Result Reuse in Design Space Exploration:

A Study in System Support for Interactive Parallel Computing

*

Siu-Man Yau* Kostadin Damevski!
Vijay Karamcheti? Steven G. Parker! Denis Zorin*
*Courant Institute of Mathematical Sciences, New York University
" Department of Computer Science, University of Utah

Abstract

This paper presents a system supporting reuse
of simulation results in multi-experiment compu-
tational studies involving independent simulations
and explores the benefits of such reuse. Using a
SCIRun-based defibrillator device simulation code
(DefibSim) and the SimX system for computational
studies, this paper demonstrates how aggressive
reuse between and within computational studies
can enable interactive rates for such studies on
a moderate-sized 128-node processor cluster; a
brute-force approach to the problem would require
two thousand nodes or more on a massively paral-
lel machine for similar performance. Key to realiz-
ing these performance improvements is exploiting
optimization opportunities that present themselves
at the level of the overall workflow of the study
as opposed to focusing on individual simulations.
Such global optimization approaches are likely to
become increasingly important with the shift to-
wards interactive and universal parallel comput-

ing.

1 Background

The growing availability of low-cost, univer-
sal parallel computing resources, including com-
modity processors with 4-16 cores, GPUs with
support for general-purpose computing and het-
erogeneous multicore chips, enables small groups
of researchers or even individual researchers to
have dedicated access to large amounts of compute
power. This availability is expected to change us-
age models for parallel computing, shifting the tra-
ditional emphasis on batch calculations to interac-
tive applications. Such change requires reconsid-
ering how parallel software systems are structured

*Supported by a collaborative NSF grant comprising CSR-
0615225, CSR-0614770, and CSR-0615194.

and how resources have to be managed for new in-
teractive workflows.

Our ongoing work with the SimX computa-
tional study system [27] provides a representative
platform in which to investigate these issues. Rec-
ognizing that computer simulation has become an
integral part of the scientific method, SimX sup-
ports a scientific exploration process that manifests
itself as computational studies built out of mul-
tiple computational experiments corresponding to
individual runs of simulation software. Examples
of such studies range from exploration of design
spaces in engineering to molecular simulations for
drug design.

As an example of the different considerations
that come into play, the performance criterion driv-
ing the design of the SimX system is the need
to provide meaningful results to the researcher at
a timescale that permits the researcher to interac-
tively drive the exploration process in studies in-
volving tens of thousands of experiments. Satisfy-
ing this requirement requires managing resources
at the level of the overall computational study in-
stead of individual experiments. Unfortunately,
with the few exceptions listed in Section 5, prior
research has not examined how one might improve
the performance of entire studies under high levels
of parallelism.

This paper describes SimX support for study-
level resource management using the specific con-
text of Design Space Exploration (DSE) compu-
tational studies. DSEs, used in various disci-
plines such as automotive design [20], mechani-
cal engineering [25], electrical engineering [11],
and medicine [19], rely on multiple executions of a
simulation code using different input parameters to
discover a region of interest. Each execution would
simulate, for example, the dynamics of a car crash
under variously-shaped body frames, the deforma-
tion and tip force of an bimorph actuator built us-
ing piezoelectric materials of different shapes and

material properties, the performance of a micro-
processor under different designs, or the current
delivered to the heart by variously-configured de-
fibrillators. The objective of the study is to identify
the "best’ of these simulations, as identified by re-
strictions on the ranges of input parameters and/or
output performance metrics. The interactivity re-
quirements come about because the researcher usu-
ally starts off with only a fuzzy set of requirements,
which get refined as the study unfolds.

The common theme underlying SimX support
for DSE studies is the aggressive reuse of infor-
mation provided by previous simulations to guide
the current action of the system. SimX exploits
reusable information across the entire spectrum of
its response to a researcher’s changing definition
of the study parameters — from deciding how best
to explore a portion of the design space all the
way down to the execution of a single simulation.
This information helps in a number of different
ways, from guiding the search to allow exploration
of design spaces whose size is otherwise too high
for the computational resources assigned to handle
the problem, to reusing internal simulation state to
jump start the execution of a new simulation. An
interesting aspect of SimX’s reuse support is the
fact that it trades off parallelism for speed: nom-
inally, the simulations making up a DSE are in-
dependent of each other; yet, introducing depen-
dencies amongst them improves the overall perfor-
mance of the study.

We present the realization of these mechanisms
in a SCIRun-based implementation of the SimX
system [28], and demonstrate how, by exploiting
re-use, one can achieve response times on the or-
der of tens of seconds under various scenarios in
an interactive defibrillator computational study us-
ing only a 128-processor cluster (with leftover ca-
pacity); a brute-force approach would require two
thousand nodes or more on a massively parallel
machine for similar performance.

The remainder of this paper is organized as fol-
lows. Section 2 describes how design space explo-
ration is supported by our system and presents the
defibrillator design application [19], which will
serve as a running example throughout the paper. A
taxonomy of different types of reuse and their im-
plementation are presented in Section 3. In Section
4, we evaluate the effectiveness of various types of
reuse using the defibrillator design study running
on the SimX system. Finally, we discuss related
work and conclude in Sections 5 and 6.

2 Design Space Exploration with
SimX/SCIRun

The design space exploration platform de-
scribed in this paper combines the SimX System
Software for Interactive Multi-Experiment
Computational Studies [27], with the SCIRun
problem-solving environment [18]. SimX is
realized as a set of SCIRun components, which
augments the standard set and together supports
design space exploration computational stud-
ies, discussed in additional detail below. The
SimX/SCIRun system is designed to enable
interactive computational studies on small- and
medium-sized (32 to 128 nodes) clusters.

