
Full abstraction for nominal general references

Nikos Tzevelekos
Oxford University Computing Laboratory

Abstract

Game semantics has been used with considerable suc-
cess in formulating fully abstract semantics for languages
with higher-order procedures and a wide range of computa-
tional effects. Recently, nominal games have been proposed
for modeling functional languages with names. These are
ordinary games cast in the theory of nominal sets devel-
oped by Pitts and Gabbay. Here we take nominal games
one step further, by developing a fully abstract semantics
for a language with nominal general references.

1 Introduction

Updated version, 23/07/07.

One of the most challenging problems in denotational
semantics of programming languages is that of modeling
languages with general references. General references are
references which can store not only values of ground types
(integers, booleans, etc.) but also of higher types (pro-
cedures, higher-order functions, or references themselves).
The general reference is a very useful and powerful pro-
gramming construct, and it can be used to encode a wide
range of computational effects and programming paradigms
(e.g. object-oriented programming). The added expressive-
ness of general references makes their denotational models
complicated, mainly because of the phenomena of dynamic
update and interference present in the language.

Fully abstract models for general references have been
achieved via game semantics in [3], and via abstract cate-
gorical semantics in [9]. The presentation in [9] does not
distinguish betweenλ-abstraction and local fresh-reference
creation (ν-abstraction), and hence is distanced from the
common use of references in programming languages. On
the other hand, the calculus examined in [3] distinguishes
betweenλ- and ν-abstractions, yet encodes references as
variables of a read/write product type. This leads to the
presence ofbad variables1, as read/write-product seman-
tical objects may not necessarily denote references. Bad

1By “bad variables” we mean read/write constructs of reference type
which do not yield references, likemkvar of [3].

variables lead to unwanted behaviors and prohibit the use
of equality testsfor references.

In this paper we obtain thefirst full-abstraction result for
a statically-scoped language with general references, good
variables and reference-equality tests, which faithfully re-
flects the practice of real programming languages such as
ML. We follow the alternative (nominal) approach of treat-
ing references separately from variables, asnames, extend-
ing theν-calculus of Pitts and Stark [14]. Theν-calculus is
a paradigmaticλ-calculus with names, in which names are
constant terms of ground type that “...are created with local
scope, can be tested for equality and can be passed around
via function application, but that is all”. Here we use names
for references, so names are of reference types and may also
be dereferenced and updated, introducing thus aλ-calculus
with nominal general references, theνρ-calculus.

Nominal games were introduced in [2] as the basis for
the first fully abstract model of theν-calculus.2 They con-
stitute a version of Honda-Yoshida CBV-games [6] built in
the universe of nominal sets of Pitts and Gabbay [5, 13].
Nominal sets are sets whose elements entail a finite num-
ber of names, and which are acted upon by finite name-
permutations. Thus, the nominal games of [2] are CBV-
games played using moves-with-names, that is moves at-
tached with a finite set of names representing the names
introduced so far. Our intention was to build a model for
the νρ-calculus using nominal games, yet we discovered
discrepancies arising from the use of name-sets in moves:
the unordered nature of name-creation is incompatible with
the deterministic behavior of strategies and, in fact, nominal
games do not form a category.

Hence, we recast nominal games using moves attached
with name-lists instead of name-sets, and rectifying other
discrepancies. Moreover, since names model references of
several types, our construction is based on nominal sets over
countably infinitely many sets of names –one for each type.3

From the basic category of nominal games we obtain an
adequate model forνρ by using a store arena, which is ob-
tained as the canonical solution to the domain equation (SE)

2A different version of nominal games was introduced in [8], yet it did
not yield a fully abstract model for theν-calculus.

3Also, the use of name-lists allows us to construct nominal games in
nominal sets with strongly supported elements (v. definition 1).

1

of page 5. For full abstraction we need to apply some fur-
ther constraints on the way the store is accessed in nominal
games, obtaining thustidy strategies.

Summarising, the contributions of this paper are: a) the
introduction of aλ-calculus with nominal general refer-
ences, name-equality test and good variables; b) the recti-
fication of nominal games; c) the construction of a fully ab-
stract model using nominal games with tidy strategies. An
appealing further direction is that of abstracting the basic
nominal games model to a categorical level, in the spirit of
[1, 9]; a first step in this direction has already been taken in
the abstract description of aλνρ-model (section 3.1).

2 Theory of nominal sets

We give a short overview of nominal sets, which will be
used as the basis for all constructions presented in this pa-
per. Intuitively, nominal sets are sets whose elements entail
a finite number ofnames, and which are acted upon by finite
name-permutations.4 We present these following [13].

Assume a countably infinite set TY of typesA,B, ...,
and for each typeA assume a countably infinite set of names
NA. The elements ofNA arenames to typeA and are de-
noted byaA, bA, We writePERM(NA) for the group of
finite permutations ofNA. We letN ,

⋃
A∈TY NA be the set

of (general) names andPERM(N) ,
⊕

A∈TY PERM(NA)
be the group of (finite) permutations. Names are denoted
by α, β, γ, ..., and permutations byπ, π′, ...; in particular,
(α β) denotes the permutation that only swaps namesα and
β (of same type) andid denotes the identity permutation.

A nominal setX is a set equipped with an action from
PERM(N), that is a function [: PERM(N) ×X → X
such that, for anyπ, π′ ∈ PERM(N) andx ∈ X ,

π[(π′ [x) = (π ◦ π′)[x id[x = x (P)

Moreover, allx ∈ X have finite supportS(x), where

S(x) , {α ∈ N | for infinitely manyβ. (α β)[x 6= x} (S)

We can see thatN in particular is a nominal set. Forx ∈ X
andα∈N, α is fresh forx, writtenα#x, iff α /∈S(x). x is
equivariantiff it has empty support.N# stands for the nom-
inal set of finite lists of distinct (i.e. pairwise fresh) names.

If Y is a nominal set andX ⊆ Y thenX is anominal
subsetof Y iff X is closed under permutations, these acting
as onY . If X,Y are nominal sets then their productX ×Y
is also a nominal set, with permutations defined componen-
twise. Moreover, a relationR ⊆ X ×Y is a nominal subset
of X × Y iff, for any permutationπ and(x, y) ∈ X × Y ,
xRy ⇐⇒ (π[x)R(π[y). We call such anR a nominal
relation. Accordingly,f : X → Y is anominal function

4In fact, nominal sets are sets in a Fraenkel-Mostowski permutation
model of ZFA set theory with a countably infinite set of names and a group
of finite permutations of names.

iff f(π[x) = π[f(x) , for anyx ∈ X andπ. For example,
S() : X → Pfin(N) is a nominal function.

