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Abstract

This paper applies a new constant-time, consistent and con-
vergent Simultaneous Localization and Mapping (SLAM) al-
gorithm to an autonomous underwater vehicle (AUV). A
constant-time SLAM algorithm offers computation indepen-
dent of workspace size and is one key component in the devel-
opment of truly autonomous agents. The real-time deploy-
ment of such a system would be a landmark achievement
for the mobile robotics community. This paper describes
progress towards this goal focusing on the sub-sea domain
— an area set to benefit massively from the autonomy af-
forded by SLAM. The primary sensor used in this work is
a sixteen element synthetic aperture sonar (SAS) carried on
the nose of the AUV “Caribou”. Using a novel target de-
tection strategy, data gathered from a 40 minute survey is
processed by the new SLAM algorithm and the results com-
pared to both a ground truth and the quadratic time “gold
standard” full covariance SLAM algorithm.

1 Introduction and Motivation

The Simultaneous Localization and Mapping (SLAM) prob-
lem is of fundamental importance in the quest for au-
tonomous mobile machines. SLAM research seeks to enable
a platform, starting with no prior information and using only
onboard sensors, to move through its environment and build
a consistent map of its surroundings as well as an estimate
of its own trajectory.
SLAM is a hard problem [7, 23, 9, 22] and may not always

be the best technique to employ to achieve mobile autonomy.
For example, in many land based applications navigation and
mapping can be aided by in-place infrastructure - GPS, radio
beacons or geometric a priori maps for example. Navigation
and mapping in the sub-sea domain is a different matter
however. No wide-coverage underwater GPS equivalent ex-
ists (although some small oil and mineral rich areas are well
populated with acoustic beacons at surveyed locations [31]).
At present only a few percent of the earth’s seabed has been
explored. What publicly available bathymetry maps [20] do
exist of explored areas are coarse and unsuitable for precision
navigation (CEP < 20 m).
Underwater SLAM is a key technology in development of

Autonomous Underwater Vehicles (AUVs). A SLAM en-
abled AUV could be deployed from the surface over unknown
terrain and descend to execute a mission of unspecified dura-
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tion. The state-of-the-art in AUV navigation technology uses
a fusion of Doppler Velocity Log (DVL) and inertial measure-
ments [17]. Although impressive performance has been re-
ported by such systems (0.1% of distance travelled) they are
essentially odometric in nature and prone to the accumulat-
ing drift and error growth inherent in all such dead-reckoning
approaches. The immediate impact of sub-sea SLAM is likely
to be in terms of bounded localization error rather than map-
ping. A SLAM algorithm on an AUV would still utilize
doppler and inertial measurements. However it is the re-
peated measurement of the relationship between vehicle and
distinct physical artifacts on the sea bed that would lead to
bounded error in localization - even though the built map
of the artifacts used to achieve this may not be of interest
per-se.
One approach to the sub-sea navigation problem is ‘on-the-

fly’ acoustic feature deployment[25]. In this scenario instead
of detecting naturally occurring landmarks low cost or recov-
erable transponders are deployed in unknown locations which
enable range only measurements between vehicle and beacon
to be made. An optimization procedure is then employed to
deduce both vehicle trajectory and beacon location. In some
ways the problem is made easier by using transponders but in
others much harder. Firstly the data-association problem is
removed. The correspondences between measurements and
features, in this case transponders, are known because each
transponder replies to an acoustic interrogation at a unique
frequency. However the ranges measured are huge in com-
parison to the movement of the vehicle between sequential
measurements. Hence not only are the transponder locations
only partially observable (because of the range-only data)
but also the problem is inherently ill conditioned over small
vehicle path lengths.
The range only SLAM problem has much in common with

the structure from motion (SFM) problem [1, 13, 9, 22, 21]
which in turn has a strong duality with bearing only and
range only SLAM [4, 5]. The motivation for this approach
is clear. Submerged, on-the-fly calibration of transponders
would enable an AUV to lay and extend its own beacon net-
work to fit adaptive mission and navigation criteria. Al-
ternatively, the transponders could simply be dropped from
a surface vessel or air-craft with no regard to calibration.
With small, cheap acoustic transponders now available, this
approach could find application over barren flat terrain and
complex reefs alike. Figure 1 shows the results of a non-
linear least squares bundle adjustment [13] solving for both
vehicle trajectory and transponder locations.
Although workable, the in-mission deployment of features

is only an interim solution that is likely to be unsuitable for
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Figure 1: Result of the range-only optimization. The GPS
derived positions of the transponders are shown as squares
and the estimated locations as nearby black dots. The es-
timated vehicle trajectory is plotted on top of that derived
from the onboard navigation (using surveyed beacon loca-
tions). The AUV surfaced at the end of the dive and acquired
a GPS fix (shown as a star) which is coincident with both
the onboard navigation and range only estimated tracks.

a substantial proportion of AUV applications. It is far more
preferable to be self-contained and use naturally occurring
landmarks (if available) to aid the navigation process. This
paper focuses on this ideal.
Section 2 discusses contemporary work in the SLAM prob-

lem especially with regard to issues relating to operating in
truly large areas. In the light of this, Section 3 presents a
new constant-time SLAM algorithm, dubbed CTS. Section
4 takes the CTS algorithm and applies it to Synthetic Aper-
ture Sonar (SAS) data collected from an AUV. The recorded
onboard navigation estimates are used as a ground truth to
compare SLAM derived vehicle trajectories. Finally Section
5 discusses areas of future and intended research that lie on
the path to developing a truly autonomous, SLAM-enabled
AUV.

