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Abstract. Grid presents a continuously changing environment. It also introduces a new set of failures. The data
grid initiative has made it possible to run data-intensive applications on the grid. Data-intensive grid applications
consist of two parts: a data placement part and a computation part. The data placement part is responsible for
transferring the input data to the compute node and the result of the computation to the appropriate storage system.
While work has been done on making computation adapt to changing conditions, little work has been done on making
the data placement adapt to changing conditions. In this work, we have developed an infrastructure which observes
the environment and enables run-time adaptation of data placement jobs. We have enabled Stork, a scheduler for data
placement jobs in heterogeneous environments like the grid, to use this infrastructure and adapt the data placement
job to the environment just before execution. We have also added dynamic protocol selection and alternate protocol
fall-back capability to Stork to provide superior performance and fault tolerance.
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1. Introduction. The grid [10] [11] [19] presents a continuously changing environment. The
data grid initiative has increased the underlying network capacity and enabled running of data-
intensive applications on the grid. Data-intensive applications consist of two parts: a data placement
part and a computation part. The data placement part is responsible for transferring the input data
to the compute node and the result of the computation to the appropriate storage system. Data
placement encompasses all data movement related activities such as transfer, staging, replication,
data positioning, space allocation and deallocation. While work has been done on making compu-
tation adapt to changing conditions, little work has been done on making the data placement adapt
to changing conditions.

Sophisticated protocols developed for grid data transfers like GridFTP [1] allow tuning depend-
ing on the environment to achieve the best performance. While tuning by itself is difficult, it is
further complicated by the changing environment. The parameters which are optimal at the time
of job submission, may no longer be optimal at the time of execution. The best time to tune the
parameters is just before execution of the data placement job. Determining the environment char-
acteristics and performing tuning for each job may impose a significant overhead. Ideally, we need
an infrastructure that detects environmental changes and performs appropriate tuning and uses the
tuned parameters for subsequent data placement jobs.

Many times, we have the ability to use different protocols for data transfers, with each having
different network, CPU and disk characteristics. The new fast protocols do not work all the time.
The main reason is the presence of bugs in the implementation of the new protocols. The more
robust protocols work for most of the time but do not perform as well. This presents a dilemma
to the users who submit data placement jobs to data placement schedulers. If they choose the fast
protocol, some of their transfers may never complete and if they choose the slower protocol, their
transfer would take a very long time. Ideally users would want to use the faster protocol when it
works and switch to the slower more reliable protocol when the fast one fails. Unfortunately, when
the fast protocol would fail is not known apriori. The decision on which protocol to use is best done
just before starting the transfer.

Some users simply want data transferred and do not care about the protocol being used. Others
have some preference such as: as fast as possible, as low a CPU load as possible, as minimal memory
usage as possible. The machines where the jobs are being executed may have some characteristics
which might favor some protocol. Further the machine characteristics may change over time due
to hardware and software upgrades. Most users do not understand the performance characteristics
of the different protocols and inevitably end up using a protocol that is known to work. In case of
failures, they just wait for the failure to be fixed, even though other protocols may be working.

An ideal system is one that allows normal users to specify their preference and chooses the
appropriate protocol based on their preference and machine characteristics. It should also switch
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to the next most appropriate protocol in case the current one stops working. It should also allow
sophisticated users to specify the protocol to use and the alternate protocols in case of failure. Such
a system would not only reduce the complexity of programming the data transfer but also provide
superior failure recovery strategy. The system may also be able to improve performance because it
can perform on-the-fly optimization.

In this work, we have developed a monitoring infrastructure which determines the environment
characteristics and detects any subsequent change. The environment characteristics are used by
the tuning infrastructure to generate tuned parameters for the various protocols. These tuned
parameters are fed to a a data placement scheduler. The data placement scheduler uses the tuned
parameters while executing the data placement jobs submitted to it, essentially performing run-time
adaptation of data placement jobs. We have also added dynamic protocol selection and alternate
protocol fall-back capability to our prototype data placement scheduler. Dynamic protocol selection
determines the protocols that are available on a particular host and uses an appropriate protocol
for data transfer between any two hosts. Alternate protocol fall-back allows the data placement
scheduler to switch to a different protocol if the protocol being used for a transfer stops working.