Defibrillator design. We use a defibrillator de-
sign computational study as our primary test ex-
ample. This study is a typical design space explo-
ration (DSE) problem common in several engineer-
ing applications. An individual computational ex-
periment [19, 13] models the application of defib-
rillator stimuli and resulting propagation of electric
current across a human torso.

The goal of the study is to find positions of two
defibrillator electrodes on the surface of the torso
and a voltage difference between electrodes, which
together form a five-dimensional design space that
balances several conflicting performance metrics:

1. minimize percentage of heart tissue that expe-
riences current flow above a damage thresh-
old;

2. maximize the percentage of heart tissue for
which the electric current is above the activa-
tion threshold needed for defibrillation; and

3. maximize the uniformity of the potential gra-
dient in the heart tissues, defined as the ratio
of the maximum gradient found in the heart to
the average gradient in the heart.

We refer to the three-dimensional space
spanned by these performance metrics as the per-
formance space. Performance metrics can be pa-
rameterized to represent slightly different prob-
lems. E.g., in order to model defibrillation for a pa-
tient with fat tissues surrounding a heart, the acti-
vation and damage thresholds can be set to a higher
level, making it more difficult to activate and dam-
age the heart tissues.

The simulation code receives as its input the
electrode positions and voltages, and solves a 3D
Poisson equation solved to obtain the potential dis-
tribution in the body; the potential gradient is used
to obtain the electric current. Then the perfor-
mance evaluation code takes the result of the sim-
ulation code, and uses the performance metric pa-

rameters to find the performance metrics for that
experiment.

Typically, multi-objective optimization prob-
lems of this type [15, 25] aim to identify the set
of input parameters resulting in Pareto-optimal de-
signs (Pareto frontier) i.e. those for which improv-
ing one performance metric can only be achieved at
the expense of another, e.g., a defibrillator configu-
ration is Pareto-optimal if activation cannot be im-
proved while holding uniformity and damage level
fixed, and vice-versa. The user applies additional,
often imprecisely defined, criteria to pick a final
design on or close to the Pareto frontier. One crite-
rion the user may use can be the admissible region
- a sub-region in the performance space where any
designs that achieve performance metric that fall
into that space are disregarded, e.g., defibrillator
settings that activate less than 5% of the heart, no
matter how well they perform in other performance
metric, are automatically discarded.

Interactive design space exploration. The
SimX/SCIRun system provides an interactive en-
vironment for exploring the design space and iden-
tifying relevant Pareto-optimal configurations.

In our model of interactive design space explo-
ration, the user, using the partial results presented
by the system, interactively adjusts how the prob-
lem is specified (see Figure 2 for an example work-
flow). Specifically, the user can adjust the follow-
ing parameters: (1) performance metric parame-
ters (e.g., activation threshold and damage thresh-
old); (2) admissible regions for performance met-
ric (e.g., minimal acceptable percentage of tissue
activated); (3) region of exploration in the design
space (e.g., a 2D subset of the design space where
the position of one of the electrodes and the shock
voltage are fixed, and the area on the torso where
the other electrode can be placed is bounded).

We regard each change of parameters by the
user as a new study, i.e., each study is defined by
aregion in design space, a set of performance met-
ric parameters, and a region in performance space
(the admissible region). For each study, the sys-
tem computes and visualizes the Pareto frontier,
reusing the computation from previous studies to
the maximal extent possible.

SimX/SciRun system overview. The overall
structure of the SimX/SCIRun system (Figure 2)
at the process level includes a manager process,
multiple worker processes and a fixed number of
Spatially-Indexed Shared Object Layer (SISOL)
servers, which provide a shared state repository
used by the system. The manager and worker pro-
cesses are assembled from components provided
by SCIRun and SimX. SISOL servers are entirely

application independent.

To build an application within the
SimX/SCIRun framework, the user needs to
design a visualization/user interaction module,
hosted in the manager, a simulation module, hosted
in the workers, and optionally a sampler module,
also hosted in the manager. The sampler module is
responsible for deciding, based on the current set
of results, which design-space point will be eval-
uated next. Unlike visualization and simulation
modules, this module is less application-specific
and the same module can be used for a broad range
of problems. SimX currently provides two sampler
modules: a simple parameter sweep sampler and
an adaptive sampler, described in additional detail
in Section 3.2.

The SCIRun problem solving environment pro-
vides a variety of high-level components facili-
tating implementation of simulation and visual-
ization/user interaction (UI) modules, the latter at
both the level of individual simulations as well as
the entire design space exploration (Some exam-
ples of the UI elements for the defibrillator design
example can be seen in Figure 2.) SimX plugs in
naturally into the SCIRun architecture by exposing
its interfaces in the form of SCIRun modules that
can be directly hooked up as required with the sim-
ulation and UI modules.

During design space exploration, once the user
specifies a study parameter, the SimX manager ob-
tains from the sampler a set of design space points
to explore and distributes them to workers along
with information on performance metric parame-
ter settings. Worker processes execute the simula-
tions, optionally retrieving state about previously
run simulations from the SISOL servers to support
the reuse optimizations described in Section 3, and
send the performance metrics evaluated back to the
manager. Upon receiving the performance met-
rics, the manager registers the performance met-
rics with the sampler and obtains additional de-
sign space points to explore. The communication
between manager and worker processes is accom-
plished through asynchronous interfaces; a worker
can overlap invocation of a new simulation with
communication of the prior simulation’s results to
the manager.