2 Prior work and background

The seminal work of Smith, Self and Cheeseman [27] pro-
posed an algorithm (commonly known as the “Full Covari-
ance solution”) with complexityO(n2) where n is the number
of features mapped. The Full Covariance solution is accepted
as the “Gold Standard” Algorithm in terms of performance
(not applicability) and in the case of linear observation and
vehicle models is provably optimal and consistent. The prop-
erties of this algorithm and its nomenclature are used by the
new approach proposed in this paper and for completeness
it is now summarized.
Let us assume that there are n features in the environ-

ment, and that they are static. The global frame, desig-
nated by G, is a unique, immutable coordinate-frame that
is defined at the beginning of a mission. The true state at
time k is designated by x(k) = [xv(k)

T x1(k)
T . . . xn(k)

T ]T ,
where xv(k) represent the location of the vehicle, and
[x1(k)

T . . . xn(k)
T ]T represents the locations of the envi-

ronmental features. We assume that the vehicle moves from
time k to time k + 1 in response to a known control input,
u(k), that is corrupted by noise. Let Uk designate the set of
all control inputs from time 0 through time k, Z(k) designate
the set of sensor measurements obtained at time k, and Zk

designate the set of all measurements obtained from time 0
through time k. For each measurement zj(k) ∈ Z(k), there
is a corresponding assignment index aj . The value of aj is i
if measurement zj(k) originates from feature i. Let A

k des-
ignate the set of all assignment indices from time 0 through
time k. Assuming that the associations are known, the ob-
jective is to compute recursively the probability distribution
for the location of the robot and the features, with reference
to the global reference frame G, given the measurements,
control inputs, and assignments:

p(xv(k),x1(k), . . . ,xnk
(k)|Zk, Ak, Uk−1).

For the Linear-Gaussian (LG) SLAM problem, the Kalman
filter provides the optimal estimate of this pdf, which is de-
scribed by its mean [x̂v(k)

T x̂1(k)
T . . . x̂n(k)

T ]T and covari-
ance P(k). The properties of single-map LG SLAM solution
are well-known [6].
Recent related work in SLAM includes submap decompo-

sition methods [19, 10, 14, 32, 28], FastSLAM [23], sparse ex-
tended information filters (SEIF’s) [30], scan-matching [11,
29, 12] and topological approaches [16, 2]. To date, all pub-
lished SLAM algorithms are subject to the scaling problem
— the fact that the SLAM task gets harder as more and
more features are mapped.
The unbounded growth of computation with map size

essentially prohibits large scale sustainable mobile auton-
omy. Because of the difficulties encountered by SLAM algo-
rithms when applied to larger environments, the “map scal-
ing” problem has been identified as one of the key issues
for research in this area. Davison’s [3, 15] “postponement
method” and later Guivant and Nebot’s [10] Compressed Fil-
ter allow computational resources to be focused on maintain-
ing a representation of the local area while postponing the
computation required to manage all other mapped features.
However eventually the same O(n2) computation must be
completed - once again placing a limit on the size of en-
vironment in which the algorithm can be deployed. In a
similar vein, the Constrained Sub-map Filter [32] and the
Geometric Projection Filter [24] seek to delay the full O(n2)
computation. Other techniques such as decoupled stochastic
mapping [19] and SEIFs [30] achieve O(1) performance, but
make approximations that require empirical testing to verify
state estimation consistency.

3 A Constant-Time SLAM Algo-

rithm

This section summarizes a new Constant-Time SLAM (CTS)
algorithm, described in detail in [18]. Figure 2 illustrates
the broad structure of the algorithm. The CTS algorithm is
characterized by the following elements and criteria:

1. SLAM processing occurs within local maps.

2. Map management — updating and creating new maps

3. Map Location estimation — determining the best global
location estimate for a submap
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Figure 2: Flow chart for each cycle of the CTS algorithm.
The top half of the figure is as expected for a standard SLAM
algorithm with odometry and measurement data being used
to update location estimates or augment the current map
with new features. Following this the CTS algorithm makes
a decision based on vehicle location which existing map if
any should be made active. The map location “improve-
ment loop” runs asynchronously and seeks to use differing
estimates of features shared between maps (each map has
an independent estimate of a shared feature) to improve the
globally referenced feature uncertainty.