2. Related Work. Network Weather Service (NWS) [25] is a distributed system which peri-
odically gathers readings from network and CPU resources, and uses numerical models to generate
forecasts for a given time frame. Vazhkudai [24] found that the network throughput predicted by
NWS was much less than the actual throughput achieved by GridFTP. He attributed the reason
for it being that NWS by default was using 64KB data transfer probes with normal TCP window
size to measure throughput. We wanted our network monitoring infrastructure to be as accurate as
possible and wanted to use it to tune protocols like GridFTP.

Semke [20] introduces automatic TCP buffer tuning. Here the receiver is expected to advertise
large enough windows. Fisk [9] points out the problems associated with [20] and introduces dy-
namic right sizing which changes the receiver window advertisement according to estimated sender
congestion window. 16-bit TCP window size field and 14-bit window scale option which needs to
be specified during connection setup, introduce more complications. While a higher value of the
window-scale option allows a larger window, it increases the granularity of window increments and
decrements. While large data transfers benefit from large window size, web and other traffic are
adversely affected by the larger granularity of window-size changes.

Linux 2.4 kernel used in our machines implements dynamic right-sizing, but the receiver window
size needs to be set explicitly if a window size large than 64 KB is to be used. Autobuf [15] attempts
to tune TCP window size automatically by performing bandwidth estimation before the transfer.
Unfortunately there is no negotiation of TCP window size between server and client which is needed
for optimal performance. Also performing a bandwidth estimation before every transfer introduces
too much of an overhead.

Fearman et. al [8] introduce the Adaptive Regression Modeling (ARM) technique to forecast
data transfer times for network-bound distributed data-intensive applications. Ogura et. al [17] try
to achieve optimal bandwidth even when the network is under heavy contention, by dynamically
adjusting transfer parameters between two clusters, such as the number of socket stripes and the
number of network nodes involved in transfer.

In [5], Carter et. al. introduce tools to estimate the maximum possible bandwidth along a given
path, and to calculate the current congestion along a path. Using these tools, they demonstrate how
dynamic server selection can be performed to achieve application-level congestion avoidance.

Thain et. al. propose the Ethernet approach [21] to Grid Computing, in which they introduce
a simple scripting language which can handle failures in a manner similar to exceptions in some
languages. The Ethernet approach is not aware of the semantics of the jobs it is running, its duty
is retrying any given job for a number of times in a fault tolerant manner. Kangaroo [22] tries to
achieve high throughput by making opportunistic use of disk and network resources.

Application Level Schedulers (AppLeS) [4] have been developed to achieve efficient scheduling
by taking into account both application-specific and dynamic system information. AppLeS agents
use dynamic system information provided by the NWS.

Beck et. al. introduce Logistical Networking [2] which performs global scheduling and optimiza-
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tion of data movement, storage and computation based on a model that takes into account all the
network’s underlying physical resources.

3. Methodology. The environment in which data placement jobs execute keeps changing all
the time. The network bandwidth keeps fluctuating. The network route changes once in a while. The
optic fiber may get upgraded increasing the bandwidth. New disks and raid-arrays may be added
to the system. The monitoring and tuning infrastructure monitors the environment and tunes the
different parameters accordingly. The data placement scheduler then uses these tuned parameters to
intelligently schedule and execute the transfers. Figure 3.1 shows the components of the monitoring
and tuning infrastructure and the interaction with the data placement scheduler.

3.1. Monitoring Infrastructure. The monitoring infrastructure monitors the disk, memory
and network characteristics. The infrastructure takes into account that the disk and memory char-
acteristics change less frequently and the network characteristics change more frequently. The disk
and memory characteristics are measured once after the machine is started. If a new disk is added on
the fly (hot-plugin), there is an option to inform the infrastructure to determine the characteristics
of that disk. The network characteristics are measured periodically. The period is tunable. If the
infrastructure finds that the network characteristics are constant for a certain number of measure-
ments, it reduces the frequency of measurement till a specified minimum is reached. The objective
of this is to keep the overhead of measurement as low as possible.