We letNomTY be the category of nominal sets (onN)
and nominal functions. In nominal sets we can succinctly
definename-abstraction: for eachα ∈ N andx ∈ X let

〈α〉x , {(β, y) ∈ N×X | (β = α∨β#x)∧y = (α β)[x}
We can showS(〈α〉x) = S(x)\ {α}. Another form of ab-
straction involves restricting the support of an element to
that of a given name-list: for anyx ∈ X and~α ∈ N# let

[x]~α , {y ∈ X | ∃π. π[~α = ~α ∧ y = π[x}
If S(x)⊇S(~α) thenS([x]~α) = S(~α). The notion of support
can be strengthened to modelorderedentailment of names.

Definition 1 (Strong support) For any nominal setX ,
anyx ∈ X and anyS ⊆ N, S strongly supportsx if, for
any permutationπ, π fixesx iff π fixes each element inS.N

The notion of strong support is indeed stronger than that of
support, which employs only the “if”-part of the above as-
sertion. For example, ifα, β ∈ N then the set{α, β} only
has weak support{α, β}, whereas the listα, β has strong
support{α, β}. Strong support coincides with weak sup-
port when the former exists.

3 The νρ-calculus

The νρ-calculus is aλ-calculus with nominal general
references. Leaving aside the use of name-lists instead of
name-sets in the operational semantics, it is an extension of
theν-calculus of Pitts and Stark [14] (and of theν-calculus
with int ref of [15, chapter 5]) using names for general
references. We present its syntax in nominal sets, and thus
obtain nominal notions such as name-freshness and name-
permutation for free.

Definition 2 The νρ-calculus is a functional calculus of
nominal references. Its types are given as follows.

TY ∋ A,B ::= 1 | N | [A] | A→ B | A⊗B

So references to typeA are of type[A]. Terms compose TE:

TE ∋M,N ::= x | λx.M |M N λ-term

| skip |
b
n | predM | succN return / arithmetic

| if0M thenN1 elseN2 if thenelse

| 〈M,N〉 | fstM | sndN pair / projections

| α | να.M name /ν-abstraction

| [M = N] name-equality test

|M := N | !M update / dereferencing

TE is a nominal set inNomTY : each nameα = aA is taken
from NA and να.M stands forν(〈α〉M). Of the terms

2

above, the values are:

VA ∋ V,W ::=
b
n | skip | α | x | λx.M | 〈V,W 〉

The typing system involves terms in environments~α^Γ,
where ~α a list of (distinct) names andΓ a finite set of
variable-type pairs. Some of its rules are the following.

~α ^ Γ, x :A_ x : A
α=a

A \#~α
~α ^ Γ_ α : [A]

~α, α ^ Γ_M : B

~α ^ Γ_ να.M : B

~α ^ Γ_M : [A]

~α ^ Γ_ !M : A

~α ^ Γ_M : [A] ~α ^ Γ_N : [A]

~α ^ Γ_ [M = N] : N

~α ^ Γ_M : [A] ~α ^ Γ_N : A

~α ^ Γ_M := N : 1
The reduction calculus is defined in store environmentS:

S ::= ǫ | α, S | α :: V, S

For each store environmentS we define its domain,dom(S),
to be the list of names stored inS. We only consider envi-
ronments with domains inN# (i.e. lists of distinct names).
Reduction rules are as below,

DRF
S, α :: V, S′ `!αA S, α :: V, S′ ` V

NEW (anyβ#S)

S ` να.M A S, β ` (α β)[M
UPD

S, α(:: W), S′ ` α := V A S, α :: V, S′ ` skip

EQ n=1 if α#β
n=0 if α=βS ` [α = β] A S ` b

n

PRD
S ` pred

b
0 A S ` b

0

LAM
S ` (λx.M)V A S `M{V/x}

CTX
S `M A S′ `M ′

S ` E[M] A S′ ` E[M ′]

plus standard CBV rules forfst , snd , if0, pred and
succ . Evaluation contextsE[] are of the forms:

[= N] , [α =] , ! , := N , α :=
(λx.N) , N , fst , if0 thenN else N ′

snd , pred , succ , 〈 , N〉 , 〈V, 〉
N

We takeobservable termsto be the constants of typeN, and
around them we build the notion of observational equiva-
lence.

Definition 3 (/) For typed terms~α ^ Γ_M , N : A de-
fine ~α ^ Γ_M / N to be the assertion:

for any variable- and name-closing contextC[] :N,

∃S′.(` C[M] AA S′` b
0) =⇒ ∃S′′.(` C[N] AA S′′` b

0)

We usually omit~α |Γ and write simplyM / N . N

3.1 Semantics

We examine sufficient conditions for a fully abstract cat-
egorical semantics ofνρ, following a development similar
to that of [15, chapter 3]. Note that, translating each term
M into a morphismJMK and assuming a preorder “.” in
the semantics, full-abstraction will amount to the assertion:

M / N ⇐⇒ JMK . JNK (FA)

Soundness. We examine semantics in a family of cate-
gories〈M~α〉~α∈N# so that each typed term~α ^ Γ_M : A
is translated into a mapJMK : JΓK → T JAK in M~α. T is
a computational monad, so our semantics is amonadicone
(v. [11]). Computation inνρ is store-update and fresh-name
creation. These requirements defineλνρ-models.

Definition 4 A λνρ-modelM is a family of categories and
monads〈M~α, (T, η, µ, τ)~α〉~α∈N# such that, for each~α :

I. M~α has finite products, with 1 being the terminal object
andA⊗B the product ofA andB.

II. M~α and(T, η, µ, τ)~α form aλc-model (v. [11]). The
T-exponentialTBA is denoted byA

b
⇒ TB.

III. M~α contains a natural numbers objectN equipped with
successor/predecessor arrows and

b
n : 1→ N, eachn∈N.

IV. M~α contains, for eachA ∈ TY, anA-names objectNA,
a
b
0/
b
1-valued name-equality arroweqA : NA⊗NA A N,

and, for eachα ∈ (NA ∩ S(~α)), an arrowα : 1 A NA.

These make NA
∆ //

! **

NA⊗NA
eqAtt

1
b
0 // N

a pullback.

V. Taking J1K , 1 , JNK , N , J[A]K , NA ,

JA→ BK , JAK
b
⇒ T JBK andJA⊗BK , JAK⊗JBK ,

M~α contains, for eachA ∈ TY, arrows

drfA : NA A T JAK and updA : NA⊗JAK A T 1

such that, forα#β andupdαA , 〈!;α, id〉 ; updA , the
following diagrams (which describe the specifications for
dereferencingandupdate) commute.