From an application programmer point of
view, SimX functionality is exposed via a set
of sampler and SISOL interfaces. User-supplied
samplers need to implement the sampler inter-
face, so that it can be called by the man-
ager, the most important functions of which are
getNextPointToRun, registerResults,
and getEvaluated. The latter function re-
trieves design space points for which simulations

Figure 1. Interactive DSE: To begin, the user selects an area in front of the torso,
sets the back electrode’s position, and sets the shock voltage (far left). As the initial
Pareto-optimal placements are discovered (center left, zoomed-in view), the user in-
creases the activation threshold voltage, and the system responds by displaying the
new Pareto optimal points (center right). The user can also select an entirely different
area to explore (far right).

design space points,
perfomance metric

) params perf. measure
viz/UI ——— o :
manager gg
sampler module C— g 8 m
performance
M measure values K
anager T SISOL comm.

simulation results
for vizualization

SISOL SISOL
server server

data for reuse I lsimulation results,

other reuse data

SISOL SISOL
server server

Figure 2. Overall SCIRun/SimX system structure; processes are shown in gray, SimX
components in orange, application-specific components in blue.

were already performed with associated perfor-
mance metrics.

SISOL gets its name from the fact that ob-
jects are named and indexed using spatial coordi-
nates, a natural fit to the design space and perfor-
mance metric elements that typically get stored in
the layer. The SISOL interface, available to both
the application-independent manager and worker
modules as well as the application-specific sam-
pler and simulation modules, supports the opera-
tions Insert/Remove forinserting/removing an
object at a given location in the spatial database,
QueryClosest for returning a list of object han-
dles associated with nearby points in design space,
and associated functions for retrieving and storing
object data. Table 1 shows the high-level SISOL
APIL

These SISOL interfaces are currently imple-
mented using a variable number of stand-alone
data servers and a directory server; the architec-
ture can be additionally scaled by partitioning the
object namespace. The data servers store the actual
objects, all in volatile memory, while the directory
server maintains information about which spatial

coordinate is stored on which data server. After an
individual study is completed results are not dis-
carded to enable inter-study reuse of the kind de-
scribed in Section 3.2.

3 Reuse Opportunities
Space Exploration

in Design

In our initial experiments with the defibrilla-
tor design study, we quickly found that the de-
fault parameter-sweep sampler would yield study
response times that were far from interactive, often
requiring the user to wait tens of minutes or longer
before receiving feedback that could drive refine-
ment of the performance metrics. This led to an ex-
tended period of iterative experimentation, where
we investigated several different approaches for
bringing the study response times down to accept-
able interactive rates (tens of seconds or lower).
This section summarizes what we discovered to be
the most effective approaches, all of which share
the same underlying key idea: that of maximally
reusing information contained in previous simula-
tion runs to substantially improve the study perfor-
mance moving forward.

SIGNATURE

FuUNCTION

int CreateSet (int setID,
double xweights,

int typelD,

int arity, int capacity)

Create object set of arity dimensions
to store objects of type typeID. The
weights array specifies a weighted
Euclidean distance metric.

int RegisterSet (int setID, void*x objSet)

Registers client as participant; retrieves
object set metadata in objSet.

void UnregisterSet (void* objSet)

Unregisters client.

void Insert (voidx objSet,

void Remove (voidx objSet, doublex coords)

doublex coords, voidx obj)

Insert/remove an object into/from the
set.

voidx StartRead(voidx objSet,
void* StartWrite (void* objSet,
void EndRead (void* obijSet,
void EndWrite (voidx objSet,

double* coords)
doublex coords)

doublex coords, voidx obj)
doublex coords, voidx obj)

Start/end a read/write operation on an
object.

void QueryClosest (void* objSet,

numToLookup, int* numRetrieved, doublexx* re

double* coords,

int Query for up to numToLookup

trCoords) closest neighbors

Table 1. Interface of the spatially-indexed shared object space layer (SISOL).

In general, the reuse of previous results benefits
interactive design space exploration in two ways:
by reducing the number of simulations that have to
be performed for a given study and by reducing the
work needed for a given simulation. We start by
listing the broad types of reuse opportunities that
were found to be most beneficial, and then describe
the SimX/SCIRun system support that was needed
to derive this benefit.

3.1 Types of Reuse

Intra-study reuse in the sampler module. In
the course of a single study, simulation results can
be used to guide design space sampling strategies,
often yielding the same overall results while ex-
ploring only a tiny fraction of the overall design
space. This observation manifests itself in the de-
sign of a smarter sampler module in SimX, the Ac-
tive Sampler (an early version of which was de-
scribed in [27]), which first performs a coarse pa-
rameter sweep over the region of design space to be
explored, and uses the performance metric of those
points to construct a coarse approximation of the
Pareto frontier. It then refines the grid to explore
the neighbors of those points, eliminating “unim-
portant” parts of the design space early in the study.
Note that the Active Sampler artificially intro-
duces dependencies amongst the simulations ex-
plored in the study, by not issuing design space
points corresponding to a finer resolution sweep
until it receives results for the coarser sweep. This
reduction in parallelism is justified by an overall
benefit in study response times.
Inter-study reuse in the sampler module. If a
user performs an action that causes the system to
switch from exploring one study to another study
(e.g., changes a performance measure parameter

such as activation threshold), we can use the results
from the first study to aid the second study. For ex-
ample, the system can take the approximation of
the Pareto frontier obtained in the first study to act
as the initial Pareto frontier approximation for the
second, reducing the total number of experiments
needed. This reuse, beneficial in situations where
the second study is a refinement of the first (as is
typical for design space exploration), has the effect
of replacing part or all of the coarse-grained Ac-
tive Sampler exploration for the second study with
results from the first study.

Inter-study result reuse in the manager mod-
ule: performance metric reuse. Recall from Sec-
tion 2 that the user inputs during design space
exploration can consist either of changes in per-
formance metric parameters, establishing new ad-
missible performance space regions, or request-
ing exploration of a different design space region.
In the latter two scenarios, it is possible that the
same simulation be re-issued with the same per-
formance metric parameters for a different study.
When that happens, the manager module can sim-
ply look up the performance metrics from the list
of previously-completed experiments, and thus cut
down the number of simulations that need to be al-
located to Worker processes.