Fig. 3.1. Monitoring and Tuning Infrastructure. This figure shows an overview of the monitoring and tuning
infrastructure. The different profilers determine the various environment conditions and the tuning infrastructure
uses that information to generate optimal parameter values.

The disk and memory characteristics are determined by intrusive techniques, and the network
characteristics are determined by a combination of intrusive and non-intrusive techniques. The
memory characteristic of interest to us is the optimal memory block size to be used for memory-to-
memory copy. The disk characteristics measured include the optimal read and write block sizes and
the increment block size that can be added to the optimal value to get the same performance.

The network characteristics measured are the following: end-to-end bandwidth, end-to-end la-
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tency, number of hops, the latency of each hop and kernel TCP parameters. Since end-to-end
measurement requires two hosts, this measurement is done between every pair of hosts that may
transfer data between each other. The end-to-end bandwidth measurement uses both intrusive and
non-intrusive techniques. The non-intrusive technique uses packet dispersion technique to measure
the bandwidth. The intrusive technique performs actual transfers. First the non-intrusive technique
is used and the bandwidth is determined. Then actual transfer is performed to measure the end-to-
end bandwidth. If the numbers widely differ, the infrastructure performs a certain number of both
of the network measurements and finds the correlation between the two. After this initial setup, a
light-weight network profiler is run which uses only non-intrusive measuring technique. While we
perform a longer initial measurement for higher accuracy, the subsequent periodic measurements are
very light-weight and do not perturb the system.

3.2. Tuning Infrastructure. The tuning infrastructure uses the information collected by
monitoring infrastructure and tries to determine the optimal I/O block size, TCP buffer size and
the number of TCP streams for the data transfer from a given node X to a given node Y. The tuning
infrastructure has the knowledge to perform protocol-specific tuning. For instance GridFTP takes
as input only a single I/O block size, but the source and destination machines may have different
optimal I/O block sizes. For such cases, the tuning finds the I/O block size which is optimal for
both of them. The incremental block size measured by the disk profiler is used for this. The tuning
infrastructure feeds the data transfer parameters to the data placement scheduler.

3.3. Scheduling Data Transfers. The data placement scheduler uses the information pro-
vided by the tuning infrastructure to make intelligent decisions for scheduling and executing the
data placement jobs.

In our study, we used the Stork [13] data placement scheduler to monitor, manage, and schedule
the data transfers over the wide area network. Stork is a specialized scheduler for data placement
activities in heterogeneous environments. Stork can queue, schedule, monitor and manage data
placement jobs, and it ensures that the jobs complete.

Stork is aware of the semantics of the data placement requests submitted to it, so it can make
intelligent scheduling decisions with regard to each individual request. For example, if a transfer
of a large file fails, Stork can transfer only parts of the file not already transferred. We have made
some enhancements to Stork that enable it to adaptively schedule data transfers at run-time using
the information provided by monitoring and tuning infrastructure. These enhancements include
dynamic protocol selection and run-time protocol auto-tuning. The details of these enhancements
are discussed in section 5.

4. Implementation. We have developed a set of tools to determine disk, memory and network
characteristics and using those values determine the optimal parameter values to be used for data
transfers. We executed these tools in a certain order and fed the results to Stork data placement
scheduler which then performed run-time adaptation of the wide-area data placement jobs submitted
to it.

4.1. Disk and Memory Profilers. The disk profiler determines the optimal read and write
block sizes and the increment that can be added to the optimal block size to get the same perfor-
mance. A list of pathnames and the average file size is fed to the disk profiler. So, in a multi-disk
system, the mount point of the different disks are passed to the disk profiler. In the case of a raid-
array, the mount point of the raid array is specified. For each of the specified paths, the disk profiler
finds the optimal read and write block size and the optimal increment that can be applied to these
block sizes to get the same performance. It also lists the read and write disk bandwidths achieved
by the optimal block sizes.

