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Abstract variables lead to unwanted behaviors and prohibit the use
of equality testdor references.

Game semantics has been used with considerable suc- In this paper we obtain thist full-abstraction result for
cess in formulating fully abstract semantics for languages a statically-scoped language with general referencesdgoo
with higher-order procedures and a wide range of computa- variables and reference-equality testghich faithfully re-
tional effects. Recently, nominal games have been proposedlects the practice of real programming languages such as
for modeling functional languages with names. These are ML. We follow the alternative (nominal) approach of treat-
ordinary games cast in the theory of nominal sets devel-ing references separately from variablespnames extend-
oped by Pitts and Gabbay. Here we take nominal gamesing thev-calculus of Pitts and Stark [14]. Thecalculus is
one step further, by developing a fully abstract semantics a paradigmatic\-calculus with names, in which names are
for a language with nominal general references. constant terms of ground type that “...are created withlloca
scope, can be tested for equality and can be passed around
via function application, but that is all”. Here we use names
for references, so names are of reference types and may also
be dereferenced and updated, introducing thascalculus
with nominal general referencethep-calculus.

One of the most challenging problems in denotational ~Nominal games were introduced in [2] as the basis for
semantics of programming languages is that of modelingthe first fully abstract model of the-calculus? They con-
languages with general references. General references argtitute a version of Honda-Yoshida CBV-games [6] built in
references which can store not only values of ground typesthe universe of nominal sets of Pitts and Gabbay [5, 13].
(integers, booleans, etc.) but also of higher types (pro-Nominal sets are sets whose elements entail a finite num-
cedures, higher-order functions, or references themsglve ber of names and which are acted upon by finite name-
The general reference is a very useful and powerful pro- permutations. Thus, the nominal games of [2] are CBV-
gramming construct, and it can be used to encode a widegames played using moves-with-names, that is moves at-
range of computational effects and programming paradigmstached with a finite set of names representing the names
(e.g. object-oriented programming). The added expressive introduced so far. Our intention was to build a model for
ness of general references makes their denotational modelthe vp-calculus using nominal games, yet we discovered
complicated, mainly because of the phenomena of dynamicdiscrepancies arising from the use of name-sets in moves:
update and interference present in the language. the unordered nature of name-creation is incompatible with

Fully abstract models for general references have beerthe deterministic behavior of strategies and, in fact, mathi
achieved via game semantics in [3], and via abstract cate-games do not form a category.
gorical semantics in [9]. The presentation in [9] does not ~ Hence, we recast nominal games using moves attached
distinguish between-abstraction and local fresh-reference With name-lists instead of name-sets, and rectifying other
creation {-abstraction), and hence is distanced from the discrepancies. Moreover, since names model references of
common use of references in programming languages. orseveral types, our construction is based on nominal sets ove
the other hand, the calculus examined in [3] distinguishesCcountably infinitely many sets of names —one for each #/pe.
between)- and v-abstractions, yet encodes references asFrom the basic category of nominal games we obtain an
variables of a read/write product type. This leads to the adequate model farp by using a store arena, which is ob-
presence obad variable$, as read/write-product seman- tained as the canonical solution to the domain equation (SE)
tical ObjeCtS may not necessar"y denote references. Bad 2A different version of nominal games was introduced in [} i did

not yield a fully abstract model for the-calculus.
1By “bad variables” we mean read/write constructs of refeeetype 3Also, the use of name-lists allows us to construct nominahegmin
which do not yield references, likekvar of [3]. nominal sets with strongly supported elements (v. defimifip
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of page 5. For full abstraction we need to apply some fur- iff f(mex) =me f(x), foranyz € X andr. For example,
ther constraints on the way the store is accessed in nomina5(_) : X — Bin(N) is a nominal function.
games, obtaining thugly strategies We let Nomry be the category of nominal sets (bh

Summarising, the contributions of this paper are: a) the and nominal functions. In nominal sets we can succinctly
introduction of a\-calculus with nominal general refer- definename-abstractionfor eacha € N andz € X let
ences, name-equality test and good variables; b) the recti- a . .
fication of nominal games; c) the construction of a fully ab- (z = {(8,9) ENXX[(8 = aVi#z) Ay = (a f) oz}
stract model using nominal games with tidy strategies. An We can shows({«)z) = S(z)\ {a}. Another form of ab-
appealing further direction is that of abstracting the basi straction involves restricting the support of an element to
nominal games model to a categorical level, in the spirit of that of a given name-list: for any € X anda N7 let
[1, 9]; afirst step in this direction has already been taken in A oA — .
the abstract description of)a,,-model (section 3.1). ela S{y e X[3mmed=da Ay =mor}

If S(z) 2 S(@) thenS([z]z) = S(&). The notion of support

2 Theory of nominal sets can be strengthened to modaetieredentailment of names.

Definition 1 (Strong support) For any nominal setX,
We give a short overview of nominal sets, which willbe anyz ¢ X and anyS C N, S strongly supports: if, for
used as the basis for all constructions presented in this paany permutation, 7 fixesz iff 7 fixes each element ifi A
per. Intuitively, nominal sets are sets whose elementslenta
a finite number ohamesand which are acted upon by finite
name-permutatiorfsWe present these following [13].
Assume a countably infinite set TY of types B, ...,

The notion of strong support is indeed stronger than that of
support, which employs only the “if"-part of the above as-
sertion. For example, if, 5 € N then the se{«, 5} only

and for each typel assume a countably infinite set of names has weak supporfa, 3}, whereas the list, § has strong