JAK
〈id,updα

A〉
// JAK⊗T 1

τ ;∼=
��

π2 ;Tα
// TNA

TdrfA��

T JAK TT JAK
µ

oo

JAK⊗JBK
id⊗upd

β
B//

upd
α
A⊗id

��

JAK⊗T 1
τ ;∼=

// T JAK

Tupdα
A

��

T 1⊗JBK
τ ′ ;∼=

// T JBK
Tupd

β
B // TT 1

µ
// T 1

(NR)

JAK⊗JAK
id⊗upd

α
A//

π1
��

JAK⊗T 1
τ ;∼=

// T JAK

Tupdα
A

��

JAK
upd

α
A // T 1 TT 1

µ
oo

3

Moreover,Ob(M~α) is a nominal set with equivariant el-
ements and allM~α’s contain the same objects, so we let
Ob(M) , Ob(M~α), any ~α. For eachA,B ∈ Ob(M)
there exists a nominal setM(A,B), such that

M~α(A,B) = {(x, ~α) | x ∈ M(A,B) ∧ S(x) ⊆ S(~α)}

We write f = ((f)[, ~α), eachf ∈ M~α(A,B). Moreover,
the structure defined in I-V above is equivariant in the fol-
lowing sense:

S((id
(~α)
A)[) = ∅ ∧ ((id

(~α)
A)[, ~β) = id

(~β)
A

S((η
(~α)
A)[) = ∅ ∧ ((η

(~α)
A)[, ~β) = η

(~β)
A

etc.

S((α(~α))[) = {α} ∧ ((α(~α))[, ~β) = α(~β) (if α \#~β)

Also, for eachα#~α and eachA,B, the nominal mapping

()+α : M~α(A,B) AM~α,α(A,B) , (f, ~α) 7→ (f, ~α,α)

is functorial and commutes with pairing, currying andT .
Finally, there exists a nominal mapping\α℄() : M~α,α(A, TB) AM~α(A, TB)

such that, for all relevantf, g, β, the SN-diagrams commute:

f ; \α℄g = \α℄(f+α ; g) \α℄f ;Tg = \α℄(f ;T (g+α))\α℄f ;µ = \α℄(f ;µ) (id⊗\α℄f) ; τ = \α℄((id⊗f) ; τ)

(updβB⊗\α℄f) ;ψ = \α℄((updβB⊗f) ;ψ)

(whereψ = τ ′ ;Tτ ;µ , see [11]). +α is name-addition
and\α℄ is name-abstraction, not to be confused with nom-
inal name-abstraction〈α〉 . N

Our semantics is cast insideNomTY . The reason for de-
scribing morphisms as pairs(x, ~α) comes from the fact
that we give semantic translations of sequents, not terms,
and sequents may contain superfluous names in their name-
environments. Thus, iff models~α ^ Γ_M :A then(f)[
models~α′ ^ Γ_M :A, where~α′ is ~α with all names that
are fresh forM removed. Moreover, this description allows
us to form a family of categories thathave essentially the
same structure, and gives us a means to relate the semantics
of sequents like~α ^ Γ_M :A and~α, α ^ Γ_M :A.

Recall that in aλc-model M~α there exists, for each
A,B,C, a bijection natural inA:

ΛT,BA,C : M~α(A⊗B, TC)
∼=PA M~α(A,B

b
⇒ TC)

Let evTA,B : (A
b
⇒ TB) ⊗ A → TB , (ΛT)-1(idAb⇒TB).

We give the semantics ofνρ in aλνρ-modelM.

Definition 5 Let 〈M~α, T ~α〉~α∈N# be aλνρ-model. A typing
judgement~α ^ Γ_M :A is translated into an arrowJMK :
JΓK A T JAK in M~α as follows.

J
b
nK : Γ

!A 1
b
n ; ηPPA TN JαK : Γ

!A 1
α ; ηPPA TNA

JMK : Γ⊗A A TB

Jλx.MK : Γ
ΛT (JMK)PPPPPPA A

b
⇒ TB

ηA T (A
b
⇒ TB)

JMK : Γ A T (A
b
⇒ TB) JNK : Γ A TA

JM NK : Γ
〈JMK, JNK〉 ;ψPPPPPPPPPPA T ((A

b
⇒ TB)⊗A)

T ev
T;µPPPPA TB

JMK : Γ A TA

Jνα.MK = \α℄JMK : Γ A TA

JMK : Γ A TNA JNK : Γ A TNA

J[M = N]K : Γ
〈JMK, JNK〉 ;ψPPPPPPPPPPA T (NA⊗NA)

TeqPPA TN

JMK : Γ A TNA JNK : Γ A TA

JM := NK : Γ
〈JMK, JNK〉 ;ψPPPPPPPPPPA T (NA⊗A)

TupdA ;µPPPPPPA T 1

JMK : Γ A TNA

J!MK : Γ
JMKPPPA TNA

TdrfAPPPPA TTA
µA TA

plus standard translations for other term constructors.N

We proceed to show correctness. Note that we write
S `M

rA S′ `M ′ , with r being a reduction rule dif-
ferent from CTX, if the non-CTX rule in the related deriva-
tion is r. We writeM ;N for the term(λd.N)M , somed
not inN , and relate to any storeS a termS̄ of type1, by:
ǭ , skip , α, S , S̄ , α :: V, S , (α := V ; S̄).

Proposition 6 (Correctness)For any~α ^ Γ_M :A, any
S with dom(S) = ~α and anyr 6= NEW,

• S `M
rA S′ `M ′ =⇒ JS̄ ;MK = JS̄′ ;M ′K ,

• S`M
NEWPPA S, α`M ′ =⇒ JS̄ ;MK = \α℄JS̄ ;M ′K.

Hence, S ` M AA S′ ` M ′ =⇒ Jν~α.(S̄ ;M)K =
Jν~α′.(S̄′ ;M ′)K , with dom(S′) = ~α′. �

Soundness does not follow from correctness; we need to
add an adequacy specification.

Definition 7 (Adequacy) Let M = 〈M~α, T ~α〉~α∈N# be
a λνρ-model andJ K the respective translation ofνρ. M
is adequate if, for any typed term~α ^∅_M : N, if
JMK = \~β℄JS̄ ;

b
0K , someS, then there existsS′ such that

~α`M AA S′ ` b
0 . N

Assume now our runningM is an adequateλνρ-model.

Proposition 8 (Equational Soundness)

JMK = JNK =⇒ M / N �

Completeness.To achieve completeness we need to intro-
duce a preorder in the semantics to match the observational
preorder of the syntax, as in (FA). This step, which is essen-
tially a quotieningprocedure, is found in many (but by no
means all) fully abstract models based on game semantics.