For determining the optimal write block size, the profiler creates a file in the specified path and
writes the average file size of data in block-size chunks and flushes the data to disk at the end. It
repeats the experiment for different block sizes and finds the optimal. For determining the read
block size, it uses the same technique except that it flushes the kernel buffer cache to prevent cache
effects before repeating the measurement for a different block size. Since normal kernels do not allow
easy flushing of the kernel buffer cache, the micro-benchmark reads in a large dummy file of size
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greater than the buffer cache size essentially flushing it. The memory profiler finds the maximum
memory-to-memory copy bandwidth and the block size to be used to achieve it.

4.2. Network Profiler. The network profiler gets the kernel TCP parameters from /proc. It
runs Pathrate [7] between given pair of nodes and gets the estimated bottleneck bandwidth and the
average round-trip time. It then runs traceroute between the nodes to determine the number of hops
between the nodes and the hop-to-hop latency. The bandwidth estimated by Pathrate is verified by
performing actual transfers by a data transfer tool developed as part of the DiskRouter project [12].
If the two numbers differ widely, then a specified number of actual transfers and Pathrate bandwidth
estimations are done to find the correlation between the two. Tools like Iperf [16] can also be used
instead of the DiskRouter data transfer tool to perform the actual transfer. From experience, we
found Pathrate to the most reliable of all the network bandwidth estimation tools that use packet
dispersion technique and we always found a correlation between the value returned by Pathrate and
that observed by performing actual transfer. After the initial network profiling, we run a light-weight
network profiler periodically. The light-weight profiler runs only Pathrate and traceroute.

4.3. Parameter Tuner. The parameter tuner gets the information generated by the different
tools and finds the optimal value of the parameters to be used for data transfer from a node X to a
node Y.

To determine the optimal number of streams to use, the parameter tuner uses a simple heuristic.
It finds the number of hops between the two nodes that have a latency greater than 10 ms. For
each such hop, it adds an extra stream. Finally, if there are multiple streams and the number of
streams is odd, the parameter tuner rounds it to an even number by adding one. The reason for
doing this is that some protocols do not work well with odd number of streams. The parameter
tuner calculates the bandwidth-delay product and uses that as the TCP buffer size. If it finds that
it has to use more than one stream, it divides the TCP buffer size by the number of streams. The
reason for adding a stream for every 10 ms hop is as follows: In a high-latency multi-hop network
path, each of the hops may experience congestion independently. If a bulk data transfer using a
single TCP stream occurs over such a high-latency multi-hop path, each congestion event would
shrink the TCP window size by half. Since this is a high-latency path, it would take a long time for
the window to grow, with the net result being that a single TCP stream would be unable to utilize
the full available bandwidth. Having multiple streams reduces the bandwidth reduction of a single
congestion event. Most probably only a single stream would be affected by the congestion event
and halving the window size of that stream alone would be sufficient to eliminate congestion. The
probability of independent congestion events occurring increases with the number of hops. Since only
the high-latency hops have a significant impact because of the time taken to increase the window
size, we added a stream for all high-latency hops and empirically found that hops with latency
greater than 10 ms fell into the high-latency category. Note that we set the total TCP buffer size to
be equal to the bandwidth delay product, so in steady state case with multiple streams, we would
not be causing congestion.

The Parameter Tuner understands kernel TCP limitations. Some machines may have a max-
imum TCP buffer size limit less than the optimal needed for the transfer. In such a case, the
parameter tuner uses more streams so that their aggregate buffer size is equal to that of the optimal
TCP buffer size.

The Parameter Tuner gets the different optimal values and generates overall optimal values. It
makes sure that the disk I/O block size is at least equal to the TCP buffer size. For instance, the
optimal disk block size may be 1024 KB and the increment value may be 512 KB (performance of
optimal + increment is same as optimal) and the optimal TCP buffer size may be 1536KB. In this
case, the parameter tuner will make the protocol use a disk block size of 1536 KB and a TCP buffer
size of 1536 KB. This is a place where the increment value generated by the disk profiler is useful.

