exited via a halt instruction (not counting subroutine calls from
within the block);

(CF2) a call block may not be entered via a jump or fallthrough and may only be
exited via a halt or return (not counting subroutine calls from within the

10

block); and

(CF3) for any other type of block, all jumps or fallthroughs entering the block must
target the first instruction of the block, and the block must be exited via a
jump or fallthrough to the instruction immediately following the block (not
counting subroutine calls from within the block).

Definition 3.1 A memory operation (read or write) is safe if it references either (i)
a location in heap storage that has previously been allocated, (ii) a valid location
on the runtime stack, or (iii) a valid location in the program’s constant data area.

O

Definition 3.2 An execution of a block is a computation sequence beginning at
the first instruction of the block in some state satisfying the precondition of the
block. 0

Definition 3.3 An execution of a block is safe if it satisfies the following properties.

(S1) If and when control exits the block (excluding subroutine calls), it does so in
an acceptable way as specified by (CF1)—(CF3).

(S2) Any call is to the first instruction of a call block.

(S3) Registers s and e and the stack are preserved; that is, they are in the same
state on block exit as they were on entry.

(S4) The postcondition of the block is satisfied on exit.

(S5) All memory references are safe.

a
Definition 3.4 The standard assumption for a block is that
(SA1) the precondition of the block is satisfied on entry;
(SA2) execution begins at the first instruction; and
(SA3) the execution of any subblock or called subroutine is safe.
d

Definition 3.5 We say that a block is residually safe if

(LS1) under the standard assumption, the residual code guarantees that the pre-
condition of any subblock is satisfied upon entry to that subblock;

11

(LS2) under the standard assumption, the residual code guarantees that when con-
trol is at the site of any call instruction in the residue, the target of the call
is the first instruction of a call block, and the precondition of the call block
is satisfied (this may include constraints on the number, type, and location
of arguments);

(LS3) ignoring subblocks and subroutine calls, the residue preserves s, e, and the
stack;

(LS4) under the standard assumption, the residual code guarantees that the post-
condition of the block is satisfied on exit;

(LS5) under the standard assumption, the residual code guarantees that all memory
references in the residue are safe.

The following is our main theorem.

Theorem 3.6 If all blocks are residually safe, then all executions of all blocks are
safe. In particular, if the outermost program block is executed starting at the first
location in a state satisfying its precondition, then the entire program is safe.

The safety of an execution is a dynamic notion, but the residual safety of a
block is a static notion that can be checked by a verifier. We will prove the theorem
formally below, but first let us illustrate the idea with an example. Consider the
block of Figure 2, an eval block that creates a PAIR object. The residual code of
the block is given explicitly; not shown are the two subblocks that evaluate the
head and the tail of the new PAIR object.

Instruction C59 stores a pointer to the tail of the pair in a newly allocated
cons cell. This is a memory access, and we must verify that it is safe (LS5). By
(CF1)—(CF3), which are verified separately, there are no jumps with target between
C56 and Ch9 originating from outside the block or from within any subblocks, and
by inspecting the residual code it can be seen that there are no such jumps from
the residue either; therefore the only computation path leading to C59 is through
C56, C57, and C58. This guarantees that the memory reference in C59 is to the
cons cell just allocated.

For (LS4), the postcondition of the block states that register ecx contains a
pointer to a valid PAIR object. By definition, this means that ecx points to a
heap cell of length 3 containing the runtime type of a PAIR and pointers to two
valid data objects, the head and the tail. The preconditions of the subblocks that
evaluate the head and the tail are satisfied vacuously (this is (LS1)), therefore by

12

clause (SA3) of the standard assumption, the executions of these subblocks are
safe. By the safety condition (S4) for these subblocks, the objects they produce
are valid data objects, and they are returned in register eax. The head, which is
evaluated first, is pushed onto the stack while the tail is being evaluated; since the
subblock evaluating the tail satisfies (S3), the head is still there on top of the stack
after the tail is evaluated.

Property (LS3) holds because the residue does not mention e or s, and there is
one push/pop pair in the correct order. Properties (LS1) and (LS2) are satisfied
vacuously.