Inter-study result reuse in the simulation mod-
ules: simulation result reuse. If the user changes
only the performance metric parameters, it is pos-
sible that the same simulation be re-issued with
different performance metric parameters for a dif-
ferent study. In those cases the worker process
can lookup the simulation result from a list of
previously-completed simulations instead of run-
ning the simulation code, and re-compute only the
performance metrics. In the specific example of the
defibrillator study, this corresponds to reusing the

potential distribution values obtained as a solution
to the 3D Poisson equation.

Intermediate result reuse in the simulation
module. Even when different simulations are is-
sued with different performance metric parameters,
there are still reuse opportunities. This type of
reuse heavily depends on the internals of the simu-
lator code, and although applicable to other numer-
ical simulations, is the least generic. The defibril-
lation simulation used in our experiments involves
solving three linear systems, each corresponding
to setting the boundary condition of the front elec-
trode to the three surface mesh nodes nearest to it.
Since many simulations set boundary conditions to
the same mesh nodes, we store the result of each in-
vocation of the solver, and the simulation code can
looks up the solutions to skip solving those systems
that had previously been solved.

Preconditioner reuse in the simulation module.
If the solution of the exact linear system is not
available, reuse is still possible. Each system is
solved using an iterative solver with a precondi-
tioner, a compact approximation to the matrix in-
verse. The result of a simulation from a nearby
point in design space can be used to initialize the it-
erative solver, decreasing the number of iterations.
If for different points in design space the system
matrices are similar (e.g. nearby electrode place-
ment on torso) or identical (same placement, but
different voltage distributions), we can use a pre-
viously computed preconditioner, assuming it was
saved along with the results.

As may be apparent, the levels of reuse range
from generic to specific, with performance met-
ric and simulation result reuse in the Worker pro-
cess being most generic: any interactive multi-
experiment study fitting into the formulation de-
scribed in Section 2 can take advantage of them.
Reuse in the sampler is specific to Pareto optimiza-
tion DSEs, while the intermediate result reuse and
preconditioner reuse require the internal simulator
code to store and retrieve information specific to
the application. As a result, the system support for
reuse is also many-layered, as we describe below.

We note that although the specifics may dif-
fer somewhat, the overall notion of result reuse is
broadly applicable beyond our context of compu-
tational studies. Any parallel workload, which in-
volves the repeated execution of similar kinds of
computation can benefit from a similar approach,
where one focuses on the “delta” of computation
that needs to be performed beyond what already
exists as opposed to computing the result from
scratch. Examples of domains where this strat-
egy can be applied include physics simulations in

3D games, or periodic analytics over incrementally
changing data sets in the financial and web con-
texts.

3.2 System Support for Exploiting
Reuse

SimX exploits the different kinds of reuse by

making heavy use of the sampler and SISOL in-
terfaces introduced in Section 2. SISOL stores a
history of the ongoing design space exploration; in-
terestingly, this information is pure overhead but is
justified by its use for reducing overall study run
time.
Reuse support in the Manager process. The
SimX Manager process incorporates support for
inter- and intra-study sampler reuse, as well as per-
formance metric reuse.

Each time a new study is created, the manager
process creates a new sampler object to perform
it. Old samplers are not deleted, as long as there is
sufficient memory to store them. Each Active Sam-
pler keeps an approximation of the Pareto frontier
on the experiment results it has received, and re-
fines the frontier as the study is successively re-
fined. The frontier approximation is stored entirely
in the manager process, as it is typically relatively
compact.

Intra-study reuse is exploited in the design of
the Active Sampler, which uses Pareto frontier
approximations from coarse parameter sweeps to
guide exploration over finer resolutions of the de-
sign space, thereby reducing the number of simu-
lations that need to be run.

For inter-study reuse in the sampler, for each
new study, the manager looks for a previously-
performed study that is "closest’ to the new one (the
maximum amount of overlap in region explored,
or the minimum amount of change in performance
metric parameter or fixed design space dimension
value) and uses that study’s Pareto frontier approx-
imation to initialize the newly-created sampler. To
accommodate this usage, the SimX sampler inter-
face was generalized to support application-neutral
specifications of design spaces and performance
metrics associated with a sampler, and to enable
proximity calculations between samplers. Note
that the original sampler doesn’t need to have com-
pleted its study - to be useful, all it needs to pro-
vide is a Pareto frontier approximation that is close
enough to that of the new study.

To enable performance metric reuse, the man-
ager process keeps a cache of all simulations
performed and their results, i.e., a mapping of
the <design space point, performance metric
parameter> tuple to parameter space point. For

most realistic studies, this mapping is small enough
to be maintained in memory on the manager pro-
cess. When the sampler issues an experiment, the
manager process looks up this mapping first to see
if a result is already available.

Reuse support in the Worker process. Simula-
tion result reuse requires worker processes to store
their simulation results into SISOL, and make them
available for use by subsequent simulation worker
processes. Spatial indexing used in SISOL is a nat-
ural fit for the object store: simulation workers use
the design space point’s coordinate to store their
simulation results and check if the results for this
design space points were already computed. Al-
though not exercised by the results presented in this
paper, SimX’s SISOL layer supports smart replace-
ment of these results when object store space is at a
premium. Information about the current region of
interest is used to associate a dynamically changing
priority with each object (as a function of its coor-
dinates): objects farther away from these regions
of interest are earlier candidates for replacement.

The system support for intermediate result
reuse is similar to that of the simulation result
reuse; SimX/SCIRun uses the same spatially in-
dexed storage for solutions of the intermediate lin-
ear systems, and other data (in our example, pre-
conditioners).