The Parameter Tuner understands different protocols and performs protocol specific tuning. For
example, globus-url-copy, a tool used to move data between GridFTP servers, allows users to specify
only a single disk block size. The read disk block size of the source machine may be different from
the write disk block size of the destination machine. In this case, the parameter tuner understands
this and chooses an optimal value that is optimal for both the machines.
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Fig. 4.1. The DAG Coordinating the Monitoring and Tuning infrastructure. This DAG shows the order in
which the monitors(profilers) and tuner are run. Initially all the profilers are run and the information is logged to
persistent storage and also passed to the parameter tuner which generates the optimal parameter values. After that,
the light-weight network profiler and parameter tuner are run periodically. The parameter tuner uses the values of
the earlier profiler runs and the current light-weight network profiler run to generate the optimal parameter values.

4.4. Coordinating the Monitoring and Tuning Infrastructure. The disk, memory and
network profilers need to be run once at startup and the light-weight network profiler needs to
be run periodically. We may also want to re-run the other profilers in case a new disk is added
or any other hardware or operating system kernel upgrade. We have used the Directed Acyclic
Graph Manager (DAGMan) [6] [23] to coordinate the monitoring and tuning process. DAGMan is
service for executing multiple jobs with dependencies between them. The monitoring tools are run
as Condor [14] jobs on respective machines. Condor provides a job queuing mechanism and resource
monitoring capabilities for computational jobs. It also allows the users to specify scheduling policies
and enforce priorities.

We executed the Parameter Tuner on the management site. Since the Parameter Tuner is a
Condor job, we can execute it anywhere we have a computation resource. It picks up the information
generated by the monitoring tools using Condor and produces the different tuned parameter values
for data transfer between each pair of nodes. For example if there are two nodes X and Y, then
the parameter tuner generates two sets of parameters - one for transfer from node X to node Y and
another for data transfer from node Y to node X. This information is fed to Stork which uses it to
tune the parameters of data placement jobs submitted to it. The DAG coordinating the monitoring
and tuning infrastructure is shown in Figure 4.1.

We can run an instance of parameter tuner for every pair of nodes or a certain number of pairs
of nodes. For every pair of nodes, the data fed to the parameter tuner is in the order of hundreds
of bytes. Since all tools are run as Condor jobs, depending on the number of nodes involved in the
transfers, we can have a certain number of parameter tuners, and they can be executed wherever
there is available cycles and this architecture is not centralized with respect to the parameter tuner.
In our infrastructure, we can also have multiple data placement schedulers and have the parameters
for data transfers handled by a particular scheduler fed to it. In a very large system, we would have
multiple data placement schedulers with each handling data movement between a certain subset of
nodes.
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4.5. Dynamic Protocol Selection. We have enhanced the Stork scheduler so that it can
decide which data transfer protocol to use for each corresponding transfer dynamically and auto-
matically at the run-time. Before performing each transfer, Stork makes a quick check to identify
which protocols are available for both the source and destination hosts involved in the transfer. Stork
first checks its own host-protocol library to see whether all of the hosts involved the transfer are
already in the library or not. If not, Stork tries to connect to those particular hosts using different
data transfer protocols, to determine the availability of each specific protocol on that particular host.
Then Stork creates the list of protocols available on each host, and stores these lists as a library in
ClassAd [18] format which is a very flexible and extensible data model that can be used to represent
arbitrary services and constraints.

[

host_name = "quest2.ncsa.uiuc.edu";

supported_protocols = "diskrouter, gridftp, ftp";

]

[

host_name = "nostos.cs.wisc.edu";

supported_protocols = "gridftp, ftp, http";

]

If the protocols specified in the source and destination URLs of the request fail to perform the
transfer, Stork will start trying the protocols in its host-protocol library to carry out the transfer.
Stork detects a variety of protocol failures. In the simple case, connection establishment would fail
and the tool would report an appropriate error code and Stork uses the error code to detect failure.
In other case where there is a bug in protocol implementation, the tool may report success of a
transfer, but stork would find that source and destination files have different sizes. If the same
problem repeats, Stork switches to another protocol. The users also have the option to not specify
any particular protocol in the request, letting Stork to decide which protocol to use at run-time.