N.. The elements o, arenames to type! and are de- support{«, 5}. Strong support coincides with weak sup-
noted bya?, b4, .... We writePERMN 4 ) for the group of ~ Portwhen the former exists.

finite permutations of 4. We letN £ J , .y N4 be the set

of (general) names anBERMN) 2 @, 1, PERMN,) S Thep-calculus

be the group of (finite) permutations. Names are denoted _ _ _

by a, 3,7, ..., and permutations by, 7/, ...; in particular, The 1p-calculus is a\-calculus with nominal general

(a B) denotes the permutation that only swaps namasd references. Leaving aside the use of name-lists instead of

3 (of same type) andd denotes the identity permutation. name-sets in the operational semantics, it is an exten$ion o
A nominal setX is a set equipped with an action from thev-calculus of Pitts and Stark [14] (and of thecalculus

PERMN), that is a function_ o~ : PERMN) x X — X with int.ref of [15, chapter 5]) using names for general
such that, for any, 7’ € PERMN) andz € X, references. We present its syntax in nominal sets, and thus
, , . obtain nominal notions such as name-freshness and name-
mo(reoz) = (rom)ex  idez =gz () permutation for free.
Moreover, allz € X have finite suppor®(x), where

R o Definition 2 The p-calculus is a functional calculus of
S(z) = {a € N|[for infinitely manyg. (a 8) cx # x} (S)

nominal references. Its types are given as follows.

We can see thafl in particular is a nominal set. Fare X TY>ABu=1|N|[A]|A—B|A®B
anda €N, « is fresh for z, written a#z, iff a ¢ S(z). x is
equivariantiff it has empty supportN# stands for the nom-
inal set of finite lists of distinct (i.e. pairwise fresh) nasn TESM,N = x| XM |MN Xterm
If Y is a nominal set an& C Y thenX is anominal
subsebf Y iff X is closed under permutations, these acting
asonY. If X,Y are nominal sets then their productx Y

So references to typé are of typg A]. Terms compose TE:

| skip | n | pred M | succ N return/ arithmetic
| 10 M then N; else N, if thenelse

is also a nominal set, with permutations defined componen- | (M, N) [£st M [ snd N pair/ projections
twise. Moreover, a relatioR C X x Y is a nominal subset | @ | va.M name /v-abstraction
of X x Y iff, for any permutationr and(z,y) € X x Y, | [M = N] name-equality test

xRy <= (wox)R(mwoy). We call such arkR a nominal

. | H
relation. Accordingly, f : X — Y is anominal function | M= N |I1M update/dereferencing

. . . . A
4In fact, nominal sets are sets in a Fraenkel-Mostowski peatiom TEisanominal setitNomry: €achname: = a” is taken

model of ZFA set theory with a countably infinite set of names a group from N4 andva.M stands forv({a)M). Of the terms
of finite permutations of names.



above, the values are:
VASV,W u=n|skip|a|z | z.M | (V,IV)

The typing system involves terms in environmemt",
where @ a list of (distinct) names and' a finite set of
variable-type pairs. Some of its rules are the following.

a=a’¥}a
AT ra-a F
GIT FM:[A]

all,z:AkFxz: A
ad,all"+FM:B
all Fva.M:B allT+FIM: A
all FM:[A4] alT F N:[4]
alTF[M=N]:N
alT FM:[4] alTEN:A
AllT+FM:=N:1
The reduction calculus is defined in store environntént
Si=e¢|la,S|a=V,S

For each store environmeftitwe define its domairjom(.S),
to be the list of names stored /1 We only consider envi-
ronments with domains iN7 (i.e. lists of distinct names).
Reduction rules are as below,

DRF

S,a:zV,8 Ela—Sa:V,8 EV
(any B#S)

NEWS FEvaM—SBE(@f)-M

orp S,a(zW), 8 Fa:=V—>8a:V,8 F skip
Q n=1ifo¢#ﬁ
SkEla=p—S Enpn=0ita=p

DS|=pred6—>S|=6

MR Qe M)V — 5 F M{V/x)

SFM—S FM
Sk E[M]— S F E[M

CTX

plus standard CBV rules fofst, snd, if0, pred and
succ . Evaluation context&'[_] are of the forms:

[=N], [a=_], L _:=N, o=
(M.N)_, _N , fst_ , ifO_ then N else N’
snd_ , pred_ , succ_, (-,N) , (V,-)

We takeobservable termi be the constants of typé and
around them we build the notion of observational equiva-
lence.

Definition 3 (<) Fortypedtermsi | T' - M, N : A de-
finead | T - M < N to be the assertion:

for any variable- and name-closing contéXt | : N

38"(F CIM] — S'F 0) = 35"(F C[N] — S"F 0)

We usually omit | I" and write simplyM < N. A

3.1 Semantics

We examine sufficient conditions for a fully abstract cat-
egorical semantics afp, following a development similar
to that of [15, chapter 3]. Note that, translating each term
M into a morphisnfM] and assuming a preordet” in
the semantics, full-abstraction will amount to the asearti

MEN < [M] <N (FA)

Soundness. We examine semantics in a family of cate-
gories(M%) .+ SO that each typed ter | T' = M : A

is translated into a map\/] : [I] — T[A] in M%. T'is

a computational monad, so our semantics fisanadicone

(v. [11]). Computation inp is store-update and fresh-name
creation. These requirements defing-models.