The modular nature of SimX/SCIRun, and the
generic properties of different types of reuse allows
these types of reuse to be automatically managed
by SimX/SCIRun. Intermediate result reuse can be
applied with minimal programming effort: the user
needs to provide their own code that makes use
of the intermediate result, using the SimX/SCIRun
SISOL interfaces for saving and retrieving these re-
sults. Again, our implementation of this support
envisages a more general use: a facility is provided
for individual Worker processes to filter out por-
tions of the data, good approximations to which are
already known to be present within SISOL.

4 Evaluation

To quantify the effects of various types of
reuse on a real-life multi-experiment computa-
tional study, we used the SimX/SCIRun system to
conduct the defibrillator design study described in
Section 2. For each of the experiments, we ran
the system on a homogeneous IBM eServer clus-
ter comprising 256 nodes, each with two 64-bit 2.2
GHz PowerPC 970 processors and 2 GB RAM, in-
terconnected via a Myrinet network. The setup in-
volved a single manager process, one SISOL direc-
tory server and four SISOL data server processes,
and varying numbers of simulation worker pro-

cesses, each hosted on a separate physical proces-
SOr.

4.1 Scenarios

To measure the behavior of the system in the
face of user interaction, we emulated user behavior
using the notion of runs. A run consists of two
studies, a ’before’ study preceding a user action
and an ’after’ study following the action. When we
conduct a run, we run the ’before’ study to a pre-
specified level of completion, switch to the second
study (simulating a user’s key-click), and measure
the amount of time, number of simulations issued,
and number of solves performed for the second
study to complete. We use the time from key-click
to obtaining a fixed accuracy in the computed re-
sults (e.g. Pareto frontier approximation) as a mea-
sure of the responsiveness of the SimX/SCIRun
system.

Each usage interaction scenario additionally in-
cludes two types of experiments. In the first type,
we fix the ’before’ and ’after’ studies, but vary the
level of completion that the *before’ study achieves
before triggering the simulated user action. These
experiments allow us to study the sensitivity of
each type of reuse to the amount of accumulated
simulation results. In the second type of experi-
ments, we keep the same ’after’ study, but vary the
"before study’ so that the distance between the two
studies is changing. The distance measure depends
on the scenario: it could be the amount of change
in performance metric parameter values, percent-
age overlap of the explored area, or the amount of
change in value of one of the fixed design space
dimensions. These experiments allows us to study
the sensitivity of each type of reuse to variation in
the study objectives.

To ensure realistic user behavior, we designed
four usage scenarios - collections of related runs
in which the user tries to a accomplish a task. Each
scenario demonstrates the benefits of one or more
types of reuse:

Scenario A: Setting the activation threshold
voltage. In this scenario, the user fixes the po-
sition of the back electrode, the voltage, and de-
fines the area where the front electrode can be
placed. As his action, the user changes the activa-
tion voltage (in order to model, for example, a pa-
tient with heart tissues that are difficult-to-activate)
(Figure 2). Simulation results can be reused in this
case, since only the performance metric parameter
is changed across the studies. One expects the total
number of simulations run by the worker processes
to decrease as the level of completion of the ’be-
fore’ study increases, or the distance between the

Figure 3. Pareto optimal points in the "after’ studies of Scenario B (left) and C (right).

’before’ and ’after’ studies decreases.

Scenario B: Moving the explored region. In this
scenario, the user fixes the position of the back
electrode and the voltage. The user takes the action
of sliding the area for the front electrode placement
downward (See Figure 3). This action enables the
reuse of performance metrics in the area of over-
lap between the two regions, since, in those areas,
the same experiments with the same simulation pa-
rameters and the same performance metrics would
have been performed for the *before’ study. The
number of simulations sent to the worker processes
should decrease as the level of completion of the
"before’ study increases, or the distance between
the before’ and ’after’ studies decreases.

Scenario C: Moving the back electrode. In this
scenario, the user fixes the voltage and the place-
ment area for the front electrode. As the user ac-
tion, the user moves the back electrode toward the
right shoulder. (Figure 3). Since the ’after’ study
is expected to have a similarly-shaped Pareto fron-
tier as the "before’ study, using the *before’ study’s
frontier, even a partially-completed one, can re-
duce the total number of experiment required to do
the ’after’ study. As a result, the number of simu-
lations issued should decrease as the level of com-
pletion of the ’before’ study increases, or as the
distance between the two studies decreases.

Scenario D: Increasing the shock voltage. In this
scenario, the user wishes to get a coarse idea of
how the Pareto-optimal placement of the front elec-
trode is affected by the shock voltage. He fixes the
back electrode’s coordinates, selects a voltage set-
ting, and performs a parameter sweep of the front
electrode placement across the entire area in front
of the torso. The user changes the shock volt-
age and performs the sweep again. Since during
the ’after’ study the preconditioners of the "before’
study will already have been computed, the simu-
lation workers in the ’after’ study can reuse these
preconditioner results. This reuse is expected to
decrease the run time of solves in the ’after’ study.

Change in | Number of | Response
Activation required Time
Threshold | simulations (sec)
sweep 16385 1633
cold 1665 213.6
57% 1381 141.9
43% 1158 126.1
30% 423 44.69
20% 444 40.89
11% 260 27.32
3% 248 23.30

Table 2. Response time of Scenario A,
as a function of the amount of change
in performance metric parameter.

4.2 Effectiveness of Reuse

In this section, we investigate the sensitivity of
reuse to the amount of performance history and the
change in study parameters.

Table 2 shows the response time of the system
in Scenario A as a function of the change in acti-
vation threshold voltage between ’before’ and ’af-
ter’ studies. As the amount of change decreases,
the system takes advantage of the richer perfor-
mance history to decrease the number of simula-
tions needed. For baseline comparison, the *cold’
column corresponds to running the ’after’ study
without running the ’before’ study first, and the
sweep’ column corresponds to running the ’after’
study without any reuse. With maximal reuse, we
see up to 80x improvement in response time. These
runs were conducted with 32 processors.