4. Map Transitioning — The relocation of a vehicle into a
previously built submap.

5. Computation of global state estimates for all features in
a map

Partitioning a robot’s total work-space into a patchwork of
two or more local active work-spaces has an intuitive appeal
and this approach has been widely adopted. However, no
previous method satisfies each of the three criteria of prov-
able consistency,spatial convergence and constant-time up-
dates. For example, Julier and Uhlmann [14] provide a con-
sistent, constant-time algorithm for large-scale SLAM, based
on split covariance intersection, but this method does not
achieve “tight” convergence to the error bounds that would
be obtained with a full covariance solution. Methods such
as the compressed filter [10], the constrained local submap
filter [32], and sequential map joining [28] are provably con-
sistent and convergent, but are O(n2), where n is the number
of the features in the environment.

3.1 Definitions and Operations

We now define several terms and basic operations that will
facilitate description of the new method. A location vector

is a parameterization of both position and orientation of one
coordinate-frame, i with respect to another, j. In R2 this is
represented as a translation by [x, y] followed by a rotation

θ. These three parameters are encapsulated in the 3 vector
T
j
i = [x, y, θ]

T .
An entity is a parameterization of a vehicle or landmark.

Each entity is labelled with a unique positive integer — this
is referred to as the entity’s ID. We can attach a coordinate
frame Fi to any entity i and describe it using a location
vector in another coordinate frame. The vector T j

i should
be understood to be a parameterization of a transformation
from Fi to Fj . The uncertainty in this transformation is

represented by Σji .
Amap is a collection of entities all described with respect

to a local coordinate frame. Each map has a unique integer
id. Each map has associated with it a Map Root entity i
and aMap Location vector TGm . The Map Location vector
describes the pose of a map’s local coordinate frame in the
global frame G. The local coordinate frame of a map is
coincident with one of the entities in the local map; this
entity is referred to as the Map Root. In other words, the
Map Root lies at the origin of the local map, and it is the
entity to which all other entities in a map are referenced. If
an entity is the Map Root, then by definition its location
vector will be [0, 0, 0]T and its global location vector given
by TGm — the location of the map in global coordinates.1

We use the pre-superscript notation [m, j] to denote that all
entities in map m are referenced to Fj where j is the root
entity of the map.
We define root-shifting to be the operation, S, that

changes the root of a map from i to j. After this opera-
tion all location vectors in a map will be referenced to Fj
rather than Fi, i, j ∈ m.
Finally, the global location of a feature j in a local map m

which is referenced to feature i, [m,i]Tj is computed by sim-
ple composition of the local location vector and the already
globally referenced Map Location vector:

[m,·]TGj = TGm ⊕
[m,i]Tj (1)

For ease of reference, Appendix A summarizes the notation
of transformations and operations used in this paper.

3.2 Managing local maps

At any one time, there is a single active map. For each map
m, we compute a partial solution, p(xm(k)|Z

k
m, A

k
m, U

k−1
m ),

where xm(k) designates the local map state, and Zk
m, A

k
m,

and Uk−1
m represent subsets of the measurements, associ-

ations, and control inputs, respectively. Each measure-
ment is used in only a single map. (This is vital for
ensuring consistency of the global Map Location estima-
tion process.) Each map m contains an estimated mean
[x̂mv (k)

T x̂m1 (k)
T . . . x̂mn (k)

T ]T and covariance Pm(k) corre-
sponding to selected vehicle locations (for time steps when
map m is the active map), and only a subset of the features.
These estimates are the same as the location vectors [m,i]Tj
and associated uncertainty [m,i]Σj for the features in the lo-
cal map. Note that no constraint is placed on the manner in
which local SLAM is undertaken. For example, it need not be
a Kalman Filter based — all that is required is a probablistic
state estimation of vehicle and landmark parameterization.

1In the SLAM literature, the term “base reference” [28] is a synonym
for our term Map Root. Note that in the general case with orientation,
a single point feature will be insufficient to define a reference frame. In
2-D, two points will be required and in 3-D three points will be required.



For each map we define a map center to be the vehicle
location at the time of the creation of a map. About this
center is defined a region of radius r. This defines a bound
on vehicle location and not feature locations — any feature
that is observed from a position inside the map region will
be added to the local map. The estimated location of the
vehicle is used to deduce which map(s) the vehicle is in, and
when to make transitions. When the vehicle travels more
than r+ h from the center, the vehicle is considered to have
left the current map. The parameter h is a hysteresis term,
to prevent excessive map switching.
We assume that the density of discernible features in a

local area is bounded. This provides a bound on the number
of features that can belong to a map.
When a vehicle leaves a map, we must determine which

map (if any) the vehicle has transitioned to. A list of pos-
sible candidates is drawn up from a look up table indexed
by quantized vehicle locations. If more than one candidate
exists, we choose the map with the lowest ID, i.e., the oldest
map. If no candidates are found, then a new map is created
at the current location (a distance r + h from the center of
the previous map). All of these operations can be performed
in constant time.