Definition 4 A \,,-modelM is a family of categories and

monadsM®, (T',n, p, 7)) zen# Such that, for eact :

I. M? has finite products, with 1 being the terminal object
and A® B the product ofd and B.

. M% and(T,n, u, )% form a\.-model (v. [11]). The
T-exponentiall’ B4 is denoted byd = T'B.

ll. M€ contains a natural numbers obj&tequipped with
successor/predecessor arrows and — N, eachn eN.

IV. M¢? contains, for each € TY, an A-names objedtl,,
a0/1-valued name-equality arroes , : NAQN4 — N,
and, for eaclr € (N4 N S(&)), an arrowe : 1 — Ng.

These make Ny A NA®RN4 a pullback.
! G %
1——N
V. Taking [1] £ 1, [N] £ N, [[4]] & Na,
[A— B] £ [A] = T[B] and[A®B] = [A]®[B],

M contains, for eachl € TY, arrows

drfs :Nga — T[A] and upd, : Na®[A] — T'1

A

such that, fora# 3 andupdy = (I;«,id);upd,, the
following diagrams (which describe the specifications for

dereferencingandupdat§ commute.

(id, updA 7o Ta

[A] =24 (4] 0T TN,
\1,7',_ p \LTdrfA
T[A] <" 1T[4]
[A]®[B] 22z 5 [A]eT1 -5 T]4] (NR)
\LupdA®1d/ N Tupdﬁ \LTupd‘z
T1Q[B] T[B] Lo —t—11
[A]@[A] 2224 [A]eT1 2> TA]
\Lﬂ'l apd . \LTupdff‘
[4] - T1 m1




Moreover,Ob(M%) is a nominal set with equivariant el-
ements and allM®’s contain the same objects, so we let
Ob(M) & Ob(M?), anyd. For eachAd, B € Ob(M)
there exists a nominal s@t{ (A, B), such that

M (A,B) = {(z,d) |z € M(A,B) AS(z) C S(a)}

We write f = ((f)°, &), eachf € M%(A, B). Moreover,

the structure defined in I-V above is equivariant in the fol-

lowing sense:

=\ -

S((@ @) ={a} A (D), 8) =P (if a}P)
Also, for eachn#d and eachd, B, the nominal mapping
()Y M(A, B) = MT(A, B) £ (f,d) = (f.d,0)

is functorial and commutes with pairing, currying aiid
Finally, there exists a nominal mapping

@(2) : M%(A, TB) — MY(A, TB)
such that, for all relevant, g, 3, the SN-diagrams commute:
fi@yg = (f*;9) @f:Tg=@)(f;T(g")
@fip=@(f;p)  (1AR@Ff) ;T = @((1d®f);7)
(upd} @) f) ;1 = @) ((upd @ f) ;)

(wherey = 7/;T7;u, see [11]). - 7% is name-addition
and{(a)_ is name-abstractiomot to be confused with nom-
inal name-abstractiofu) - . A

Our semantics is cast insidomty. The reason for de-
scribing morphisms as pairse, @) comes from the fact

that we give semantic translations of sequents, not terms
and sequents may contain superfluous names in their nam

environments. Thus, if models@ | T + M : A then(f)°
modelsa’ | T' - M : A, whered' is & with all names that
are fresh ford/ removed. Moreover, this description allows
us to form a family of categories thhfive essentially the

same structureand gives us a means to relate the semantics

of sequentslike&l I T' - M:Aandd,a | T = M: A.
Recall that in a\.-model M? there exists, for each
A, B, C, a bijection natural in:

AL M3(A®RB,TC) = M%(A,B=TC)

Letevy ; : (ASTB)® A — TB 2 (AT) (idyz1p)-
We give the semantics @p in a\,,-modelM.

Definition 5 Let (M, T%) ..\« be a\,,-model. Atyping
judgemen® | T M : A is translated into an arrof/] :
[T] — T[A] in M as follows.

n;

[7]:T 5 1-2% TN [ :T = 1 2% TNy

[M]:T®A — TB

D] T AWD, 4= 7R 2 T(A2 TB)
[M]:T — T(A=STB) [N]:T — TA
[MN] T “LINDSY, (4 5 TB)2A) L5 TR

[M]:T — TA
[va.M] = @[M] :T — TA
[M]:T — TNga [N]:T' — TNa
[ =N : T “PLIND2, PNy eN,) 2% TN
[M]:T — TNa [N]:T - TA
[M:=N] .1 LIND Y Ny pA) LRk, 7y
[M] :T — TNyx
(] T 2 7Ny AL TA
plus standard translations for other term constructorsa

Tdrf
rfa

We proceed to show correctness. Note that we write
S+ M -5 S M, with r being a reduction rule dif-
ferent from CTX, if the non-CTX rule in the related deriva-
tion is r. We writeM ; N for the term(Ad.N)M, somed

not in N, and relate to any storg a termS of type 1, by:
€2skip, a,5 =S5, a=V, 8= (a:=V;08).

Proposition 6 (Correctness)For anya | T' = M : A, any
S with dom(S) = @ and anyr # NEW,

e SEM =SS EM = [S;M]=][5;M],

o SEMMEY g0k M = [S;M] = [5;M].
Hence,S F M — S' = M' = [va.(S;M)] =
[vd.(S"; M")] , withdom(S") = &'. [

'Soundness does not follow from correctness; we need to
€dd an adequacy specification.