4

Definition 9 (p-Observationality) An adequate λνρ-
modelM is p(reorder)-observational if, for all~α:

• There existsO~α ⊆ M~α(1, TN) such that, for all
~α ^∅_M :N,

JMK∈O~α ⇐⇒ ∃S, ~β. JMK= \~β℄JS̄ ;
b
0K (9a)

• The induced intrinsic preorder on arrows in
M~α(A, TB), defined byf .~α g ⇐⇒

∀ρ : A
b
⇒TBA TN. (ΛT (f) ; ρ ∈ O~α =⇒ ΛT (g) ; ρ ∈ O~α)

satisfies, for allα#~α and relevantf, g, f ′, g′,

f .~α g =⇒ f+α .~α,α g+α (9b)

f ′ .~α,α g′ =⇒ \α℄f ′ .~α \α℄g′ (9c)

We writeM as〈M~α, T ~α, O~α,.~α〉~α∈N# . N

SoO~α contains those arrows that have anobservable behav-
ior in the model, and the semantic preorder is built around
this notion. In particular, due to (9a), terms that yield

b
0 have

observable behavior. On the other hand, by (9b) and (9c) we
have that. is acongruence, i.e. it passes through contexts.
Now assume our running model is p-observational.

Lemma 10 (Inequational Soundness)

JMK . JNK =⇒ M / N �

In order to achieve completeness, and hence full-
abstraction, we need some definability requirement.

Definition 11 (p-Definability) A p-observationalλνρ-
modelM satisfies p-definability if, for any~α,A,B, there
existsD~α

A,B ⊆ M~α(JAK, T JBK) such that:

• For eachf ∈ D~α
A,B there exists termM with JMK = f

• For anyf, g ∈ M~α(JAK, T JBK), f .~α g iff
∀ρ∈D~α

A→B,N . (Λ
T (f) ; ρ ∈O~α =⇒ ΛT (g) ; ρ ∈O~α) N

p-Definability states thatdefinable test-arrows sufficefor
defining the semantic preorder. Now assume our model sat-
isfies p-definability.

Proposition 12 (Full-Abstraction)

JMK . JNK ⇐⇒ M / N

Proof: Soundness is by previous lemma. For complete-
ness (“⇐=”), assume~α ^ Γ_M / N ; we do induction
on the size ofΓ. The base case ofΓ = ∅ is encom-
passed in the case ofΓ = {x : A} –just add a dummy
x, which we now show. Suppose~α ^ x : A_M / N
and take anyρ ∈ D~α

A→B,N such thatΛT (JMK) ; ρ ∈ O~α.
Let ρ = J~α ^ y :A→ B_LK, someL, soΛT (JMK) ; ρ is
ΛT (JMK) ; JLK = |λx.M | ; JLK = J(λy.L)(λx.M)K . The

latter being inO~α implies that it equals\~β℄JS̄ ;
b
0K, someS.

Now,M / N implies (λy.L)(λx.M) / (λy.L)(λx.N) ,

henceν~β.(S̄ ;
b
0) / (λy.L)(λx.N) , by soundness. But

this implies that~α ` (λy.L)(λx.N) AA S′ ` b
0 ,

so J(λy.L)(λx.N)K ∈ O~α, by correctness. Hence,
ΛT (JNK) ; ρ ∈ O~α, soJMK . JNK, by p-definability.
For the inductive step, letΓ = x1 :A1, x2 :A2,Γ

′, and letz
not appear inΓ ; if ~α ^ Γ_M / N then

~α ^ z :A1⊗A2,Γ
′ _ ((λxy.M)fst (z))snd (z) / ((λxy.N)fst (z))snd (z)

IH

∴ J~α ^ z :A1⊗A2,Γ
′ _ ((λxy.M)fst (z))snd (z)K = J~α ^ Γ _MK

.

J~α ^ z :A1⊗A2,Γ
′ _ ((λxy.N)fst (z))snd (z)K = J~α ^ Γ _ NK

as required. �

4 The nominal games model

We embark on the adventure of modelingνρ in a cat-
egory of nominal arenas and strategies. Our presentation
of nominal games rectifies the one presented in [2] by us-
ing name-lists instead of name-sets and introducing inno-
cent plays. The basic category construction will beV~αt ,
the category of nominal arenas and total~α-strategies.V~αt
will be constructed inNomTY , so there will be, for each
typeA, an arenaNA for references to typeA. The transla-
tion JAK of a general type will make use of astore arena
ξ ,

⊗
A(NA⇒ JAK) , which will literally serve as a ref-

erence store. This will naturally lead us to a monadic se-
mantics, with computation monadT defined (on arenas) by
TA , ξ⇒A ⊗ ξ. Since arrow types involve the monad in
their translation and the monad involves all types, we will
have to first solve the domain equation:5

JA→ BK = JAK
b
⇒ (ξ⇒ JBK ⊗ ξ)

ξ =
⊗

A
(NA⇒ JAK)

(SE)

Construct a category. We assume a set of types TY and
build our constructions insideNomTY. We start with nom-
inal arenas and prearenas. Arenas will be used for type-
translation, while terms will be translated tostrategies be-
tween arenas, i.e. strategies for prearenas.

Definition 13 A nominal arenaA , (MA,⊢A, λA) contains:

• A nominal set of movesMA, the elements of which have
strong support.6 Moves are denoted bym,n,

• A nominal justification relation⊢A⊆ (MA+{†})×MA.

• A nominal labeling functionλA : MA→ {O,P}×{Q,A},
so that each move can be played by Opponent or Player,
and is a Question or an Answer.

5Notation will be clarified below.
6Strong support is essential in proving basic properties of nominal

games, e.g. that these form a category, yet their proofs are omitted here.

5

These satisfy the conditions:

(f) For eachm ∈ MA, there exists uniquek ≥ 0 such
that† ⊢A m1 ⊢A · · · ⊢A mk ⊢A m , for someml’s in
MA. k is called the level ofm.
Level-0 moves, denoted byi, i′, ..., are calledinitial .

(l1) Initial moves are P-Answers.

(l2) If m1,m2 ∈ MA are at consecutive levels thenλA
assigns them complementary OP-labels.

(l3) Answers may only justify Questions.

A prearenais an arena with its initial moves labeled OQ.
Given arenasA andB, construct the prearenaA→ B as:

MA→B , MA +MB

λA→B , [(iA 7→ OQ , iA 7→ λA(mA)) , λB]

⊢A→B , {(†, iA), (iA, iB)} ∪ {(m,n) |m ⊢A,B n} N

IA is the set ofinitial (level-0) moves ofA, andJA the
set of jnitial (level-1) moves. Then,IA = MA \ IA, and
JA = MA \ JA. In general, we usemA to denote moves in
MA, iA for moves inIA, iA for moves inIA, jA for moves
in JA, etc. Finally,λA denotes the OP-complement ofλA.

Condition (f) states that arenas can be represented by di-
rected connected graphs with no directed cycles. Note that
the nominal arenas of [2] do satisfy the above conditions,
although a different set of conditions is used there.

Example 14 (Basic arenas) The simplest arena is
0 = (∅,∅,∅). Now letA be an arbitrary type. Define the
(flat) arenasNA, N and1 as follows.