3.3 Estimation with multiple maps

This section summarizes how CTS uses multiple local maps
to reduce the uncertainty in globally referenced feature esti-
mates. The corner-stone of the whole approach is the use of
multiple estimates of shared features (from different maps)
to provide alternative expressions for the global uncertainty
in the map location vector. If, by re-referencing (root shift-
ing) an entire map m to a shared feature, s, and then using
an alternative global estimate of that new “root-feature”’s
location, [p,·]TGs ,using some other map p, the global uncer-
tainty of other features in the map would be decreased then
CTS performs the root shift and replaces TG

p with [p,·]TGs
and ΣGp with

[p,·]ΣGs . This procedure is called “Map Loca-
tion Estimation”.
For constant-time operation, Map Location estimation is

performed only when the vehicle transitions from one map
to another. Alternatively, the procedure can be performed
periodically (or off-line at the end of the mission) to all
maps. Multiple iterations result in global convergence to
a near-optimal solution, but the computation complexity is
no longer O(1). This estimation procedure is made explicit
in the boxed algorithm in Figure 3 .
Figure 4 is a graphical representation of the map location

estimation procedure. It shows the improvement of one map
using a expression for the global uncertainty of a feature
shared with another map.
In the steps listed in Figure 3 the criteria for new root

selection is based on finding minimizing the minimum fea-
ture uncertainty the map selected for improvement. This is
not the only sensible choice however. Depending on the de-
gree of internal correlation between features in a map, the
root shifting operation may increase the globally referenced
uncertainty of some features while decreasing others. This
motivates and alternative criteria — minimization of the me-
dian decrease in feature uncertainty. Out experiments show
that this is an equally valid approach. Indeed, the choice
of criteria is not crucial, the root shifting operation hastens
the global convergence of the estimates by utilizing “better”

1. Select a map p, to improve which is currently refer-
enced to the root entity i.

2. Create a set, N , containing the ID’s of all nearby maps
including p — the map to be improved.

3. For each q ∈ N , q 6= p create a set Cp,q of ID’s of
features that are present in both maps.

4. For the frame Fk attached to feature k ∈ Cp,q, calcu-
late its globally referenced location [q,·]TGk and uncer-
tainty [q,·]ΣGk using the location estimate of feature k
within map q and its current location estimate.

5. Pick the map q? and entity ID k? such that:

[q?, k?] = argmin{| [q,·]ΣGk |}

6. If q? = p and k? = i then stop. The map p cannot be
improved

7. Root Shift map p to k? from i — reference all entities
in map p to a coordinate frame attached to entity k?.

8. Replace TGp and Σ
G
p with

[q?,·]TGk? and [q?,·]ΣGk? respec-
tively.

Figure 3: The CTS map location estimation algorithm

estimates of features in other maps. However, once all maps
are referenced to shared features, the convergence properties
of the intra-map SLAM means that global convergence will
occur, albeit at a slower rate, without further root shifting.
Given an independent, consistent estimate of the location

of a submap p (with root i) with respect to the global frame,
G, we can produce a consistent global estimate of the loca-
tion of any feature j in map p by composition of map and
feature locations:

[p,·]TGj = TGp ⊕
[p,i]Tj (2)

This estimate is consistent because TGp and [p,i]Tj are inde-

pendent. [p,i]Tj is “internal” to the map and T
G
p is “external”

to the map.
The existence of a “shared” feature, s, between two maps

p and q allows the location estimate TGp , of map p, (with

root feature s), to be replaced with TGp+ where

TGp+ = TGq ⊕
[q,w]Ts (3)

and w, the root of map q is any feature id in map q. Equation
3 should be interpreted as finding an alternative expression
for the global location of a shared feature s using quantities
associated with map q instead of p. As map p has a root
at the shared feature s this expression is by definition an
alternative expression for the map location. The minimiza-
tion step of the algorithm is concerned with finding the best
choice of shared feature s.
In the limit each map becomes internally fully correlated

and the “min” operation will have no further effect so that
for any feature j

TGp ⊕
[p,·]Tj = TGq ⊕

[q,·]Tj (4)

where · is any choice of root. In other words no root-shifting
and replace operation can be found that improves the global
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Figure 4: A 1D depiction of the CTS map location estimation
procedure. Here maps 1 and 2 share feature 3. Initially
map 1 is referenced to (has as root) feature 1 and map 2 to
feature 6. The dotted pdf’s represent the global uncertainties
in the features derived from composition of local estimates
with the map location estimates TG1 ,T

G
2 . The CTS algorithm

deduces that map 2 can be improved by the use of the global
estimate of the shared feature derived from map 1. Map
2 is root shifted to feature 3 (the shared feature) and its
location estimate replaced by [1,·]TG3 (labelled as C1). The
resulting improvement in map 2 is illustrated by the resulting
reduction in [2,·]ΣG7 — the global uncertainty in feature 7.

uncertainty of feature j. For the linear case

ΣGp +
[p,·]Σj = Σ

G
q +

[q,·]Σj (5)