[

dap_type = "transfer";

src_url = "any://slic04.sdsc.edu/tmp/foo.dat";

dest_url = "any://quest2.ncsa.uiuc.edu/tmp/foo.dat";

]

In the above example, Stork will select any of the available protocols on both source and desti-
nation hosts to perform the transfer. So, the users do not need to care about which hosts support
which protocols. They just send a request to Stork to transfer a file from one host to another, and
Stork will take care of deciding which protocol to use.

The users can also provide their preferred list of alternative protocols for any transfer. In this
case, the protocols in this list will be used instead of the protocols in the host-protocol library of
Stork.

[

dap_type = "transfer";

src_url = "drouter://slic04.sdsc.edu/tmp/foo.dat";

dest_url = "drouter://quest2.ncsa.uiuc.edu/tmp/foo.dat";

alt_protocols = "nest-nest, gsiftp-gsiftp";

]

In this example, the user asks Stork to perform a transfer from slic04.sdsc.edu to quest2.ncsa.uiuc.edu
using the DiskRouter protocol primarily. The user also instructs Stork to use any of the NeST [3]
or GridFTP protocols in case the DiskRouter protocol does not work. Stork will try to perform the
transfer using the DiskRouter protocol first. In case of a failure, it will drop to the alternative pro-
tocols and will try to complete the transfer successfully. If the primary protocol becomes available
again, Stork will switch to it again. So, whichever protocol available will be used to successfully
complete the user’s request. In case all the protocols fail, Stork will keep trying till one of them
becomes available.
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4.6. Run-time Protocol Auto-tuning. Statistics for each link involved in the transfers are
collected regularly and written into a file, creating a library of network links, protocols and auto-
tuning parameters.
[

link = "slic04.sdsc.edu - quest2.ncsa.uiuc.edu";

protocol = "gsiftp";

bs = 1024KB; //block size

tcp_bs = 1024KB; //TCP buffer size

p = 4; //parallelism

]

Before performing every transfer, Stork checks its auto-tuning library to see if there are any
entries for the particular hosts involved in this transfer. If there is an entry for the link to be used
in this transfer, Stork uses these optimized parameters for the transfer. Stork can also be configured
to collect performance data before every transfer, but this is not recommended due to the overhead
it will bring to the system.

5. Experiments and Results. We have performed two different experiments to evaluate the
effectiveness of our dynamic protocol selection and run-time protocol tuning mechanisms. We also
collected performance data to show the contribution of these mechanisms to wide area data transfers.

5.1. Experiment 1: Testing the Dynamic Protocol Selection. We submitted 500 data
transfer requests to the Stork server running at University of Wisconsin (skywalker.cs.wisc.edu).
Each request consisted of transfer of a 1.1GB image file (total 550GB) from SDSC (slic04.sdsc.edu)
to NCSA (quest2.ncsa.uiuc.edu) using the DiskRouter protocol. There was a DiskRouter server
installed at Starlight (ncdm13.sl.startap.net) which was responsible for routing DiskRouter transfers.
There were also GridFTP servers running on both SDSC and NCSA sites, which enabled us to use
third-party GridFTP transfers whenever necessary. The experiment setup is shown in Figure 5.1.

Fig. 5.1. Experiment Setup. DiskRouter and GridFTP protocols are used to transfer data from SDSC to NCSA.
Stork was running at the Management site,a nd making scheduling decisions for the transfers.

At the beginning of the experiment, both DiskRouter and GridFTP services were available.
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Stork started transferring files from SDSC to NCSA using the DiskRouter protocol as directed by
the user. After a while, we killed the DiskRouter server running at Starlight intentionally. This was
done to simulate a DiskRouter server crash. Stork immediately switched the protocols and continued
the transfers using GridFTP without any interruption. Switching to GridFTP caused a decrease in
the performance of the transfers, as shown in Figure 5.2. The reasons of this decrease in performance
is because of the fact that GridFTP does not perform auto-tuning whereas DiskRouter does. In
this experiment, we set the number of parallel streams for GridFTP transfers to 10, but we did not
perform any tuning of disk I/O block size or TCP buffer size. DiskRouter performs auto-tuning for
the network parameters including the number of TCP-streams in order to fully utilize the available
bandwidth. DiskRouter can also use sophisticated routing to achieve better performance.