Definition 7 (Adequacy) Let M = (M% T%), \» be
a \,,-model and[.] the respective translation op. M
is adequate if, for any typed ter@i | & - M : N, if
[M] = (3[S;0], someS, then there exists’ such that
dkM— S FO. A

Assume now our running is an adequatg,,,-model.

Proposition 8 (Equational Soundness)

[M] =[N} = M3ZN u
Completeness.To achieve completeness we need to intro-
duce a preorder in the semantics to match the observational
preorder of the syntax, as in (FA). This step, which is essen-
tially a quotieningprocedure, is found in many (but by no
means all) fully abstract models based on game semantics.



Definition 9 (p-Observationality) An adequate A,,-
model M is p(reorder)-observational if, for ail:

e There existsOY C M9(1,TN) such that, for all
alo - M:N,
[M]€O% = 35, 5. [M]=H[S5:0]  (92)

e The induced intrinsic preorder on arrows in

M (A, TB), defined by f <% g <=
Vp: ASTB — TN. (AT(f):pc 0% = AT(g);p € O%)

satisfies, for alb#a and relevant, g, f/, ¢/,

f<0g = froghegte (9b)
Fr5®eg = @f 57 @y (9c)
We write M as(M%, T% 0% <) -\ 4. A

So0% contains those arrows that haveairservable behav-

ior in the model, and the semantic preorder is built around

this notion. In particular, due to (9a), terms thatyiélldave

observable behavior. On the other hand, by (9b) and (9c) we;

have that< is acongruencei.e. it passes through contexts.
Now assume our running model is p-observational.

Lemma 10 (Inequational Soundness)
[M] SNl = MgN n

In order to achieve completeness,
abstraction, we need some definability requirement.

Definition 11 (p-Definability) A p-observational A,,-
model M satisfies p-definability if, for any, A, B, there
existsD} , € M([A],T[B]) such that:

e Foreachf € D} j there exists termd/ with [M] = f

o Foranyf,g € M%([A],T[B]), f < giff )
VpeDS g (AT(f);p €0% = AT(g);p €0%) A

p-Definability states thatlefinable test-arrows suffider

defining the semantic preorder. Now assume our model sat

isfies p-definability.
Proposition 12 (Full-Abstraction)
[M] S [N] <= MEN

Proof: Soundness is by previous lemma. For complete-

ness (“="), assumed | I' - M < N; we do induction
on the size ofl'. The base case df = @ is encom-
passed in the case &f = {x : A} —just add a dummy
x, which we now show. Supposgélz: A+ M I N
and take any € D,y such thatA” ([M]);p € O%.
Letp =[a@|y:A— B F L], someL, soAT([M]);pis
AT([M])5[L] = [Ae.M]; [L] = [(y.L)(Aa.M)] . The

latter being IO implies that it equalgd)[S ; 0], somes.
Now, M < N implies(A\y.L)(Az.M) § (Ay.L)(Az.N),
hencer3.(S;0) < (My.L)(Az.N), by soundness. But
this implies thatd + (\y.L)(Az.N) — S + 0,
so [(\y.L)(M\z.N)] € OF%, by correctness. Hence,
AT([N]);p € OF, so[M] < [N], by p-definability.

For the inductive step, l&t = x1: A1, 22: A3, T, and letz
notappearif;if & I T - M 5 N then

a1 2:A1QA42, T F ((Awy.M)fst (2))snd (2) S ((Azy.N)fst (z))snd (2)

IH [&1 2:A1®@A2, T F ((Axy.M)fst (2))snd (2)] = [@ | T F M]

A
[@12:A10A2,T" F ((Azy.N)fst (2))snd (2)] = [& | T F NJ

as required. ]

4 The nominal games model

We embark on the adventure of modelingin a cat-

egory of nominal arenas and strategies. Our presentation
of nominal games rectifies the one presented in [2] by us-
ng name-lists instead of name-sets and introducing inno-

cent plays. The basic category construction will g,
the category of nominal arenas and tafastrategies.V?
will be constructed iMNomTty, So there will be, for each
type A, an arendN, for references to typd. The transla-
tion [A] of a general type will make use ofsdore arena
¢ £ ®4(Na=[A]), which will literally serve as a ref-

and hence full- €rence store. This will naturally lead us to a monadic se-

mantics, with computation mon&ddefined (on arenas) by
TA 2 ¢= A®E. Since arrow types involve the monad in
their translation and the monad involves all types, we will
have to first solve the domain equatidn:

[A— B] =[4] 3 (¢=[B]®¢)
£= Q@ Na=[A4])

Construct a category. We assume a set of types TY and
build our constructions insidomry. We start with nom-

(SE)

inal arenas and prearenas. Arenas will be used for type-

translation, while terms will be translated strategies be-
tween arenad.e. strategies for prearenas.

Definition 13 A nominal arenad £ (M4, 4, A4) contains:

e A nominal set of moved/ 4, the elements of which have
strong supporf.Moves are denoted by, n, ...

e Anominaljustification relatiofr 4C (M4 +{f}) x Ma4.
e Anominallabeling functioth 4 : M4 — {O, P} x{Q, A},

so that each move can be played by Opponent or Player,

and is a Question or an Answer.

5Notation will be clarified below.
6Strong support is essential in proving basic properties arhinal
games, e.g. that these form a category, yet their proofsmaitéed here.



These satisfy the conditions:

() For eachm € My, there exists uniqué > 0 such
thatf b4 mi b4 - Fa mg Fam, forsomem;’sin
My. k is called the level ofn.