The maps are rooted on features and so as k →∞ then

[p,·]Σj =
[q,·]Σj = 0 (6)

and so

ΣGp = Σ
G
q (7)

which is true for all choices of p and q. Therefore the globally
referenced feature location uncertainty [·,·]ΣGj is the same
independent of choice of map (·). The value of this limiting
value is clearly given by the smallest possible uncertainty in
Map Location which is the uncertainty of the first feature
initialized in the first map [6].
To show that the global location estimates produced by

Equation 2 are consistent, we rely on the following three
properties: (1) local map state estimates [p,i]Tj (obtained
from the local SLAM solution [x̂mv (k)

T x̂m1 (k)
T . . . x̂mn (k)

T ]T )
are consistent, (2) global state estimates for Map Locations
TGm are consistent, and (3) the composition of these two
pieces of information — local state estimates within a map
and global information concerning the location of the map
— is consistent.

The consistency of local maps follows directly from the
properties of the Kalman filter which in the linear gaussian
case is the optimal Bayesian estimator. Clearly choosing
to use a possibly inconsistent estimator such as the EKF
in a nonlinear scenario will invalidate these claims. How-
ever the LG case allows statements to be made regarding
the underlying properties of the CTS algorithm. In a non-
linear implementation, the consistency of the LG case can
be matched to an arbitrary degree by using Monte-Carlo es-
timators in each sub-map. Regardless of local estimation
techniques, the CTS algorithm preserves its constant-time
property because it only ever operates on a bounded set of
features (the bound coming from our assumption regarding
a bounded spatial density of observable/mappable features).
Local maps have three differences from the full solution (a)

their base reference (root) is defined by one of the features
in the map, (b) relocation is periodically performed to re-
initialize the local map when the vehicle transitions back into
it, and (c) the base reference of the local map is periodically
shifted from one feature in the local map to another (Root
Shifting). None of these three differences result in a loss of
consistency for the local SLAM solution.
The global Map Location estimate TGm for a given map,

m, is consistent because it is created via the composition of
transformations derived from other local maps, and each lo-
cal map is independent of other local maps. The composition
of transformations from different local maps is a consistent
operation (for the linear case).
Finally, the composition of the local map state estimates

performed in Equation 2 is a consistent operation, because
TGm and

[m,i]Tj are independent of one another.
While the location estimates for different maps are corre-

lated with one another, and this correlation is not computed
by the algorithm, the method is none-the-less consistent be-
cause this correlation is never needed. We never fuse Map
Location estimates estimates, but rather, perform wholesale
replacement. The algorithm keeps track of the best estimate
for the global location of the root entity of a given map. A
guiding principle of this algorithm is that estimated quan-
tities that are “external” to a map never effect an internal
quantity.
When the vehicle transitions between maps the marginal

distribution of the vehicle is thrown away and the vehicle is
relocated from scratch into the next map. This loss of this
information does not affect absolute convergence but only
the rate of convergence. Because relocation is a consistent
operation [15], each partial solution retains all the properties
of a Kalman filter SLAM solution [6], and hence is provably
consistent and convergent.
In CTS each local map is referenced to a feature. Therefore

in the limit the uncertainty for each feature in a local map
converges to zero [6] — the relationship between features
within a map becomes perfectly known. This implies that,
in the limit, in any local map utilizing only a subset of Zk,
the relationship between features becomes perfectly known
as k →∞. In other words, for local maps in which the base
reference (root) is a feature in the local map, the covariance
of any feature tends to zero.
With this argument in hand we see by induction that in

the limit, the lower bound in global uncertainty achieved in
submap 1 is “inherited” by all other submaps. In addition,
it is the global uncertainty of the first feature mapped within
submap 1 that limits the lower bound of all other features



within it . This then is entirely analogous to the full covari-
ance solution’s limiting precision being driven by the first
observed feature.
There are two differences between what occurs in submap

1 in comparison to a full covariance solution that couples
estimates for all features in a single map: (a) submap 1 has
fewer features in it, and (b) not all of the observations of
features that are contained in submap 1 are processed in
the submap 1 solution. We believe that consideration (a),
the fact that submap 1 has fewer features in it, is what is
sacrificed in this approach. Even if some measurements are
ignored in submap 1 (vs. the full solution), in the limit as
k →∞, both maps will converge to a the same well-defined
lower bound. With enough additional time the submap 1 so-
lution can “catch up” to the full solution. However, the fact
that the full solution has more features enables in it cannot
be compensated for, and hence the full solution achieves a
slightly tighter bound. This in effect is the “cost” of com-
puting multiple partial solutions and subsequently combining
them, rather than computing one full solution. Our simula-
tions [18] have shown that this result is extremely small. The
next section presents results using the CTS algorithm with
real data in a truly challenging environment.