MNA
, NA MN , N M1 , {∗}

λNA
(m) , PA λN(m) , PA λ1(∗) , PA

⊢NA
, {(†,m)} ⊢N , {(†,m)} ⊢1 , {(†, ∗)}

Nominal games are played using sequences ofmoves-with-
names, that is moves attached with name-lists. Name-lists
capture name-environments; this idea of attaching state-
information explicitly to moves first appeared in [12] and
was later followed in [2].

Definition 15 A move-with-names of a (pre)arenaA is a
pair,m~α, wherem ∈MA and~α ∈ N# (i.e. ~α a name-list).
Writing m~α asx, we havex , m andnlist(x) , ~α. N

At this point, let us introduce some handy notation for se-
quences. Lets, t be sequences, then:
• s ≤ t denotes thats is a prefix oft, and thent = s(t−s),
• s− denotess with its last element removed,
• if s = s1 · · · sn then

◦ n is thelengthof s, and is denoted by|s|,
◦ s.i denotessi ands.-i denotessn+1−i , e.g.s.-1 is sn,
◦ s≤si

denotess1 · · · si , and so doess<si+1
.

A justified sequenceover a prearenaA is a finite sequence
s of OP-alternating moves such that, except fors.1 which is

initial, every moves.i has ajustification pointerto somes.j
such thatj < i ands.j ⊢A s.i ; we say thats.j (explicitly)
justifiess.i . We can now proceed to plays.

Definition 16 (Plays) Let A be a prearena.A legal se-
quenceonA is a justified sequence of moves-with-names
that satisfies Visibility and Well-Bracketing (v. [10, 7]).A
legal sequences is a play if it also satisfies the following
Name Change conditions:

(NC1) The name-list of a P-movex in s contains as a pre-
fix the name-list of its preceding O-move. It possibly
contains other names, all of which are fresh fors<x.

(NC2) Any name in the support of a P-movex in s that is
fresh fors<x is contained in the name-list ofx.

(NC3) The name-list of a non-initial O-move ins is that of
the P-move explicitly justifying it.

An ~α-play is a play that opens with a move with name-list
~α. The set of~α-plays on a prearenaA is denoted byP ~αA . N

With s andx as above, Pintroduces a nameα atx iff α \#x
andα#s<x. L(s) contains all names introduced by P ins.
Note also that, for any movex in an ~α-play, ~α ≤ nlist(x).
We proceed to strategies.

Definition 17 (Strategies) An ~α-strategyσ is a set of
equivalence classes[s]~α of ~α-plays, written[s], satisfying
prefix closure, contingency completenessanddeterminacy:

• If [su] ∈ σ then[s] ∈ σ.

• If even-length[s] ∈ σ andsx is an~α-play then[sx] ∈ σ.

• If even-length[s1x1], [s2x2] ∈ σ and [s1] = [s2] then
[s1x1] = [s2x2].

An ~α-strategyσ onA→ B is writtenσ : A→ B. N

For example, forα \#~α andn ∈ N, define the~α-strategies:

α : 1 → NA , {[∗~αα~α]} and
b
n : 1 → N , {[∗~αn~α]}

Note that~α-strategies have (strong) supportS(~α). We de-
fine play- and strategy-composition building on [6, 10]. We
let s bes without its name-lists, andsnlist(s) bes.

Definition 18 (Composable plays) Let s ∈ P ~αA→B and
t ∈ P ~αB→C . These arealmost composable, s ` t, if
s ↾ B = t ↾ B. They arecomposable, s ≍ t, if s ` t
and, for anys′ ≤ s andt′ ≤ t with s′ ` t′,

(C1) If s′ ends in a P-move inA introducing some name
α thenα#t′ ; dually, if t′ ends in a P-move inC intro-
ducing some nameα thenα#s′.

(C2) If boths′, t′ end inB ands′ ends in a P-move intro-
ducing some nameα thenα#t′− ; dually, if t′ ends in
a P-move introducing some nameα thenα#s′−. N

6

If s ∈ P ~αA→B andt ∈ P ~αB→C are composable then either
s ↾ B = t = ǫ, or s ends inA and t in B, or s ends in
B andt in C, or boths andt end inB (cf. zipper lemma
of [6]). In the following we state thatm is an O-move by
writing m(O), and similarly for P-moves.

Definition 19 (Composition) Let s ∈ P ~αA→B and
t ∈ P ~αB→C with s ≍ t . Their parallel interactions ‖ t
and their mixs • t, which returns the name-list of the final
move ins ‖ t, are defined by mutual induction as below.

ǫ ‖ ǫ , ǫ sm
~β
B ‖ tm~γ

B , (s ‖ t)m
sm

~β
B

• tm~γ
B

B

s ‖ tm~γ
C , (s ‖ t)m

s • tm~γ
C

C sm
~β
A ‖ t , (s ‖ t)m

sm
~β
A
• t

A

s • tm~γ

C(O) , ~γ′′ sm
~β

A(O) • t , ~β′′

sm
~β

A(P) • t , s • t, ~β′ sm
~β

B(P) • tm
~γ

B(O) , s • t, ~β′

s • tm~γ

C(P) , s • t,~γ′ sm
~β

B(O) • tm
~γ

B(P) , s • t,~γ′

where ~β′ is ~β − nlist(s.-1) , and ~β′′ is the name-list of
mA(O)’s justifier in s ‖ t ; similarly for ~γ′, ~γ′′.
The composition ofs andt is: s ; t , (s ‖ t) ↾ AC.

For ~α-strategiesσ : A → B andτ : B → C, their compo-
sition is: σ ; τ , { [s ; t] | [s] ∈ σ ∧ [t] ∈ τ ∧ s ≍ t }. N

Proposition 20 If s ∈ P ~αA→B and t ∈ P ~αB→C with s ≍ t,
thens ; t ∈ P ~αA→C .
If σ : A → B and τ : B → C are ~α-strategies then so
is σ ; τ . Moreover, ifσ1 : A1 → A2 , σ2 : A2 → A3

andσ3 : A3 → A4 are ~α-strategies then(σ1 ;σ2) ;σ3 =
σ1 ;(σ2 ;σ3) . �

We are interested ininnocent strategies, that is strategies in
which P-moves depend solely on current P-views. Recall
that the P-view,psq, of a justified sequences is:

psxq , psqx if x a P-move

pxq , x if x is initial

psxs′yq , psqxy if y an O-move justified byx

Note that the P-view of a play isnotnecessarily itself a play;
hence, we further restrict plays.

Definition 21 A play s is innocentif, for any t ≤ s, ptq is a
play. N

It is not difficult to see that innocent plays are legal se-
quences satisfying (NC1), (NC3) and (NC2′), where
(NC2′) Any name in the support of a P-movex in s that

is fresh forps<xq is contained the name-list ofx.
From innocent plays we move on to innocent strategies.