In this case, the easiest way for the verifier to verify all these conditions is to
compare the residual code of the block to the standard code for creating a PAIR
object produced by the compiler, which the verifier knows about. The annotation
of the block specifies a name that identifies the code that should be there, and the
verifier checks by table lookup that the correct code is indeed there.

Proof of Theorem 3.6. The proof of the theorem is by induction on the length
of executions and the number of times subblocks are executed and call blocks are
called.

Assume that all blocks are residually safe, and consider the execution of any
block B. By definition, the execution begins at the first location of B in some
state satisfying B’s precondition; thus clauses (SA1) and (SA2) of the standard
assumption hold. We also have (SA3) for executions of subblocks and called call
blocks by the induction hypothesis. Thus the standard assumption holds for B.

Since B is residually safe by assumption, as long as the execution remains in
the residue of B, by (LS5) all memory references executed in the residue are safe.
By assumptions (CF1)—(CF3), the execution must remain in the residue of B until
either

(i) it falls through or jumps to the first instruction of a subblock;
(ii) it executes a call instruction; or
(iii) it exits B.

In case (i), since B is residually safe, it satisfies (LS1), therefore the precondition of
the subblock holds. By the induction hypothesis, the execution of that subbblock
is safe, therefore satisfies (S1)—(S5). In particular, if and when the subblock exits,
it does so in a state satisfying its postcondition, and execution of the residue of B
resumes at the instruction immediately following the subblock.

In case (ii), since B is residually safe, it satisfies (LS2), therefore the precon-
dition of the call block holds. By the induction hypothesis, the execution of that

13

call block is safe, therefore satisfies (S1)—(S5). In particular, by (S1) and (S3),
the call block returns to the instruction immediately following the call in a state
satisfying the postcondition of the call block, and execution of the residue of B
resumes there.

In case (iii), since B is residually safe, it satisfies (LS4) upon exit.

Cases (i) and (ii) may occur arbitrarily many times before case (iii). Indeed,
case (iii) may never occur.

Now we argue that B satisfies (51)—(S5). It satisfies (S1) by assumptions
(C1)—(C3). It satisfies (S2) because of (LS2). It satisfies (S3) because of (LS3)
and the inductive assumption that all executions of subblocks and called call blocks
satisfy (S3). It satisfies (S4) because of (LS4). Finally, it satisfies (S5) because
of (LS5) and the inductive assumption that all executions of subblocks and called
call blocks satisfy (S5). O

4 Project Status

We have built a working prototype to illustrate the feasibility of this approach.
The prototype comprises the first year of a three-year project as part of a broader
initiative on language-based security. The system consists of

e a compiler for a statically scoped SCHEME-like functional language that
produces something resembling flat 32-bit x86 (Pentium) assembly code and
a certificate;

e a loader that loads the compiled object and preprocesses the certificate;
e an x86 emulator that executes the object interpretively; and

e a verifier.

The system is publicly available from the Cornell Computer Science Department’s
web site http://www.cornell.edu/.

5 Other Issues

Optimization For the future, we would like to investigate ways to handle com-
piler optimizations in the presence of annotations. Each time an optimization is
performed, a transformation of the certificate would also have to be performed, and
it is an interesting question how to do this in a way that preserves the semantics
of the code and the certificate. Some simple local optimizations such as inlining
and tail recursion elimination can already be handled easily as special cases. We
would like to investigate methods for handling other optimizations as well.

14

Strong typing vs. runtime checks Our approach works only for type-safe lan-
guages. Our prototype compiler is for a statically scoped SCHEME-like functional
language in which some types are inferred, but in general types are dynamic and
runtime checks are used where necessary to insure type safety. In a strongly typed
language or with an optimizing compiler, many of these checks would be unneces-
sary. In such languages, the extra type information or information obtained from
program flow analysis can be included in the certificate.

Necula and Lee [5, 6] argue that PCC can be used to eliminate certain runtime
type checks. This may be true, but to our mind it is an orthogonal issue. For the
purposes of verification of safety properties, it is irrelevant whether the required
type information comes down from a typing of the source code, from program
analysis, or from runtime type checks. The compiler knows for one reason or
another that the program is type safe, and it is our task to figure out how to make
that reason explicit in the certificate.