Table 3 shows the response time of the system
in Scenario B as the percentage completion of the
"before’ study varies. As expected, due to perfor-
mance metric reuse, the further along the "before’
study, the fewer simulations need to be issued for
the ’after’ study, and hence the lower the response
time. For a large overlap of the exploration re-
gion (81.25%), performance metric reuse is able to

Number of | Response
% Completion required Time
simulations (sec)
0 4467 238.5
18% 3521 176.7
37% 2725 139.7
56% 2112 113.6
74% 1292 84.20
93% 304 49.20
100% 13 16.80

Table 3. Response time in Scenario B,
as a function of the percentage com-
pletion of the 'before’ study

Displacement | Number of | Response
of back required Time
electrode (mm) | simulations (sec)
sweep 16385 646.855
cold 7284 129.775
60 7666 154.108
50 7381 142.283
40 6762 130.37
30 6884 132.08
20 6868 127.14
10 6867 122.981

Table 4. Response time in Scenario C,
as a function of the displacement of
the back electrode.

bring down the response time to tens of seconds on
a 32 processor cluster.

Table 4 shows how the response time of the sys-
tem changes in Scenario C as the back electrode
is moved further (these runs were conducted us-
ing 128 processors). The difference between the
Pareto frontier in the two studies diminishes as the
distance decreases, which leads to a decrease in the
number of simulations needed in the ’after’ study
jumpstarted with the Pareto frontier of the "before’
study. The ’cold’ and ’sweep’ baselines are as de-
scribed earlier and show an interesting effect: if the
distance between the "before’ and ’after’ studies is
too large, attempting to reuse the Pareto frontier
can be detrimental to the response time. This phe-
nomenon is described in Section 4.3.

Table 5 shows the per-experiment run time in
Scenario D as a function of amount of increase in
defibrillation voltage. Using the preconditioners
computed in ’before’ studies, the simulation work-
ers can improve their solver performance in the *af-
ter’ by as much as 35%, resulting in a 11.6% im-
provement in per-simulation run time.

Increase in shock | Avg. run | Avg. solve
voltage (V) time (secs) | time (secs)
cold 5.53 4.30
30 5.37 4.125
20 5.15 3.854
10 4.89 3.79

Table 5. Average per-simulation and
per-solver run time in Scenario D, as
a function of the change in electrode
voltage.

4.3 Scaling Behavior with Reuse

In order to individually quantify the benefits
from the different kinds of reuse discussed in Sec-
tion 3.1, and to understand what impact (if any) the
introduction of dependencies between study simu-
lations has on overall scaling behavior, we measure
the response time of the SimX system for different
numbers of simulation workers.

Table 6 lists the various configurations that were
used in the experiments, with one or more forms of
reuse enabled.

Figure 4 shows the scalability log-log plot of the
SimX system’s response time under Scenario A, in
a run where the activation threshold is increased
by 3.33%. We studied all of the configurations
except Configurations 2 and 4. The plot shows
a two-orders-of-magnitude improvement between
Configurations 7 (No reuse) and 6 (No Inter-study
reuse), indicating that the Active Sampler by itself
can cut down response time by almost a factor of
10. However, Configuration 3 (No Simulation Re-
sult reuse) shows that by adding Simulation Result
reuse, we can further reduce the response time by
approximately three-fold. The most interesting as-
pect of this plot is seen when comparing Configu-
rations 5 (No Sampler Inter-study reuse) to 1 (Full
Reuse). It shows that, in this case exploiting reuse
actually hurts the response times for systems em-
ploying a small number of processors. This behav-
ior results because a core assumption for exploit-
ing this kind of reuse is that the "before’ study’s
Pareto frontier approximation is a good approxi-
mation of the "after’ study’s Pareto frontier approx-
imation. When, as in this case, the *before’ study’s
Pareto approximation has many design points that
are not Pareto optimal in the ’after’ study, the ’af-
ter’ study may well need to run more experiments
than if it had started with a coarse grid. However,
even in this case, the coarse grid approach taken
by Configuration 5 still has a drawback: the sam-
pler won’t be able to determine the area of inter-
est until all the results from the coarse grid have

Configuration Sampler Sampler Perf. | Simulation | Intermediate
No. | Name Intra-study | Inter-study | Metric Result Result
1 Full Yes Yes Yes Yes Yes
2 No Perf. Metric Yes Yes No Yes Yes
3 No Simulation Result Yes Yes Yes No Yes
4 No Intermediate Result Yes Yes Yes Yes No
5 No Sampler Inter-study Yes No Yes Yes Yes
6 No Inter-study Yes No No No No
7 No Reuse No No No No No

Table 6. SimX Configurations used in Scalability test

come in. With sampler inter-study reuse, all the
points in the initial approximation are already on
a fine grid, therefore there is no dependency be-
tween them. As a result, Configuration 1 scales
better and overtakes Configuration 5 at 16 simula-
tion workers. For 128 simulation workers, Config-
uration 1’s response time is 31.4% shorter. Notice
that, even assuming perfect scaling, it would have
taken Configuration 7 (No Reuse) more than two
thousand simulation workers to achieve the 20 sec-
ond response time accomplished by Configuration
1 (Full Reuse).