Level-0 moves, denoted hyi’, ..., are callednitial .

(1) Initial moves are P-Answers.

(12) If mqy,mo € M4 are at consecutive levels thery

assigns them complementary OP-labels.
(I3) Answers may only justify Questions.

A prearenais an arena with its initial moves labeled OQ.
Given arenas! and B, construct the prearend— B as:

Ms_p = Ma+ Mg
Mg = [(ia— 0Q , ia v+ Aa(ma)), Ag]
Fasp £{(f,ia), (ia,ip)} U{(m,n) | mFap n}
1, is the set ofinitial (level-0) moves ofA, andJ4 the
set ofjnitial (level-1) moves. Thenjy = My \ I4, and
Ja = Ma\ Ja. Ingeneral, we user 4 to denote moves in

M4, ia for movesinl,, 4 for movesinl 4, j4 for moves
in J4, etc. Finally,A 4 denotes the OP-complementXf.

A

initial, every moves.i has gustification pointerto somes.j
such thatj < i ands.j k4 s.i; we say that.j (explicitly)
justifiess.i . We can now proceed to plays.

Definition 16 (Plays) Let A be a prearenaA legal se-
guenceon A is a justified sequence of moves-with-names
that satisfies Visibility and Well-Bracketing (v. [10, 7]A
legal sequence is a playif it also satisfies the following
Name Change conditions:

(NC1) The name-list of a P-mowvein s contains as a pre-
fix the name-list of its preceding O-move. It possibly
contains other names, all of which are fresh4or,.

(NC2) Any name in the support of a P-mavén s that is
fresh fors., is contained in the name-list af

(NC3) The name-list of a non-initial O-move s that of
the P-move explicitly justifying it.

An &-play is a play that opens with a move with name-list
@. The set ofi-plays on a prearend is denoted byP$. A

With s andz as above, fhtroduces a namex atz iff o«
anda#s<.. L(s) contains all names introduced by Psin

Condition (f) states that arenas can be represented by diNote also that, for any move in ana-play, @ < nlist(x).
rected connected graphs with no directed cycles. Note thatWe proceed to strategies.

the nominal arenas of [2] do satisfy the above conditions,
although a different set of conditions is used there.

Example 14 (Basic arenas) The simplest arena is
0 = (2,9,9). Now letA be an arbitrary type. Define the
(flat) arenasN 4, N and1 as follows.

My, 2 Ny My =N My 2 {x}
)\NA(m)éPA )\N(m)éPA Al(*)éPA
P, S {0 m)) e S m)) = ()

Nominal games are played using sequenceamfes-with-
namesthat is moves attached with name-lists. Name-lists

Definition 17 (Strategies) An a-strategyo is a set of
equivalence classds]; of a-plays, written[s], satisfying
prefix closure, contingency completenasddeterminacy

e If [su] € o then[s] € 0.
e Ifeven-lengths] € o andsx is ana-play then[sz] € o.

o If even-lengthsiz1], [s2z2] € o and[si] = [s2] then
[5111] = [SQZQ].
An a-strategyo on A — B is writteno : A — B. A

For example, fon#a andn € N, define the¥-strategies:

capture name-environments; this idea of attaching state-

information explicitly to moves first appeared in [12] and
was later followed in [2].

Definition 15 A move-with-names of a (pre)arenais a
pair,m®, wherem € M4 anda € N* (i.e. @ a name-list).
Writing m® asz, we haver = m andnlist(z) £ d. A

At this point, let us introduce some handy notation for se-
guences. Let, t be sequences, then:

e s < tdenotesthatis a prefix oft, and thert = s(t—s),

s~ denotes with its last element removed,

if s =51---5,then

o nis thelengthof s, and is denoted bls|,

o s.idenotes; ands.-i denotes,, +1_;, €.9.5.-1iS s,

o $<s, denotes - - -s;, and so does

i+1 "
A justified sequencever a prearend is a finite sequence
s of OP-alternating moves such that, exceptfdrwhich is

a:1—Ng2{[x%%} and 7:1— N2 {[xn9]}

Note thata-strategies have (strong) supp8i(¥). We de-
fine play- and strategy-composition building on [6, 10]. We
let s be s without its name-lists, angst(*) pes.

Definition 18 (Composable plays) Let s € P{ , and
t € P§_ .. These arealmost composables - t, if
s | B =1t] B. They arecomposables =< t, if s « ¢
and, for anys’ < s andt’ <t with s’ « ¢/,

(C1) If s’ ends in a P-move inl introducing some name
a thena#t’; dually, if t’ ends in a P-move if' intro-
ducing some name thena#s'.

(C2) If boths’,# end inB ands’ ends in a P-move intro-
ducing some name thena#t'~ ; dually, if ' ends in
a P-move introducing some naméahena#s'~. A



If s € P{ 5 andt € P§ . are composable then either
s | B=1t=c¢ 0rsendsinA andt in B, or s ends in
B andt in C, or boths andt¢ end in B (cf. zipper lemma
of [6]). In the following we state that: is an O-move by
writing m,), and similarly for P-moves.

Definition 19 (Composition) Let s € P{ , and
t € P§ . with s < t. Their parallel interactiors || ¢
and their mixs e ¢, which returns the name-list of the final
move ins || ¢, are defined by mutual induction as below.