4 Experimental Results — Applica-

tion to an AUV

This section presents CTS SLAM results using data from the
2002 “GOATS”[8] experiment near the coast of Italy. The
experiment was one component of an ongoing program of
research into the to the search, detection and identification
of subsea mines (the mine counter measure (MCM) problem)
by autonomous underwater vehicles. The vehicle used was
an Odyssey III type vehicle shown in figure 5. The large
“prong” structure protruding from the front of the AUV is
the receiver array of MIT synthetic aperture sonar (SAS).
The SAS is a high power transmit/receive acoustic device
and was the primary payload of the MIT component of the
GOATS 2002 experiment.
The SAS is an extraordinary payload. It offers remark-

able detection capabilities but at the same time substan-
tially changes the vehicle’s hydro-dynamics and controlla-
bility. The “wet end” of the SAS system consists of two
rows of eight transducers and an acoustic source (a sub bot-
tom profiler) used to ensonify the sea bed. The two rows
of hydrophones allow after, beam forming, good azimuthal
angular resolution but only course resolution in elevation.

4.1 Obtaining a “Ground Truth”

A network of four small long baseline (LBL) acoustic
transponders were deployed in the work area and their sur-
face drop positions surveyed with a high precision differential
GPS system. In the shallow operating area the actual seabed
location of the transponders is likely to be a within a few (¡5)
meters of the drop coordinates. The Odyssey III class vehi-
cle “Caribou” shown in figure 5 was fitted with an acoustic
transceiver, which transmits to the main vehicle computer
the time elapsing between the transmission of an interroga-
tion pulse and detection of a reply pulse from each of the
four beacons. The measurements from this “absolute” sen-
sor and the north seeking gyro and DVL fitted to the vehicle

Figure 5: Caribou the MIT Department of Ocean Engineer-
ing’s AUV being launched in the GOATS 2002 Experiment
near Italy. The forked “prong” structure at the front of the
vehicle is a 16 element Synthetic Aperture Sonar (SAS).

we used by a ten-state navigator running on the vehicle dur-
ing the mission to execute the “Zamboni” pattern illustrated
in figure 6. Offline the estimates are smoothed by applica-
tion of Rauch Tung and Striebel forwards/backwards filter
to derive estimates of vehicle location at time k conditioned
on all measurements in the mission : x̂(k|ZN )∀k ≤ N where
ZN is the complete set of all measurements. This sequence
of estimates is used as the ground truth for the following
results.

4.2 SAS processing using Trajectory Sonar

Perception

Trajectory Sonar Perception [26] is a method of tracking lo-
cally curved objects using sonar. Over small regimes, it is
assumed that surfaces can be described by a radius of curva-
ture ρ and a center of curvature [xc yc zc]

T . A point has zero
radius of curvature, a plane has a radius of curvature of ±∞.
Assuming normal reflections from surfaces, the measurement
prediction equations for range r, azimuth θ, and elevation φ
are

r =
√

(xc − xr)2 + (yc − yr)2 + (zc − zr)2 − ρ (8)

θ = arctan(
yc

zc
) (9)

φ = arccos(
xc

√

x2c + y2c + z2c
). (10)

Since the state of the object is not known, these equations
cannot be used directly for tracking. Instead, using prior ob-
servations of targets, subsequent measurements are predicted
via a Taylor series expansion of substantial derivatives.





r1
θ1
φ1



 =





r0 +4t
Dr
Dt
+ h.o.t.

θ0 + h.o.t.

φ0 + h.o.t.



 . (11)
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Figure 6: The ground truth trajectory of the vehicle derived
by conditioning on all LBL and odometric mission measure-
ments.

The substantial derivative is the rate of change of a moving
observer’s measurements of a field. The geometric quantities
we wish to measure can be modelled as a field, and the robot
is clearly a moving observer, so this is appropriate. In vector,
notation, the substantial derivative is

Dr

Dt
=
∂r

∂t
+ ẋ · ∇r. (12)

The abbreviated Taylor series we use contains first order
terms for range, and zeroth order terms for the angles. In
general, the nth order range terms are equivalent to the
(n− 1)th order angular terms. The extent of the range Tay-
lor series was determined using two non-dimensional num-
bers. If the first, denoted #1, exceeds

1
4 , first order terms

are necessary. Likewise, if the second, denoted #2, exceeds
1
4 , second order terms are needed. These numbers determine
whether the first and second order terms contribute more
than a quarter wavelength to the total change in range —
we are assuming that a quarter wavelength is the smallest
measurable range change.