Figures 5 shows the scalability log-log plot of
the SimX system’s response time under Scenario
B, in a run with 81.25% of overlap in the explored
region. We studied all of the configurations except
Configurations 3, 4, and 5. One observes poor scal-
ing for Configuration 1 (Full reuse). This is to be
expected: with 81.25% overlap area in the "before’
and ’after’ studies, most of the experiments’ per-
formance metric are already cached in the manager
process, thus only a small percentage of simula-
tion results used in the ’after’ study require run-
ning new simulations (about 0.3%). The already
low response time (under 20 sec.) cannot be de-
creased much further. If Performance Metric reuse
is turned off (Configuration 2) more work needs
to be done and scaling is closer to optimal, while
the response time increases. Without Simulation
Result reuse (Configuration 6), the response time
increases by an order of magnitude, and removing
sampler intra-study reuse results in an additional
four-fold increase.

Figure 6 shows the scalability log-log plot of the
SimX system’s response time to Scenario C, in a
run where the back electrode is moved by 10mm.
We studied all of the configurations except Config-
urations 2, 3, and 5. The plot shows that even with
full reuse (Configuration 1), the system can scale
up to 128 simulation workers. It also shows that
turning off intermediate result reuse (Configuration
4) would increase the system’s response time by
more than two times. Comparing Configurations 4
and 6 shows that most of the benefits from inter-

Full reuse
105 } No Simulation Result reuse
5 No Sampler Inter-study reuse -
3 No Inter-study reuse =
£ 10*} No reuse
°
£ o
g 10% :
&
Y
€ 102
10" . .
1 10 100
Number of simulation workers
Figure 4. Scalability of Scenario A
Full reuse
10° } No Performance metric reuse
5 No Inter-study reuse -
8 104 | . No reuse =
= R © .
é T e x
§ 10%}
k:
‘*‘r—//l/*\‘
10"
10° . .
1 10 100

Number of simulation workers

Figure 5. Scalability of Scenario B

study reuse come from intermediate result reuse. It
also exhibits the same phenomenon as in Scenario
A, where inter-study reuse hurts the response time
for lower number of processors. Finally, without
any reuse, the system would have taken more than
seven times longer to respond.

Summarizing, the scaling studies: (1) high-
light the importance of exploiting reuse only in
situations where the usage scenario is likely to
yield benefit; (2) demonstrate that more than one
form of reuse needs to be exploited to yield
overall response times that support interactivity;
and (3) show that despite introducing dependen-
cies in a parallel workload that did not have any

5

10 Full reuse

No Intermediate result reuse

& No Inter-study reuse -
§ 4 : No reuse @
c 10 e
°
£
3
c
g 10°
3
o

102 R N

1 10 100

Number of simulation workers

Figure 6. Scalability of Scenario C

to start with, the SimX system’s exploitation of
reuse achieves dramatic reductions in response
time while still leaving behind enough parallelism
to productively employ a moderate-sized parallel
machine.

5 Related Work and Discussion

In its specific goal of supporting interactive
computational studies involving a large number
of computational experiments, the SimX system
builds on and extends prior work on infrastructures
for computational steering and grid-based parame-
ter sweep applications.

Computational steering infrastructures permit
users to continually inspect the state of run-
ning computations on parallel machines, and
“steer” the computation as appropriate, e.g., by
varying internal parameters of the computation.
While several example systems exist, includ-
ing Falcon [7], CUMULVS [10], UINTAH [6],
DISCOVER [14], CSE [23], RealityGrid [4],
gViz [26], and SCIRun [17, 12], they have primar-
ily focused on the visualization and steering of in-
dividual, or a small number of experiments, as op-
posed to entire computational studies.

Grid-based parameter sweep infrastructures
provide scheduling support for running the same
application with a change in parameter values
across distributed resources. Example systems
such as Nimrod [2], Condor [22], Globus [16], and
NetSolve [5], primarily focus on fault tolerance, re-
source management, and load balancing issues on
grid computing infrastructures. These systems typ-
ically assume that the underlying simulations are
independent and hence can be run in batch mode,
ignoring interactivity considerations and without
exploiting possibilities for reuse explored in this
paper. Two exceptions are the work on Nim-
rod/O [1], which reuses previous results in a gradi-
ent descent-like guided search approach to identify

the set of parameter points optimizing an objective
function, and Virtual Instruments [8], which permit
users to explicitly guide search of the parameter
space by identifying regions of interest. Our SimX
work combines elements of both systems but con-
siderably extends them to enable reuse across user
interactions, support more sophisticated objectives
such as identification of Pareto-optimal points, and
exploit reuse opportunities at the level of individual
parameter point evaluations.

In its broader goal of illustrating the sys-
tem techniques that enable interactive performance
for a compute-intensive workload whose baseline
turnaround time differs from what is desired by two
to three orders of magnitude, our work highlights
the importance of taking into consideration the role
that individual computations play in the context of
the overall workflow. Unlike traditional optimiza-
tion strategies, which improve the performance of
a single standalone computation, our work demon-
strates that considering a collection of computa-
tions simultaneously yields many more optimiza-
tion opportunities.

Taking advantage of these opportunities re-
quires extended runtime system support. This sup-
port ranges from global resource managers that
simultaneously determine what needs to be com-
puted next and where, to maintaining a database of
cached intermediate computation results that im-
prove the performance of these computations in
numerous ways. Reuse techniques supported in
SimX/SCIRun build on ideas of a number of pre-
vious systems that have demonstrated the over-
all concept of reusing information from prior ex-
ploratory or useful program executions. Exam-
ples of such work include reusing access informa-
tion from past iterations for periodic load balancing
and data locality optimizations in irregular parallel
computations [21], use of continuous system-level
profiling to drive a host of profile-based compile-,
link-, and run-time optimizations [3], and more re-
cently, active measurement-based customization of
numerical libraries to the underlying machine envi-
ronment [24, 9].