B ot
sm'g etmpg

clle2e sl |t 2 (s | Oy
» o tm? . o
sltmd 2 (s yme” ™ sm ||t £ (s | ymy" "
T Az g =
s otmg(o) =5 sy o) ot = 3"
Smi(P)otésot,ﬂl sm’a(P)otm;(O)ésot,ﬁl

soth(P) £set,7 smBB(O) oth(P) Lset,7

where 3 is § — nlist(s.-1), and 3 is the name-list of
m40y's justifierins || ¢; similarly for 5", 5".

The composition of andt is: s;t = (s||t) [ AC.

For d-strategies : A — B andr : B — C, their compo-
sitionis: o;7= {[s;t]|[s]€oA[tjeTAs =<t} A

Proposition 20 If s € P{ _  andt € P§_ . with s < ,
thens;t € P§_ ..

Ifo: A— Bandr : B — C are a-strategies then so
is o;7. Moreover, ifo; : Ay — A, 09 : Ay — Az
andos : As — A, are a-strategies therfoy ;02) ;03 =
o13(02503). n

We are interested imnocent strategieghat is strategies in
which P-moves depend solely on current P-views. Recall
that the P-view|s", of a justified sequenceis:

Tsal £ 51y if x a P-move

Ay if 2 is initial

Tsxs'y' 2 Ts'zy  if y an O-move justified by:

Note that the P-view of a play iotnecessarily itself a play;
hence, we further restrict plays.

Definition 21 A play s is innocentf, for anyt < s, t'is a
play. A

It is not difficult to see that innocent plays are legal se-
qguences satisfying (NC1), (NC3) and (NE2vhere
(NC2’) Any name in the support of a P-mowein s that

is fresh for's, ' is contained the name-list af
From innocent plays we move on to innocent strategies.

Definition 22 An &-strategyo is innocent if[s] € o im-
plies thats is innocent, and if even-lengﬂaln?l] € oand
odd-length[sz] € o have["s;] = ["s2] then there exists
nJ? such thafsyn)?] € o and[s;n]" = [Fson?7. A

Proposition 23 If s € P§_ 5 ,t € P§_ - areinnocentand
s < tthens;tisinnocent. Ifo : A —» B,7: B — C are
innocenta-strategies thenso is; 7. [

We can now define our basic category of nominal games.

Definition 24 (V&, V&) An innocenta-strategyf: A— B
is total if for any [i%] € f there exist$i%i%] € f.

It is also ttotal if for any [i5i%%] € f there exists
[i9i%,j%59] € f, and whenevels;'{' | € f thens.-1 € Jp.
V¢ is the category of nominal arenas and tatastrategies,
andV<. is its lluf subcategory of ttotal strategies. A

Thus, a strategy is total iff it immediately answers anyidhit
guestion without introducing new names. It is ttotal iff it
follows a similar pattern for jnitial moves. Now, innocent
strategies are conveniently represented ugiegffunctions

Definition 25 An a-viewfunctionf is a set of equivalence
classes of innoceni-plays that are even-length P-views,
which satisfiegven-prefix closurandsingle-valuedness

e If [s] € f andt is an even-length prefix ofthen[t] € f.
o If [511‘1], [521‘2] S f and[sl] = [52] then[slxl]: [52352]. A

There are mapsriewf and strat from innocent a-
strategies toa-viewfunctions and viceversa, such that
f = viewf(strat(f)), ando = strat(viewf(o)). From
now on, will be defining strategies via their viewfunctions.

Constructions in V.  In V& we construct tensor
product, lifting and function space arenas as follows. For
nominal arenasl, B, defineA®B, A, A= B:

Magp £ InxIp+1a+1p (A®B)
Mg = [((ia,ig) — PA),Aa, Ag]
Fage £ {(1,(ia,iB)}U(Fal Ia*)U (kI I5?)
U{((ia,iB),m)|iatamVigtpm}
Ma, 2 {#1} + {*2} + My (A1)
Aa, £ (31 PA), (x2 = 0Q) , Ad]
Fay 2 {(F %), (k15 %2), (k2,54)} U (Fal Ma?)
Mysp & Ip+IaxJp+1a+15NJp (A= B)
Mzp 2 [(ip = PA), ((ia,78) — OQ) , Aa, Ap]
Fazp = {(1in)} U{(is, (ia,jB)) | in FB jB}

U{((ia,B),m) | (iaFamVjptpm)}
U(Fal Ta?) U (keI (Ig N JE)%)



Moreover, letA= B 2 A = B, be the lifted function
space. Note that we will usuallgentify graph-isomorphic
arenasrelated by isomorphisms which simply manipulate
x’S. With this convention, the last construction correspond
precisely toA =- B of [2]; also, for any4, 1 = A = A.
The previous constructions are sketched below.

N

A=B A=1B

We also have arrow-counterparts. lfet A — A’,g: B —

B'inV&andh: B — B'in V&, then

o fi A — A initially plays a sequence of asterisks
[x§ #/@ x/7x5] and then continues playing like

o f®yg A®B — A'®B’ answers initial moves
[(ia,ip)%] with f’'s answer to[i5] and g's answer to
[i%]. Then, according to whether Opponent playsin
orin Jp/, Player plays likef or like g respectively.

e [=h:A =B — A= B answers initial move§ %]
like h and then responds t[@B’LB/(’LA,jBI) Y] with f's
answer tdi% | andh’s response t¢i%i%, j%,] (hence the
need for ttotality ofr). It then plays likef or like h,
according to Opponent’s next move.