#1 =
V

λfs
(13)

#2 =
V 2

2rminλf2s
(14)

For the experiment, a representative robot velocity,V was
1m
s
, a representative wavelength,λ, was .1m, and the sam-

pling frequency, fs was 3Hz. This made #1 =
10
3 , which ex-

ceeds 1
4 , necessitating the first order range term. In fact, the

maximum velocity at which first order terms can be neglected
is λfs

4 = .075m
s
. Heave and sway velocities between .1m

s
and

.25m
s
were routinely observed, necessitating the modelling of

all three velocities.
Although ranges that were less than the ten meter water

depth were discarded, using an unrealistic minimum range
value rmin = 5m, the second non-dimensional number is
calculated as #2 = .1111. Because an unnecessarily small
rmin was chosen, this number is artificially high, yet it is

still less than 1
4 , demonstrating that only first order terms

are needed. The range substantial derivative is

Dr

Dt
= −u cos(θ) sin(φ)− v sin(θ) sin(φ)− w cos(φ) (15)

where u, v, and w are the robot’s surge, sway, and heave
velocities respectively. The x axis assumed to be along track,
the y axis is to port, and the z axis points up from the body.
A very simple tracking algorithm was used. Range, az-

imuth, and elevation were found by beamforming and thresh-
olding the signals from a 16 element tuning fork array. Mea-
surement trajectories were initialized from individual mea-
surements. Using the initial measurement, a prediction was
made of subsequent measurements. If, within 5 time steps, a
second measurement gated with the prediction, it was added
to the trajectory, and became the measurement that was
used for predictions. If a trajectory was not updated for 5
time steps, it was terminated.
Running in a lag behind the trajectory augmenter was a

second filter that checked for outliers and occasions when the
early tracker mistakenly switched targets. The last seven
measurements were analyzed. The first three and the last
three were used to estimate the measurement trajectory (ie
a reference range and the range substantial derivative). If,
using a Mahalanobis test, the two pieces were determined to
be different, the trajectory was split. If the two pieces could
not be said to be different, but the fourth measurement could
not be gated with either, it was discarded as an outlier. This
was the entire algorithm.

4.3 Application of CTS

The experimental results presented here were generated post-
mission using manual data association. The SAS measure-
ment trajectories (the range components of which are shown
in Figure 7) were projected into cartesian space from the
smoothed vehicle trajectory shown in Figure 6. The angular
variance of the SAS measurement set made automatic data
association and measurement clustering (such as k-means)
unreliable and so the clustering was performed manually.
This labelled data set was then piped into the CTS algo-
rithm for processing. The relevance of this human interven-
tion to the results presented here should be clearly stated
and understood. Clearly for true autonomy (ie deployment)
manual data association is out of the question. However, the
aim of this section of the paper is to 1) describe an ongoing
programme of work to achieve constant-time subsea SLAM,
2) compare CTS performance/consistency viz a viz the full
covariance solution and 3) to highlight outstanding issues
— of which automatic data association is one. Importantly
there is nothing about the CTS algorithm that makes data
association harder than when employing the full covariance
approach.
The DVL (doppler velocity log) data was used as an dead

reckoning input to the filter. The onboard compass, incli-
nometers and depth sensors were assumed to produce unbi-
ased measurements of orientation and depth and allowed the
estimated vehicle state to be reduced to x and y coordinates
alone following roll pitch and yaw compensation. The errors
on SAS measurements (in cartesian coordinates relative to
the vehicle) were modelled as a gaussian process with 5 m
standard deviation in x and y coordinates.
Figure 8 shows the estimated trajectory of the vehicle us-

ing full covariance and CTS methods. Figure 9 is a zoomed
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Figure 7: SAS range measurement trajectories. The SAS
processing algorithm employed here detects “measurement
trajectories” from typical raw amplitude data (top) from the
16 hydrophones. The fundamental idea is that continuous,
smooth (but unknown) motion of the vehicle will cause re-
turns from reflective artifacts to form characteristic arcs in
the raw data. Beam forming across the hydrophone array
allows the estimation of elevation and azimuthal angles to
these artifacts contacts. The first two strong returns on the
left of the lower figure are direct reflections from sea bed and
surface. The second return is a multiple refection between
these boundaries and is so a measurement of the water col-
umn height — the undulations corresponding to the rise and
fall of the ocean floor over the mission. The broad stripe
across the raw data plot (top) is interference from an acous-
tic modem.

view of the globally referenced estimates of two mapped fea-
tures. If required, a single estimate of feature location con-
ditioned on all measurements can be created by employing
the map joining technique presented in [28].
Figure 10 is perhaps the most important figure. It uses the

ground truth derived from the long base line measurements
to compare the performance, in terms of estimated vehicle
location, of the CTS and full covariance solutions. The CTS
algorithm is always consistent — its covariance never drops
below that of the optimal full covariance result. The solid
red lines indicate the theoretically lowest possible vehicle co-
variance bound for either algorithm. The CTS algorithm was
developed after the GOATS 2002 mission and so the vehicle
trajectory is not ideal to illustrate the convergence proper-
ties of the algorithm [18] — a repetition of the pattern would
be preferable. Nevertheless the bounding of vehicle uncer-
tainty is clearly visible and unlike the full covariance solution
the constant-time nature of CTS means it can be achieved
independently the extent of the mapped area.
Figure 11 illustrates the evolution of globally referenced

Figure 8: The result of applying the CTS algorithm to the
SAS derived data. The mission begins at (700,100) and the
AUV executes the “Zamboni” mission of Figure 6. The cir-
cles define the five maps as a function of vehicle location. The
green trajectory is that derived using the full covariance so-
lution whereas the multi-colored track is the CTS estimated
vehicle trajectory. The magenta circles are full covariance
error bounds.