6 Conclusion and Next Steps

This paper has described system support for and
the benefits from aggressively exploiting reuse in
the SimX computational study system. The goal of
our work is to achieve interactive design space ex-
ploration studies involving thousands of individual
computational simulations. By introducing con-
trolled dependencies amongst the simulations, the
reuse-driven optimizations achieve response time
improvements ranging from 5x to 80x on different

defibrillator design scenarios, yet leave enough op-
portunities for parallel computation to achieve rea-
sonable speedups on a 128-node cluster. Such im-
provements become possible when considering op-
timization opportunities across the entire workflow
of the study, as opposed to at the level of individual
simulations.

While this paper has demonstrated a number
of reuse optimizations for computational study
systems, additional opportunities still remain un-
tapped, which we intend on exploring in the near
future. For example, it appears possible to com-
bine a deeper analysis of the previous results with a
higher-level understanding of the internal structure
of the underlying simulations to build an analyti-
cal model of the study’s performance space, and
thereby enable tradeoffs between simulation result
accuracy and run time.

References

[1] D. Abramson, A. Lewis, T. Peachey, and
C. Fletcher. An automatic design optimization tool
and its application to computational fluid dynam-
ics. In Proc. SC’01, 2001.

[2] D. Abramson, R. Sosic, J. Giddy, and B. Hall.
Nimrod: A tool for performing parameterised sim-
ulations using distributed workstations. In Proc.
HPDC, 1995.

[3] J.-A. M. Anderson. et al. Continuous profiling:

Where have all the cycles gone? ACM Trans. Com-

put. Syst., 15(4):357-390, 1997.

J. M. Brooke. et al. Computational steering in Re-

alityGrid. In S. Cox, editor, Proc. UK e-Science All

Hands Meeting, 2003.

[5] H. Casanova and J. Dongarra. Netsolve: A net-
work server for computational science problems.
Intl. J. Supercomp. Appl. and High Perf. Comp.,
11(3):212-223, 1997.

[6] J. Davison de St. Germain, J. McCorquodale,
S. Parker, and C. Johnson. Uintah: a massively
parallel problem solving environment. In Proc.
HDPC, 2000

[71 W. Gu. et al. Falcon: on-line monitoring and
steering of large-scale parallel programs. In Proc.
Symposium on the Frontiers of Massively Parallel
Computation, 1995, 1994

[8] M. Faerman, A. Birnbaum, H. Casanova, and
F. Berman. Resource allocation for steerable par-
allel parameter searches. In Proc. Grid’02, 2002.

[9] M. Frigo and S. G. Johnson. The design and im-
plementation of FFTW3. Proc. IEEE, 2005.

[10] L Geist, G.A., J. Kohl, and P. Papadopoulos. Cu-
mulvs: providing fault tolerance, visualization, and
steering of parallel applications. Intl. J. Super-
comp. Appl. and High Perf. Comp., 11(3):224-35,
1997.

[11] M. Gries. Methods for evaluating and covering the
design space during early design development. In-
tegration, the VLSI Journal, 38(2):131-183, 2004.

[4

—

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

C. Johnson, R. MacLeod, S. Parker, and D. We-
instein. Biomedical computing and visualization
software environments. Comm. ACM, 47(11):64—
71, 2004.

R. MacLeod, C. Johnson, and P. Ershler. Con-
struction of an inhomogeneous model of the human
torso for use in computational electrocardiography.
IEEE EMBS Intl. Conf., pages 688—689, 1991.

V. Mann, V. Matossian, R. Muralidhar, and
M. Parashar. DISCOVER: An environment
for Web-based interaction and steering of high-
performance scientific applications. Concurrency:
Practice and Experience, 13(8-9):737-754, 2001.
A. Messac. Physical programming: Effective op-
timization for computational design. AIAA J.,
31(4):149-158, 1996.

J. Nabrzyski, J. Schopf, and J. Weglarz, editors.
Grid Resource Management: State of the Art and
Future Trends. Kluwer, 2003.

S. Parker and C. Johnson. SCIRun: a scientific pro-
gramming environment for computational steering.
In Proc. SC’95, 1995.

S. Parker, M. Miller, C. Hansen, and C. Johnson.
An integrated problem solving environment: the
SCIRun computational steering system. In Proc.
HICSS, 1998.

J. Schmidt and C. Johnson. DefibSim: An inter-
active defibrillation device design tool. In Proc.
EMBS Conf., 1995.

M. Scott and E. Antonsson. Preliminary vehicle
structure design: An industrial application of im-
precision in engineering design.

J. P. Singh. et al. Load balancing and data locality
in adaptive hierarchical n-body methods: Barnes-
hut, fast multipole, and rasiosity. J. Parallel Dis-
trib. Comput., 27(2):118-141, 1995.

D. Thain, T. Tannenbaum, and M. Livny. Dis-
tributed computing in practice: The condor expe-
rience. Concurrency and Computation: Practice
and Experience, 2004.

R. van Liere, J. Mulder, and J. van Wijk. Compu-
tational steering. In Proc. HPCN, 1996.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Auto-
mated empirical optimizations of software and the
ATLAS project. Parallel Computing, 27(1-2):3—
35, 2001.

B. Wilson, D. Cappelleri, T. W. Simpson, and
M. Frecker. Efficient pareto frontier exploration
using surrogate approximations. Optimization and
Engineering, 2(1):31-50, 2001.

J. Wood and K. Brodlie. gViz - visualization and
steering for the grid. In S. J. Cox, editor, Proc. UK
e-Science All Hands Meeting, 2004.

S. Yau, E. Grinspun, V. Karamcheti, and D. Zorin.
Sim-X: Parallel system software for interactive
multi-experiment computational studies. In Proc.
IPDPS 2006

S. M. Yau, E. Grinspun, V. Karamcheti, and
D. Zorin. Simx meets scirun: A component-based
implementation of a computational study system.
In IPDPS, pages 1-6, 2007.