Definition 22 An ~α-strategyσ is innocent if[s] ∈ σ im-
plies thats is innocent, and if even-length[s1n

~γ1
1] ∈ σ and

odd-length[s2] ∈ σ have[ps1q] = [ps2q] then there exists
n~γ22 such that[s2n

~γ2
2] ∈ σ and[ps1n

~γ1
1 q] = [ps2n

~γ2
2 q] . N

Proposition 23 If s ∈ P ~αA→B , t ∈ P ~αB→C are innocent and
s ≍ t thens ; t is innocent. Ifσ : A → B, τ : B → C are
innocent~α-strategies then so isσ ; τ . �

We can now define our basic category of nominal games.

Definition 24 (V~αt ,V
~α
tt) An innocent~α-strategyf :A→B

is total if for any [i~αA] ∈ f there exists[i~αAi
~α
B] ∈ f .

It is also ttotal if for any [i~αAi
~α
Bj

~α
B] ∈ f there exists

[i~αAi
~α
Bj

~α
Bj

~α
A] ∈ f , and whenever[sj′~α

′

A] ∈ f thens.-1 ∈ JB.
V~αt is the category of nominal arenas and total~α-strategies,
andV~αtt is its lluf subcategory of ttotal strategies. N

Thus, a strategy is total iff it immediately answers any initial
question without introducing new names. It is ttotal iff it
follows a similar pattern for jnitial moves. Now, innocent
strategies are conveniently represented usingviewfunctions.

Definition 25 An ~α-viewfunctionf is a set of equivalence
classes of innocent~α-plays that are even-length P-views,
which satisfieseven-prefix closureandsingle-valuedness:

• If [s] ∈ f andt is an even-length prefix ofs then[t] ∈ f .

• If [s1x1], [s2x2]∈f and[s1]=[s2] then[s1x1]=[s2x2].N

There are mapsviewf and strat from innocent ~α-
strategies to~α-viewfunctions and viceversa, such that
f = viewf(strat(f)), andσ = strat(viewf(σ)). From
now on, will be defining strategies via their viewfunctions.

Constructions in V~αt . In V~αt we construct tensor
product, lifting and function space arenas as follows. For
nominal arenasA,B, defineA⊗B, A⊥,A

b
⇒ B:

MA⊗B , IA×IB + IA + IB (A⊗B)

λA⊗B , [((iA, iB) 7→ PA) , λA , λB]

⊢A⊗B , {(†, (iA, iB))} ∪ (⊢A↾ IA 2) ∪ (⊢B↾ IB 2)

∪ {((iA, iB),m) | iA ⊢A m ∨ iB ⊢B m}

MA⊥
, {∗1} + {∗2} +MA (A⊥)

λA⊥
, [(∗1 7→ PA) , (∗2 7→ OQ) , λA]

⊢A⊥
, {(†, ∗1), (∗1, ∗2), (∗2, iA)} ∪ (⊢A↾ MA

2)

MA
b
⇒B , IB + IA×JB + IA + IB ∩ JB (A

b
⇒ B)

λAb⇒B , [(iB 7→ PA) , ((iA, jB) 7→ OQ) , λA , λB]

⊢Ab⇒B , {(†, iB)} ∪ {(iB, (iA, jB)) | iB ⊢B jB}

∪ {((iA, jB),m) | (iA ⊢A m ∨ jB ⊢B m)}

∪ (⊢A↾ IA 2) ∪ (⊢B↾ (IB ∩ JB)2)

7

Moreover, letA⇒B , A
b
⇒ B⊥ be the lifted function

space. Note that we will usuallyidentify graph-isomorphic
arenasrelated by isomorphisms which simply manipulate
∗’s. With this convention, the last construction corresponds
precisely toA⇒B of [2]; also, for anyA, 1

b
⇒ A = A.

The previous constructions are sketched below.

A B

A⊗B

A

∗
∗

A⊥

A B

A
b
⇒ B

A B

A⇒B

∗

We also have arrow-counterparts. Letf : A→ A′, g : B →
B′ in V~αt andh : B → B′ in V~αtt, then
• f⊥ : A⊥ → A′

⊥ initially plays a sequence of asterisks
[∗~α1 ∗′~α1 ∗′~α2 ∗~α2] and then continues playing likef .

• f⊗g : A⊗B → A′⊗B′ answers initial moves
[(iA, iB)~α] with f ’s answer to[i~αA] and g’s answer to
[i~αB]. Then, according to whether Opponent plays inJA′

or in JB′ , Player plays likef or like g respectively.

• f
b
⇒ h : A′ b⇒ B → A

b
⇒ B′ answers initial moves[i~αB]

like h and then responds to[i~αBi
~α
B′(iA, jB′)~α] with f ’s

answer to[i~αA] andh’s response to[i~αBi
~α
B′j~αB′] (hence the

need for ttotality ofh). It then plays likef or like h,
according to Opponent’s next move.

We can also define infinite tensor products of pointed are-
nas, where an arena A ispointed iff IA is singleton (in
which case the unique initial move is necessarily equiv-
ariant). For pointed arenas{Ai}i∈ω construct their prod-
uct

⊗
iAi by ‘gluing them together’ at their initial moves.

Since these are equivariant, the resulting initial move is also
equivariant, and we denote it by “∗”. For any pointedAi’s
andBi’s and any{fi : Ai → Bi}i∈ω define:
⊗

i
fi , strat{[∗~α ∗~α s] | ∃k. [i~αAk

i~αBk
s] ∈ viewf(fk)}

TakeV~αt∗ to be the full subcategory ofV~αt of pointed arenas.
Our constructions enjoy the following properties.

Proposition 26 All of the following are functors.

⊗ : V~αt × V~αt → V~αt ,
b
⇒ : (V~αt)op × V~αtt → V~αtt

()⊥ : V~αt → V~αtt ,
⊗

:
∏
i∈ωV

~α
t∗ → V~αt∗

Moreover,V~αt is a symmetric monoidal category under⊗,
and is partially closed in the following sense. For any object
B, the functor ⊗B : V~αt A V~αt has a partial right adjoint
B
b
⇒ : V~αtt∗ A V~αt , that is for any objectA and any

pointed objectC there exists a bijection

ΛBA,C : V~αt (A⊗B,C)
∼=PA V~αt (A,B

b
⇒ C)

natural inA,C. Moreover,1 is a terminal object and⊗ is
a product constructor inV~αt , soV~αt has finite products. �

Solving (SE). The full form of (SE) is the following.

J1K = 1 , JNK = N , J[A]K = NA , JA⊗BK = JAK⊗JBK

JA→ BK = JAK
b
⇒ (ξ⇒ JBK ⊗ ξ) , ξ =

⊗
A
(NA⇒ JAK)

To solve it, we will upgrade it to a recursive functor equation
and then recur to minimal-invariants theory for games (v.
[10]). Let us first define the following preorders on games.