We can also define infinite tensor products of pointed are-

nas, where an arena A [@intediff [, is singleton (in

which case the unique initial move is necessarily equiv-

ariant). For pointed arengs4; };c., construct their prod-
uct @, A; by ‘gluing them together’ at their initial moves.
Since these are equivariant, the resulting initial movésis a
equivariant, and we denote it by™ For any pointedA4;’s
andB;’s and any{ f; : A; — B;}c. define:

®fZ 2 strat{[«% «% 5] | 3k. [iikz%ks] € viewf(fi)}

TakeVZ, to be the full subcategory of2 of pointed arenas.
Our constructions enjoy the following properties.
Proposition 26 All of the following are functors.
C®VIXVESVE, S (VI X VE - VE
(—)J-:VEHV?": ) ®—:Hi6wv‘§‘**}v§*
Moreover, V¢ is a symmetric monoidal category undey
and is partially closed in the foIIowmg sense. For any objec
B, the functor. ® B : V& — V& has a partial right adjoint

B2 _ V&, — V2, that is for any objectd and any
pointed object there exists a bijection

A% ¢ VE(A®B,C) == VI (A, B CO)

natural in A, C. Moreover,( is a terminal object and? is
a product constructor iV, soV¢ has finite products. m

Solving (SE) The full form of (SE) is the following.
[1] =1, [N] =N, [[A]] =Na, [A®B] = [A]=[B]
[A— Bl =[A] = (= [B]®€), £ =) (Na=[A])

To solve it, we will upgrade it to a recursive functor equatio
and then recur to minimal-invariants theory for games (v.
[10]). Let us first define the following preorders on games.

Definition 27 For any A, B € Ob(V¥) and anyo, 7 €
VE(A, B), define

A<dB < MsC M AXAC A A4 Chp

o717 << ocCrT A
It follows that V¢ is PreCpo-enriched, with|,0; =|J,0;
for anyw-chain{o; }ic., and thatob(Ve) is a cpo’ with
least) = (@7 a, @), andl_liAi = (Uz Ma,, Ui A4, Ui FA)
for any w-chain{A4;};c.. Moreover, ifA < B then we
can define an embedding-projection pair of copycat maps
inclyp: A— B andprojB’A : B — A.

LetCY £ V& x [[ 47y VS, with objectsD of the form
(D¢, D4 A€™Y) and arrowsf of the form (f¢, fa 4€™).

Define F : (C%)°P x C¥ — C% on objects by taking
F(D,E) = (¢p.5,[Al p g *€TY), where
{p,p = ®A€TY(NA = Ea) [[All p,z = Na
[A®Blp g =[Al p x®[Bl p [N]p =N
[A—=Blpp=Da= (Eep=Es®¢pEe) [lpr=1

and similarly forF'(f,g) £ (£7.4, [Al 7., *€™). Now (SE)
has been reduced 0 = F(D, D). We can show thaF is
a locally continuous functor, and continuous wtt Hence
the following.

Theorem 28 In C% we can form a<-increasing sequence
{ei: D;— D;;1}ie,, Of Objects and embeddings as follows.

Doy =Doap®1 Don=N, Dya £ Ny
Do £ ®A(NA =0) Do agp = Do a®Do p

D1+1 (D“ D ) €o é iIlCleDl y €i+1 é F(GIR, ei)

Taking D* £
obtain a local bilimit(D*, n

£ ||, D; and, for eachi, n; £ inclp, p- we
Z_iEw). m

Hence,D* is the canonical solution t& = F(D, D), and
it solves (SE) with the following notation.

Definition 29 (¢, ® and [A]) Let D* be as in the previous
theorem. Define the store arefido be D} and, for each
type A, the translatiorfA] to be D%

¢ is pointed; we denote its unique initial move @y, A

At this point note that there is a simpler, yet less elegaoiiytion
to (SE), simply by taking_the least (in fact, the unique) fixpof tbe map
G:[[Ob(VE)—]0b(VE) induced by (SE) in the cpd [ (Ob(VE), <).

AETY



Tidy strategies Using the solutionD* to (SE) we can
modelp in the family (W&, T9) ;.\#, with T being the
store monad o (i.e. T' = £=_ ® £). However, thus
we do not obtain a fully abstract model. In the reduction
calculus the treatment of the store follows a specfare-
discipline for example, if a storeS is updated taS’ then
the original store5 is not accessible any more. In strategies

we do not have such a condition: in a play there may be

several¢’s opened, yet there is no discipline on which of

these are accessible to Player whenever he makes a mov

Another condition is that, when the store is asked a name
it either returns its value or it deadlocks; there is no third
option. In a play, however, when Opponent asks the valu
of some name, Player is free to evade answering and pla
elsewhere. We will therefore constrain total strategiet wi
further conditions, definingjdy strategies

Let V¢t be the full subcategory A< with objects[A],
A€TY. For eachA] letits set ofstore-Handles H 4, be®

HA®BéHAUHB HN:HliH[A]éQ

Ha .p= {(ia,®4), (ip,®2)} UHAUHp U He, UHe,
where we lefA — B] be [4] = (€4 =[B] ® &), and
He = o He if £ = @-(Ne=[C]). Inany arend A],
a store-H justifies name-questionswhich we callstore-
Questions Answers to store-Q’s are callastiore-Answers

For example: Tl= ¢(=1®E (noteT1=13T1)
*
® store-H's
o
—
store—Q’s/ iA (a=a?)
X (x, ®)
store-A B
S\R B
iB (B=1")

We can show that a mowe € M|, is exactly one of the
following: initial, store-H, store-Q or store-A.