Dynamic loading One issue that appears not to present a serious problem is the
dynamic loading and linking of libraries. The library can also contain a certificate
that can be verified in the same way when it is first loaded if necessary.

Storage management This is also not a problem. The garbage collector is
assumed to be part of the local runtime system (not part of the user program—
another reason why this approach would not work for C) and therefore trusted.
Memory safety will prevent the program from accessing garbage-collected storage.

Other worries Many thorny complications exist in industrial-grade compilers,
such as nonlocal jumps, exception handling, aliasing, and concurrency. It remains
to be seen how effectively the technology described in this paper will scale.

Acknowledgements

| am indebted to Greg Morrisett for introducing me to the problem and for his gen-
erous help and constant encouragement. This work has benefited in countless ways
from his deep insight and encyclopedic knowledge of programming languages. Fred
Schneider read an earlier draft of this paper and suggested many improvements to
the presentation. The participants of the MILC seminar at Cornell have provided
an exciting and supportive atmosphere and have contributed greatly to the devel-
opment of these ideas. Jason Hartline provided a fine preliminary implementation
of the emulator.

15

References

[1]
2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

Drew Dean, Ed Felten, and Dan Wallach. JAVA security: From HotJava to Netscape
and beyond. In 1996 IEEE Symp. Security and Privacy. IEEE, May 1996.

Tim Lindholm and Frank Yellin. The JAVA virtual machine specification. Addison
Wesley, 1996.

G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and P. Lee. The TIL/ML
compiler: Performance and safety through types. In 1996 Workshop on Compiler
Support for Systems Software, 1996.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed
assembly language. In 1998 Symposium on Principles of Programming Languages.
IEEE, January 1998. To appear.

George C. Necula. Proof-carrying code. In Proc. 24th Symp. Principles of Program-
ming Languages. ACM, January 1997.

George C. Necula and Peter Lee. Safe kernel extensions without run-time checking.
In Proc. 2nd Symp. Operating System Design and Implementation. ACM, October
1996.

Thomas W. Reps. Program analysis via graph reachability. In J. Maluszynski, edi-
tor, Proc. ILPS '97: International Logic Programming Symposium, pages 5-19. MIT
Press, October 1997.

Fred B. Schneider. Enforceable security policies, September 1997. Preprint.

Fred B. Schneider. Towards fault-tolerant and secure agentry. In Proc. 11th Inter-
national Workshop WDAG '97, volume 1320 of Lecture Notes in Computer Science,
pages 1-14. SIGPLAN, Springer-Verlag, September 1997.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-
directed optimizing compiler for ML. In 1996 SIGPLAN Conference on Programming
Language Design and Implementation. SIGPLAN, 1996.

16

0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

1

1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
7
7
I
I
I
I
I
I
I
I
I

begin program block
0 begin call block

begin recursive method initialization

4

begin call block

8 begin method body

8 begin eval block

8 begin eval block

18 end eval block type= 306 status= 401 location= eax
20 begin eval block

| 20 begin eval block

| 26 end eval block type= 308 status= 401 location= eax
| 27 begin call sequence

| | 42 begin eval block

| | 48 end eval block type= 308 status= 401 location= eax
| 55 end call sequence args= 2

60 end eval block type= 304 status= 401 location= ecx
62 end eval block type= 308 status= 401 location= ecx

62 end method body

66 end call block free= 1 bound= 2

2 end recursive method initialization fns= 1
2 begin call sequence

87 begin eval block

89 begin eval block

| 91 begin eval block

| 99 end eval block type= 304 status= 401 location= ecx
104 end eval block type= 304 status= 401 location= ebx

109 end eval block type= 304 status= 401 location= ecx
110 begin eval block

112 begin eval block
120 end eval block type= 304 status= 401 location= ecx

125 end eval block type= 304 status= 401 location= ebx
130 end call sequence args= 2

132 end call block free= 1 bound= 0

132 begin call block

135 end call block free= 0 bound= 0
35 end program block free= 0 bound= 0O

Figure 3: Block structure of append

17