Definition 27 For anyA,B ∈ Ob(V~αt) and anyσ, τ ∈
V~αt (A,B), define

A E B ⇐⇒ MA ⊆ MB ∧ λA ⊆ λB ∧ ⊢A ⊆ ⊢B

σ ⊑ τ ⇐⇒ σ ⊆ τ N

It follows that V~αt is PreCpo-enriched, with
⊔
iσi =

⋃
iσi

for anyω-chain{σi}i∈ω, and thatOb(V~αt) is a cpo,7 with
least0 , (∅,∅,∅), and

⊔
iAi=(

⋃
iMAi

,
⋃
i λAi

,
⋃
i⊢Ai

)
for anyω-chain{Ai}i∈ω. Moreover, ifA E B then we
can define an embedding-projection pair of copycat maps
inclA,B : A→ B andprojB,A : B → A.

Let C~α , V~αt ×
∏
A∈TY V~αt , with objectsD of the form

(Dξ, DA
A∈TY) and arrowsf of the form (fξ, fA

A∈TY).
Define F : (C~α)op × C~α → C~α on objects by taking
F (D,E) , (ξD,E , JAKD,E

A∈TY), where

ξD,E =
⊗

A∈TY
(NA⇒EA) J[A]KD,E = NA

JA⊗BKD,E = JAKD,E⊗JBKD,E JNKD,E = N

JA→ BKD,E = DA
b
⇒ (ξE,D⇒EB⊗ξD,E) J1KD,E = 1

and similarly forF (f, g) , (ξf,g , JAKf,g
A∈TY). Now (SE)

has been reduced toD ∼= F (D,D). We can show thatF is
a locally continuous functor, and continuous wrtE. Hence
the following.

Theorem 28 In C~α we can form aE-increasing sequence
{ei : Di→Di+1}i∈ω of objects and embeddings as follows.

D0,1 = D0,A→B , 1 D0,N , N , D0,[A] , NA
D0,ξ ,

⊗
A(NA⇒ 0) D0,A⊗B , D0,A⊗D0,B

Di+1 , F (Di, Di) e0 , inclD0,D1
, ei+1 , F (eRi , ei)

TakingD∗ ,
⊔
iDi and, for eachi, ηi , inclDi,D∗ we

obtain a local bilimit(D∗, ηi
i∈ω). �

Hence,D∗ is the canonical solution toD ∼= F (D,D), and
it solves (SE) with the following notation.

Definition 29 (ξ, ⊛ and JAK) LetD∗ be as in the previous
theorem. Define the store arenaξ to beD∗

ξ and, for each
typeA, the translationJAK to beD∗

A.
ξ is pointed; we denote its unique initial move by⊛ . N

7At this point note that there is a simpler, yet less elegant, solution
to (SE), simply by taking the least (in fact, the unique) fixpoint of the map
G :

∏
Ob(V~α

t)→
∏

Ob(V~α
t) induced by (SE) in the cpo

∏
A∈TY

(Ob(V~α
t), E).

8

Tidy strategies. Using the solutionD∗ to (SE) we can
modelνρ in the family 〈V~αt , T

~α〉~α∈N# , with T being the
store monad onξ (i.e. T = ξ⇒ ⊗ ξ). However, thus
we do not obtain a fully abstract model. In the reduction
calculus the treatment of the store follows a specificstore-
discipline; for example, if a storeS is updated toS′ then
the original storeS is not accessible any more. In strategies
we do not have such a condition: in a play there may be
severalξ’s opened, yet there is no discipline on which of
these are accessible to Player whenever he makes a move.
Another condition is that, when the store is asked a name,
it either returns its value or it deadlocks; there is no third
option. In a play, however, when Opponent asks the value
of some name, Player is free to evade answering and play
elsewhere. We will therefore constrain total strategies with
further conditions, definingtidy strategies.

LetV~αt,TY be the full subcategory ofV~αt with objectsJAK,
A∈TY. For eachJAK let its set ofstore-Handles,HA, be:8

HA⊗B , HA ∪HB HN = H1 = H[A] , ∅

HA→B , {(iA,⊛A), (iB,⊛2)} ∪HA ∪HB ∪HξA
∪HξB

where we letJA→ BK be JAK
b
⇒ (ξA⇒ JBK ⊗ ξB), and

Hξ =
⋃
C HC if ξ =

⊗
C(NC ⇒ JCK). In any arenaJAK,

a store-H justifies name-questionsα, which we callstore-
Questions. Answers to store-Q’s are calledstore-Answers.
For example: T 1 = ξ⇒ 1 ⊗ ξ (noteT1=1

b
⇒T1)

∗
⊛ store-H’s

α

store-Q’s iA (α = aA)

(∗,⊛)

store-A’s β

iB (β = bB)

We can show that a movem ∈ MJAK is exactly one of the
following: initial, store-H, store-Q or store-A.

As store-H’s occur in several places in a play, we may use
parenthesised indices to distinguish moves from different
store-H’s. For example, a store-Qwmay be denotedw(O) or
w(P), the notation denoting also the OP-polarity. Note also
that from now on we work inV~αt,TY, unless stated otherwise.

Definition 30 (Tidy strategies) A total ~α-strategyσ is
tidy if whenever odd-length[s] ∈ σ then:

(TD1) If s ends in a store-Qw then[sx] ∈ σ , with x being
either a store-A tow introducing no new names, or a
copy ofw. In particular, ifw = α~α

′

with α# psq− then
the latter case holds.

(TD2) If [sw(P)] ∈ σ with w a store-Q thenw(P) is justi-
fied by last O-store-H inpsq.

8The definition ofHA is informal, note circularity inHA→B ; a formal
definition is given by induction on the level of moves inJAK and onA.

(TD3) If psq = s′w(O)w(P)t y(O) with w a store-Q then
[sy(P)] ∈ σ with y(P) justified bypsq .-3 . N

TD1 states that, whenever O(pponent) asks the value of a
name, P either immediately answers with its value or copy-
cats the question to the previous store-H. The former case
corresponds to P having updated the given name lastly (i.e.
between the previous O-store-H and the last one), while the
latter to P not having done so, and hence asking its value
to the previous store configuration. Hence, the current store
is, in fact, composed by layers of stores –one on top of the
other– and only when a name has not been updated at the top
layer is P allowed to search for it in layers underneath. TD3
further guarantees the above-described behavior. It states
that when P starts a store-Q copycat then he must copy-
cat the store-A he receives and all proceeding moves. TD2
guarantees the multi-layer discipline of the store: P can only
see the store-H played last by O in the P-view.