As store-H's occur in several places in a play, we may use
parenthesised indices to distinguish moves from different
store-H’s. For example, a store«@may be denoted ) or
wp), the notation denoting also the OP-polarity. Note also
that from now on we work irngY, unless stated otherwise.

Definition 30 (Tidy strategies) A total a-strategyo is
tidy if whenever odd-lengtfs| € ¢ then:

(TD1) If sendsin astore-@ then[sz] € o, with z being
either a store-A tav introducing no new names, or a
copy ofw. In particular, ifw = a® with a# s~ then
the latter case holds.

(TD2) If [sw(py] € o with w a store-Q thempy is justi-
fied by last O-store-H ifs.

8The definition ofH 4 is informal, note circularity i 4_, p; a formal
definition is given by induction on the level of moves[i] and onA.

e . .
Jurther guarantees the above-described behavior. Itsstate

(TD3) If "s" = s'wioyw(pyt Yoy With w a store-Q then
[sy(p)] € o with y(p) justified by"s™.-3. A

TD1 states that, whenever O(pponent) asks the value of a
name, P either immediately answers with its value or copy-
cats the question to the previous store-H. The former case
corresponds to P having updated the given name lastly (i.e.
between the previous O-store-H and the last one), while the
latter to P not having done so, and hence asking its value
éo the previous store configuration. Hence, the currenéstor
is, in fact, composed by layers of stores —one on top of the
other—and only when a name has not been updated at the top
layer is P allowed to search for it in layers underneath. TD3

that when P starts a store-Q copycat then he must copy-
cat the store-A he receives and all proceeding moves. TD2
guarantees the multi-layer discipline of the store: P cdy on
see the store-H played last by O in the P-view.

Proposition31If o : A — Bandr : B — C are tidy
strategies then so is; 7. [

Full-abstraction with tidy strategies. Let 7% be the lluf
subcategory OVETY of tidy strategies.7 ¢ inherits finite
products fromZ. Moreover, the endofunctor

T:V¥-Vites ©¢

restricts to7 %, and induces a strong mon&@d, », u, 7)¢
on it (by a more-or-less standard monad construction). Fur-
thermore, settingl’ B)4 & A= T B we obtain a\.-model.

We takeT = (T9,(T,n, u,7)%) zen# and proceed to
update and dereferencing arrows.

Definition 32 In 79, defineupd , : N4 ® [A] — T'1 and
drf4 : Ny — T[A], for any typeA, as follows?

Ny ® [A] ——T1 Na —T[A]
_/—\ a L/ﬁ*&
* —~
—
@O{
(x, ®)"
ﬂ&
662
La
;/ﬂ"‘
% (Wherea#3)
: A
Proposition 33 In each 7% the NR-diagrams of defini-
tion 4 commute. ]

9In the diagrams we use curved lines for justification poBtpolygo-

nic lines denote that the strategy copycats between thescteuhmoves.



We introducename-abstractiorand name-additiontrans-
formations for nominal strategies.

Definition 34 Let f: A —BinT%*andg: A —BinT%
Define(a)f: A—Bin7T%andgt*: A —Bin T%“ as:

a4, A,

@) f2 strat{[iGi%i%s] | [5G i 5 i 5%s] €viewt (f) A afbia}
g 25T | sl € g A a#tL(s)}

wheres™® is s with & replaced by, « in its name-lists.a
Proposition 35 For anya, a-strategyf and anya-strategy

g, (@) f is ana-strategy andy ™ is and,a-strategy. More-
over,7 satisfies th&SN-equations of definition 4. [ ]

Using name-deletion, a transformation dual to name-

addition, we represent airstrategyf as a pai(f)°, @) by
deleting fromf all names that aressentially-frestor it'©
and orbiting the result under all permutations with domain
S(&). We then have a,,-model, which is also adequate.

Theorem 36 7 is an adequate,,,,-model.

Definition 37 Expand7 to (79,7, 0%, <) .\ by
O% £ {f e TY1,TN) | 33. [x% 7
and<¢ as in definition 9.

Following a technique which involves appropri&epara-
tion of Head OccurrencandFunction Space Decomposi-
tion lemmata (v. [4, 10]), we can show p-observationality
of 7. For p-definability, the subset of definable morphisms
D3 5 € T([A], T[B]) we use is that ofinitary strate-
gies a strategyo is finitary iff its viewfunction becomes
finite when we remove from it store-copycats and initial
T[B]-answers. At last, full abstraction:

Theorem 38 For any A, B and finitaryo : [A] — T[B],

o is definable. Taking)f;,B to contain all finitary arrows,
T satisfies p-definability, and is therefore fully abstract fo
1p. [ |
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if [M] = (5)[S;0] then@ = M cannot have a reduction
sequence with infinitely many DRF-reduction steps; omit-
ting DRF’s we are left with a strongly normalising calculus.

Let us proceed to an example. Consider the typed terms

al@ka:=(fstla,snd!lo) and | @ v 8. 5:= Az.(!8)skip
with o = aV®N and g = 4. Their translations i7"
and7 respectively are as follows.

T1

1—T1

(x,®)"

The reader may want to check now that the bottom arrow,

{[** ®]}, equalgvp.(6 := Am.(!ﬁ)skig); (18)skip].
Finally, we add observationality th* as follows.

10We say thatv is essentially fresfor f € 79(A, B), and writea: # f,
if a#a or, for any[s] € f and anyB+#nlist(s), [((a 8) o s)"st()] € f.
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