Figure 9: A x-y plane close up of features 19 and 4 as esti-
mated by CTS maps 1 and 2 and the full covariance solution.
The green squares are the full covariance estimates with ma-
genta 1σ bounds. The dark and light blue stars are the
estimates from CTS maps 1 and 2 respectively with associ-
ated error bounds. The red crosses are the human selected
true locations of the reflecting artifacts. Note that the full
covariance solutions has slightly “tighter” error bounds.
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Figure 10: A ground truth comparison vehicle x-coordinate
estimates between CTS and the full covariance solution. The
error between ground truth and the full solution is plotted
in green and for the CTS algorithm and in black. The 1
sigma bound covariances are magenta and blue for the full
covariance and CTS solutions respectively. Note how when
initially both solutions are in map 1 (the full solution is al-
ways in map 1) the two estimates are identical. However
when returning to map 1 the CTS solution is as expected
slightly less certain (If repeated loops were made this dif-
ference would decrease towards zero). Crucially the c CTS
solution is conservative, it never produces and estimate with
lower uncertainty than the gold standard but will converge
to it.

feature estimates and how they compare to those of the full
covariance solution as discussed in section 3.3. Although the
feature uncertainties do decrease in CTS they do not decrease
at the same rate as those in the full solution. Like the full
solution, the CTS algorithm is consistent, convergent but
what it gains in being constant time it gives up in terms of
rate of convergence. If there is no “free lunch” then perhaps
this can be considered the “price of lunch”.

5 Conclusions and Future Work

We have introduced a new constant-time, consistent and con-
vergent SLAM algorithm and successfully applied it to data
collected from an AUV carrying a synthetic aperture sonar
(SAS). The SAS data was processed using a novel continuum
based technique which used platform motion to detect re-
flecting artifacts on the sea bed. The performance of the CTS
algorithm was commensurate with that of the “gold stan-
dard” full covariance solution yet operated in constant time.
Several key issues remain to be addressed, however. On a
theoretical front, we seek an analytical, closed-form expres-
sion for the differing rates of convergence between the CTS
and full covariance solutions in the presence of non zero pro-
cess noise. Secondly, it is probable that a graph-theoretical
perspective would be productive in determining the best way
in which to root shift the multiple maps of the CTS algo-
rithm. Although convergence occurs regardless, there will
be one particular choice of submap origins that produces,
with regard to a suitable metric, the best overall global es-
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Figure 11: Comparison of feature location estimates between
full and CTS solutions. The left hand plots show the differ-
ence in the globally referenced x-direction 1 σ contour on
feature estimates between the full covariance and CTS solu-
tions. Note how in map 1 the differences increase when in
CTS processing the vehicle moves into new maps. This is
because every observation in the “gold standard algorithm”
improves estimates of every feature — the cause its quadratic
scaling in computation — whereas this is not the case for
CTS. The right hand plots show the globally referenced fea-
ture x-direction 1 σ contours of the CTS algorithm alone —
which, as is expected of any SLAM algorithm, decrease.

timate of features. We hypothesize that this is achievable in
linear time and need not resort to the quadratic-time fusion
of submaps. On a practical front, the upcoming GOATS
2004, experiment will provide another opportunity to gather
more SAS and AUV data with an aim to moving closer to a
realtime deployment of SLAM on a AUV. In the meantime
further refinement will be made to SAS target detection and
automatic data association and the CTS algorithm applied
to large land based data sets such using non-linear local map
estimation.

A Transformation Notation and

Operations

The notation is this paper is summarized as:

[mapid,rootid]Variablew.r.t. idvariable id

Using this notation we can write the transformation from
frame Fj to Fk in map m with root entity i as [m,i]T

j
k . We

simplify notation by dropping the right superscript when de-
scribing a transformation with respect to the map root:

[m,i]T ij →
[m,i]Tj

The term [m,i]Tj is the pose of an entity j in the local frame
of the mth map (which has its Map Root as entity i).
We can manipulate location vectors using the binary trans-

formation operator ⊕ and the unary operator ª where

T ij = ªT
j
i

T ik = T ij ⊕ T
j
k

Taking two entities j and k from map m, we can express the



transformation from j to k as

[m,i]T
j
k =

[m,i]T
j
i ⊕

[m,i]T ik

= ª[m,i]T ij ⊕
[m,i]T ik

= ª[m,i]Tj ⊕
[m,i]Tk (16)

where the last step uses the simplification in notation de-
scribed above.
The root shifting operation is is simply an extension of

Equation 16 to act on all entities in the map:

[m,j]T1:n = Si→j(
[m,i]T1:n) (17)

=







ª[m,i]Tj ⊕
[m,i]T1

...
ª[m,i]Tj ⊕

[m,i]Tn






(18)
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