Proposition 31 If σ : A A B and τ : B A C are tidy
strategies then so isσ ; τ . �

Full-abstraction with tidy strategies. Let T ~α be the lluf
subcategory ofV~αt,TY of tidy strategies.T ~α inherits finite
products fromV~αt . Moreover, the endofunctor

T : V~αt → V~αt , ξ⇒ ⊗ ξ

restricts toT ~α, and induces a strong monad(T, η, µ, τ)~α

on it (by a more-or-less standard monad construction). Fur-
thermore, setting(TB)A , A

b
⇒TB we obtain aλc-model.

We takeT , 〈T ~α, (T, η, µ, τ)~α〉~α∈N# and proceed to
update and dereferencing arrows.

Definition 32 In T ~α, defineupdA : NA ⊗ JAK A T 1 and
drfA : NA A T JAK , for any typeA, as follows.9

NA ⊗ JAK // T 1

(α, iA)
~α

∗~α

⊛~α

(∗,⊛)
~α

β~α

β~α

α~α

i~αA

NA // T JAK

α~α

∗~α

⊛~α

α~α

i~αA

(iA,⊛)
~α

(whereα#β)
N

Proposition 33 In each T ~α the NR-diagrams of defini-
tion 4 commute. �

9In the diagrams we use curved lines for justification pointers; polygo-
nic lines denote that the strategy copycats between the connected moves.

9

We introducename-abstractionand name-additiontrans-
formations for nominal strategies.

Definition 34 Let f :AAB in T ~α,α andg :AAB in T ~α.
Define\α℄f : AAB in T ~α andg+α : AAB in T ~α,α as:\α℄f, strat{[i~αAi

~α
Bj

~α
Bs] | [i

~α,α
A i~α,αB j~α,αB s]∈viewf(f) ∧ α#iA}

g+α, {[s+α] | [s] ∈ g ∧ α#L(s)}

wheres+α is s with ~α replaced by~α, α in its name-lists.N

Proposition 35 For any~α, α-strategyf and any~α-strategy
g, \α℄f is an~α-strategy andg+α is an~α,α-strategy. More-
over,T satisfies theSN-equations of definition 4. �

Using name-deletion, a transformation dual to name-
addition, we represent an~α-strategyf as a pair((f)[, ~α) by
deleting fromf all names that areessentially-freshfor it10

and orbiting the result under all permutations with domain
S(~α). We then have aλνρ-model, which is also adequate.

Theorem 36 T is an adequateλνρ-model. �

The (omitted) proof of adequacy proceeds by showing that
if JMK = \~β℄JS̄ ;

b
0K then~α ` M cannot have a reduction

sequence with infinitely many DRF-reduction steps; omit-
ting DRF’s we are left with a strongly normalising calculus.

Let us proceed to an example. Consider the typed terms
α^∅_α :=〈fst !α, snd !α〉 and^∅_νβ. β := λx.(!β)skip
with α = aN⊗N andβ = b1→A. Their translations inT α

andT respectively are as follows.

1 // T 1

∗α

∗α

⊛α

αα

(n, n′)
α

αα

(l, l′)
α

(∗,⊛)
α

βα

βα

αα

(n, l′)
α

1 // T 1
∗

∗
⊛

(∗,⊛)
β

γβ

γβ

ββ

∗β

(∗,⊛)
β

ββ

∗β

(∗,⊛)
β

The reader may want to check now that the bottom arrow,
{[∗ ∗ ⊛]}, equalsJνβ.(β := λx.(!β)skip); (!β)skipK.

Finally, we add observationality toT ~α as follows.

10We say thatα is essentially freshfor f ∈T ~α(A, B), and writeα #
ess

f ,
if α#~α or, for any[s] ∈ f and anyβ#nlist(s), [((α β)[s)nlist(s)] ∈ f .

Definition 37 ExpandT to 〈T ~α, T ~α, O~α,.~α〉~α∈N# by

O~α , {f ∈ T ~α(1, TN) | ∃~β. [∗~α ∗~α ⊛~α(0,⊛)~α,
~β] ∈ f}

and.~α as in definition 9. N

Following a technique which involves appropriateSepara-
tion of Head OccurrenceandFunction Space Decomposi-
tion lemmata (v. [4, 10]), we can show p-observationality
of T . For p-definability, the subset of definable morphisms
D~α
A,B ⊆ T ~α(JAK, T JBK) we use is that offinitary strate-

gies: a strategyσ is finitary iff its viewfunction becomes
finite when we remove from it store-copycats and initial
T JBK-answers. At last, full abstraction:

Theorem 38 For anyA,B and finitaryσ : JAK A T JBK,
σ is definable. TakingD~α

A,B to contain all finitary arrows,
T satisfies p-definability, and is therefore fully abstract for
νρ. �

Acknowledgements. We thank Samson Abramsky for his
constant support and guidance; Andy Pitts and Luke Ong
for their advice; the anonymous referee for the instructive
comments; and the EPSRC, the AG Leventis Foundation
and Brasenose College for their financial support.

References
[1] S. Abramsky. Axioms for definability and full completeness.

In Proof, Language, and Interaction: essays in honour of
Robin Milner, pages 55–75. MIT Press, 2000.

[2] S. Abramsky, D. Ghica, A. Murawski, L. Ong, and I. Stark.
Nominal games and full abstraction for the nu-calculus. In
Proceedings of LICS ’04, 2004.

[3] S. Abramsky, K. Honda, and G. McCusker. A fully abstract
game semantics for general references. InLICS ’98, 1998.

[4] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstrac-
tion for PCF.Information and Computation, 163(2), 2000.

[5] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable binding.Formal Aspects of Computing,
13:341–363, 2002.

[6] K. Honda and N. Yoshida. Game-theoretic analysis of call-
by-value computation.TCS, 221(1–2):393–456, 1999.

[7] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for
PCF: I, II, III. Information and Computation, 163(2), 2000.

[8] J. Laird. A game semantics of names and pointers. Submitted.
[9] J. Laird. A categorical semantics of higher order store.

ENTCS, 69, 2002.
[10] G. McCusker.Games and Full Abstraction for a Functional

Metalanguage with Recursive Types. Distinguished Disser-
tations. Springer-Verlag, London, 1998.

[11] E. Moggi. Computational lambda-calculus and monads. In
Proceedings of LICS’89, 1989.

[12] L. Ong. Observational equivalence of third-order idealized
algol is decidable. InProceedings of LICS ’02, 2002.

[13] A. M. Pitts. Nominal logic, a first order theory of names and
binding.Information and Computation, 186:165–193, 2003.

[14] A. M. Pitts and I. D. B. Stark. Observable properties of
higher order functions that dynamically create local names,
or: What’s new? InProc. 18th MFCS, 1993. LNCS 711.

[15] I. Stark. Names and Higher-Order Functions. PhD thesis,
University of Cambridge, Dec. 1994.

10