After letting Stork use the alternative protocol (in this case GridFTP) to perform the transfers
for a while, we restarted the DiskRouter server at the SDSC site. This time, Stork immediately
switched back to using DiskRouter for the transfers, since it was the preferred protocol of the user.
Switching back to the faster protocol resulted in an increase in the performance. We repeated this
a couple of more times, and observed that the system behaved in the same way every time.

This experiment shows that with alternate protocol fall-over capability, grid data placement jobs
can make use of the new high performance protocols while they work and switch to more robust
lower performance protocol when the high performance one fails.

Fig. 5.2. Dynamic Protocol Selection. The DiskRouter server running on the SDSC machine gets killed twice at
points (1) and (3), and it gets restarted at points (2) and (4). In both cases, Stork employed next available protocol
(GridFTP in this case) to complete the transfers.

5.2. Experiment 2: Testing the Run-time Protocol Auto-tuning. In the second ex-
periment, we submitted another 500 data transfer requests to the Stork server. Each request was
to transfer a 1.1GB image file (total 550 GB) using GridFTP as the primary protocol. We used
third-party globus-url-copy transfers without any tuning and without changing any of the default
parameters.

Parameter Before auto-tuning After auto-tuning

parallelism 1 TCP stream 4 TCP streams
block size 1 MB 1 MB
tcp buffer size 64 KB 256 KB

Table 5.1
Network parameters for gridFTP before and after auto-tuning feature of Stork being turned on.



10 G. KOLA, T. KOSAR AND M. LIVNY

We turned off the auto-tuning feature of Stork at the beginning of the experiment intentionally.
The average data transfer rate that globus-url-copy could get without any tuning was only 0.5
MB/s. The default network parameters used by globus-url-copy are shown in Table 1. After a
while, we turned on the auto-tuning feature of Stork. Stork first obtained the optimal values for
I/O block size, TCP buffer size and the number of parallel TCP streams from the monitoring and
tuning infrastructure. Then it applied these values to the subsequent transfers. Figure 5.3 shows
the increase in the performance after the auto-tuning feature is turned on. We got a speedup of
close to 20 times compared to transfers without tuning.

Fig. 5.3. Run-time Protocol Auto-tuning. Stork starts the transfers using the GridFTP protocol with auto-tuning
turned off intentionally. Then we turn the auto-tuning on, and the performance increases drastically.

6. Future Work. We are planning to enhance the dynamic protocol selection feature of Stork,
so that it will not only select any available protocol to perform the transfer, but it will select the
best one. The requirements of ‘being the best protocol’ may vary from user to user. Some users
may be interested in better performance, and others in better security or better reliability. Even the
definition of ‘better performance’ may vary from user to user. We are looking into the semantics of
how to to define ‘the best’ according to each user’s requirements.

We are also planning to add a feature to Stork to dynamically select which route to use in the
transfers and then dynamically deploy DiskRouters at the nodes on that route. This will enable
us to use the optimal routes in the transfers, as well as optimal use of the available bandwidth
throughout that route.

7. Conclusion. In this paper, we have shown a method to dynamically adapt data placement
jobs to the environment at the execution time. We have developed a set of disk and memory and
network profiling, monitoring and tuning tools which can provide optimal values for I/O block size,
TCP buffer size, and the number of TCP streams for data transfers. These values are generated dy-
namically and provided to the higher level data placement scheduler, which can use them in adapting
the data transfers at run-time to existing environmental conditions. We also have provided dynamic
protocol selection and alternate protocol fall-back capabilities to provide superior performance and
fault tolerance. With two experiments, we have shown that our method can be easily applied and
it generates better performance results by dynamically switching to alternative protocols in case of
a failure, and by dynamically auto-tuning protocol parameters at run-time.
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